History log of /llvm-project-15.0.7/llvm/lib/Target/BPF/BPFTargetMachine.cpp (Results 1 – 25 of 53)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6
# 129b531c 19-Jun-2022 Kazu Hirata <[email protected]>

[llvm] Use value_or instead of getValueOr (NFC)


Revision tags: llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2
# c4b1a63a 25-Feb-2022 Jameson Nash <[email protected]>

mark getTargetTransformInfo and getTargetIRAnalysis as const

Seems like this can be const, since Passes shouldn't modify it.

Reviewed By: wsmoses

Differential Revision: https://reviews.llvm.org/D1

mark getTargetTransformInfo and getTargetIRAnalysis as const

Seems like this can be const, since Passes shouldn't modify it.

Reviewed By: wsmoses

Differential Revision: https://reviews.llvm.org/D120518

show more ...


Revision tags: llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1
# 009f3a89 15-Oct-2021 Yonghong Song <[email protected]>

BPF: remove intrindics @llvm.stacksave() and @llvm.stackrestore()

Paul Chaignon reported a bpf verifier failure ([1]) due to using
non-ABI register R11. For the test case, llvm11 is okay while
llvm1

BPF: remove intrindics @llvm.stacksave() and @llvm.stackrestore()

Paul Chaignon reported a bpf verifier failure ([1]) due to using
non-ABI register R11. For the test case, llvm11 is okay while
llvm12 and later generates verifier unfriendly code.

The failure is related to variable length array size.
The following mimics the variable length array definition
in the test case:

struct t { char a[20]; };
void foo(void *);
int test() {
const int a = 8;
char tmp[AA + sizeof(struct t) + a];
foo(tmp);
...
}

Paul helped bisect that the following llvm commit is
responsible:

552c6c232872 ("PR44406: Follow behavior of array bound constant
folding in more recent versions of GCC.")

Basically, before the above commit, clang frontend did constant
folding for array size "AA + sizeof(struct t) + a" to be 68,
so used alloca for stack allocation. After the above commit,
clang frontend didn't do constant folding for array size
any more, which results in a VLA and llvm.stacksave/llvm.stackrestore
is generated.

BPF architecture API does not support stack pointer (sp) register.
The LLVM internally used R11 to indicate sp register but it should
not be in the final code. Otherwise, kernel verifier will reject it.

The early patch ([2]) tried to fix the issue in clang frontend.
But the upstream discussion considered frontend fix is really a
hack and the backend should properly undo llvm.stacksave/llvm.stackrestore.
This patch implemented a bpf IR phase to remove these intrinsics
unconditionally. If eventually the alloca can be resolved with
constant size, r11 will not be generated. If alloca cannot be
resolved with constant size, SelectionDag will complain, the same
as without this patch.

[1] https://lore.kernel.org/bpf/20210809151202.GB1012999@Mem/
[2] https://reviews.llvm.org/D107882

Differential Revision: https://reviews.llvm.org/D111897

show more ...


# 89b57061 08-Oct-2021 Reid Kleckner <[email protected]>

Move TargetRegistry.(h|cpp) from Support to MC

This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually us

Move TargetRegistry.(h|cpp) from Support to MC

This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.

This allows us to ensure that Support doesn't have includes from MC/*.

Differential Revision: https://reviews.llvm.org/D111454

show more ...


Revision tags: llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1
# 7a797b29 30-Jul-2021 Tarindu Jayatilaka <[email protected]>

Take OptimizationLevel class out of Pass Builder

Pulled out the OptimizationLevel class from PassBuilder in order to be able to access it from within the PassManager and avoid include conflicts.

Re

Take OptimizationLevel class out of Pass Builder

Pulled out the OptimizationLevel class from PassBuilder in order to be able to access it from within the PassManager and avoid include conflicts.

Reviewed By: mtrofin

Differential Revision: https://reviews.llvm.org/D107025

show more ...


Revision tags: llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1
# 34a8a437 03-May-2021 Arthur Eubanks <[email protected]>

[NewPM] Hide pass manager debug logging behind -debug-pass-manager-verbose

Printing pass manager invocations is fairly verbose and not super
useful.

This allows us to remove DebugLogging from pass

[NewPM] Hide pass manager debug logging behind -debug-pass-manager-verbose

Printing pass manager invocations is fairly verbose and not super
useful.

This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.

This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D101797

show more ...


Revision tags: llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2
# a260ae71 10-Feb-2021 Yonghong Song <[email protected]>

BPF: Implement TTI.IntImmCost() properly

This patch implemented TTI.IntImmCost() properly.
Each BPF insn has 32bit immediate space, so for any immediate
which can be represented as 32bit signed int,

BPF: Implement TTI.IntImmCost() properly

This patch implemented TTI.IntImmCost() properly.
Each BPF insn has 32bit immediate space, so for any immediate
which can be represented as 32bit signed int, the cost
is technically free. If an int cannot be presented as
a 32bit signed int, a ld_imm64 instruction is needed
and a TCC_Basic is returned.

This change is motivated when we observed that
several bpf selftests failed with latest llvm trunk, e.g.,
#10/16 strobemeta.o:FAIL
#10/17 strobemeta_nounroll1.o:FAIL
#10/18 strobemeta_nounroll2.o:FAIL
#10/19 strobemeta_subprogs.o:FAIL
#96 snprintf_btf:FAIL

The reason of the failure is due to that
SpeculateAroundPHIsPass did aggressive transformation
which alters control flow for which currently verifer
cannot handle well. In llvm12, SpeculateAroundPHIsPass
is not called.

SpeculateAroundPHIsPass relied on TTI.getIntImmCost()
and TTI.getIntImmCostInst() for profitability
analysis. This patch implemented TTI.getIntImmCost()
properly for BPF backend which also prevented
transformation which caused the above test failures.

Differential Revision: https://reviews.llvm.org/D96448

show more ...


Revision tags: llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2
# 8a20e2b3 13-Jan-2021 Kazu Hirata <[email protected]>

[llvm] Use Optional::getValueOr (NFC)


Revision tags: llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1
# 92a67e13 19-Nov-2020 Arthur Eubanks <[email protected]>

[BPF][NewPM] Port bpf-adjust-opt to NPM and add it to pipeline

Reviewed By: yonghong-song

Differential Revision: https://reviews.llvm.org/D91990


# ab0ddbc3 04-Nov-2020 Arthur Eubanks <[email protected]>

Reland [NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback

This allows targets to skip optional optimization passes at -O0.

Reviewed By: ychen

Differential Revision: https://rev

Reland [NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback

This allows targets to skip optional optimization passes at -O0.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D90777

show more ...


# 9173b5a9 04-Nov-2020 Arthur Eubanks <[email protected]>

Revert "[NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback"

This reverts commit 7a83aa0520d24ee5285a9c60b97b57a1db1d65e8.

Causing buildbot failures.


# 7a83aa05 04-Nov-2020 Arthur Eubanks <[email protected]>

[NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback

This allows targets to skip optional optimization passes at -O0.

Reviewed By: ychen

Differential Revision: https://reviews.ll

[NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback

This allows targets to skip optional optimization passes at -O0.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D90777

show more ...


Revision tags: llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2
# ddf1864a 06-Aug-2020 Yonghong Song <[email protected]>

BPF: add AdjustOpt IR pass to generate verifier friendly codes

Add an IR phase right before main module optimization.
This is to modify IR to restrict certain downward optimizations
in order to gene

BPF: add AdjustOpt IR pass to generate verifier friendly codes

Add an IR phase right before main module optimization.
This is to modify IR to restrict certain downward optimizations
in order to generate verifier friendly code.
> prevent certain instcombine optimizations, handling both
in-block/cross-block instcombines.
> avoid speculative code motion if the variable used in
condition is also used in the later blocks.

Internally, a bpf IR builtin
result = __builtin_bpf_passthrough(seq_num, result)
is used to enforce ordering. This builtin is only used
during target independent IR optimizations and it will
be removed at the beginning of target dependent IR
optimizations.

For example, removing the following workaround,
--- a/tools/testing/selftests/bpf/progs/test_sysctl_loop1.c
+++ b/tools/testing/selftests/bpf/progs/test_sysctl_loop1.c
@@ -47,7 +47,7 @@ int sysctl_tcp_mem(struct bpf_sysctl *ctx)
/* a workaround to prevent compiler from generating
* codes verifier cannot handle yet.
*/
- volatile int ret;
+ int ret;
this patch is able to generate code which passed the verifier.

To disable optimization, users need to use "opt" command like below:
clang -target bpf -O2 -S -emit-llvm -Xclang -disable-llvm-passes test.c
// disable icmp serialization
opt -O2 -bpf-disable-serialize-icmp test.ll | llvm-dis > t.ll
// disable avoid-speculation
opt -O2 -bpf-disable-avoid-speculation test.ll | llvm-dis > t.ll
llc t.ll

Differential Revision: https://reviews.llvm.org/D85570

show more ...


# 40251fee 05-Oct-2020 Arthur Eubanks <[email protected]>

[BPF][NewPM] Make BPFTargetMachine properly adjust NPM optimizer pipeline

This involves porting BPFAbstractMemberAccess and BPFPreserveDIType to
NPM, then adding them BPFTargetMachine::registerPassB

[BPF][NewPM] Make BPFTargetMachine properly adjust NPM optimizer pipeline

This involves porting BPFAbstractMemberAccess and BPFPreserveDIType to
NPM, then adding them BPFTargetMachine::registerPassBuilderCallbacks
(the NPM equivalent of adjustPassManager()).

Reviewed By: yonghong-song, asbirlea

Differential Revision: https://reviews.llvm.org/D88855

show more ...


# 54d9f743 03-Sep-2020 Yonghong Song <[email protected]>

BPF: move AbstractMemberAccess and PreserveDIType passes to EP_EarlyAsPossible

Move abstractMemberAccess and PreserveDIType passes as early as
possible, right after clang code generation.

Currently

BPF: move AbstractMemberAccess and PreserveDIType passes to EP_EarlyAsPossible

Move abstractMemberAccess and PreserveDIType passes as early as
possible, right after clang code generation.

Currently, compiler may transform the above code
p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
a = llvm.bpf.builtin.preserve_field_info(p2, EXIST);
if (a) {
p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
bpf_probe_read(buf, buf_size, p2);
}
to
p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
a = llvm.bpf.builtin.preserve_field_info(p2, EXIST);
if (a) {
bpf_probe_read(buf, buf_size, p2);
}
and eventually assembly code looks like
reloc_exist = 1;
reloc_member_offset = 10; //calculate member offset from base
p2 = base + reloc_member_offset;
if (reloc_exist) {
bpf_probe_read(bpf, buf_size, p2);
}
if during libbpf relocation resolution, reloc_exist is actually
resolved to 0 (not exist), reloc_member_offset relocation cannot
be resolved and will be patched with illegal instruction.
This will cause verifier failure.

This patch attempts to address this issue by do chaining
analysis and replace chains with special globals right
after clang code gen. This will remove the cse possibility
described in the above. The IR typically looks like
%6 = load @llvm.sk_buff:0:50$0:0:0:2:0
%7 = bitcast %struct.sk_buff* %2 to i8*
%8 = getelementptr i8, i8* %7, %6
for a particular address computation relocation.

But this transformation has another consequence, code sinking
may happen like below:
PHI = <possibly different @preserve_*_access_globals>
%7 = bitcast %struct.sk_buff* %2 to i8*
%8 = getelementptr i8, i8* %7, %6

For such cases, we will not able to generate relocations since
multiple relocations are merged into one.

This patch introduced a passthrough builtin
to prevent such optimization. Looks like inline assembly has more
impact for optimizaiton, e.g., inlining. Using passthrough has
less impact on optimizations.

A new IR pass is introduced at the beginning of target-dependent
IR optimization, which does:
- report fatal error if any reloc global in PHI nodes
- remove all bpf passthrough builtin functions

Changes for existing CORE tests:
- for clang tests, add "-Xclang -disable-llvm-passes" flags to
avoid builtin->reloc_global transformation so the test is still
able to check correctness for clang generated IR.
- for llvm CodeGen/BPF tests, add "opt -O2 <ir_file> | llvm-dis" command
before "llc" command since "opt" is needed to call newly-placed
builtin->reloc_global transformation. Add target triple in the IR
file since "opt" requires it.
- Since target triple is added in IR file, if a test may produce
different results for different endianness, two tests will be
created, one for bpfeb and another for bpfel, e.g., some tests
for relocation of lshift/rshift of bitfields.
- field-reloc-bitfield-1.ll has different relocations compared to
old codes. This is because for the structure in the test,
new code returns struct layout alignment 4 while old code
is 8. Align 8 is more precise and permits double load. With align 4,
the new mechanism uses 4-byte load, so generating different
relocations.
- test intrinsic-transforms.ll is removed. This is used to test
cse on intrinsics so we do not lose metadata. Now metadata is attached
to global and not instruction, it won't get lost with cse.

Differential Revision: https://reviews.llvm.org/D87153

show more ...


# 87cba434 05-Aug-2020 Yonghong Song <[email protected]>

BPF: add a SimplifyCFG IR pass during generic Scalar/IPO optimization

The following bpf linux kernel selftest failed with latest
llvm:
$ ./test_progs -n 7/10
...
The sequence of 8193 jumps is

BPF: add a SimplifyCFG IR pass during generic Scalar/IPO optimization

The following bpf linux kernel selftest failed with latest
llvm:
$ ./test_progs -n 7/10
...
The sequence of 8193 jumps is too complex.
verification time 126272 usec
stack depth 320
processed 114799 insns (limit 1000000)
...
libbpf: failed to load object 'pyperf600_nounroll.o'
test_bpf_verif_scale:FAIL:110
#7/10 pyperf600_nounroll.o:FAIL
#7 bpf_verif_scale:FAIL

After some investigation, I found the following llvm patch
https://reviews.llvm.org/D84108
is responsible. The patch disabled hoisting common instructions
in SimplifyCFG by default. Later on, the code changes and a
SimplifyCFG phase with hoisting on cannot do the work any more.

A test is provided to demonstrate the problem.
The IR before simplifyCFG looks like:
for.cond:
%i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%cmp = icmp ult i32 %i.0, 6
br i1 %cmp, label %for.body, label %for.cond.cleanup

for.cond.cleanup:
%2 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
%cmp2 = icmp eq i8* %2, null
%conv = zext i1 %cmp2 to i32
call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %1) #3
call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %0) #3
ret i32 %conv

for.body:
%3 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
%tobool.not = icmp eq i8* %3, null
br i1 %tobool.not, label %for.inc, label %land.lhs.true

The first two insns of `for.cond.cleanup` and `for.body`, load and
icmp, can be hoisted to `for.cond` block. With Patch D84108, the
optimization is delayed. But unfortunately, later on loop rotation
added addition phi nodes to `for.body` and hoisting cannot
be done any more.

Note such a hoisting is beneficial to bpf programs as
bpf verifier does path sensitive analysis and verification.
The hoisting preverts reloading from stack which will assume
conservative value and increase exploited insns. In this case,
it caused verifier failure.

To fix this problem, I added an IR pass from bpf target
to performance additional simplifycfg with hoisting common inst
enabled.

Differential Revision: https://reviews.llvm.org/D85434

show more ...


Revision tags: llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2
# 6b01b465 12-Feb-2020 Yonghong Song <[email protected]>

[BPF] preserve debuginfo types for builtin __builtin__btf_type_id()

The builtin function
u32 btf_type_id = __builtin_btf_type_id(param, 0)
can help preserve type info for the following use case:

[BPF] preserve debuginfo types for builtin __builtin__btf_type_id()

The builtin function
u32 btf_type_id = __builtin_btf_type_id(param, 0)
can help preserve type info for the following use case:
extern void foo(..., void *data, int size);
int test(...) {
struct t { int a; int b; int c; } d;
d.a = ...; d.b = ...; d.c = ...;
foo(..., &d, sizeof(d));
}

The function "foo" in the above only see raw data and does not
know what type of the data is. In certain cases, e.g., logging,
the additional type information will help pretty print.

This patch handles the builtin in BPF backend. It includes
an IR pass to translate the IR intrinsic to a load of
a global variable which carries the metadata, and an MI
pass to remove the intermediate load of the global variable.
Finally, in AsmPrinter pass, proper instruction are generated.

In the above example, the second argument for __builtin_btf_type_id()
is 0, which means a relocation for local adjustment,
i.e., w.r.t. bpf program BTF change, will be generated.
The value 1 for the second argument means
a relocation for remote adjustment, e.g., against vmlinux.

Differential Revision: https://reviews.llvm.org/D74572

show more ...


# ced0d1f4 22-Mar-2020 Yonghong Song <[email protected]>

[BPF] support 128bit int explicitly in layout spec

Currently, bpf does not specify 128bit alignment in its
layout spec. So for a structure like
struct ipv6_key_t {
unsigned pid;
unsigned _

[BPF] support 128bit int explicitly in layout spec

Currently, bpf does not specify 128bit alignment in its
layout spec. So for a structure like
struct ipv6_key_t {
unsigned pid;
unsigned __int128 saddr;
unsigned short lport;
};
clang will generate IR type
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
Additional padding is to ensure later IR->MIR can generate correct
stack layout with target layout spec.

But it is common practice for a tracing program to be
first compiled with target flag (e.g., x86_64 or aarch64) through
clang to generate IR and then go through llc to generate bpf
byte code. Tracing program often refers to kernel internal
data structures which needs to be compiled with non-bpf target.

But such a compilation model may cause a problem on aarch64.
The bcc issue https://github.com/iovisor/bcc/issues/2827
reported such a problem.

For the above structure, since aarch64 has "i128:128" in its
layout string, the generated IR will have
%struct.ipv6_key_t = type { i32, i128, i16 }

Since bpf does not have "i128:128" in its spec string,
the selectionDAG assumes alignment 8 for i128 and
computes the stack storage size for the above is 32 bytes,
which leads incorrect code later.

The x86_64 does not have this issue as it does not have
"i128:128" in its layout spec as it does permits i128 to
be alignmented at 8 bytes at stack. Its IR type looks like
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }

The fix here is add i128 support in layout spec, the same as
aarch64. The only downside is we may have less optimal stack
allocation in certain cases since we require 16byte alignment
for i128 instead of 8. But this is probably fine as i128 is
not used widely and in most cases users should already
have proper alignment.

Differential Revision: https://reviews.llvm.org/D76587

show more ...


Revision tags: llvmorg-10.0.0-rc1
# adcd0268 28-Jan-2020 Benjamin Kramer <[email protected]>

Make llvm::StringRef to std::string conversions explicit.

This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.

This is mostly m

Make llvm::StringRef to std::string conversions explicit.

This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.

This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.

This doesn't actually modify StringRef yet, I'll do that in a follow-up.

show more ...


Revision tags: llvmorg-11-init
# 0dbcb363 15-Jan-2020 Tom Stellard <[email protected]>

CMake: Make most target symbols hidden by default

Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by

CMake: Make most target symbols hidden by default

Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.

A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.

This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so

One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.

Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278

Reviewers: chandlerc, beanz, mgorny, rnk, hans

Reviewed By: rnk, hans

Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D54439

show more ...


Revision tags: llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1
# ec518510 16-Oct-2019 Jiong Wang <[email protected]>

bpf: fix wrong truncation elimination when there is back-edge/loop

Currently, BPF backend is doing truncation elimination. If one truncation
is performed on a value defined by narrow loads, then it

bpf: fix wrong truncation elimination when there is back-edge/loop

Currently, BPF backend is doing truncation elimination. If one truncation
is performed on a value defined by narrow loads, then it could be redundant
given BPF loads zero extend the destination register implicitly.

When the definition of the truncated value is a merging value (PHI node)
that could come from different code paths, then checks need to be done on
all possible code paths.

Above described optimization was introduced as r306685, however it doesn't
work when there is back-edge, for example when loop is used inside BPF
code.

For example for the following code, a zero-extended value should be stored
into b[i], but the "and reg, 0xffff" is wrongly eliminated which then
generates corrupted data.

void cal1(unsigned short *a, unsigned long *b, unsigned int k)
{
unsigned short e;

e = *a;
for (unsigned int i = 0; i < k; i++) {
b[i] = e;
e = ~e;
}
}

The reason is r306685 was trying to do the PHI node checks inside isel
DAG2DAG phase, and the checks are done on MachineInstr. This is actually
wrong, because MachineInstr is being built during isel phase and the
associated information is not completed yet. A quick search shows none
target other than BPF is access MachineInstr info during isel phase.

For an PHI node, when you reached it during isel phase, it may have all
predecessors linked, but not successors. It seems successors are linked to
PHI node only when doing SelectionDAGISel::FinishBasicBlock and this
happens later than PreprocessISelDAG hook.

Previously, BPF program doesn't allow loop, there is probably the reason
why this bug was not exposed.

This patch therefore fixes the bug by the following approach:
- The existing truncation elimination code and the associated
"load_to_vreg_" records are removed.
- Instead, implement truncation elimination using MachineSSA pass, this
is where all information are built, and keep the pass together with other
similar peephole optimizations inside BPFMIPeephole.cpp. Redundant move
elimination logic is updated accordingly.
- Unit testcase included + no compilation errors for kernel BPF selftest.

Patch Review
===
Patch was sent to and reviewed by BPF community at:

https://lore.kernel.org/bpf

Reported-by: David Beckett <[email protected]>
Reviewed-by: Yonghong Song <[email protected]>
Signed-off-by: Jiong Wang <[email protected]>
llvm-svn: 375007

show more ...


# 05e46979 08-Oct-2019 Yonghong Song <[email protected]>

[BPF] do compile-once run-everywhere relocation for bitfields

A bpf specific clang intrinsic is introduced:
u32 __builtin_preserve_field_info(member_access, info_kind)
Depending on info_kind, dif

[BPF] do compile-once run-everywhere relocation for bitfields

A bpf specific clang intrinsic is introduced:
u32 __builtin_preserve_field_info(member_access, info_kind)
Depending on info_kind, different information will
be returned to the program. A relocation is also
recorded for this builtin so that bpf loader can
patch the instruction on the target host.
This clang intrinsic is used to get certain information
to facilitate struct/union member relocations.

The offset relocation is extended by 4 bytes to
include relocation kind.
Currently supported relocation kinds are
enum {
FIELD_BYTE_OFFSET = 0,
FIELD_BYTE_SIZE,
FIELD_EXISTENCE,
FIELD_SIGNEDNESS,
FIELD_LSHIFT_U64,
FIELD_RSHIFT_U64,
};
for __builtin_preserve_field_info. The old
access offset relocation is covered by
FIELD_BYTE_OFFSET = 0.

An example:
struct s {
int a;
int b1:9;
int b2:4;
};
enum {
FIELD_BYTE_OFFSET = 0,
FIELD_BYTE_SIZE,
FIELD_EXISTENCE,
FIELD_SIGNEDNESS,
FIELD_LSHIFT_U64,
FIELD_RSHIFT_U64,
};

void bpf_probe_read(void *, unsigned, const void *);
int field_read(struct s *arg) {
unsigned long long ull = 0;
unsigned offset = __builtin_preserve_field_info(arg->b2, FIELD_BYTE_OFFSET);
unsigned size = __builtin_preserve_field_info(arg->b2, FIELD_BYTE_SIZE);
#ifdef USE_PROBE_READ
bpf_probe_read(&ull, size, (const void *)arg + offset);
unsigned lshift = __builtin_preserve_field_info(arg->b2, FIELD_LSHIFT_U64);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
lshift = lshift + (size << 3) - 64;
#endif
#else
switch(size) {
case 1:
ull = *(unsigned char *)((void *)arg + offset); break;
case 2:
ull = *(unsigned short *)((void *)arg + offset); break;
case 4:
ull = *(unsigned int *)((void *)arg + offset); break;
case 8:
ull = *(unsigned long long *)((void *)arg + offset); break;
}
unsigned lshift = __builtin_preserve_field_info(arg->b2, FIELD_LSHIFT_U64);
#endif
ull <<= lshift;
if (__builtin_preserve_field_info(arg->b2, FIELD_SIGNEDNESS))
return (long long)ull >> __builtin_preserve_field_info(arg->b2, FIELD_RSHIFT_U64);
return ull >> __builtin_preserve_field_info(arg->b2, FIELD_RSHIFT_U64);
}

There is a minor overhead for bpf_probe_read() on big endian.

The code and relocation generated for field_read where bpf_probe_read() is
used to access argument data on little endian mode:
r3 = r1
r1 = 0
r1 = 4 <=== relocation (FIELD_BYTE_OFFSET)
r3 += r1
r1 = r10
r1 += -8
r2 = 4 <=== relocation (FIELD_BYTE_SIZE)
call bpf_probe_read
r2 = 51 <=== relocation (FIELD_LSHIFT_U64)
r1 = *(u64 *)(r10 - 8)
r1 <<= r2
r2 = 60 <=== relocation (FIELD_RSHIFT_U64)
r0 = r1
r0 >>= r2
r3 = 1 <=== relocation (FIELD_SIGNEDNESS)
if r3 == 0 goto LBB0_2
r1 s>>= r2
r0 = r1
LBB0_2:
exit

Compare to the above code between relocations FIELD_LSHIFT_U64 and
FIELD_LSHIFT_U64, the code with big endian mode has four more
instructions.
r1 = 41 <=== relocation (FIELD_LSHIFT_U64)
r6 += r1
r6 += -64
r6 <<= 32
r6 >>= 32
r1 = *(u64 *)(r10 - 8)
r1 <<= r6
r2 = 60 <=== relocation (FIELD_RSHIFT_U64)

The code and relocation generated when using direct load.
r2 = 0
r3 = 4
r4 = 4
if r4 s> 3 goto LBB0_3
if r4 == 1 goto LBB0_5
if r4 == 2 goto LBB0_6
goto LBB0_9
LBB0_6: # %sw.bb1
r1 += r3
r2 = *(u16 *)(r1 + 0)
goto LBB0_9
LBB0_3: # %entry
if r4 == 4 goto LBB0_7
if r4 == 8 goto LBB0_8
goto LBB0_9
LBB0_8: # %sw.bb9
r1 += r3
r2 = *(u64 *)(r1 + 0)
goto LBB0_9
LBB0_5: # %sw.bb
r1 += r3
r2 = *(u8 *)(r1 + 0)
goto LBB0_9
LBB0_7: # %sw.bb5
r1 += r3
r2 = *(u32 *)(r1 + 0)
LBB0_9: # %sw.epilog
r1 = 51
r2 <<= r1
r1 = 60
r0 = r2
r0 >>= r1
r3 = 1
if r3 == 0 goto LBB0_11
r2 s>>= r1
r0 = r2
LBB0_11: # %sw.epilog
exit

Considering verifier is able to do limited constant
propogation following branches. The following is the
code actually traversed.
r2 = 0
r3 = 4 <=== relocation
r4 = 4 <=== relocation
if r4 s> 3 goto LBB0_3
LBB0_3: # %entry
if r4 == 4 goto LBB0_7
LBB0_7: # %sw.bb5
r1 += r3
r2 = *(u32 *)(r1 + 0)
LBB0_9: # %sw.epilog
r1 = 51 <=== relocation
r2 <<= r1
r1 = 60 <=== relocation
r0 = r2
r0 >>= r1
r3 = 1
if r3 == 0 goto LBB0_11
r2 s>>= r1
r0 = r2
LBB0_11: # %sw.epilog
exit

For native load case, the load size is calculated to be the
same as the size of load width LLVM otherwise used to load
the value which is then used to extract the bitfield value.

Differential Revision: https://reviews.llvm.org/D67980

llvm-svn: 374099

show more ...


Revision tags: llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3
# 0eaee545 15-Aug-2019 Jonas Devlieghere <[email protected]>

[llvm] Migrate llvm::make_unique to std::make_unique

Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of

[llvm] Migrate llvm::make_unique to std::make_unique

Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013

show more ...


Revision tags: llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4
# d3d88d08 09-Jul-2019 Yonghong Song <[email protected]>

[BPF] Support for compile once and run everywhere

Introduction
============

This patch added intial support for bpf program compile once
and run everywhere (CO-RE).

The main motivation is for bpf

[BPF] Support for compile once and run everywhere

Introduction
============

This patch added intial support for bpf program compile once
and run everywhere (CO-RE).

The main motivation is for bpf program which depends on
kernel headers which may vary between different kernel versions.
The initial discussion can be found at https://lwn.net/Articles/773198/.

Currently, bpf program accesses kernel internal data structure
through bpf_probe_read() helper. The idea is to capture the
kernel data structure to be accessed through bpf_probe_read()
and relocate them on different kernel versions.

On each host, right before bpf program load, the bpfloader
will look at the types of the native linux through vmlinux BTF,
calculates proper access offset and patch the instruction.

To accommodate this, three intrinsic functions
preserve_{array,union,struct}_access_index
are introduced which in clang will preserve the base pointer,
struct/union/array access_index and struct/union debuginfo type
information. Later, bpf IR pass can reconstruct the whole gep
access chains without looking at gep itself.

This patch did the following:
. An IR pass is added to convert preserve_*_access_index to
global variable who name encodes the getelementptr
access pattern. The global variable has metadata
attached to describe the corresponding struct/union
debuginfo type.
. An SimplifyPatchable MachineInstruction pass is added
to remove unnecessary loads.
. The BTF output pass is enhanced to generate relocation
records located in .BTF.ext section.

Typical CO-RE also needs support of global variables which can
be assigned to different values to different hosts. For example,
kernel version can be used to guard different versions of codes.
This patch added the support for patchable externals as well.

Example
=======

The following is an example.

struct pt_regs {
long arg1;
long arg2;
};
struct sk_buff {
int i;
struct net_device *dev;
};

#define _(x) (__builtin_preserve_access_index(x))
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr) =
(void *) 4;
extern __attribute__((section(".BPF.patchable_externs"))) unsigned __kernel_version;
int bpf_prog(struct pt_regs *ctx) {
struct net_device *dev = 0;

// ctx->arg* does not need bpf_probe_read
if (__kernel_version >= 41608)
bpf_probe_read(&dev, sizeof(dev), _(&((struct sk_buff *)ctx->arg1)->dev));
else
bpf_probe_read(&dev, sizeof(dev), _(&((struct sk_buff *)ctx->arg2)->dev));
return dev != 0;
}

In the above, we want to translate the third argument of
bpf_probe_read() as relocations.

-bash-4.4$ clang -target bpf -O2 -g -S trace.c

The compiler will generate two new subsections in .BTF.ext,
OffsetReloc and ExternReloc.
OffsetReloc is to record the structure member offset operations,
and ExternalReloc is to record the external globals where
only u8, u16, u32 and u64 are supported.

BPFOffsetReloc Size
struct SecLOffsetReloc for ELF section #1
A number of struct BPFOffsetReloc for ELF section #1
struct SecOffsetReloc for ELF section #2
A number of struct BPFOffsetReloc for ELF section #2
...
BPFExternReloc Size
struct SecExternReloc for ELF section #1
A number of struct BPFExternReloc for ELF section #1
struct SecExternReloc for ELF section #2
A number of struct BPFExternReloc for ELF section #2

struct BPFOffsetReloc {
uint32_t InsnOffset; ///< Byte offset in this section
uint32_t TypeID; ///< TypeID for the relocation
uint32_t OffsetNameOff; ///< The string to traverse types
};

struct BPFExternReloc {
uint32_t InsnOffset; ///< Byte offset in this section
uint32_t ExternNameOff; ///< The string for external variable
};

Note that only externs with attribute section ".BPF.patchable_externs"
are considered for Extern Reloc which will be patched by bpf loader
right before the load.

For the above test case, two offset records and one extern record
will be generated:
OffsetReloc records:
.long .Ltmp12 # Insn Offset
.long 7 # TypeId
.long 242 # Type Decode String
.long .Ltmp18 # Insn Offset
.long 7 # TypeId
.long 242 # Type Decode String

ExternReloc record:
.long .Ltmp5 # Insn Offset
.long 165 # External Variable

In string table:
.ascii "0:1" # string offset=242
.ascii "__kernel_version" # string offset=165

The default member offset can be calculated as
the 2nd member offset (0 representing the 1st member) of struct "sk_buff".

The asm code:
.Ltmp5:
.Ltmp6:
r2 = 0
r3 = 41608
.Ltmp7:
.Ltmp8:
.loc 1 18 9 is_stmt 0 # t.c:18:9
.Ltmp9:
if r3 > r2 goto LBB0_2
.Ltmp10:
.Ltmp11:
.loc 1 0 9 # t.c:0:9
.Ltmp12:
r2 = 8
.Ltmp13:
.loc 1 19 66 is_stmt 1 # t.c:19:66
.Ltmp14:
.Ltmp15:
r3 = *(u64 *)(r1 + 0)
goto LBB0_3
.Ltmp16:
.Ltmp17:
LBB0_2:
.loc 1 0 66 is_stmt 0 # t.c:0:66
.Ltmp18:
r2 = 8
.loc 1 21 66 is_stmt 1 # t.c:21:66
.Ltmp19:
r3 = *(u64 *)(r1 + 8)
.Ltmp20:
.Ltmp21:
LBB0_3:
.loc 1 0 66 is_stmt 0 # t.c:0:66
r3 += r2
r1 = r10
.Ltmp22:
.Ltmp23:
.Ltmp24:
r1 += -8
r2 = 8
call 4

For instruction .Ltmp12 and .Ltmp18, "r2 = 8", the number
8 is the structure offset based on the current BTF.
Loader needs to adjust it if it changes on the host.

For instruction .Ltmp5, "r2 = 0", the external variable
got a default value 0, loader needs to supply an appropriate
value for the particular host.

Compiling to generate object code and disassemble:
0000000000000000 bpf_prog:
0: b7 02 00 00 00 00 00 00 r2 = 0
1: 7b 2a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r2
2: b7 02 00 00 00 00 00 00 r2 = 0
3: b7 03 00 00 88 a2 00 00 r3 = 41608
4: 2d 23 03 00 00 00 00 00 if r3 > r2 goto +3 <LBB0_2>
5: b7 02 00 00 08 00 00 00 r2 = 8
6: 79 13 00 00 00 00 00 00 r3 = *(u64 *)(r1 + 0)
7: 05 00 02 00 00 00 00 00 goto +2 <LBB0_3>

0000000000000040 LBB0_2:
8: b7 02 00 00 08 00 00 00 r2 = 8
9: 79 13 08 00 00 00 00 00 r3 = *(u64 *)(r1 + 8)

0000000000000050 LBB0_3:
10: 0f 23 00 00 00 00 00 00 r3 += r2
11: bf a1 00 00 00 00 00 00 r1 = r10
12: 07 01 00 00 f8 ff ff ff r1 += -8
13: b7 02 00 00 08 00 00 00 r2 = 8
14: 85 00 00 00 04 00 00 00 call 4

Instructions #2, #5 and #8 need relocation resoutions from the loader.

Signed-off-by: Yonghong Song <[email protected]>

Differential Revision: https://reviews.llvm.org/D61524

llvm-svn: 365503

show more ...


Revision tags: llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2
# 4b0b2619 11-Jun-2019 Tom Stellard <[email protected]>

Revert CMake: Make most target symbols hidden by default

This reverts r362990 (git commit 374571301dc8e9bc9fdd1d70f86015de198673bd)

This was causing linker warnings on Darwin:

ld: warning: direct

Revert CMake: Make most target symbols hidden by default

This reverts r362990 (git commit 374571301dc8e9bc9fdd1d70f86015de198673bd)

This was causing linker warnings on Darwin:

ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.

llvm-svn: 363028

show more ...


123