|
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1 |
|
| #
3a3cb929 |
| 07-Feb-2022 |
Kazu Hirata <[email protected]> |
[llvm] Use = default (NFC)
|
|
Revision tags: llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3 |
|
| #
0aec49c8 |
| 11-Sep-2020 |
Lang Hames <[email protected]> |
[ORC] Add support for resource tracking/removal (removable code).
This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of th
[ORC] Add support for resource tracking/removal (removable code).
This patch introduces new APIs to support resource tracking and removal in Orc. It is intended as a thread-safe generalization of the removeModule concept from OrcV1.
Clients can now create ResourceTracker objects (using JITDylib::createResourceTracker) to track resources for each MaterializationUnit (code, data, aliases, absolute symbols, etc.) added to the JIT. Every MaterializationUnit will be associated with a ResourceTracker, and ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib has a default ResourceTracker that will be used for MaterializationUnits added to that JITDylib if no ResourceTracker is explicitly specified.
Two operations can be performed on ResourceTrackers: transferTo and remove. The transferTo operation transfers tracking of the resources to a different ResourceTracker object, allowing ResourceTrackers to be merged to reduce administrative overhead (the source tracker is invalidated in the process). The remove operation removes all resources associated with a ResourceTracker, including any symbols defined by MaterializationUnits associated with the tracker, and also invalidates the tracker. These operations are thread safe, and should work regardless of the the state of the MaterializationUnits. In the case of resource transfer any existing resources associated with the source tracker will be transferred to the destination tracker, and all future resources for those units will be automatically associated with the destination tracker. In the case of resource removal all already-allocated resources will be deallocated, any if any program representations associated with the tracker have not been compiled yet they will be destroyed. If any program representations are currently being compiled then they will be prevented from completing: their MaterializationResponsibility will return errors on any attempt to update the JIT state.
Clients (usually Layer writers) wishing to track resources can implement the ResourceManager API to receive notifications when ResourceTrackers are transferred or removed. The MaterializationResponsibility::withResourceKeyDo method can be used to create associations between the key for a ResourceTracker and an allocated resource in a thread-safe way.
RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the ResourceManager API to enable tracking and removal of memory allocated by the JIT linker.
The new JITDylib::clear method can be used to trigger removal of every ResourceTracker associated with the JITDylib (note that this will only remove resources for the JITDylib, it does not run static destructors).
This patch includes unit tests showing basic usage. A follow-up patch will update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will use this API to release code associated with anonymous expressions.
show more ...
|
| #
7dcd0042 |
| 11-Sep-2020 |
Lang Hames <[email protected]> |
Re-apply "[ORC] Make MaterializationResponsibility immovable..." with fixes.
Re-applies c74900ca672 with fixes for the ThinLtoJIT example.
|
| #
c0825fa5 |
| 11-Sep-2020 |
Florian Hahn <[email protected]> |
Revert "[ORC] Make MaterializationResponsibility immovable, pass by unique_ptr."
This reverts commit c74900ca67241bf963b7a4cfa1fae8eadf6bb8cd.
This appears to be breaking some builds on macOS and h
Revert "[ORC] Make MaterializationResponsibility immovable, pass by unique_ptr."
This reverts commit c74900ca67241bf963b7a4cfa1fae8eadf6bb8cd.
This appears to be breaking some builds on macOS and has been causing build failures on Green Dragon (see below). I am reverting this for now, to unblock testing on Green Dragon.
http://green.lab.llvm.org/green/job/clang-stage1-cmake-RA-incremental/18144/console
[65/187] /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -DBUILD_EXAMPLES -DGTEST_HAS_RTTI=0 -D_DEBUG -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -Iexamples/ThinLtoJIT -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT -Iinclude -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/include -fPIC -fvisibility-inlines-hidden -Werror=date-time -Werror=unguarded-availability-new -Wall -Wextra -Wno-unused-parameter -Wwrite-strings -Wcast-qual -Wmissing-field-initializers -pedantic -Wno-long-long -Wimplicit-fallthrough -Wcovered-switch-default -Wno-noexcept-type -Wnon-virtual-dtor -Wdelete-non-virtual-dtor -Wstring-conversion -fdiagnostics-color -O3 -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk -mmacosx-version-min=10.9 -fno-exceptions -fno-rtti -UNDEBUG -std=c++14 -MD -MT examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -MF examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o.d -o examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -c /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoDiscoveryThread.cpp FAILED: examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -DBUILD_EXAMPLES -DGTEST_HAS_RTTI=0 -D_DEBUG -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -Iexamples/ThinLtoJIT -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT -Iinclude -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/include -fPIC -fvisibility-inlines-hidden -Werror=date-time -Werror=unguarded-availability-new -Wall -Wextra -Wno-unused-parameter -Wwrite-strings -Wcast-qual -Wmissing-field-initializers -pedantic -Wno-long-long -Wimplicit-fallthrough -Wcovered-switch-default -Wno-noexcept-type -Wnon-virtual-dtor -Wdelete-non-virtual-dtor -Wstring-conversion -fdiagnostics-color -O3 -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk -mmacosx-version-min=10.9 -fno-exceptions -fno-rtti -UNDEBUG -std=c++14 -MD -MT examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -MF examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o.d -o examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -c /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoDiscoveryThread.cpp In file included from /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoDiscoveryThread.cpp:7: /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoInstrumentationLayer.h:37:68: error: non-virtual member function marked 'override' hides virtual member function void emit(MaterializationResponsibility R, ThreadSafeModule TSM) override; ^ /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/include/llvm/ExecutionEngine/Orc/Layer.h:103:16: note: hidden overloaded virtual function 'llvm::orc::IRLayer::emit' declared here: type mismatch at 1st parameter ('std::unique_ptr<MaterializationResponsibility>' vs 'llvm::orc::MaterializationResponsibility') virtual void emit(std::unique_ptr<MaterializationResponsibility> R, ^ 1 error generated.
show more ...
|
| #
c74900ca |
| 10-Sep-2020 |
Lang Hames <[email protected]> |
[ORC] Make MaterializationResponsibility immovable, pass by unique_ptr.
Making MaterializationResponsibility instances immovable allows their associated VModuleKeys to be updated by the ExecutionSes
[ORC] Make MaterializationResponsibility immovable, pass by unique_ptr.
Making MaterializationResponsibility instances immovable allows their associated VModuleKeys to be updated by the ExecutionSession while the responsibility is still in-flight. This will be used in the upcoming removable code feature to enable safe merging of resource keys even if there are active compiles using the keys being merged.
show more ...
|
|
Revision tags: llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1 |
|
| #
ce2207ab |
| 22-Jan-2020 |
Lang Hames <[email protected]> |
[ORC] Add support for emulated TLS to ORCv2.
This commit adds a ManglingOptions struct to IRMaterializationUnit, and replaces IRCompileLayer::CompileFunction with a new IRCompileLayer::IRCompiler cl
[ORC] Add support for emulated TLS to ORCv2.
This commit adds a ManglingOptions struct to IRMaterializationUnit, and replaces IRCompileLayer::CompileFunction with a new IRCompileLayer::IRCompiler class. The ManglingOptions struct defines the emulated-TLS state (via a bool member, EmulatedTLS, which is true if emulated-TLS is enabled and false otherwise). The IRCompileLayer::IRCompiler class wraps an IRCompiler (the same way that the CompileFunction typedef used to), but adds a method to return the IRCompileLayer::ManglingOptions that the compiler will use.
These changes allow us to correctly determine the symbols that will be produced when a thread local global variable defined at the IR level is compiled with or without emulated TLS. This is required for ORCv2, where MaterializationUnits must declare their interface up-front.
Most ORCv2 clients should not require any changes. Clients writing custom IR compilers will need to wrap their compiler in an IRCompileLayer::IRCompiler, rather than an IRCompileLayer::CompileFunction, however this should be a straightforward change (see modifications to CompileUtils.* in this patch for an example).
show more ...
|
|
Revision tags: llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2 |
|
| #
809e9d1e |
| 02-Aug-2019 |
Lang Hames <[email protected]> |
[ORC] Change the locking scheme for ThreadSafeModule.
ThreadSafeModule/ThreadSafeContext are used to manage lifetimes and locking for LLVMContexts in ORCv2. Prior to this patch contexts were locked
[ORC] Change the locking scheme for ThreadSafeModule.
ThreadSafeModule/ThreadSafeContext are used to manage lifetimes and locking for LLVMContexts in ORCv2. Prior to this patch contexts were locked as soon as an associated Module was emitted (to be compiled and linked), and were not unlocked until the emit call returned. This could lead to deadlocks if interdependent modules that shared contexts were compiled on different threads: when, during emission of the first module, the dependence was discovered the second module (which would provide the required symbol) could not be emitted as the thread emitting the first module still held the lock.
This patch eliminates this possibility by moving to a finer-grained locking scheme. Each client holds the module lock only while they are actively operating on it. To make this finer grained locking simpler/safer to implement this patch removes the explicit lock method, 'getContextLock', from ThreadSafeModule and replaces it with a new method, 'withModuleDo', that implicitly locks the context, calls a user-supplied function object to operate on the Module, then implicitly unlocks the context before returning the result.
ThreadSafeModule TSM = getModule(...); size_t NumFunctions = TSM.withModuleDo( [](Module &M) { // <- context locked before entry to lambda. return M.size(); });
Existing ORCv2 layers that operate on ThreadSafeModules are updated to use the new method.
This method is used to introduce Module locking into each of the existing layers.
llvm-svn: 367686
show more ...
|
|
Revision tags: llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1, llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1 |
|
| #
2946cd70 |
| 19-Jan-2019 |
Chandler Carruth <[email protected]> |
Update the file headers across all of the LLVM projects in the monorepo to reflect the new license.
We understand that people may be surprised that we're moving the header entirely to discuss the ne
Update the file headers across all of the LLVM projects in the monorepo to reflect the new license.
We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository.
llvm-svn: 351636
show more ...
|
|
Revision tags: llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1 |
|
| #
8b94274f |
| 16-Oct-2018 |
Lang Hames <[email protected]> |
[ORC] Make the VModuleKey optional, propagate it via MaterializationUnit and MaterializationResponsibility.
VModuleKeys are intended to enable selective removal of modules from a JIT session, howeve
[ORC] Make the VModuleKey optional, propagate it via MaterializationUnit and MaterializationResponsibility.
VModuleKeys are intended to enable selective removal of modules from a JIT session, however for a wide variety of use cases selective removal is not needed and introduces unnecessary overhead. As of this commit, the default constructed VModuleKey value is reserved as a "do not track" value, and becomes the default when adding a new module to the JIT.
This commit also changes the propagation of VModuleKeys. They were passed alongside the MaterializationResponsibity instance in XXLayer::emit methods, but are now propagated as part of the MaterializationResponsibility instance itself (and as part of MaterializationUnit when stored in a JITDylib). Associating VModuleKeys with MaterializationUnits in this way should allow for a thread-safe module removal mechanism in the future, even when a module is in the process of being compiled, by having the MaterializationResponsibility object check in on its VModuleKey's state before commiting its results to the JITDylib.
llvm-svn: 344643
show more ...
|
| #
079df9ab |
| 15-Oct-2018 |
Lang Hames <[email protected]> |
[ORC] Rename ORC layers to make the "new" ORC layers the default.
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes the '2' suffix from the new ORC layers. If you wish
[ORC] Rename ORC layers to make the "new" ORC layers the default.
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes the '2' suffix from the new ORC layers. If you wish to continue using the old ORC layers you will need to add a 'Legacy' prefix to your classes. If you were already using the new ORC layers you will need to drop the '2' suffix.
The legacy layers will remain in-tree until the new layers reach feature parity with them. This will involve adding support for removing code from the new layers, and ensuring that performance is comperable.
llvm-svn: 344572
show more ...
|
| #
8d76c711 |
| 26-Sep-2018 |
Lang Hames <[email protected]> |
[ORC] Add ThreadSafeModule and ThreadSafeContext wrappers to support concurrent compilation of IR in the JIT.
ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to lock that
[ORC] Add ThreadSafeModule and ThreadSafeContext wrappers to support concurrent compilation of IR in the JIT.
ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to lock that context when it needs to be accessed from multiple threads.
ThreadSafeModule is a pair of a unique_ptr<Module> and a shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext to be managed automatically in terms of the ThreadSafeModules that refer to it: Once all modules using a ThreadSafeContext are destructed, and providing the client has not held on to a copy of shared context pointer, the context will be automatically destructed.
This scheme is necessary due to the following constraits: (1) We need multiple contexts for multithreaded compilation (at least one per compile thread plus one to store any IR not currently being compiled, though one context per module is simpler). (2) We need to free contexts that are no longer being used so that the JIT does not leak memory over time. (3) Module lifetimes are not predictable (modules are compiled as needed depending on the flow of JIT'd code) so there is no single point where contexts could be reclaimed.
JIT clients not using concurrency can safely use one ThreadSafeContext for all ThreadSafeModules.
JIT clients who want to be able to compile concurrently should use a different ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their top-level IRLayer. The former reduces compile latency (since no clone step is needed) at the cost of additional memory overhead for uncompiled modules (as every uncompiled module will duplicate the LLVM types, constants and metadata that have been shared).
llvm-svn: 343055
show more ...
|
|
Revision tags: llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2 |
|
| #
4caa2f70 |
| 23-May-2018 |
Lang Hames <[email protected]> |
[LKH] Add a new IRCompileLayer.
llvm-svn: 333127
|