1 /* 2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved. 3 * 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ 5 * 6 * This file contains Original Code and/or Modifications of Original Code 7 * as defined in and that are subject to the Apple Public Source License 8 * Version 2.0 (the 'License'). You may not use this file except in 9 * compliance with the License. The rights granted to you under the License 10 * may not be used to create, or enable the creation or redistribution of, 11 * unlawful or unlicensed copies of an Apple operating system, or to 12 * circumvent, violate, or enable the circumvention or violation of, any 13 * terms of an Apple operating system software license agreement. 14 * 15 * Please obtain a copy of the License at 16 * http://www.opensource.apple.com/apsl/ and read it before using this file. 17 * 18 * The Original Code and all software distributed under the License are 19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER 20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, 21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. 23 * Please see the License for the specific language governing rights and 24 * limitations under the License. 25 * 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ 27 */ 28 29 #define _IOMEMORYDESCRIPTOR_INTERNAL_ 30 31 #include <IOKit/assert.h> 32 #include <IOKit/system.h> 33 34 #include <IOKit/IOLib.h> 35 #include <IOKit/IOMapper.h> 36 #include <IOKit/IOBufferMemoryDescriptor.h> 37 #include <libkern/OSDebug.h> 38 #include <mach/mach_vm.h> 39 40 #include "IOKitKernelInternal.h" 41 42 #ifdef IOALLOCDEBUG 43 #include <libkern/c++/OSCPPDebug.h> 44 #endif 45 #include <IOKit/IOStatisticsPrivate.h> 46 47 #if IOKITSTATS 48 #define IOStatisticsAlloc(type, size) \ 49 do { \ 50 IOStatistics::countAlloc(type, size); \ 51 } while (0) 52 #else 53 #define IOStatisticsAlloc(type, size) 54 #endif /* IOKITSTATS */ 55 56 57 __BEGIN_DECLS 58 void ipc_port_release_send(ipc_port_t port); 59 #include <vm/pmap.h> 60 61 __END_DECLS 62 63 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 64 65 enum{ 66 kInternalFlagPhysical = 0x00000001, 67 kInternalFlagPageSized = 0x00000002, 68 kInternalFlagPageAllocated = 0x00000004, 69 kInternalFlagInit = 0x00000008 70 }; 71 72 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 73 74 #define super IOGeneralMemoryDescriptor 75 OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor, 76 IOGeneralMemoryDescriptor); 77 78 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 79 80 static uintptr_t 81 IOBMDPageProc(iopa_t * a) 82 { 83 kern_return_t kr; 84 vm_address_t vmaddr = 0; 85 int options = 0;// KMA_LOMEM; 86 87 kr = kernel_memory_allocate(kernel_map, &vmaddr, 88 page_size, 0, options, VM_KERN_MEMORY_IOKIT); 89 90 if (KERN_SUCCESS != kr) { 91 vmaddr = 0; 92 } else { 93 bzero((void *) vmaddr, page_size); 94 } 95 96 return (uintptr_t) vmaddr; 97 } 98 99 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 100 101 #ifndef __LP64__ 102 bool 103 IOBufferMemoryDescriptor::initWithOptions( 104 IOOptionBits options, 105 vm_size_t capacity, 106 vm_offset_t alignment, 107 task_t inTask) 108 { 109 mach_vm_address_t physicalMask = 0; 110 return initWithPhysicalMask(inTask, options, capacity, alignment, physicalMask); 111 } 112 #endif /* !__LP64__ */ 113 114 IOBufferMemoryDescriptor * 115 IOBufferMemoryDescriptor::withCopy( 116 task_t inTask, 117 IOOptionBits options, 118 vm_map_t sourceMap, 119 mach_vm_address_t source, 120 mach_vm_size_t size) 121 { 122 IOBufferMemoryDescriptor * inst; 123 kern_return_t err; 124 vm_map_copy_t copy; 125 vm_map_address_t address; 126 127 copy = NULL; 128 do { 129 err = kIOReturnNoMemory; 130 inst = new IOBufferMemoryDescriptor; 131 if (!inst) { 132 break; 133 } 134 inst->_ranges.v64 = IONew(IOAddressRange, 1); 135 if (!inst->_ranges.v64) { 136 break; 137 } 138 139 err = vm_map_copyin(sourceMap, source, size, 140 false /* src_destroy */, ©); 141 if (KERN_SUCCESS != err) { 142 break; 143 } 144 145 err = vm_map_copyout(get_task_map(inTask), &address, copy); 146 if (KERN_SUCCESS != err) { 147 break; 148 } 149 copy = NULL; 150 151 inst->_ranges.v64->address = address; 152 inst->_ranges.v64->length = size; 153 154 if (!inst->initWithPhysicalMask(inTask, options, size, page_size, 0)) { 155 err = kIOReturnError; 156 } 157 } while (false); 158 159 if (KERN_SUCCESS == err) { 160 return inst; 161 } 162 163 if (copy) { 164 vm_map_copy_discard(copy); 165 } 166 OSSafeReleaseNULL(inst); 167 return NULL; 168 } 169 170 171 bool 172 IOBufferMemoryDescriptor::initWithPhysicalMask( 173 task_t inTask, 174 IOOptionBits options, 175 mach_vm_size_t capacity, 176 mach_vm_address_t alignment, 177 mach_vm_address_t physicalMask) 178 { 179 task_t mapTask = NULL; 180 vm_map_t vmmap = NULL; 181 mach_vm_address_t highestMask = 0; 182 IOOptionBits iomdOptions = kIOMemoryTypeVirtual64 | kIOMemoryAsReference; 183 IODMAMapSpecification mapSpec; 184 bool mapped = false; 185 bool withCopy = false; 186 bool needZero; 187 188 if (!capacity) { 189 return false; 190 } 191 192 _options = options; 193 _capacity = capacity; 194 _internalFlags = 0; 195 _internalReserved = 0; 196 _buffer = NULL; 197 198 if (!_ranges.v64) { 199 _ranges.v64 = IONew(IOAddressRange, 1); 200 if (!_ranges.v64) { 201 return false; 202 } 203 _ranges.v64->address = 0; 204 _ranges.v64->length = 0; 205 } else { 206 if (!_ranges.v64->address) { 207 return false; 208 } 209 if (!(kIOMemoryPageable & options)) { 210 return false; 211 } 212 if (!inTask) { 213 return false; 214 } 215 _buffer = (void *) _ranges.v64->address; 216 withCopy = true; 217 } 218 // make sure super::free doesn't dealloc _ranges before super::init 219 _flags = kIOMemoryAsReference; 220 221 // Grab IOMD bits from the Buffer MD options 222 iomdOptions |= (options & kIOBufferDescriptorMemoryFlags); 223 224 if (!(kIOMemoryMapperNone & options)) { 225 IOMapper::checkForSystemMapper(); 226 mapped = (NULL != IOMapper::gSystem); 227 } 228 needZero = (mapped || (0 != (kIOMemorySharingTypeMask & options))); 229 230 if (physicalMask && (alignment <= 1)) { 231 alignment = ((physicalMask ^ (-1ULL)) & (physicalMask - 1)); 232 highestMask = (physicalMask | alignment); 233 alignment++; 234 if (alignment < page_size) { 235 alignment = page_size; 236 } 237 } 238 239 if ((options & (kIOMemorySharingTypeMask | kIOMapCacheMask | kIOMemoryClearEncrypt)) && (alignment < page_size)) { 240 alignment = page_size; 241 } 242 243 if (alignment >= page_size) { 244 capacity = round_page(capacity); 245 } 246 247 if (alignment > page_size) { 248 options |= kIOMemoryPhysicallyContiguous; 249 } 250 251 _alignment = alignment; 252 253 if ((capacity + alignment) < _capacity) { 254 return false; 255 } 256 257 if ((inTask != kernel_task) && !(options & kIOMemoryPageable)) { 258 return false; 259 } 260 261 bzero(&mapSpec, sizeof(mapSpec)); 262 mapSpec.alignment = _alignment; 263 mapSpec.numAddressBits = 64; 264 if (highestMask && mapped) { 265 if (highestMask <= 0xFFFFFFFF) { 266 mapSpec.numAddressBits = (32 - __builtin_clz((unsigned int) highestMask)); 267 } else { 268 mapSpec.numAddressBits = (64 - __builtin_clz((unsigned int) (highestMask >> 32))); 269 } 270 highestMask = 0; 271 } 272 273 // set memory entry cache mode, pageable, purgeable 274 iomdOptions |= ((options & kIOMapCacheMask) >> kIOMapCacheShift) << kIOMemoryBufferCacheShift; 275 if (options & kIOMemoryPageable) { 276 iomdOptions |= kIOMemoryBufferPageable; 277 if (options & kIOMemoryPurgeable) { 278 iomdOptions |= kIOMemoryBufferPurgeable; 279 } 280 } else { 281 vmmap = kernel_map; 282 283 // Buffer shouldn't auto prepare they should be prepared explicitly 284 // But it never was enforced so what are you going to do? 285 iomdOptions |= kIOMemoryAutoPrepare; 286 287 /* Allocate a wired-down buffer inside kernel space. */ 288 289 bool contig = (0 != (options & kIOMemoryHostPhysicallyContiguous)); 290 291 if (!contig && (0 != (options & kIOMemoryPhysicallyContiguous))) { 292 contig |= (!mapped); 293 contig |= (0 != (kIOMemoryMapperNone & options)); 294 #if 0 295 // treat kIOMemoryPhysicallyContiguous as kIOMemoryHostPhysicallyContiguous for now 296 contig |= true; 297 #endif 298 } 299 300 if (contig || highestMask || (alignment > page_size)) { 301 _internalFlags |= kInternalFlagPhysical; 302 if (highestMask) { 303 _internalFlags |= kInternalFlagPageSized; 304 capacity = round_page(capacity); 305 } 306 _buffer = (void *) IOKernelAllocateWithPhysicalRestrict( 307 capacity, highestMask, alignment, contig); 308 } else if (needZero 309 && ((capacity + alignment) <= (page_size - gIOPageAllocChunkBytes))) { 310 _internalFlags |= kInternalFlagPageAllocated; 311 needZero = false; 312 _buffer = (void *) iopa_alloc(&gIOBMDPageAllocator, &IOBMDPageProc, capacity, alignment); 313 if (_buffer) { 314 IOStatisticsAlloc(kIOStatisticsMallocAligned, capacity); 315 #if IOALLOCDEBUG 316 OSAddAtomic(capacity, &debug_iomalloc_size); 317 #endif 318 } 319 } else if (alignment > 1) { 320 _buffer = IOMallocAligned(capacity, alignment); 321 } else { 322 _buffer = IOMalloc(capacity); 323 } 324 if (!_buffer) { 325 return false; 326 } 327 if (needZero) { 328 bzero(_buffer, capacity); 329 } 330 } 331 332 if ((options & (kIOMemoryPageable | kIOMapCacheMask))) { 333 vm_size_t size = round_page(capacity); 334 335 // initWithOptions will create memory entry 336 if (!withCopy) { 337 iomdOptions |= kIOMemoryPersistent; 338 } 339 340 if (options & kIOMemoryPageable) { 341 #if IOALLOCDEBUG 342 OSAddAtomicLong(size, &debug_iomallocpageable_size); 343 #endif 344 if (!withCopy) { 345 mapTask = inTask; 346 } 347 if (NULL == inTask) { 348 inTask = kernel_task; 349 } 350 } else if (options & kIOMapCacheMask) { 351 // Prefetch each page to put entries into the pmap 352 volatile UInt8 * startAddr = (UInt8 *)_buffer; 353 volatile UInt8 * endAddr = (UInt8 *)_buffer + capacity; 354 355 while (startAddr < endAddr) { 356 UInt8 dummyVar = *startAddr; 357 (void) dummyVar; 358 startAddr += page_size; 359 } 360 } 361 } 362 363 _ranges.v64->address = (mach_vm_address_t) _buffer; 364 _ranges.v64->length = _capacity; 365 366 if (!super::initWithOptions(_ranges.v64, 1, 0, 367 inTask, iomdOptions, /* System mapper */ NULL)) { 368 return false; 369 } 370 371 _internalFlags |= kInternalFlagInit; 372 #if IOTRACKING 373 if (!(options & kIOMemoryPageable)) { 374 trackingAccumSize(capacity); 375 } 376 #endif /* IOTRACKING */ 377 378 // give any system mapper the allocation params 379 if (kIOReturnSuccess != dmaCommandOperation(kIOMDAddDMAMapSpec, 380 &mapSpec, sizeof(mapSpec))) { 381 return false; 382 } 383 384 if (mapTask) { 385 if (!reserved) { 386 reserved = IONew( ExpansionData, 1 ); 387 if (!reserved) { 388 return false; 389 } 390 } 391 reserved->map = createMappingInTask(mapTask, 0, 392 kIOMapAnywhere | (options & kIOMapPrefault) | (options & kIOMapCacheMask), 0, 0); 393 if (!reserved->map) { 394 _buffer = NULL; 395 return false; 396 } 397 release(); // map took a retain on this 398 reserved->map->retain(); 399 removeMapping(reserved->map); 400 mach_vm_address_t buffer = reserved->map->getAddress(); 401 _buffer = (void *) buffer; 402 if (kIOMemoryTypeVirtual64 == (kIOMemoryTypeMask & iomdOptions)) { 403 _ranges.v64->address = buffer; 404 } 405 } 406 407 setLength(_capacity); 408 409 return true; 410 } 411 412 IOBufferMemoryDescriptor * 413 IOBufferMemoryDescriptor::inTaskWithOptions( 414 task_t inTask, 415 IOOptionBits options, 416 vm_size_t capacity, 417 vm_offset_t alignment) 418 { 419 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; 420 421 if (me && !me->initWithPhysicalMask(inTask, options, capacity, alignment, 0)) { 422 me->release(); 423 me = NULL; 424 } 425 return me; 426 } 427 428 IOBufferMemoryDescriptor * 429 IOBufferMemoryDescriptor::inTaskWithPhysicalMask( 430 task_t inTask, 431 IOOptionBits options, 432 mach_vm_size_t capacity, 433 mach_vm_address_t physicalMask) 434 { 435 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; 436 437 if (me && !me->initWithPhysicalMask(inTask, options, capacity, 1, physicalMask)) { 438 me->release(); 439 me = NULL; 440 } 441 return me; 442 } 443 444 #ifndef __LP64__ 445 bool 446 IOBufferMemoryDescriptor::initWithOptions( 447 IOOptionBits options, 448 vm_size_t capacity, 449 vm_offset_t alignment) 450 { 451 return initWithPhysicalMask(kernel_task, options, capacity, alignment, (mach_vm_address_t)0); 452 } 453 #endif /* !__LP64__ */ 454 455 IOBufferMemoryDescriptor * 456 IOBufferMemoryDescriptor::withOptions( 457 IOOptionBits options, 458 vm_size_t capacity, 459 vm_offset_t alignment) 460 { 461 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; 462 463 if (me && !me->initWithPhysicalMask(kernel_task, options, capacity, alignment, 0)) { 464 me->release(); 465 me = NULL; 466 } 467 return me; 468 } 469 470 471 /* 472 * withCapacity: 473 * 474 * Returns a new IOBufferMemoryDescriptor with a buffer large enough to 475 * hold capacity bytes. The descriptor's length is initially set to the capacity. 476 */ 477 IOBufferMemoryDescriptor * 478 IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity, 479 IODirection inDirection, 480 bool inContiguous) 481 { 482 return IOBufferMemoryDescriptor::withOptions( 483 inDirection | kIOMemoryUnshared 484 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0), 485 inCapacity, inContiguous ? inCapacity : 1 ); 486 } 487 488 #ifndef __LP64__ 489 /* 490 * initWithBytes: 491 * 492 * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied). 493 * The descriptor's length and capacity are set to the input buffer's size. 494 */ 495 bool 496 IOBufferMemoryDescriptor::initWithBytes(const void * inBytes, 497 vm_size_t inLength, 498 IODirection inDirection, 499 bool inContiguous) 500 { 501 if (!initWithPhysicalMask(kernel_task, inDirection | kIOMemoryUnshared 502 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0), 503 inLength, inLength, (mach_vm_address_t)0)) { 504 return false; 505 } 506 507 // start out with no data 508 setLength(0); 509 510 if (!appendBytes(inBytes, inLength)) { 511 return false; 512 } 513 514 return true; 515 } 516 #endif /* !__LP64__ */ 517 518 /* 519 * withBytes: 520 * 521 * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied). 522 * The descriptor's length and capacity are set to the input buffer's size. 523 */ 524 IOBufferMemoryDescriptor * 525 IOBufferMemoryDescriptor::withBytes(const void * inBytes, 526 vm_size_t inLength, 527 IODirection inDirection, 528 bool inContiguous) 529 { 530 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor; 531 532 if (me && !me->initWithPhysicalMask( 533 kernel_task, inDirection | kIOMemoryUnshared 534 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0), 535 inLength, inLength, 0 )) { 536 me->release(); 537 me = NULL; 538 } 539 540 if (me) { 541 // start out with no data 542 me->setLength(0); 543 544 if (!me->appendBytes(inBytes, inLength)) { 545 me->release(); 546 me = NULL; 547 } 548 } 549 return me; 550 } 551 552 /* 553 * free: 554 * 555 * Free resources 556 */ 557 void 558 IOBufferMemoryDescriptor::free() 559 { 560 // Cache all of the relevant information on the stack for use 561 // after we call super::free()! 562 IOOptionBits flags = _flags; 563 IOOptionBits internalFlags = _internalFlags; 564 IOOptionBits options = _options; 565 vm_size_t size = _capacity; 566 void * buffer = _buffer; 567 IOMemoryMap * map = NULL; 568 IOAddressRange * range = _ranges.v64; 569 vm_offset_t alignment = _alignment; 570 571 if (alignment >= page_size) { 572 size = round_page(size); 573 } 574 575 if (reserved) { 576 map = reserved->map; 577 IODelete( reserved, ExpansionData, 1 ); 578 if (map) { 579 map->release(); 580 } 581 } 582 583 if ((options & kIOMemoryPageable) 584 || (kInternalFlagPageSized & internalFlags)) { 585 size = round_page(size); 586 } 587 588 #if IOTRACKING 589 if (!(options & kIOMemoryPageable) 590 && buffer 591 && (kInternalFlagInit & _internalFlags)) { 592 trackingAccumSize(-size); 593 } 594 #endif /* IOTRACKING */ 595 596 /* super::free may unwire - deallocate buffer afterwards */ 597 super::free(); 598 599 if (options & kIOMemoryPageable) { 600 #if IOALLOCDEBUG 601 OSAddAtomicLong(-size, &debug_iomallocpageable_size); 602 #endif 603 } else if (buffer) { 604 if (kInternalFlagPhysical & internalFlags) { 605 IOKernelFreePhysical((mach_vm_address_t) buffer, size); 606 } else if (kInternalFlagPageAllocated & internalFlags) { 607 uintptr_t page; 608 page = iopa_free(&gIOBMDPageAllocator, (uintptr_t) buffer, size); 609 if (page) { 610 kmem_free(kernel_map, page, page_size); 611 } 612 #if IOALLOCDEBUG 613 OSAddAtomic(-size, &debug_iomalloc_size); 614 #endif 615 IOStatisticsAlloc(kIOStatisticsFreeAligned, size); 616 } else if (alignment > 1) { 617 IOFreeAligned(buffer, size); 618 } else { 619 IOFree(buffer, size); 620 } 621 } 622 if (range && (kIOMemoryAsReference & flags)) { 623 IODelete(range, IOAddressRange, 1); 624 } 625 } 626 627 /* 628 * getCapacity: 629 * 630 * Get the buffer capacity 631 */ 632 vm_size_t 633 IOBufferMemoryDescriptor::getCapacity() const 634 { 635 return _capacity; 636 } 637 638 /* 639 * setLength: 640 * 641 * Change the buffer length of the memory descriptor. When a new buffer 642 * is created, the initial length of the buffer is set to be the same as 643 * the capacity. The length can be adjusted via setLength for a shorter 644 * transfer (there is no need to create more buffer descriptors when you 645 * can reuse an existing one, even for different transfer sizes). Note 646 * that the specified length must not exceed the capacity of the buffer. 647 */ 648 void 649 IOBufferMemoryDescriptor::setLength(vm_size_t length) 650 { 651 assert(length <= _capacity); 652 if (length > _capacity) { 653 return; 654 } 655 656 _length = length; 657 _ranges.v64->length = length; 658 } 659 660 /* 661 * setDirection: 662 * 663 * Change the direction of the transfer. This method allows one to redirect 664 * the descriptor's transfer direction. This eliminates the need to destroy 665 * and create new buffers when different transfer directions are needed. 666 */ 667 void 668 IOBufferMemoryDescriptor::setDirection(IODirection direction) 669 { 670 _flags = (_flags & ~kIOMemoryDirectionMask) | direction; 671 #ifndef __LP64__ 672 _direction = (IODirection) (_flags & kIOMemoryDirectionMask); 673 #endif /* !__LP64__ */ 674 } 675 676 /* 677 * appendBytes: 678 * 679 * Add some data to the end of the buffer. This method automatically 680 * maintains the memory descriptor buffer length. Note that appendBytes 681 * will not copy past the end of the memory descriptor's current capacity. 682 */ 683 bool 684 IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength) 685 { 686 vm_size_t actualBytesToCopy = min(withLength, _capacity - _length); 687 IOByteCount offset; 688 689 assert(_length <= _capacity); 690 691 offset = _length; 692 _length += actualBytesToCopy; 693 _ranges.v64->length += actualBytesToCopy; 694 695 if (_task == kernel_task) { 696 bcopy(/* from */ bytes, (void *)(_ranges.v64->address + offset), 697 actualBytesToCopy); 698 } else { 699 writeBytes(offset, bytes, actualBytesToCopy); 700 } 701 702 return true; 703 } 704 705 /* 706 * getBytesNoCopy: 707 * 708 * Return the virtual address of the beginning of the buffer 709 */ 710 void * 711 IOBufferMemoryDescriptor::getBytesNoCopy() 712 { 713 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask)) { 714 return _buffer; 715 } else { 716 return (void *)_ranges.v64->address; 717 } 718 } 719 720 721 /* 722 * getBytesNoCopy: 723 * 724 * Return the virtual address of an offset from the beginning of the buffer 725 */ 726 void * 727 IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength) 728 { 729 IOVirtualAddress address; 730 731 if ((start + withLength) < start) { 732 return NULL; 733 } 734 735 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask)) { 736 address = (IOVirtualAddress) _buffer; 737 } else { 738 address = _ranges.v64->address; 739 } 740 741 if (start < _length && (start + withLength) <= _length) { 742 return (void *)(address + start); 743 } 744 return NULL; 745 } 746 747 #ifndef __LP64__ 748 void * 749 IOBufferMemoryDescriptor::getVirtualSegment(IOByteCount offset, 750 IOByteCount * lengthOfSegment) 751 { 752 void * bytes = getBytesNoCopy(offset, 0); 753 754 if (bytes && lengthOfSegment) { 755 *lengthOfSegment = _length - offset; 756 } 757 758 return bytes; 759 } 760 #endif /* !__LP64__ */ 761 762 #ifdef __LP64__ 763 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 0); 764 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 1); 765 #else /* !__LP64__ */ 766 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 0); 767 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 1); 768 #endif /* !__LP64__ */ 769 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2); 770 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3); 771 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4); 772 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5); 773 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6); 774 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7); 775 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8); 776 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9); 777 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10); 778 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11); 779 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12); 780 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13); 781 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14); 782 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15); 783