Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1
# 03e7fb9d 24-Mar-2022 Dávid Bolvanský <[email protected]>

[NFCI] Fix set-but-unused warning in X86LoadValueInjectionLoadHardening.cpp


Revision tags: llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1
# 21661607 06-Oct-2021 Simon Pilgrim <[email protected]>

[llvm] Replace report_fatal_error(std::string) uses with report_fatal_error(Twine)

As described on D111049, we're trying to remove the <string> dependency from error handling and replace uses of rep

[llvm] Replace report_fatal_error(std::string) uses with report_fatal_error(Twine)

As described on D111049, we're trying to remove the <string> dependency from error handling and replace uses of report_fatal_error(const std::string&) with the Twine() variant which can be forward declared.

show more ...


Revision tags: llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1
# 9243a584 10-May-2021 Simon Pilgrim <[email protected]>

X86LoadValueInjectionLoadHardening.cpp - use const-reference in for-range loops to avoid unnecessary copies. NFCI.


Revision tags: llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2
# 9fe1809f 06-Dec-2020 Fangrui Song <[email protected]>

[X86] Delete 3 unused declarations


Revision tags: llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2
# 09897b14 04-Aug-2020 Krzysztof Parzyszek <[email protected]>

[RDF] Remove uses of RDFRegisters::normalize (deprecate)

This function has been reduced to an identity function for some time.


# ec1445c5 31-Jul-2020 Scott Constable <[email protected]>

[X86] Fix for ballooning compile times due to Load Value Injection (LVI) mitigations

Fix for the issue raised in https://github.com/rust-lang/rust/issues/74632.

The current heuristic for inserting

[X86] Fix for ballooning compile times due to Load Value Injection (LVI) mitigations

Fix for the issue raised in https://github.com/rust-lang/rust/issues/74632.

The current heuristic for inserting LFENCEs uses a quadratic-time algorithm. This can apparently cause substantial compilation slowdowns for building Rust projects, where functions > 5000 LoC are apparently common.

The updated heuristic in this patch implements a linear-time algorithm. On a set of benchmarks, the slowdown factor for the generated code was comparable (2.55x geo mean for the quadratic-time heuristic, vs. 2.58x for the linear-time heuristic). Both heuristics offer the same security properties, namely, mitigating LVI.

This patch also includes some formatting fixes.

Differential Revision: https://reviews.llvm.org/D84471

show more ...


Revision tags: llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2
# dfabffb1 17-Jun-2020 Zola Bridges <[email protected]>

[x86][lvi][seses] Use SESES at O0 for LVI mitigation

Use SESES as the fallback at O0 where the optimized LVI pass isn't desired due
to its effect on build times at O0.

I updated the LVI tests since

[x86][lvi][seses] Use SESES at O0 for LVI mitigation

Use SESES as the fallback at O0 where the optimized LVI pass isn't desired due
to its effect on build times at O0.

I updated the LVI tests since this changes the code gen for the tests touched in the parent revision.

This is a follow up to the comments I made here: https://reviews.llvm.org/D80964

Hopefully we can continue the discussion here.

Also updated SESES to handle LFENCE instructions properly instead of adding
redundant LFENCEs. In particular, 1) no longer add LFENCE if the current
instruction being processed is an LFENCE and 2) no longer add LFENCE if the
instruction right before the instruction being processed is an LFENCE

Reviewed By: sconstab

Differential Revision: https://reviews.llvm.org/D82037

show more ...


# 7e06cf00 10-Jun-2020 Scott Constable <[email protected]>

[X86] Add an Unoptimized Load Value Injection (LVI) Load Hardening Pass

@nikic raised an issue on D75936 that the added complexity to the O0 pipeline was causing noticeable slowdowns for `-O0` build

[X86] Add an Unoptimized Load Value Injection (LVI) Load Hardening Pass

@nikic raised an issue on D75936 that the added complexity to the O0 pipeline was causing noticeable slowdowns for `-O0` builds. This patch addresses the issue by adding a pass with equal security properties, but without any optimizations (and more importantly, without the need for expensive analysis dependencies).

Reviewers: nikic, craig.topper, mattdr

Reviewed By: craig.topper, mattdr

Differential Revision: https://reviews.llvm.org/D80964

show more ...


Revision tags: llvmorg-10.0.1-rc1
# 8ce078c7 11-May-2020 Scott Constable <[email protected]>

[X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)

After finding all such gadgets in a given function, the pass minimally inserts
LFENCE instructions in such a manner that t

[X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)

After finding all such gadgets in a given function, the pass minimally inserts
LFENCE instructions in such a manner that the following property is satisfied:
for all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
least one LFENCE instruction. The algorithm that implements this minimal
insertion is influenced by an academic paper that minimally inserts memory
fences for high-performance concurrent programs:

http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf

The algorithm implemented in this pass is as follows:

1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the following components:
-SOURCE instructions (also includes function arguments)
-SINK instructions
-Basic block entry points
-Basic block terminators
-LFENCE instructions
2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e., gadgets) are already mitigated by existing LFENCEs. If all gadgets have been mitigated, go to step 6.
3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
4. Insert one LFENCE along each CFG edge that was cut in step 3.
5. Go to step 2.
6. If any LFENCEs were inserted, return true from runOnFunction() to tell LLVM that the function was modified.

By default, the heuristic used in Step 3 is a greedy heuristic that avoids
inserting LFENCEs into loops unless absolutely necessary. There is also a
CLI option to load a plugin that can provide even better optimization,
inserting fewer fences, while still mitigating all of the LVI gadgets.
The plugin can be found here: https://github.com/intel/lvi-llvm-optimization-plugin,
and a description of the pass's behavior with the plugin can be found here:
https://software.intel.com/security-software-guidance/insights/optimized-mitigation-approach-load-value-injection.

Differential Revision: https://reviews.llvm.org/D75937

show more ...


# e97a3e5d 11-May-2020 Scott Constable <[email protected]>

[X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) Gadgets

Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.

[X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) Gadgets

Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.

More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK).

Also adds a new target feature to X86: +lvi-load-hardening

The feature can be added via the clang CLI using -mlvi-hardening.

Differential Revision: https://reviews.llvm.org/D75936

show more ...


# a505ad58 03-Apr-2020 Craig Topper <[email protected]>

Revert "[X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)"

This reverts commit 62c42e29ba43c9d79cd5bd2084b641fbff6a96d5

Reverting to address coding standard issues raised

Revert "[X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)"

This reverts commit 62c42e29ba43c9d79cd5bd2084b641fbff6a96d5

Reverting to address coding standard issues raised in post-commit
review.

show more ...


# 62c42e29 03-Apr-2020 Scott Constable <[email protected]>

[X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)

After finding all such gadgets in a given function, the pass minimally inserts
LFENCE instructions in such a manner that t

[X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)

After finding all such gadgets in a given function, the pass minimally inserts
LFENCE instructions in such a manner that the following property is satisfied:
for all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
least one LFENCE instruction. The algorithm that implements this minimal
insertion is influenced by an academic paper that minimally inserts memory
fences for high-performance concurrent programs:

http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf

The algorithm implemented in this pass is as follows:

1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the following components:
-SOURCE instructions (also includes function arguments)
-SINK instructions
-Basic block entry points
-Basic block terminators
-LFENCE instructions
2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e., gadgets) are already mitigated by existing LFENCEs. If all gadgets have been mitigated, go to step 6.
3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
4. Insert one LFENCE along each CFG edge that was cut in step 3.
5. Go to step 2.
6. If any LFENCEs were inserted, return true from runOnFunction() to tell LLVM that the function was modified.

By default, the heuristic used in Step 3 is a greedy heuristic that avoids
inserting LFENCEs into loops unless absolutely necessary. There is also a
CLI option to load a plugin that can provide even better optimization,
inserting fewer fences, while still mitigating all of the LVI gadgets.
The plugin can be found here: https://github.com/intel/lvi-llvm-optimization-plugin,
and a description of the pass's behavior with the plugin can be found here:
https://software.intel.com/security-software-guidance/insights/optimized-mitigation-approach-load-value-injection.

Differential Revision: https://reviews.llvm.org/D75937

show more ...


# c74dd640 03-Apr-2020 Scott Constable <[email protected]>

[X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) Gadgets

Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.

[X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) Gadgets

Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.

More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK).

Also adds a new target feature to X86: +lvi-load-hardening

The feature can be added via the clang CLI using -mlvi-hardening.

Differential Revision: https://reviews.llvm.org/D75936

show more ...