|
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init |
|
| #
611ffcf4 |
| 14-Jul-2022 |
Kazu Hirata <[email protected]> |
[llvm] Use value instead of getValue (NFC)
|
| #
c6c124ca |
| 28-Jun-2022 |
Mikhail Goncharov <[email protected]> |
Fixed unused variable warning.
|
| #
7e86b13c |
| 28-Jun-2022 |
wlei <[email protected]> |
[CSSPGO][llvm-profgen] Reimplement SampleContextTracker using context trie
This is the followup patch to https://reviews.llvm.org/D125246 for the `SampleContextTracker` part. Before the promotion an
[CSSPGO][llvm-profgen] Reimplement SampleContextTracker using context trie
This is the followup patch to https://reviews.llvm.org/D125246 for the `SampleContextTracker` part. Before the promotion and merging of the context is based on the SampleContext(the array of frame), this causes a lot of cost to the memory. This patch detaches the tracker from using the array ref instead to use the context trie itself. This can save a lot of memory usage and benefit both the compiler's CS inliner and llvm-profgen's pre-inliner.
One structure needs to be specially treated is the `FuncToCtxtProfiles`, this is used to get all the functionSamples for one function to do the merging and promoting. Before it search each functions' context and traverse the trie to get the node of the context. Now we don't have the context inside the profile, instead we directly use an auxiliary map `ProfileToNodeMap` for profile , it initialize to create the FunctionSamples to TrieNode relations and keep updating it during promoting and merging the node.
Moreover, I was expecting the results before and after remain the same, but I found that the order of FuncToCtxtProfiles matter and affect the results. This can happen on recursive context case, but the difference should be small. Now we don't have the context, so I just used a vector for the order, the result is still deterministic.
Measured on one huge size(12GB) profile from one of our internal service. The profile similarity difference is 99.999%, and the running time is improved by 3X(debug mode) and the memory is reduced from 170GB to 90GB.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D127031
show more ...
|
| #
aa58b7b1 |
| 24-Jun-2022 |
wlei <[email protected]> |
[CSSPGO][llvm-profgen] Reimplement computeSummaryAndThreshold using context trie
Follow-up patch to https://reviews.llvm.org/D125246, support `computeSummaryAndThreshold` based on context trie.
Rev
[CSSPGO][llvm-profgen] Reimplement computeSummaryAndThreshold using context trie
Follow-up patch to https://reviews.llvm.org/D125246, support `computeSummaryAndThreshold` based on context trie.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D127026
show more ...
|
| #
a7938c74 |
| 26-Jun-2022 |
Kazu Hirata <[email protected]> |
[llvm] Don't use Optional::hasValue (NFC)
This patch replaces Optional::hasValue with the implicit cast to bool in conditionals only.
|
| #
3b7c3a65 |
| 25-Jun-2022 |
Kazu Hirata <[email protected]> |
Revert "Don't use Optional::hasValue (NFC)"
This reverts commit aa8feeefd3ac6c78ee8f67bf033976fc7d68bc6d.
|
| #
aa8feeef |
| 25-Jun-2022 |
Kazu Hirata <[email protected]> |
Don't use Optional::hasValue (NFC)
|
|
Revision tags: llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1 |
|
| #
01be9be2 |
| 28-Mar-2022 |
serge-sans-paille <[email protected]> |
Cleanup includes: final pass
Cleanup a few extra files, this closes the work on libLLVM dependencies on my side.
Impact on libLLVM preprocessed output: -35876 lines
Discourse thread: https://disco
Cleanup includes: final pass
Cleanup a few extra files, this closes the work on libLLVM dependencies on my side.
Impact on libLLVM preprocessed output: -35876 lines
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup Differential Revision: https://reviews.llvm.org/D122576
show more ...
|
|
Revision tags: llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2 |
|
| #
5740bb80 |
| 14-Dec-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO] Use nested context-sensitive profile.
CSSPGO currently employs a flat profile format for context-sensitive profiles. Such a flat profile allows for precisely manipulating contexts that is e
[CSSPGO] Use nested context-sensitive profile.
CSSPGO currently employs a flat profile format for context-sensitive profiles. Such a flat profile allows for precisely manipulating contexts that is either inlined or not inlined. This is a benefit over the nested profile format used by non-CS AutoFDO. A downside of this is the longer build time due to parsing the indexing the full CS contexts.
For a CS flat profile, though only the context profiles relevant to a module are loaded when that module is compiled, the cost to figure out what profiles are relevant is noticeably high when there're many contexts, since the sample reader will need to scan all context strings anyway. On the contrary, a nested function profile has its related inline subcontexts isolated from other unrelated contexts. Therefore when compiling a set of functions, unrelated contexts will never need to be scanned.
In this change we are exploring using nested profile format for CSSPGO. This is expected to work based on an assumption that with a preinliner-computed profile all contexts are precomputed and expected to be inlined by the compiler. Contexts not expected to be inlined will be cut off and returned to corresponding base profiles (for top-level outlined functions). This naturally forms a nested profile where all nested contexts are expected to be inlined. The compiler will less likely optimize on derived contexts that are not precomputed.
A CS-nested profile will look exactly the same with regular nested profile except that each nested profile can come with an attributes. With pseudo probes, a nested profile shown as below can also have a CFG checksum.
```
main:1968679:12 2: 24 3: 28 _Z5funcAi:18 3.1: 28 _Z5funcBi:30 3: _Z5funcAi:1467398 0: 10 1: 10 _Z8funcLeafi:11 3: 24 1: _Z8funcLeafi:1467299 0: 6 1: 6 3: 287884 4: 287864 _Z3fibi:315608 15: 23 !CFGChecksum: 138828622701 !Attributes: 2 !CFGChecksum: 281479271677951 !Attributes: 2 ```
Specific work included in this change: - A recursive profile converter to convert CS flat profile to nested profile. - Extend function checksum and attribute metadata to be stored in nested way for text profile and extbinary profile. - Unifiy sample loader inliner path for CS and preinlined nested profile. - Changes in the sample loader to support probe-based nested profile.
I've seen promising results regarding build time. A nested profile can result in a 20% shorter build time than a CS flat profile while keep an on-par performance. This is with -duplicate-contexts-into-base=1.
Test Plan:
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D115205
show more ...
|
|
Revision tags: llvmorg-13.0.1-rc1 |
|
| #
042cefd2 |
| 11-Nov-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO] Fix a hash code truncating issue in ContextTrieNode.
std::hash returns a 64bit hash code while previously we were using only lower 32 bits which caused hash collision for large workloads.
[CSSPGO] Fix a hash code truncating issue in ContextTrieNode.
std::hash returns a 64bit hash code while previously we were using only lower 32 bits which caused hash collision for large workloads.
Reviewed By: wenlei, wlei
Differential Revision: https://reviews.llvm.org/D113688
show more ...
|
| #
fb29d812 |
| 01-Oct-2021 |
wlei <[email protected]> |
[CSSPGO] Rename the field of SampleContextFrame
Differential Revision: https://reviews.llvm.org/D110980
|
|
Revision tags: llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3 |
|
| #
054487c5 |
| 01-Sep-2021 |
Wenlei He <[email protected]> |
[CSSPGO] Honor preinliner decision for ThinLTO importing
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inli
[CSSPGO] Honor preinliner decision for ThinLTO importing
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inliner can favor that decision. This is handled by a small tweak in this patch. It also includes a change to transfer preinliner decision when merging context.
Differential Revision: https://reviews.llvm.org/D109088
show more ...
|
| #
04ed6e7a |
| 02-Sep-2021 |
Kevin Athey <[email protected]> |
Revert "[CSSPGO] Honor preinliner decision for ThinLTO importing"
This reverts commit a2768b4732a0216dfd346d34e428685f03f10549.
Breaks sanitizer-x86_64-linux-fast buildbot: https://lab.llvm.org/bui
Revert "[CSSPGO] Honor preinliner decision for ThinLTO importing"
This reverts commit a2768b4732a0216dfd346d34e428685f03f10549.
Breaks sanitizer-x86_64-linux-fast buildbot: https://lab.llvm.org/buildbot/#/builders/5/builds/11334
Log snippet: Testing: 0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80 FAIL: LLVM :: Transforms/SampleProfile/early-inline.ll (65549 of 78729) ******************** TEST 'LLVM :: Transforms/SampleProfile/early-inline.ll' FAILED ******************** Script: -- : 'RUN: at line 1'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt < /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/early-inline.ll -instcombine -sample-profile -sample-profile-file=/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/Inputs/einline.prof -S | /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/early-inline.ll -- Exit Code: 2 Command Output (stderr): -- /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1309:53: runtime error: member call on null pointer of type 'llvm::sampleprof::FunctionSamples' #0 0x5a730f8 in shouldInlineCandidate /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1309:53 #1 0x5a730f8 in (anonymous namespace)::SampleProfileLoader::tryInlineCandidate((anonymous namespace)::InlineCandidate&, llvm::SmallVector<llvm::CallBase*, 8u>*) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1178:21 #2 0x5a6cda6 in inlineHotFunctions /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1105:13 #3 0x5a6cda6 in (anonymous namespace)::SampleProfileLoader::emitAnnotations(llvm::Function&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1633:16 #4 0x5a5fcbe in runOnFunction /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:2008:12 #5 0x5a5fcbe in (anonymous namespace)::SampleProfileLoader::runOnModule(llvm::Module&, llvm::AnalysisManager<llvm::Module>*, llvm::ProfileSummaryInfo*, llvm::CallGraph*) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1922:15 #6 0x5a5de55 in llvm::SampleProfileLoaderPass::run(llvm::Module&, llvm::AnalysisManager<llvm::Module>&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:2038:21 #7 0x6552a01 in llvm::detail::PassModel<llvm::Module, llvm::SampleProfileLoaderPass, llvm::PreservedAnalyses, llvm::AnalysisManager<llvm::Module> >::run(llvm::Module&, llvm::AnalysisManager<llvm::Module>&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/include/llvm/IR/PassManagerInternal.h:88:17 #8 0x57f807c in llvm::PassManager<llvm::Module, llvm::AnalysisManager<llvm::Module> >::run(llvm::Module&, llvm::AnalysisManager<llvm::Module>&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/include/llvm/IR/PassManager.h:526:21 #9 0x37c8522 in llvm::runPassPipeline(llvm::StringRef, llvm::Module&, llvm::TargetMachine*, llvm::TargetLibraryInfoImpl*, llvm::ToolOutputFile*, llvm::ToolOutputFile*, llvm::ToolOutputFile*, llvm::StringRef, llvm::ArrayRef<llvm::StringRef>, llvm::opt_tool::OutputKind, llvm::opt_tool::VerifierKind, bool, bool, bool, bool, bool) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/opt/NewPMDriver.cpp:489:7 #10 0x37e7c11 in main /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/opt/opt.cpp:830:12 #11 0x7fbf4de4009a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) #12 0x379e519 in _start (/b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt+0x379e519) SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1309:53 in FileCheck error: '<stdin>' is empty. FileCheck command line: /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/early-inline.ll -- ******************** Testing: 0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80 FAIL: LLVM :: Transforms/SampleProfile/inline-cold.ll (65643 of 78729) ******************** TEST 'LLVM :: Transforms/SampleProfile/inline-cold.ll' FAILED ******************** Script: -- : 'RUN: at line 4'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt < /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll -sample-profile -sample-profile-file=/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/Inputs/inline-cold.prof -S | /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck -check-prefix=NOTINLINE /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll : 'RUN: at line 5'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt < /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll -passes=sample-profile -sample-profile-file=/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/Inputs/inline-cold.prof -S | /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck -check-prefix=NOTINLINE /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll : 'RUN: at line 8'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt < /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll -sample-profile -sample-profile-file=/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/Inputs/inline-cold.prof -sample-profile-inline-size -S | /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck -check-prefix=INLINE /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll : 'RUN: at line 11'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt < /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll -passes=sample-profile -sample-profile-file=/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/Inputs/inline-cold.prof -sample-profile-inline-size -sample-profile-cold-inline-threshold=9999999 -S | /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck -check-prefix=INLINE /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll : 'RUN: at line 14'; /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt < /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll -passes=sample-profile -sample-profile-file=/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/Inputs/inline-cold.prof -sample-profile-inline-size -sample-profile-cold-inline-threshold=-500 -S | /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck -check-prefix=NOTINLINE /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll -- Exit Code: 2 Command Output (stderr): -- /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1309:53: runtime error: member call on null pointer of type 'llvm::sampleprof::FunctionSamples' #0 0x5a730f8 in shouldInlineCandidate /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1309:53 #1 0x5a730f8 in (anonymous namespace)::SampleProfileLoader::tryInlineCandidate((anonymous namespace)::InlineCandidate&, llvm::SmallVector<llvm::CallBase*, 8u>*) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1178:21 #2 0x5a6cda6 in inlineHotFunctions /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1105:13 #3 0x5a6cda6 in (anonymous namespace)::SampleProfileLoader::emitAnnotations(llvm::Function&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1633:16 #4 0x5a5fcbe in runOnFunction /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:2008:12 #5 0x5a5fcbe in (anonymous namespace)::SampleProfileLoader::runOnModule(llvm::Module&, llvm::AnalysisManager<llvm::Module>*, llvm::ProfileSummaryInfo*, llvm::CallGraph*) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1922:15 #6 0x5a5de55 in llvm::SampleProfileLoaderPass::run(llvm::Module&, llvm::AnalysisManager<llvm::Module>&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:2038:21 #7 0x6552a01 in llvm::detail::PassModel<llvm::Module, llvm::SampleProfileLoaderPass, llvm::PreservedAnalyses, llvm::AnalysisManager<llvm::Module> >::run(llvm::Module&, llvm::AnalysisManager<llvm::Module>&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/include/llvm/IR/PassManagerInternal.h:88:17 #8 0x57f807c in llvm::PassManager<llvm::Module, llvm::AnalysisManager<llvm::Module> >::run(llvm::Module&, llvm::AnalysisManager<llvm::Module>&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/include/llvm/IR/PassManager.h:526:21 #9 0x37c8522 in llvm::runPassPipeline(llvm::StringRef, llvm::Module&, llvm::TargetMachine*, llvm::TargetLibraryInfoImpl*, llvm::ToolOutputFile*, llvm::ToolOutputFile*, llvm::ToolOutputFile*, llvm::StringRef, llvm::ArrayRef<llvm::StringRef>, llvm::opt_tool::OutputKind, llvm::opt_tool::VerifierKind, bool, bool, bool, bool, bool) /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/opt/NewPMDriver.cpp:489:7 #10 0x37e7c11 in main /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/tools/opt/opt.cpp:830:12 #11 0x7fcd534a209a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) #12 0x379e519 in _start (/b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/opt+0x379e519) SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp:1309:53 in FileCheck error: '<stdin>' is empty. FileCheck command line: /b/sanitizer-x86_64-linux-fast/build/llvm_build_ubsan/bin/FileCheck -check-prefix=INLINE /b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/test/Transforms/SampleProfile/inline-cold.ll -- ******************** Testing: 0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90.. ******************** Failed Tests (2): LLVM :: Transforms/SampleProfile/early-inline.ll LLVM :: Transforms/SampleProfile/inline-cold.ll
show more ...
|
| #
a2768b47 |
| 01-Sep-2021 |
Wenlei He <[email protected]> |
[CSSPGO] Honor preinliner decision for ThinLTO importing
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inli
[CSSPGO] Honor preinliner decision for ThinLTO importing
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inliner can favor that decision. This is handled by a small tweak in this patch. It also includes a change to transfer preinliner decision when merging context.
Differential Revision: https://reviews.llvm.org/D109088
show more ...
|
| #
dde162d8 |
| 01-Sep-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO] Fix an access violation due to invalided std::vector pointer invalidation.
std::vector pointers can be invalided while growing. Using std::list instead.
|
| #
7ca80300 |
| 30-Aug-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO] Enable loading MD5 CS profile.
Adding the compiler support of MD5 CS profile based on pervious context split work D107299. A MD5 CS profile is about 40% smaller than the string-based extbin
[CSSPGO] Enable loading MD5 CS profile.
Adding the compiler support of MD5 CS profile based on pervious context split work D107299. A MD5 CS profile is about 40% smaller than the string-based extbinary profile. As a result, the compilation is 15% faster.
There are a few conversion from real names to md5 names that have been made on the sample loader and context tracker side to get it work.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D108342
show more ...
|
|
Revision tags: llvmorg-13.0.0-rc2 |
|
| #
b9db7036 |
| 25-Aug-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO] Split context string to deduplicate function name used in the context.
Currently context strings contain a lot of duplicated function names and that significantly increase the profile size.
[CSSPGO] Split context string to deduplicate function name used in the context.
Currently context strings contain a lot of duplicated function names and that significantly increase the profile size. This change split the context into a series of {name, offset, discriminator} tuples so function names used in the context can be replaced by the index into the name table and that significantly reduce the size consumed by context.
A follow-up improvement made in the compiler and profiling tools is to avoid reconstructing full context strings which is time- and memory- consuming. Instead a context vector of `StringRef` is adopted to represent the full context in all scenarios. As a result, the previous prevalent profile map which was implemented as a `StringRef` is now engineered as an unordered map keyed by `SampleContext`. `SampleContext` is reshaped to using an `ArrayRef` to represent a full context for CS profile. For non-CS profile, it falls back to use `StringRef` to represent a contextless function name. Both the `ArrayRef` and `StringRef` objects are underpinned by real array and string objects that are stored in producer buffers. For compiler, they are maintained by the sample reader. For llvm-profgen, they are maintained in `ProfiledBinary` and `ProfileGenerator`. Full context strings can be generated only in those cases of debugging and printing.
When it comes to profile format, nothing has changed to the text format, though internally CS context is implemented as a vector. Extbinary format is only changed for CS profile, with an additional `SecCSNameTable` section which stores all full contexts logically in the form of `vector<int>`, which each element as an offset points to `SecNameTable`. All occurrences of contexts elsewhere are redirected to using the offset of `SecCSNameTable`.
Testing This is no-diff change in terms of code quality and profile content (for text profile).
For our internal large service (aka ads), the profile generation is cut to half, with a 20x smaller string-based extbinary format generated.
The compile time of ads is dropped by 25%.
Differential Revision: https://reviews.llvm.org/D107299
show more ...
|
| #
a6f15e9a |
| 19-Aug-2021 |
Wenlei He <[email protected]> |
[CSSPGO] Use probe inline tree to track zero size fully optimized context for pre-inliner
This is a follow up diff for BinarySizeContextTracker to track zero size for fully optimized inlinee. When a
[CSSPGO] Use probe inline tree to track zero size fully optimized context for pre-inliner
This is a follow up diff for BinarySizeContextTracker to track zero size for fully optimized inlinee. When an inlinee is fully optimized away, we won't be able to get its size through symbolizing instructions, hence we will treat the corresponding context size as unknown. However by traversing the inlined probe forest, we know what're original inlinees regardless of optimization. If a context show up in inlined probes, but not during symbolization, we know that it's fully optimized away hence its size is zero instead of unknown. It should provide more accurate size cost estimation for pre-inliner to make better inline decisions in llvm-profgen.
Differential Revision: https://reviews.llvm.org/D108350
show more ...
|
| #
eca03d27 |
| 17-Aug-2021 |
Wenlei He <[email protected]> |
[CSSPGO] Track and use context-sensitive post-optimization function size to drive global pre-inliner in llvm-profgen
This change enables llvm-profgen to use accurate context-sensitive post-optimizat
[CSSPGO] Track and use context-sensitive post-optimization function size to drive global pre-inliner in llvm-profgen
This change enables llvm-profgen to use accurate context-sensitive post-optimization function byte size as a cost proxy to drive global preinline decisions.
To do this, BinarySizeContextTracker is introduced to track function byte size under different inline context during disassembling. In preinliner, we can not query context byte size under switch `context-cost-for-preinliner`. The tracker uses a reverse trie to keep size of functions under different context (callee as parent, caller as child), and it can give best/longest possible matching context size for given input context.
The new size cost is off by default. There're a few TODOs that needs to addressed: 1) avoid dangling string from `Offset2LocStackMap`, which will be addressed in split context work; 2) using inlinee's entry probe to make sure we have correct zero size for inlinee that's completely optimized away after inlining. Some tuning is also needed.
Differential Revision: https://reviews.llvm.org/D108180
show more ...
|
|
Revision tags: llvmorg-13.0.0-rc1, llvmorg-14-init |
|
| #
ab5ac659 |
| 22-Jul-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO] Fix a typo in SampleContextTracker
Fixing a typo in SampleContextTracker to use debug name when debug linkage name is no present. This should only affect C programs.
Saw 0.6% perf win on C
[CSSPGO] Fix a typo in SampleContextTracker
Fixing a typo in SampleContextTracker to use debug name when debug linkage name is no present. This should only affect C programs.
Saw 0.6% perf win on Cinder which is mostly C code.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D106599
show more ...
|
|
Revision tags: llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4 |
|
| #
3e3fc431 |
| 29-Mar-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO] Top-down processing order based on full profile.
Use profiled call edges to augment the top-down order. There are cases that the top-down order computed based on the static call graph doesn
[CSSPGO] Top-down processing order based on full profile.
Use profiled call edges to augment the top-down order. There are cases that the top-down order computed based on the static call graph doesn't reflect real execution order. For example:
1. Incomplete static call graph due to unknown indirect call targets. Adjusting the order by considering indirect call edges from the profile can enable the inlining of indirect call targets by allowing the caller processed before them.
2. Mutual call edges in an SCC. The static processing order computed for an SCC may not reflect the call contexts in the context-sensitive profile, thus may cause potential inlining to be overlooked. The function order in one SCC is being adjusted to a top-down order based on the profile to favor more inlining.
3. Transitive indirect call edges due to inlining. When a callee function is inlined into into a caller function in LTO prelink, every call edge originated from the callee will be transferred to the caller. If any of the transferred edges is indirect, the original profiled indirect edge, even if considered, would not enforce a top-down order from the caller to the potential indirect call target in LTO postlink since the inlined callee is gone from the static call graph.
4. #3 can happen even for direct call targets, due to functions defined in header files. Header functions, when included into source files, are defined multiple times but only one definition survives due to ODR. Therefore, the LTO prelink inlining done on those dropped definitions can be useless based on a local file scope. More importantly, the inlinee, once fully inlined to a to-be-dropped inliner, will have no profile to consume when its outlined version is compiled. This can lead to a profile-less prelink compilation for the outlined version of the inlinee function which may be called from external modules. while this isn't easy to fix, we rely on the postlink AutoFDO pipeline to optimize the inlinee. Since the survived copy of the inliner (defined in headers) can be inlined in its local scope in prelink, it may not exist in the merged IR in postlink, and we'll need the profiled call edges to enforce a top-down order for the rest of the functions.
Considering those cases, a profiled call graph completely independent of the static call graph is constructed based on profile data, where function objects are not even needed to handle case #3 and case 4.
I'm seeing an average 0.4% perf win out of SPEC2017. For certain benchmark such as Xalanbmk and GCC, the win is bigger, above 2%.
The change is an enhancement to https://reviews.llvm.org/D95988.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D99351
show more ...
|
| #
ca721042 |
| 29-Mar-2021 |
Huihui Zhang <[email protected]> |
[IPO][SampleContextTracker] Use SmallVector to track context profiles to prevent non-determinism.
Use SmallVector instead of SmallSet to track the context profiles mapped. Doing this can help avoid
[IPO][SampleContextTracker] Use SmallVector to track context profiles to prevent non-determinism.
Use SmallVector instead of SmallSet to track the context profiles mapped. Doing this can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on, --extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON". Failing LLVM test profile-context-tracker-debug.ll .
Reviewed By: MaskRay, wenlei
Differential Revision: https://reviews.llvm.org/D99547
show more ...
|
|
Revision tags: llvmorg-12.0.0-rc3 |
|
| #
30b02323 |
| 05-Mar-2021 |
Wenlei He <[email protected]> |
[CSSPGO][llvm-profgen] Context-sensitive global pre-inliner
This change sets up a framework in llvm-profgen to estimate inline decision and adjust context-sensitive profile based on that. We call it
[CSSPGO][llvm-profgen] Context-sensitive global pre-inliner
This change sets up a framework in llvm-profgen to estimate inline decision and adjust context-sensitive profile based on that. We call it a global pre-inliner in llvm-profgen.
It will serve two purposes: 1) Since context profile for not inlined context will be merged into base profile, if we estimate a context will not be inlined, we can merge the context profile in the output to save profile size. 2) For thinLTO, when a context involving functions from different modules is not inined, we can't merge functions profiles across modules, leading to suboptimal post-inline count quality. By estimating some inline decisions, we would be able to adjust/merge context profiles beforehand as a mitigation.
Compiler inline heuristic uses inline cost which is not available in llvm-profgen. But since inline cost is closely related to size, we could get an estimate through function size from debug info. Because the size we have in llvm-profgen is the final size, it could also be more accurate than the inline cost estimation in the compiler.
This change only has the framework, with a few TODOs left for follow up patches for a complete implementation: 1) We need to retrieve size for funciton//inlinee from debug info for inlining estimation. Currently we use number of samples in a profile as place holder for size estimation. 2) Currently the thresholds are using the values used by sample loader inliner. But they need to be tuned since the size here is fully optimized machine code size, instead of inline cost based on not yet fully optimized IR.
Differential Revision: https://reviews.llvm.org/D99146
show more ...
|
| #
12ac0403 |
| 26-Mar-2021 |
Hongtao Yu <[email protected]> |
[CSSPGO][NFC] Fix a debug dump issue.
During context promotion, intermediate nodes that are on a call path but do not come with a profile can be promoted together with their parent nodes. Do not pri
[CSSPGO][NFC] Fix a debug dump issue.
During context promotion, intermediate nodes that are on a call path but do not come with a profile can be promoted together with their parent nodes. Do not print sample context string for such nodes since they do not have profile.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D99441
show more ...
|
|
Revision tags: llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2 |
|
| #
ee35784a |
| 19-Jan-2021 |
Wei Mi <[email protected]> |
[SampleFDO] Support enabling -funique-internal-linkage-name.
now -funique-internal-linkage-name flag is available, and we want to flip it on by default since it is beneficial to have separate sample
[SampleFDO] Support enabling -funique-internal-linkage-name.
now -funique-internal-linkage-name flag is available, and we want to flip it on by default since it is beneficial to have separate sample profiles for different internal symbols with the same name. As a preparation, we want to avoid regression caused by the flip.
When we flip -funique-internal-linkage-name on, the profile is collected from binary built without -funique-internal-linkage-name so it has no uniq suffix, but the IR in the optimized build contains the suffix. This kind of mismatch may introduce transient regression.
To avoid such mismatch, we introduce a NameTable section flag indicating whether there is any name in the profile containing uniq suffix. Compiler will decide whether to keep uniq suffix during name canonicalization depending on the NameTable section flag. The flag is only available for extbinary format. For other formats, by default compiler will keep uniq suffix so they will only experience transient regression when -funique-internal-linkage-name is just flipped.
Another type of regression is caused by places where we miss to call getCanonicalFnName. Those places are fixed.
Differential Revision: https://reviews.llvm.org/D96932
show more ...
|