|
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2 |
|
| #
c79e6007 |
| 20-Apr-2022 |
Fangrui Song <[email protected]> |
Revert D119136 "[clang] Implement Change scope of lambda trailing-return-type" and its follow-up
This reverts commit 69dd89fdcbd846375a45e2fe3a88710887236d7a. This reverts commit 04000c2f928a7adc321
Revert D119136 "[clang] Implement Change scope of lambda trailing-return-type" and its follow-up
This reverts commit 69dd89fdcbd846375a45e2fe3a88710887236d7a. This reverts commit 04000c2f928a7adc32138a664d167f01b642bef3.
The current states breaks libstdc++ usage (https://reviews.llvm.org/D119136#3455423). The fixup has been reverted as it caused other valid code to be disallowed. I think we should start from the clean state by reverting all relevant commits.
show more ...
|
|
Revision tags: llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1 |
|
| #
04000c2f |
| 06-Feb-2022 |
Corentin Jabot <[email protected]> |
[clang] Implement Change scope of lambda trailing-return-type
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced correctly at the point we know whether the lambda is mu
[clang] Implement Change scope of lambda trailing-return-type
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced correctly at the point we know whether the lambda is mutable, and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type). Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers, record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
show more ...
|
| #
836e610d |
| 14-Apr-2022 |
Richard Smith <[email protected]> |
Revert "[clang] Implement Change scope of lambda trailing-return-type"
This reverts commit c729d5be781a8e80137c11ab28aa14d9ace148db.
This change breaks thread safety annotations on lambdas.
|
| #
c729d5be |
| 06-Feb-2022 |
Corentin Jabot <[email protected]> |
[clang] Implement Change scope of lambda trailing-return-type
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced correctly at the point we know whether the lambda is mu
[clang] Implement Change scope of lambda trailing-return-type
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced correctly at the point we know whether the lambda is mutable, and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that captures would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope * Introduce a lambda scope * Create the lambda class and call operator * Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type). Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point, we can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers, record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
This is a recommit of adff142dc2 after a fix in d8d793f29b4
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
show more ...
|
| #
26eec9e9 |
| 13-Apr-2022 |
Mehdi Amini <[email protected]> |
Revert "[clang] Implement Change scope of lambda trailing-return-type"
This reverts commit adff142dc253d65b6560e420bba6b858d88d4a98. This broke clang bootstrap: it made existing C++ code in LLVM inv
Revert "[clang] Implement Change scope of lambda trailing-return-type"
This reverts commit adff142dc253d65b6560e420bba6b858d88d4a98. This broke clang bootstrap: it made existing C++ code in LLVM invalid:
llvm/include/llvm/CodeGen/LiveInterval.h:630:53: error: captured variable 'Idx' cannot appear here [=](std::remove_reference_t<decltype(*Idx)> V, ^
show more ...
|
| #
adff142d |
| 06-Feb-2022 |
Corentin Jabot <[email protected]> |
[clang] Implement Change scope of lambda trailing-return-type
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced correctly at the point we know whether the lambda is mu
[clang] Implement Change scope of lambda trailing-return-type
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced correctly at the point we know whether the lambda is mutable, and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type). Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers, record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
show more ...
|
|
Revision tags: llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1 |
|
| #
2177e455 |
| 30-Oct-2020 |
Richard Smith <[email protected]> |
PR47861: Expand dangling reference warning to look through copy construction, and to assume that assignment operators return *this.
|
|
Revision tags: llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init |
|
| #
25195541 |
| 09-Jan-2020 |
Richard Smith <[email protected]> |
When diagnosing the lack of a viable conversion function, also list explicit functions that are not candidates.
It's not always obvious that the reason a conversion was not possible is because the f
When diagnosing the lack of a viable conversion function, also list explicit functions that are not candidates.
It's not always obvious that the reason a conversion was not possible is because the function you wanted to call is 'explicit', so explicitly say if that's the case.
It would be nice to rank the explicit candidates higher in the diagnostic if an implicit conversion sequence exists for their arguments, but unfortunately we can't determine that without potentially triggering non-immediate-context errors that we're not permitted to produce.
show more ...
|
|
Revision tags: llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1, llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1, llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0, llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2, llvmorg-6.0.0-rc1, llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2, llvmorg-5.0.1-rc1, llvmorg-5.0.0, llvmorg-5.0.0-rc5, llvmorg-5.0.0-rc4, llvmorg-5.0.0-rc3, llvmorg-5.0.0-rc2, llvmorg-5.0.0-rc1, llvmorg-4.0.1, llvmorg-4.0.1-rc3, llvmorg-4.0.1-rc2, llvmorg-4.0.1-rc1, llvmorg-4.0.0, llvmorg-4.0.0-rc4, llvmorg-4.0.0-rc3, llvmorg-4.0.0-rc2, llvmorg-4.0.0-rc1, llvmorg-3.9.1, llvmorg-3.9.1-rc3, llvmorg-3.9.1-rc2, llvmorg-3.9.1-rc1, llvmorg-3.9.0, llvmorg-3.9.0-rc3, llvmorg-3.9.0-rc2, llvmorg-3.9.0-rc1, llvmorg-3.8.1, llvmorg-3.8.1-rc1, llvmorg-3.8.0, llvmorg-3.8.0-rc3, llvmorg-3.8.0-rc2, llvmorg-3.8.0-rc1, llvmorg-3.7.1, llvmorg-3.7.1-rc2, llvmorg-3.7.1-rc1 |
|
| #
42b10572 |
| 11-Nov-2015 |
Richard Smith <[email protected]> |
N3922: direct-list-initialization of an auto-typed variable no longer deduces a std::initializer_list<T> type. Instead, the list must contain a single element and the type is deduced from that.
In C
N3922: direct-list-initialization of an auto-typed variable no longer deduces a std::initializer_list<T> type. Instead, the list must contain a single element and the type is deduced from that.
In Clang 3.7, we warned by default on all the cases that would change meaning due to this change. In Clang 3.8, we will support only the new rules -- per the request in N3922, this change is applied as a Defect Report against earlier versions of the C++ standard.
This change is not entirely trivial, because for lambda init-captures we previously did not track the difference between direct-list-initialization and copy-list-initialization. The difference was not previously observable, because the two forms of initialization always did the same thing (the elements of the initializer list were always copy-initialized regardless of the initialization style used for the init-capture).
llvm-svn: 252688
show more ...
|
|
Revision tags: llvmorg-3.7.0, llvmorg-3.7.0-rc4, llvmorg-3.7.0-rc3, llvmorg-3.7.0-rc2, llvmorg-3.7.0-rc1, llvmorg-3.6.2, llvmorg-3.6.2-rc1, llvmorg-3.6.1, llvmorg-3.6.1-rc1, llvmorg-3.5.2, llvmorg-3.5.2-rc1, llvmorg-3.6.0, llvmorg-3.6.0-rc4, llvmorg-3.6.0-rc3 |
|
| #
215f423f |
| 11-Feb-2015 |
Richard Smith <[email protected]> |
Add a warning for direct-list-initialization of a variable with a deduced type (or of a lambda init-capture, which is sort-of such a variable). The semantics of such constructs will change when we im
Add a warning for direct-list-initialization of a variable with a deduced type (or of a lambda init-capture, which is sort-of such a variable). The semantics of such constructs will change when we implement N3922, so we intend to warn on this in Clang 3.6 then change the semantics in Clang 3.7.
llvm-svn: 228792
show more ...
|
|
Revision tags: llvmorg-3.6.0-rc2, llvmorg-3.6.0-rc1, llvmorg-3.5.1, llvmorg-3.5.1-rc2, llvmorg-3.5.1-rc1, llvmorg-3.5.0, llvmorg-3.5.0-rc4, llvmorg-3.5.0-rc3, llvmorg-3.5.0-rc2, llvmorg-3.5.0-rc1, llvmorg-3.4.2, llvmorg-3.4.2-rc1, llvmorg-3.4.1, llvmorg-3.4.1-rc2, llvmorg-3.4.1-rc1, llvmorg-3.4.0, llvmorg-3.4.0-rc3, llvmorg-3.4.0-rc2, llvmorg-3.4.0-rc1 |
|
| #
bb13c9a4 |
| 28-Sep-2013 |
Richard Smith <[email protected]> |
Per latest drafting, switch to implementing init-captures as if by declaring and capturing a variable declaration, and complete the implementation of them.
llvm-svn: 191605
|
|
Revision tags: llvmorg-3.3.1-rc1 |
|
| #
6b6f8aac |
| 15-Jun-2013 |
Richard Smith <[email protected]> |
PR16263: Implement current direction of core issue 1376. Binding a reference to the result of a cast-to-reference-type lifetime-extends the object to which the reference inside the cast binds.
This
PR16263: Implement current direction of core issue 1376. Binding a reference to the result of a cast-to-reference-type lifetime-extends the object to which the reference inside the cast binds.
This requires us to look for subobject adjustments on both the inside and the outside of the MaterializeTemporaryExpr when looking for a temporary to lifetime-extend (which we also need for core issue 616, and possibly 1213).
llvm-svn: 184024
show more ...
|
|
Revision tags: llvmorg-3.3.0, llvmorg-3.3.0-rc3, llvmorg-3.3.0-rc2 |
|
| #
ba71c085 |
| 16-May-2013 |
Richard Smith <[email protected]> |
First pass of semantic analysis for init-captures: check the initializer, build a FieldDecl from it, and propagate both into the closure type and the LambdaExpr.
You can't do much useful with them y
First pass of semantic analysis for init-captures: check the initializer, build a FieldDecl from it, and propagate both into the closure type and the LambdaExpr.
You can't do much useful with them yet -- you can't use them within the body of the lambda, because we don't have a representation for "the this of the lambda, not the this of the enclosing context". We also don't have support or a representation for a nested capture of an init-capture yet, which was intended to work despite not being allowed by the current standard wording.
llvm-svn: 181985
show more ...
|