|
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1 |
|
| #
872f7000 |
| 03-Apr-2022 |
Dávid Bolvanský <[email protected]> |
Revert "[NFCI] Regenerate SROA/LoopVectorize test checks"
This reverts commit 14e3450fb57305aa9ff3e9e60687b458e43835c9.
|
| #
a113a582 |
| 03-Apr-2022 |
Dávid Bolvanský <[email protected]> |
[NFCI] Regenerate LoopVectorize test checks
|
|
Revision tags: llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2 |
|
| #
23c2f2e6 |
| 07-Jun-2021 |
Florian Hahn <[email protected]> |
[LV] Mark increment of main vector loop induction variable as NUW.
This patch marks the induction increment of the main induction variable of the vector loop as NUW when not folding the tail.
If th
[LV] Mark increment of main vector loop induction variable as NUW.
This patch marks the induction increment of the main induction variable of the vector loop as NUW when not folding the tail.
If the tail is not folded, we know that End - Start >= Step (either statically or through the minimum iteration checks). We also know that both Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + %Step == %End. Hence we must exit the loop before %IV + %Step unsigned overflows and we can mark the induction increment as NUW.
This should make SCEV return more precise bounds for the created vector loops, used by later optimizations, like late unrolling.
At the moment quite a few tests still need to be updated, but before doing so I'd like to get initial feedback to make sure I am not missing anything.
Note that this could probably be further improved by using information from the original IV.
Attempt of modeling of the assumption in Alive2: https://alive2.llvm.org/ce/z/H_DL_g
Part of a set of fixes required for PR50412.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D103255
show more ...
|
|
Revision tags: llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2 |
|
| #
79b1b4a5 |
| 12-Feb-2021 |
Sanjay Patel <[email protected]> |
[Vectorizers][TTI] remove option to bypass creation of vector reduction intrinsics
The vector reduction intrinsics started life as experimental ops, so backend support was lacking. As part of promot
[Vectorizers][TTI] remove option to bypass creation of vector reduction intrinsics
The vector reduction intrinsics started life as experimental ops, so backend support was lacking. As part of promoting them to 1st-class intrinsics, however, codegen support was added/improved: D58015 D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed in D95690. Removing that is another step in simplifying the logic. Also note that x86 was already unconditionally forming reductions in IR, so there should be no difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did not see any asm diffs.
If we do find functional differences for other targets, it should be possible to (at least temporarily) restore the shuffle IR with the ExpandReductions IR pass.
Differential Revision: https://reviews.llvm.org/D96552
show more ...
|
|
Revision tags: llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1 |
|
| #
9b296102 |
| 29-Dec-2020 |
Juneyoung Lee <[email protected]> |
Use unary CreateShuffleVector if possible
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used instead of `IRBuilder::CreateShuffleV
Use unary CreateShuffleVector if possible
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`. Let's update them.
Actually, it would have been more natural if the patches were made in this order: (1) let them use unary CreateShuffleVector first (2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
show more ...
|
|
Revision tags: llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1 |
|
| #
9529597c |
| 12-May-2020 |
Sjoerd Meijer <[email protected]> |
Recommit #2: "[LV] Induction Variable does not remain scalar under tail-folding."
This was reverted because of a miscompilation. At closer inspection, the problem was actually visible in a changed l
Recommit #2: "[LV] Induction Variable does not remain scalar under tail-folding."
This was reverted because of a miscompilation. At closer inspection, the problem was actually visible in a changed llvm regression test too. This one-line follow up fix/recommit will splat the IV, which is what we are trying to avoid if unnecessary in general, if tail-folding is requested even if all users are scalar instructions after vectorisation. Because with tail-folding, the splat IV will be used by the predicate of the masked loads/stores instructions. The previous version omitted this, which caused the miscompilation. The original commit message was:
If tail-folding of the scalar remainder loop is applied, the primary induction variable is splat to a vector and used by the masked load/store vector instructions, thus the IV does not remain scalar. Because we now mark that the IV does not remain scalar for these cases, we don't emit the vector IV if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
show more ...
|
| #
f936457f |
| 08-May-2020 |
Benjamin Kramer <[email protected]> |
Revert "Recommit "[LV] Induction Variable does not remain scalar under tail-folding.""
This reverts commit ae45b4dbe73ffde5fe3119835aa947d5a49635ed. It causes miscompilations, test case on the maili
Revert "Recommit "[LV] Induction Variable does not remain scalar under tail-folding.""
This reverts commit ae45b4dbe73ffde5fe3119835aa947d5a49635ed. It causes miscompilations, test case on the mailing list.
show more ...
|
| #
ae45b4db |
| 07-May-2020 |
Sjoerd Meijer <[email protected]> |
Recommit "[LV] Induction Variable does not remain scalar under tail-folding."
With 3 llvm regr tests fixed/updated that I had missed.
|
| #
20d67ffe |
| 07-May-2020 |
Sjoerd Meijer <[email protected]> |
Revert "[LV] Induction Variable does not remain scalar under tail-folding."
This reverts commit 617aa64c84146468b384453375d1d34f97eb57db.
while I investigate buildbot failures.
|
| #
617aa64c |
| 07-May-2020 |
Sjoerd Meijer <[email protected]> |
[LV] Induction Variable does not remain scalar under tail-folding.
If tail-folding of the scalar remainder loop is applied, the primary induction variable is splat to a vector and used by the masked
[LV] Induction Variable does not remain scalar under tail-folding.
If tail-folding of the scalar remainder loop is applied, the primary induction variable is splat to a vector and used by the masked load/store vector instructions, thus the IV does not remain scalar. Because we now mark that the IV does not remain scalar for these cases, we don't emit the vector IV if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
Differential Revision: https://reviews.llvm.org/D78911
show more ...
|
|
Revision tags: llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1 |
|
| #
cee313d2 |
| 17-Apr-2019 |
Eric Christopher <[email protected]> |
Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
Revision tags: llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1, llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2 |
|
| #
9e4bbe80 |
| 01-May-2018 |
Daniel Neilson <[email protected]> |
[LV] Preserve inbounds on created GEPs
Summary: This is a fix for PR23997.
The loop vectorizer is not preserving the inbounds property of GEPs that it creates. This is inhibiting some optimizations
[LV] Preserve inbounds on created GEPs
Summary: This is a fix for PR23997.
The loop vectorizer is not preserving the inbounds property of GEPs that it creates. This is inhibiting some optimizations. This patch preserves the inbounds property in the case where a load/store is being fed by an inbounds GEP.
Reviewers: mkuper, javed.absar, hsaito
Reviewed By: hsaito
Subscribers: dcaballe, hsaito, llvm-commits
Differential Revision: https://reviews.llvm.org/D46191
llvm-svn: 331269
show more ...
|
|
Revision tags: llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0 |
|
| #
8529dd5e |
| 27-Feb-2018 |
Sanjay Patel <[email protected]> |
[ARM] add loop vectorizer test based on 482.sphinx3 from SPEC2006; NFC
This is a slight reduction of one of the benchmarks that suffered with D43079. Cost model changes should not cause this test to
[ARM] add loop vectorizer test based on 482.sphinx3 from SPEC2006; NFC
This is a slight reduction of one of the benchmarks that suffered with D43079. Cost model changes should not cause this test to remain scalarized.
llvm-svn: 326221
show more ...
|