History log of /linux-6.15/kernel/time/tick-internal.h (Results 1 – 25 of 74)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: v6.15, v6.15-rc7, v6.15-rc6, v6.15-rc5, v6.15-rc4, v6.15-rc3, v6.15-rc2, v6.15-rc1, v6.14, v6.14-rc7, v6.14-rc6, v6.14-rc5, v6.14-rc4, v6.14-rc3, v6.14-rc2, v6.14-rc1, v6.13, v6.13-rc7, v6.13-rc6, v6.13-rc5, v6.13-rc4, v6.13-rc3, v6.13-rc2, v6.13-rc1, v6.12, v6.12-rc7, v6.12-rc6
# 3b1596a2 29-Oct-2024 Frederic Weisbecker <[email protected]>

clockevents: Shutdown and unregister current clockevents at CPUHP_AP_TICK_DYING

The way the clockevent devices are finally stopped while a CPU is
offlining is currently chaotic. The layout being by

clockevents: Shutdown and unregister current clockevents at CPUHP_AP_TICK_DYING

The way the clockevent devices are finally stopped while a CPU is
offlining is currently chaotic. The layout being by order:

1) tick_sched_timer_dying() stops the tick and the underlying clockevent
but only for oneshot case. The periodic tick and its related
clockevent still runs.

2) tick_broadcast_offline() detaches and stops the per-cpu oneshot
broadcast and append it to the released list.

3) Some individual clockevent drivers stop the clockevents (a second time if
the tick is oneshot)

4) Once the CPU is dead, a control CPU remotely detaches and stops
(a 3rd time if oneshot mode) the CPU clockevent and adds it to the
released list.

5) The released list containing the broadcast device released on step 2)
and the remotely detached clockevent from step 4) are unregistered.

These random events can be factorized if the current clockevent is
detached and stopped by the dying CPU at the generic layer, that is
from the dying CPU:

a) Stop the tick
b) Stop/detach the underlying per-cpu oneshot broadcast clockevent
c) Stop/detach the underlying clockevent
d) Release / unregister the clockevents from b) and c)
e) Release / unregister the remaining clockevents from the dying CPU.
This part could be performed by the dying CPU

This way the drivers and the tick layer don't need to care about
clockevent operations during cpuhotplug down. This also unifies the tick
behaviour on offline CPUs between oneshot and periodic modes, avoiding
offline ticks altogether for sanity.

Adopt the simplification.

[ tglx: Remove the WARN_ON() in clockevents_register_device() as that
is called from an upcoming CPU before the CPU is marked online ]

Signed-off-by: Frederic Weisbecker <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/all/[email protected]

show more ...


Revision tags: v6.12-rc5, v6.12-rc4, v6.12-rc3, v6.12-rc2, v6.12-rc1, v6.11, v6.11-rc7, v6.11-rc6, v6.11-rc5, v6.11-rc4, v6.11-rc3, v6.11-rc2, v6.11-rc1, v6.10, v6.10-rc7, v6.10-rc6, v6.10-rc5, v6.10-rc4, v6.10-rc3, v6.10-rc2, v6.10-rc1, v6.9, v6.9-rc7, v6.9-rc6, v6.9-rc5, v6.9-rc4, v6.9-rc3, v6.9-rc2, v6.9-rc1, v6.8, v6.8-rc7, v6.8-rc6
# ef8969bb 25-Feb-2024 Frederic Weisbecker <[email protected]>

tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING

The broadcast shutdown code is executed through a random explicit call
within stop machine from the outgoing CPU.

However the tick broadc

tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING

The broadcast shutdown code is executed through a random explicit call
within stop machine from the outgoing CPU.

However the tick broadcast is a midware between the tick callback and
the clocksource, therefore it makes more sense to shut it down after the
tick callback and before the clocksource drivers.

Move it instead to the common tick shutdown CPU hotplug state where
related operations can be ordered from highest to lowest level.

Signed-off-by: Frederic Weisbecker <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# 7ee98877 22-Feb-2024 Anna-Maria Behnsen <[email protected]>

timers: Implement the hierarchical pull model

Placing timers at enqueue time on a target CPU based on dubious heuristics
does not make any sense:

1) Most timer wheel timers are canceled or rearmed

timers: Implement the hierarchical pull model

Placing timers at enqueue time on a target CPU based on dubious heuristics
does not make any sense:

1) Most timer wheel timers are canceled or rearmed before they expire.

2) The heuristics to predict which CPU will be busy when the timer expires
are wrong by definition.

So placing the timers at enqueue wastes precious cycles.

The proper solution to this problem is to always queue the timers on the
local CPU and allow the non pinned timers to be pulled onto a busy CPU at
expiry time.

Therefore split the timer storage into local pinned and global timers:
Local pinned timers are always expired on the CPU on which they have been
queued. Global timers can be expired on any CPU.

As long as a CPU is busy it expires both local and global timers. When a
CPU goes idle it arms for the first expiring local timer. If the first
expiring pinned (local) timer is before the first expiring movable timer,
then no action is required because the CPU will wake up before the first
movable timer expires. If the first expiring movable timer is before the
first expiring pinned (local) timer, then this timer is queued into an idle
timerqueue and eventually expired by another active CPU.

To avoid global locking the timerqueues are implemented as a hierarchy. The
lowest level of the hierarchy holds the CPUs. The CPUs are associated to
groups of 8, which are separated per node. If more than one CPU group
exist, then a second level in the hierarchy collects the groups. Depending
on the size of the system more than 2 levels are required. Each group has a
"migrator" which checks the timerqueue during the tick for remote expirable
timers.

If the last CPU in a group goes idle it reports the first expiring event in
the group up to the next group(s) in the hierarchy. If the last CPU goes
idle it arms its timer for the first system wide expiring timer to ensure
that no timer event is missed.

Signed-off-by: Anna-Maria Behnsen <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Frederic Weisbecker <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# 57e95a5c 21-Feb-2024 Anna-Maria Behnsen <[email protected]>

timers: Introduce function to check timer base is_idle flag

To prepare for the conversion of the NOHZ timer placement to a pull at
expiry time model it's required to have a function that returns the

timers: Introduce function to check timer base is_idle flag

To prepare for the conversion of the NOHZ timer placement to a pull at
expiry time model it's required to have a function that returns the value
of the is_idle flag of the timer base to keep the hierarchy states during
online in sync with timer base state.

No functional change.

Signed-off-by: Anna-Maria Behnsen <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Frederic Weisbecker <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# 4c532939 21-Feb-2024 Richard Cochran (linutronix GmbH) <[email protected]>

tick/sched: Split out jiffies update helper function

The logic to get the time of the last jiffies update will be needed by
the timer pull model as well.

Move the code into a global function in ant

tick/sched: Split out jiffies update helper function

The logic to get the time of the last jiffies update will be needed by
the timer pull model as well.

Move the code into a global function in anticipation of the new caller.

No functional change.

Signed-off-by: Richard Cochran (linutronix GmbH) <[email protected]>
Signed-off-by: Anna-Maria Behnsen <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Frederic Weisbecker <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# f73d9257 21-Feb-2024 Anna-Maria Behnsen <[email protected]>

timers: Add get next timer interrupt functionality for remote CPUs

To prepare for the conversion of the NOHZ timer placement to a pull at
expiry time model it's required to have functionality availa

timers: Add get next timer interrupt functionality for remote CPUs

To prepare for the conversion of the NOHZ timer placement to a pull at
expiry time model it's required to have functionality available getting the
next timer interrupt on a remote CPU.

Locking of the timer bases and getting the information for the next timer
interrupt functionality is split into separate functions. This is required
to be compliant with lock ordering when the new model is in place.

Signed-off-by: Anna-Maria Behnsen <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Frederic Weisbecker <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# e2e1d724 21-Feb-2024 Anna-Maria Behnsen <[email protected]>

timers: Move marking timer bases idle into tick_nohz_stop_tick()

The timer base is marked idle when get_next_timer_interrupt() is
executed. But the decision whether the tick will be stopped and whet

timers: Move marking timer bases idle into tick_nohz_stop_tick()

The timer base is marked idle when get_next_timer_interrupt() is
executed. But the decision whether the tick will be stopped and whether the
system is able to go idle is done later. When the timer bases is marked
idle and a new first timer is enqueued remote an IPI is raised. Even if it
is not required because the tick is not stopped and the timer base is
evaluated again at the next tick.

To prevent this, the timer base is marked idle in tick_nohz_stop_tick() and
get_next_timer_interrupt() is streamlined by only looking for the next timer
interrupt. All other work is postponed to timer_base_try_to_set_idle() which is
called by tick_nohz_stop_tick(). timer_base_try_to_set_idle() never resets
timer_base::is_idle state. This is done when the tick is restarted via
tick_nohz_restart_sched_tick().

With this, tick_sched::tick_stopped and timer_base::is_idle are always in
sync. So there is no longer the need to execute timer_clear_idle() in
tick_nohz_idle_retain_tick(). This was required before, as
tick_nohz_next_event() set timer_base::is_idle even if the tick would not be
stopped. So timer_clear_idle() is only executed, when timer base is idle. So the
check whether timer base is idle, is now no longer required as well.

While at it fix some nearby whitespace damage as well.

Signed-off-by: Anna-Maria Behnsen <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Frederic Weisbecker <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


Revision tags: v6.8-rc5, v6.8-rc4, v6.8-rc3, v6.8-rc2, v6.8-rc1, v6.7, v6.7-rc8, v6.7-rc7, v6.7-rc6, v6.7-rc5, v6.7-rc4, v6.7-rc3, v6.7-rc2, v6.7-rc1
# a89299c4 08-Nov-2023 Arnd Bergmann <[email protected]>

time: Make sysfs_get_uname() function visible in header

This function is defined globally in clocksource.c and used conditionally
in clockevent.c, which the declaration hidden when clockevent suppor

time: Make sysfs_get_uname() function visible in header

This function is defined globally in clocksource.c and used conditionally
in clockevent.c, which the declaration hidden when clockevent support
is disabled. This causes a harmless warning in the definition:

kernel/time/clocksource.c:1324:9: warning: no previous prototype for 'sysfs_get_uname' [-Wmissing-prototypes]
1324 | ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)

Move the declaration out of the #ifdef so it is always visible.

Signed-off-by: Arnd Bergmann <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Reviewed-by: Uwe Kleine-König <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


Revision tags: v6.6, v6.6-rc7, v6.6-rc6, v6.6-rc5, v6.6-rc4, v6.6-rc3, v6.6-rc2, v6.6-rc1, v6.5, v6.5-rc7, v6.5-rc6, v6.5-rc5, v6.5-rc4, v6.5-rc3, v6.5-rc2, v6.5-rc1, v6.4, v6.4-rc7, v6.4-rc6, v6.4-rc5, v6.4-rc4, v6.4-rc3, v6.4-rc2, v6.4-rc1, v6.3, v6.3-rc7, v6.3-rc6, v6.3-rc5, v6.3-rc4, v6.3-rc3, v6.3-rc2, v6.3-rc1, v6.2, v6.2-rc8, v6.2-rc7, v6.2-rc6, v6.2-rc5, v6.2-rc4, v6.2-rc3, v6.2-rc2, v6.2-rc1, v6.1, v6.1-rc8, v6.1-rc7, v6.1-rc6, v6.1-rc5, v6.1-rc4, v6.1-rc3, v6.1-rc2, v6.1-rc1, v6.0, v6.0-rc7, v6.0-rc6, v6.0-rc5, v6.0-rc4, v6.0-rc3, v6.0-rc2, v6.0-rc1, v5.19, v5.19-rc8, v5.19-rc7, v5.19-rc6, v5.19-rc5, v5.19-rc4, v5.19-rc3, v5.19-rc2, v5.19-rc1, v5.18, v5.18-rc7, v5.18-rc6, v5.18-rc5, v5.18-rc4, v5.18-rc3, v5.18-rc2, v5.18-rc1, v5.17, v5.17-rc8, v5.17-rc7, v5.17-rc6, v5.17-rc5, v5.17-rc4, v5.17-rc3, v5.17-rc2, v5.17-rc1, v5.16, v5.16-rc8, v5.16-rc7, v5.16-rc6, v5.16-rc5, v5.16-rc4, v5.16-rc3, v5.16-rc2, v5.16-rc1, v5.15, v5.15-rc7, v5.15-rc6, v5.15-rc5, v5.15-rc4, v5.15-rc3, v5.15-rc2, v5.15-rc1, v5.14, v5.14-rc7, v5.14-rc6
# d25a0252 12-Aug-2021 Paul E. McKenney <[email protected]>

clocksource: Make clocksource watchdog test safe for slow-HZ systems

The clocksource watchdog test sets a local JIFFIES_SHIFT macro and assumes
that HZ is >= 100. For smaller HZ values this shift va

clocksource: Make clocksource watchdog test safe for slow-HZ systems

The clocksource watchdog test sets a local JIFFIES_SHIFT macro and assumes
that HZ is >= 100. For smaller HZ values this shift value is too large and
causes undefined behaviour.

Move the HZ-based definitions of JIFFIES_SHIFT from kernel/time/jiffies.c
to kernel/time/tick-internal.h so the clocksource watchdog test can utilize
them, which makes it work correctly with all HZ values.

[ tglx: Resolved conflicts and massaged changelog ]

Signed-off-by: Paul E. McKenney <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/lkml/20210812000133.GA402890@paulmck-ThinkPad-P17-Gen-1/

show more ...


Revision tags: v5.14-rc5, v5.14-rc4, v5.14-rc3, v5.14-rc2
# 17a1b882 13-Jul-2021 Thomas Gleixner <[email protected]>

hrtimer: Add bases argument to clock_was_set()

clock_was_set() unconditionaly invokes retrigger_next_event() on all online
CPUs. This was necessary because that mechanism was also used for resume
fr

hrtimer: Add bases argument to clock_was_set()

clock_was_set() unconditionaly invokes retrigger_next_event() on all online
CPUs. This was necessary because that mechanism was also used for resume
from suspend to idle which is not longer the case.

The bases arguments allows the callers of clock_was_set() to hand in a mask
which tells clock_was_set() which of the hrtimer clock bases are affected
by the clock setting. This mask will be used in the next step to check
whether a CPU base has timers queued on a clock base affected by the event
and avoid the SMP function call if there are none.

Add a @bases argument, provide defines for the active bases masking and
fixup all callsites.

Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# a761a67f 13-Jul-2021 Thomas Gleixner <[email protected]>

timekeeping: Distangle resume and clock-was-set events

Resuming timekeeping is a clock-was-set event and uses the clock-was-set
notification mechanism. This is in the way of making the clock-was-set

timekeeping: Distangle resume and clock-was-set events

Resuming timekeeping is a clock-was-set event and uses the clock-was-set
notification mechanism. This is in the way of making the clock-was-set
update for hrtimers selective so unnecessary IPIs are avoided when a CPU
base does not have timers queued which are affected by the clock setting.

Distangle it by invoking hrtimer_resume() on each unfreezing CPU and invoke
the new timerfd_resume() function from timekeeping_resume() which is the
only place where this is needed.

Rename hrtimer_resume() to hrtimer_resume_local() to reflect the change.

With this the clock_was_set*() functions are not longer required to IPI all
CPUs unconditionally and can get some smarts to avoid them.

Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# 8c3b5e6e 13-Jul-2021 Thomas Gleixner <[email protected]>

hrtimer: Ensure timerfd notification for HIGHRES=n

If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_

hrtimer: Ensure timerfd notification for HIGHRES=n

If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong.

Make clock_was_set_delayed() unconditially available to fix that.

Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


Revision tags: v5.14-rc1, v5.13, v5.13-rc7, v5.13-rc6, v5.13-rc5, v5.13-rc4
# 245a057f 24-May-2021 Will Deacon <[email protected]>

timer_list: Print name of per-cpu wakeup device

With the introduction of per-cpu wakeup devices that can be used in
preference to the broadcast timer, print the name of such devices when
they are av

timer_list: Print name of per-cpu wakeup device

With the introduction of per-cpu wakeup devices that can be used in
preference to the broadcast timer, print the name of such devices when
they are available.

Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


# c94a8537 24-May-2021 Will Deacon <[email protected]>

tick/broadcast: Prefer per-cpu oneshot wakeup timers to broadcast

Some SoCs have two per-cpu timer implementations where the timer with the
higher rating stops in deep idle (i.e. suffers from CLOCK_

tick/broadcast: Prefer per-cpu oneshot wakeup timers to broadcast

Some SoCs have two per-cpu timer implementations where the timer with the
higher rating stops in deep idle (i.e. suffers from CLOCK_EVT_FEAT_C3STOP)
but is otherwise preferable to the timer with the lower rating. In such a
design, selecting the higher rated devices relies on a global broadcast
timer and IPIs to wake up from deep idle states.

To avoid the reliance on a global broadcast timer and also to reduce the
overhead associated with the IPI wakeups, extend
tick_install_broadcast_device() to manage per-cpu wakeup timers separately
from the broadcast device.

For now, these timers remain unused.

Signed-off-by: Will Deacon <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


Revision tags: v5.13-rc3, v5.13-rc2, v5.13-rc1, v5.12, v5.12-rc8, v5.12-rc7, v5.12-rc6, v5.12-rc5, v5.12-rc4, v5.12-rc3, v5.12-rc2, v5.12-rc1, v5.12-rc1-dontuse, v5.11, v5.11-rc7, v5.11-rc6, v5.11-rc5, v5.11-rc4, v5.11-rc3, v5.11-rc2, v5.11-rc1, v5.10, v5.10-rc7, v5.10-rc6, v5.10-rc5
# b9965449 17-Nov-2020 Thomas Gleixner <[email protected]>

tick: Get rid of tick_period

The variable tick_period is initialized to NSEC_PER_TICK / HZ during boot
and never updated again.

If NSEC_PER_TICK is not an integer multiple of HZ this computation is

tick: Get rid of tick_period

The variable tick_period is initialized to NSEC_PER_TICK / HZ during boot
and never updated again.

If NSEC_PER_TICK is not an integer multiple of HZ this computation is less
accurate than TICK_NSEC which has proper rounding in place.

Aside of the inaccuracy there is no reason for having this variable at
all. It's just a pointless indirection and all usage sites can just use the
TICK_NSEC constant.

Signed-off-by: Thomas Gleixner <[email protected]>
Link: https://lore.kernel.org/r/[email protected]

show more ...


Revision tags: v5.10-rc4, v5.10-rc3, v5.10-rc2, v5.10-rc1, v5.9, v5.9-rc8, v5.9-rc7, v5.9-rc6, v5.9-rc5, v5.9-rc4, v5.9-rc3, v5.9-rc2, v5.9-rc1, v5.8, v5.8-rc7, v5.8-rc6, v5.8-rc5, v5.8-rc4, v5.8-rc3, v5.8-rc2, v5.8-rc1, v5.7, v5.7-rc7, v5.7-rc6, v5.7-rc5, v5.7-rc4, v5.7-rc3, v5.7-rc2, v5.7-rc1, v5.6, v5.6-rc7, v5.6-rc6, v5.6-rc5, v5.6-rc4, v5.6-rc3, v5.6-rc2, v5.6-rc1, v5.5, v5.5-rc7, v5.5-rc6, v5.5-rc5, v5.5-rc4, v5.5-rc3, v5.5-rc2, v5.5-rc1, v5.4, v5.4-rc8, v5.4-rc7, v5.4-rc6, v5.4-rc5, v5.4-rc4, v5.4-rc3, v5.4-rc2, v5.4-rc1, v5.3, v5.3-rc8, v5.3-rc7, v5.3-rc6, v5.3-rc5, v5.3-rc4, v5.3-rc3, v5.3-rc2, v5.3-rc1, v5.2, v5.2-rc7, v5.2-rc6, v5.2-rc5, v5.2-rc4, v5.2-rc3, v5.2-rc2, v5.2-rc1, v5.1, v5.1-rc7, v5.1-rc6, v5.1-rc5, v5.1-rc4, v5.1-rc3, v5.1-rc2
# 1b72d432 21-Mar-2019 Thomas Gleixner <[email protected]>

tick: Remove outgoing CPU from broadcast masks

Valentin reported that unplugging a CPU occasionally results in a warning
in the tick broadcast code which is triggered when an offline CPU is in the
b

tick: Remove outgoing CPU from broadcast masks

Valentin reported that unplugging a CPU occasionally results in a warning
in the tick broadcast code which is triggered when an offline CPU is in the
broadcast mask.

This happens because the outgoing CPU is not removing itself from the
broadcast masks, especially not from the broadcast_force_mask. The removal
happens on the control CPU after the outgoing CPU is dead. It's a long
standing issue, but the warning is harmless.

Rework the hotplug mechanism so that the outgoing CPU removes itself from
the broadcast masks after disabling interrupts and removing itself from the
online mask.

Reported-by: Valentin Schneider <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Tested-by: Valentin Schneider <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Link: https://lkml.kernel.org/r/[email protected]

show more ...


Revision tags: v5.1-rc1, v5.0, v5.0-rc8, v5.0-rc7, v5.0-rc6, v5.0-rc5, v5.0-rc4, v5.0-rc3, v5.0-rc2, v5.0-rc1, v4.20, v4.20-rc7, v4.20-rc6, v4.20-rc5, v4.20-rc4, v4.20-rc3, v4.20-rc2, v4.20-rc1, v4.19, v4.19-rc8, v4.19-rc7, v4.19-rc6, v4.19-rc5, v4.19-rc4, v4.19-rc3, v4.19-rc2, v4.19-rc1, v4.18, v4.18-rc8, v4.18-rc7, v4.18-rc6, v4.18-rc5, v4.18-rc4, v4.18-rc3, v4.18-rc2, v4.18-rc1, v4.17, v4.17-rc7, v4.17-rc6, v4.17-rc5, v4.17-rc4, v4.17-rc3
# a3ed0e43 25-Apr-2018 Thomas Gleixner <[email protected]>

Revert: Unify CLOCK_MONOTONIC and CLOCK_BOOTTIME

Revert commits

92af4dcb4e1c ("tracing: Unify the "boot" and "mono" tracing clocks")
127bfa5f4342 ("hrtimer: Unify MONOTONIC and BOOTTIME clock behav

Revert: Unify CLOCK_MONOTONIC and CLOCK_BOOTTIME

Revert commits

92af4dcb4e1c ("tracing: Unify the "boot" and "mono" tracing clocks")
127bfa5f4342 ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior")
7250a4047aa6 ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior")
d6c7270e913d ("timekeeping: Remove boot time specific code")
f2d6fdbfd238 ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior")
d6ed449afdb3 ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock")
72199320d49d ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock")

As stated in the pull request for the unification of CLOCK_MONOTONIC and
CLOCK_BOOTTIME, it was clear that we might have to revert the change.

As reported by several folks systemd and other applications rely on the
documented behaviour of CLOCK_MONOTONIC on Linux and break with the above
changes. After resume daemons time out and other timeout related issues are
observed. Rafael compiled this list:

* systemd kills daemons on resume, after >WatchdogSec seconds
of suspending (Genki Sky). [Verified that that's because systemd uses
CLOCK_MONOTONIC and expects it to not include the suspend time.]

* systemd-journald misbehaves after resume:
systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal
corrupted or uncleanly shut down, renaming and replacing.
(Mike Galbraith).

* NetworkManager reports "networking disabled" and networking is broken
after resume 50% of the time (Pavel). [May be because of systemd.]

* MATE desktop dims the display and starts the screensaver right after
system resume (Pavel).

* Full system hang during resume (me). [May be due to systemd or NM or both.]

That happens on debian and open suse systems.

It's sad, that these problems were neither catched in -next nor by those
folks who expressed interest in this change.

Reported-by: Rafael J. Wysocki <[email protected]>
Reported-by: Genki Sky <[email protected]>,
Reported-by: Pavel Machek <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: Dmitry Torokhov <[email protected]>
Cc: John Stultz <[email protected]>
Cc: Jonathan Corbet <[email protected]>
Cc: Kevin Easton <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Mark Salyzyn <[email protected]>
Cc: Michael Kerrisk <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Petr Mladek <[email protected]>
Cc: Prarit Bhargava <[email protected]>
Cc: Sergey Senozhatsky <[email protected]>
Cc: Steven Rostedt <[email protected]>

show more ...


Revision tags: v4.17-rc2, v4.17-rc1, v4.16, v4.16-rc7, v4.16-rc6, v4.16-rc5, v4.16-rc4
# d6ed449a 01-Mar-2018 Thomas Gleixner <[email protected]>

timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock

The MONOTONIC clock is not fast forwarded by the time spent in suspend on
resume. This is only done for the BOOTTIME clock. The r

timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock

The MONOTONIC clock is not fast forwarded by the time spent in suspend on
resume. This is only done for the BOOTTIME clock. The reason why the
MONOTONIC clock is not forwarded is historical: the original Linux
implementation was using jiffies as a base for the MONOTONIC clock and
jiffies have never been advanced after resume.

At some point when timekeeping was unified in the core code, the
MONONOTIC clock was advanced after resume which also advanced jiffies causing
interesting side effects. As a consequence the the MONOTONIC clock forwarding
was disabled again and the BOOTTIME clock was introduced, which allows to read
time since boot.

Back then it was not possible to completely distangle the MONOTONIC clock and
jiffies because there were still interfaces which exposed the MONOTONIC clock
behaviour based on the timer wheel and therefore jiffies.

As of today none of the MONOTONIC clock facilities depends on jiffies
anymore so the forwarding can be done seperately. This is achieved by
forwarding the variables which are used for the jiffies update after resume
before the tick is restarted,

In timekeeping resume, the change is rather simple. Instead of updating the
offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the
time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time
spent in suspend.

The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between
the REALTIME and the MONOTONIC clocks is the same as before suspend.

There might be side effects in applications, which rely on the
(unfortunately) well documented behaviour of the MONOTONIC clock, but the
downsides of the existing behaviour are probably worse.

There is one obvious issue. Up to now it was possible to retrieve the time
spent in suspend by observing the delta between the MONOTONIC clock and the
BOOTTIME clock. This is not longer available, but the previously introduced
mechanism to read the active non-suspended monotonic time can mitigate that
in a detectable fashion.

Signed-off-by: Thomas Gleixner <[email protected]>
Cc: Andrew Morton <[email protected]>
Cc: Dmitry Torokhov <[email protected]>
Cc: John Stultz <[email protected]>
Cc: Jonathan Corbet <[email protected]>
Cc: Kevin Easton <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Mark Salyzyn <[email protected]>
Cc: Michael Kerrisk <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Petr Mladek <[email protected]>
Cc: Prarit Bhargava <[email protected]>
Cc: Sergey Senozhatsky <[email protected]>
Cc: Steven Rostedt <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>

show more ...


Revision tags: v4.16-rc3, v4.16-rc2, v4.16-rc1, v4.15, v4.15-rc9, v4.15-rc8, v4.15-rc7, v4.15-rc6, v4.15-rc5
# 14c80341 21-Dec-2017 Anna-Maria Gleixner <[email protected]>

hrtimer: Unify remote enqueue handling

hrtimer_reprogram() is conditionally invoked from hrtimer_start_range_ns()
when hrtimer_cpu_base.hres_active is true.

In the !hres_active case there is a spec

hrtimer: Unify remote enqueue handling

hrtimer_reprogram() is conditionally invoked from hrtimer_start_range_ns()
when hrtimer_cpu_base.hres_active is true.

In the !hres_active case there is a special condition for the nohz_active
case:

If the newly enqueued timer expires before the first expiring timer on a
remote CPU then the remote CPU needs to be notified and woken up from a
NOHZ idle sleep to take the new first expiring timer into account.

Previous changes have already established the prerequisites to make the
remote enqueue behaviour the same whether high resolution mode is active or
not:

If the to be enqueued timer expires before the first expiring timer on a
remote CPU, then it cannot be enqueued there.

This was done for the high resolution mode because there is no way to
access the remote CPU timer hardware. The same is true for NOHZ, but was
handled differently by unconditionally enqueuing the timer and waking up
the remote CPU so it can reprogram its timer. Again there is no compelling
reason for this difference.

hrtimer_check_target(), which makes the 'can remote enqueue' decision is
already unconditional, but not yet functional because nothing updates
hrtimer_cpu_base.expires_next in the !hres_active case.

To unify this the following changes are required:

1) Make the store of the new first expiry time unconditonal in
hrtimer_reprogram() and check __hrtimer_hres_active() before proceeding
to the actual hardware access. This check also lets the compiler
eliminate the rest of the function in case of CONFIG_HIGH_RES_TIMERS=n.

2) Invoke hrtimer_reprogram() unconditionally from
hrtimer_start_range_ns()

3) Remove the remote wakeup special case for the !high_res && nohz_active
case.

Confine the timers_nohz_active static key to timer.c which is the only user
now.

Signed-off-by: Anna-Maria Gleixner <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: John Stultz <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>

show more ...


# ae67bada 14-Jan-2018 Thomas Gleixner <[email protected]>

hrtimer: Optimize the hrtimer code by using static keys for migration_enable/nohz_active

The hrtimer_cpu_base::migration_enable and ::nohz_active fields
were originally introduced to avoid accessing

hrtimer: Optimize the hrtimer code by using static keys for migration_enable/nohz_active

The hrtimer_cpu_base::migration_enable and ::nohz_active fields
were originally introduced to avoid accessing global variables
for these decisions.

Still that results in a (cache hot) load and conditional branch,
which can be avoided by using static keys.

Implement it with static keys and optimize for the most critical
case of high performance networking which tends to disable the
timer migration functionality.

No change in functionality.

Signed-off-by: Thomas Gleixner <[email protected]>
Cc: Anna-Maria Gleixner <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Cc: John Stultz <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Sebastian Andrzej Siewior <[email protected]>
Cc: [email protected]
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1801142327490.2371@nanos
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>

show more ...


Revision tags: v4.15-rc4, v4.15-rc3, v4.15-rc2, v4.15-rc1, v4.14, v4.14-rc8
# b2441318 01-Nov-2017 Greg Kroah-Hartman <[email protected]>

License cleanup: add SPDX GPL-2.0 license identifier to files with no license

Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine

License cleanup: add SPDX GPL-2.0 license identifier to files with no license

Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.

For non */uapi/* files that summary was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139

and resulted in the first patch in this series.

If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930

and resulted in the second patch in this series.

- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:

SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1

and that resulted in the third patch in this series.

- when the two scanners agreed on the detected license(s), that became
the concluded license(s).

- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.

- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).

- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.

- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct

This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <[email protected]>
Reviewed-by: Philippe Ombredanne <[email protected]>
Reviewed-by: Thomas Gleixner <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>

show more ...


Revision tags: v4.14-rc7, v4.14-rc6, v4.14-rc5, v4.14-rc4, v4.14-rc3, v4.14-rc2, v4.14-rc1, v4.13, v4.13-rc7, v4.13-rc6, v4.13-rc5, v4.13-rc4, v4.13-rc3, v4.13-rc2, v4.13-rc1, v4.12, v4.12-rc7, v4.12-rc6, v4.12-rc5
# 94114c36 08-Jun-2017 Stephen Boyd <[email protected]>

tick/broadcast: Make tick_broadcast_setup_oneshot() static

This function isn't used outside of tick-broadcast.c, so let's
mark it static.

Signed-off-by: Stephen Boyd <[email protected]>
Link: ht

tick/broadcast: Make tick_broadcast_setup_oneshot() static

This function isn't used outside of tick-broadcast.c, so let's
mark it static.

Signed-off-by: Stephen Boyd <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Thomas Gleixner <[email protected]>

show more ...


Revision tags: v4.12-rc4, v4.12-rc3, v4.12-rc2, v4.12-rc1, v4.11, v4.11-rc8, v4.11-rc7, v4.11-rc6, v4.11-rc5, v4.11-rc4, v4.11-rc3, v4.11-rc2, v4.11-rc1, v4.10, v4.10-rc8, v4.10-rc7, v4.10-rc6, v4.10-rc5, v4.10-rc4, v4.10-rc3, v4.10-rc2, v4.10-rc1, v4.9, v4.9-rc8, v4.9-rc7, v4.9-rc6, v4.9-rc5, v4.9-rc4, v4.9-rc3, v4.9-rc2, v4.9-rc1, v4.8, v4.8-rc8, v4.8-rc7, v4.8-rc6, v4.8-rc5, v4.8-rc4, v4.8-rc3, v4.8-rc2, v4.8-rc1, v4.7, v4.7-rc7
# a683f390 04-Jul-2016 Thomas Gleixner <[email protected]>

timers: Forward the wheel clock whenever possible

The wheel clock is stale when a CPU goes into a long idle sleep. This has the
side effect that timers which are queued end up in the outer wheel lev

timers: Forward the wheel clock whenever possible

The wheel clock is stale when a CPU goes into a long idle sleep. This has the
side effect that timers which are queued end up in the outer wheel levels.
That results in coarser granularity.

To solve this, we keep track of the idle state and forward the wheel clock
whenever possible.

Signed-off-by: Thomas Gleixner <[email protected]>
Cc: Arjan van de Ven <[email protected]>
Cc: Chris Mason <[email protected]>
Cc: Eric Dumazet <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Cc: George Spelvin <[email protected]>
Cc: Josh Triplett <[email protected]>
Cc: Len Brown <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Paul E. McKenney <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: [email protected]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Ingo Molnar <[email protected]>

show more ...


Revision tags: v4.7-rc6, v4.7-rc5, v4.7-rc4, v4.7-rc3, v4.7-rc2, v4.7-rc1, v4.6, v4.6-rc7, v4.6-rc6, v4.6-rc5, v4.6-rc4, v4.6-rc3, v4.6-rc2, v4.6-rc1, v4.5, v4.5-rc7, v4.5-rc6, v4.5-rc5, v4.5-rc4, v4.5-rc3, v4.5-rc2, v4.5-rc1, v4.4, v4.4-rc8, v4.4-rc7, v4.4-rc6, v4.4-rc5, v4.4-rc4, v4.4-rc3, v4.4-rc2, v4.4-rc1, v4.3, v4.3-rc7, v4.3-rc6, v4.3-rc5, v4.3-rc4, v4.3-rc3, v4.3-rc2, v4.3-rc1, v4.2, v4.2-rc8, v4.2-rc7, v4.2-rc6, v4.2-rc5, v4.2-rc4, v4.2-rc3, v4.2-rc2, v4.2-rc1, v4.1, v4.1-rc8, v4.1-rc7, v4.1-rc6
# 683be13a 26-May-2015 Thomas Gleixner <[email protected]>

timer: Minimize nohz off overhead

If nohz is disabled on the kernel command line the [hr]timer code
still calls wake_up_nohz_cpu() and tick_nohz_full_cpu(), a pretty
pointless exercise. Cache nohz_a

timer: Minimize nohz off overhead

If nohz is disabled on the kernel command line the [hr]timer code
still calls wake_up_nohz_cpu() and tick_nohz_full_cpu(), a pretty
pointless exercise. Cache nohz_active in [hr]timer per cpu bases and
avoid the overhead.

Before:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu

After:
48.73% hog [.] main
15.36% [kernel] [k] _raw_spin_lock_irqsave
9.77% [kernel] [k] _raw_spin_unlock_irqrestore
6.61% [kernel] [k] lock_timer_base.isra.38
6.42% [kernel] [k] mod_timer
3.90% [kernel] [k] detach_if_pending
3.76% [kernel] [k] del_timer
2.41% [kernel] [k] internal_add_timer
1.39% [kernel] [k] __internal_add_timer
0.76% [kernel] [k] timerfn

We probably should have a cached value for nohz full in the per cpu
bases as well to avoid the cpumask check. The base cache line is hot
already, the cpumask not necessarily.

Signed-off-by: Thomas Gleixner <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Paul McKenney <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Cc: Eric Dumazet <[email protected]>
Cc: Viresh Kumar <[email protected]>
Cc: John Stultz <[email protected]>
Cc: Joonwoo Park <[email protected]>
Cc: Wenbo Wang <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Thomas Gleixner <[email protected]>

show more ...


# bc7a34b8 26-May-2015 Thomas Gleixner <[email protected]>

timer: Reduce timer migration overhead if disabled

Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature

timer: Reduce timer migration overhead if disabled

Eric reported that the timer_migration sysctl is not really nice
performance wise as it needs to check at every timer insertion whether
the feature is enabled or not. Further the check does not live in the
timer code, so we have an extra function call which checks an extra
cache line to figure out that it is disabled.

We can do better and store that information in the per cpu (hr)timer
bases. I pondered to use a static key, but that's a nightmare to
update from the nohz code and the timer base cache line is hot anyway
when we select a timer base.

The old logic enabled the timer migration unconditionally if
CONFIG_NO_HZ was set even if nohz was disabled on the kernel command
line.

With this modification, we start off with migration disabled. The user
visible sysctl is still set to enabled. If the kernel switches to NOHZ
migration is enabled, if the user did not disable it via the sysctl
prior to the switch. If nohz=off is on the kernel command line,
migration stays disabled no matter what.

Before:
47.76% hog [.] main
14.84% [kernel] [k] _raw_spin_lock_irqsave
9.55% [kernel] [k] _raw_spin_unlock_irqrestore
6.71% [kernel] [k] mod_timer
6.24% [kernel] [k] lock_timer_base.isra.38
3.76% [kernel] [k] detach_if_pending
3.71% [kernel] [k] del_timer
2.50% [kernel] [k] internal_add_timer
1.51% [kernel] [k] get_nohz_timer_target
1.28% [kernel] [k] __internal_add_timer
0.78% [kernel] [k] timerfn
0.48% [kernel] [k] wake_up_nohz_cpu

After:
48.10% hog [.] main
15.25% [kernel] [k] _raw_spin_lock_irqsave
9.76% [kernel] [k] _raw_spin_unlock_irqrestore
6.50% [kernel] [k] mod_timer
6.44% [kernel] [k] lock_timer_base.isra.38
3.87% [kernel] [k] detach_if_pending
3.80% [kernel] [k] del_timer
2.67% [kernel] [k] internal_add_timer
1.33% [kernel] [k] __internal_add_timer
0.73% [kernel] [k] timerfn
0.54% [kernel] [k] wake_up_nohz_cpu


Reported-by: Eric Dumazet <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Paul McKenney <[email protected]>
Cc: Frederic Weisbecker <[email protected]>
Cc: Viresh Kumar <[email protected]>
Cc: John Stultz <[email protected]>
Cc: Joonwoo Park <[email protected]>
Cc: Wenbo Wang <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Thomas Gleixner <[email protected]>

show more ...


123