1 /* 2 ** This file contains all sources (including headers) to the LEMON 3 ** LALR(1) parser generator. The sources have been combined into a 4 ** single file to make it easy to include LEMON in the source tree 5 ** and Makefile of another program. 6 ** 7 ** The author of this program disclaims copyright. 8 */ 9 #include <stdio.h> 10 #include <stdarg.h> 11 #include <string.h> 12 #include <ctype.h> 13 #include <stdlib.h> 14 #include <assert.h> 15 16 #define ISSPACE(X) isspace((unsigned char)(X)) 17 #define ISDIGIT(X) isdigit((unsigned char)(X)) 18 #define ISALNUM(X) isalnum((unsigned char)(X)) 19 #define ISALPHA(X) isalpha((unsigned char)(X)) 20 #define ISUPPER(X) isupper((unsigned char)(X)) 21 #define ISLOWER(X) islower((unsigned char)(X)) 22 23 24 #ifndef __WIN32__ 25 # if defined(_WIN32) || defined(WIN32) 26 # define __WIN32__ 27 # endif 28 #endif 29 30 #ifdef __WIN32__ 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 extern int access(const char *path, int mode); 35 #ifdef __cplusplus 36 } 37 #endif 38 #else 39 #include <unistd.h> 40 #endif 41 42 /* #define PRIVATE static */ 43 #define PRIVATE 44 45 #ifdef TEST 46 #define MAXRHS 5 /* Set low to exercise exception code */ 47 #else 48 #define MAXRHS 1000 49 #endif 50 51 static int showPrecedenceConflict = 0; 52 static char *msort(char*,char**,int(*)(const char*,const char*)); 53 54 /* 55 ** Compilers are getting increasingly pedantic about type conversions 56 ** as C evolves ever closer to Ada.... To work around the latest problems 57 ** we have to define the following variant of strlen(). 58 */ 59 #define lemonStrlen(X) ((int)strlen(X)) 60 61 /* 62 ** Compilers are starting to complain about the use of sprintf() and strcpy(), 63 ** saying they are unsafe. So we define our own versions of those routines too. 64 ** 65 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and 66 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). 67 ** The third is a helper routine for vsnprintf() that adds texts to the end of a 68 ** buffer, making sure the buffer is always zero-terminated. 69 ** 70 ** The string formatter is a minimal subset of stdlib sprintf() supporting only 71 ** a few simply conversions: 72 ** 73 ** %d 74 ** %s 75 ** %.*s 76 ** 77 */ 78 static void lemon_addtext( 79 char *zBuf, /* The buffer to which text is added */ 80 int *pnUsed, /* Slots of the buffer used so far */ 81 const char *zIn, /* Text to add */ 82 int nIn, /* Bytes of text to add. -1 to use strlen() */ 83 int iWidth /* Field width. Negative to left justify */ 84 ){ 85 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} 86 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } 87 if( nIn==0 ) return; 88 memcpy(&zBuf[*pnUsed], zIn, nIn); 89 *pnUsed += nIn; 90 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } 91 zBuf[*pnUsed] = 0; 92 } 93 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ 94 int i, j, k, c; 95 int nUsed = 0; 96 const char *z; 97 char zTemp[50]; 98 str[0] = 0; 99 for(i=j=0; (c = zFormat[i])!=0; i++){ 100 if( c=='%' ){ 101 int iWidth = 0; 102 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); 103 c = zFormat[++i]; 104 if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){ 105 if( c=='-' ) i++; 106 while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; 107 if( c=='-' ) iWidth = -iWidth; 108 c = zFormat[i]; 109 } 110 if( c=='d' ){ 111 int v = va_arg(ap, int); 112 if( v<0 ){ 113 lemon_addtext(str, &nUsed, "-", 1, iWidth); 114 v = -v; 115 }else if( v==0 ){ 116 lemon_addtext(str, &nUsed, "0", 1, iWidth); 117 } 118 k = 0; 119 while( v>0 ){ 120 k++; 121 zTemp[sizeof(zTemp)-k] = (v%10) + '0'; 122 v /= 10; 123 } 124 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); 125 }else if( c=='s' ){ 126 z = va_arg(ap, const char*); 127 lemon_addtext(str, &nUsed, z, -1, iWidth); 128 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ 129 i += 2; 130 k = va_arg(ap, int); 131 z = va_arg(ap, const char*); 132 lemon_addtext(str, &nUsed, z, k, iWidth); 133 }else if( c=='%' ){ 134 lemon_addtext(str, &nUsed, "%", 1, 0); 135 }else{ 136 fprintf(stderr, "illegal format\n"); 137 exit(1); 138 } 139 j = i+1; 140 } 141 } 142 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); 143 return nUsed; 144 } 145 static int lemon_sprintf(char *str, const char *format, ...){ 146 va_list ap; 147 int rc; 148 va_start(ap, format); 149 rc = lemon_vsprintf(str, format, ap); 150 va_end(ap); 151 return rc; 152 } 153 static void lemon_strcpy(char *dest, const char *src){ 154 while( (*(dest++) = *(src++))!=0 ){} 155 } 156 static void lemon_strcat(char *dest, const char *src){ 157 while( *dest ) dest++; 158 lemon_strcpy(dest, src); 159 } 160 161 162 /* a few forward declarations... */ 163 struct rule; 164 struct lemon; 165 struct action; 166 167 static struct action *Action_new(void); 168 static struct action *Action_sort(struct action *); 169 170 /********** From the file "build.h" ************************************/ 171 void FindRulePrecedences(); 172 void FindFirstSets(); 173 void FindStates(); 174 void FindLinks(); 175 void FindFollowSets(); 176 void FindActions(); 177 178 /********* From the file "configlist.h" *********************************/ 179 void Configlist_init(void); 180 struct config *Configlist_add(struct rule *, int); 181 struct config *Configlist_addbasis(struct rule *, int); 182 void Configlist_closure(struct lemon *); 183 void Configlist_sort(void); 184 void Configlist_sortbasis(void); 185 struct config *Configlist_return(void); 186 struct config *Configlist_basis(void); 187 void Configlist_eat(struct config *); 188 void Configlist_reset(void); 189 190 /********* From the file "error.h" ***************************************/ 191 void ErrorMsg(const char *, int,const char *, ...); 192 193 /****** From the file "option.h" ******************************************/ 194 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, 195 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; 196 struct s_options { 197 enum option_type type; 198 const char *label; 199 char *arg; 200 const char *message; 201 }; 202 int OptInit(char**,struct s_options*,FILE*); 203 int OptNArgs(void); 204 char *OptArg(int); 205 void OptErr(int); 206 void OptPrint(void); 207 208 /******** From the file "parse.h" *****************************************/ 209 void Parse(struct lemon *lemp); 210 211 /********* From the file "plink.h" ***************************************/ 212 struct plink *Plink_new(void); 213 void Plink_add(struct plink **, struct config *); 214 void Plink_copy(struct plink **, struct plink *); 215 void Plink_delete(struct plink *); 216 217 /********** From the file "report.h" *************************************/ 218 void Reprint(struct lemon *); 219 void ReportOutput(struct lemon *); 220 void ReportTable(struct lemon *, int); 221 void ReportHeader(struct lemon *); 222 void CompressTables(struct lemon *); 223 void ResortStates(struct lemon *); 224 225 /********** From the file "set.h" ****************************************/ 226 void SetSize(int); /* All sets will be of size N */ 227 char *SetNew(void); /* A new set for element 0..N */ 228 void SetFree(char*); /* Deallocate a set */ 229 int SetAdd(char*,int); /* Add element to a set */ 230 int SetUnion(char *,char *); /* A <- A U B, thru element N */ 231 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ 232 233 /********** From the file "struct.h" *************************************/ 234 /* 235 ** Principal data structures for the LEMON parser generator. 236 */ 237 238 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; 239 240 /* Symbols (terminals and nonterminals) of the grammar are stored 241 ** in the following: */ 242 enum symbol_type { 243 TERMINAL, 244 NONTERMINAL, 245 MULTITERMINAL 246 }; 247 enum e_assoc { 248 LEFT, 249 RIGHT, 250 NONE, 251 UNK 252 }; 253 struct symbol { 254 const char *name; /* Name of the symbol */ 255 int index; /* Index number for this symbol */ 256 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ 257 struct rule *rule; /* Linked list of rules of this (if an NT) */ 258 struct symbol *fallback; /* fallback token in case this token doesn't parse */ 259 int prec; /* Precedence if defined (-1 otherwise) */ 260 enum e_assoc assoc; /* Associativity if precedence is defined */ 261 char *firstset; /* First-set for all rules of this symbol */ 262 Boolean lambda; /* True if NT and can generate an empty string */ 263 int useCnt; /* Number of times used */ 264 char *destructor; /* Code which executes whenever this symbol is 265 ** popped from the stack during error processing */ 266 int destLineno; /* Line number for start of destructor. Set to 267 ** -1 for duplicate destructors. */ 268 char *datatype; /* The data type of information held by this 269 ** object. Only used if type==NONTERMINAL */ 270 int dtnum; /* The data type number. In the parser, the value 271 ** stack is a union. The .yy%d element of this 272 ** union is the correct data type for this object */ 273 /* The following fields are used by MULTITERMINALs only */ 274 int nsubsym; /* Number of constituent symbols in the MULTI */ 275 struct symbol **subsym; /* Array of constituent symbols */ 276 }; 277 278 /* Each production rule in the grammar is stored in the following 279 ** structure. */ 280 struct rule { 281 struct symbol *lhs; /* Left-hand side of the rule */ 282 const char *lhsalias; /* Alias for the LHS (NULL if none) */ 283 int lhsStart; /* True if left-hand side is the start symbol */ 284 int ruleline; /* Line number for the rule */ 285 int nrhs; /* Number of RHS symbols */ 286 struct symbol **rhs; /* The RHS symbols */ 287 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ 288 int line; /* Line number at which code begins */ 289 const char *code; /* The code executed when this rule is reduced */ 290 const char *codePrefix; /* Setup code before code[] above */ 291 const char *codeSuffix; /* Breakdown code after code[] above */ 292 int noCode; /* True if this rule has no associated C code */ 293 int codeEmitted; /* True if the code has been emitted already */ 294 struct symbol *precsym; /* Precedence symbol for this rule */ 295 int index; /* An index number for this rule */ 296 int iRule; /* Rule number as used in the generated tables */ 297 Boolean canReduce; /* True if this rule is ever reduced */ 298 Boolean doesReduce; /* Reduce actions occur after optimization */ 299 struct rule *nextlhs; /* Next rule with the same LHS */ 300 struct rule *next; /* Next rule in the global list */ 301 }; 302 303 /* A configuration is a production rule of the grammar together with 304 ** a mark (dot) showing how much of that rule has been processed so far. 305 ** Configurations also contain a follow-set which is a list of terminal 306 ** symbols which are allowed to immediately follow the end of the rule. 307 ** Every configuration is recorded as an instance of the following: */ 308 enum cfgstatus { 309 COMPLETE, 310 INCOMPLETE 311 }; 312 struct config { 313 struct rule *rp; /* The rule upon which the configuration is based */ 314 int dot; /* The parse point */ 315 char *fws; /* Follow-set for this configuration only */ 316 struct plink *fplp; /* Follow-set forward propagation links */ 317 struct plink *bplp; /* Follow-set backwards propagation links */ 318 struct state *stp; /* Pointer to state which contains this */ 319 enum cfgstatus status; /* used during followset and shift computations */ 320 struct config *next; /* Next configuration in the state */ 321 struct config *bp; /* The next basis configuration */ 322 }; 323 324 enum e_action { 325 SHIFT, 326 ACCEPT, 327 REDUCE, 328 ERROR, 329 SSCONFLICT, /* A shift/shift conflict */ 330 SRCONFLICT, /* Was a reduce, but part of a conflict */ 331 RRCONFLICT, /* Was a reduce, but part of a conflict */ 332 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ 333 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ 334 NOT_USED, /* Deleted by compression */ 335 SHIFTREDUCE /* Shift first, then reduce */ 336 }; 337 338 /* Every shift or reduce operation is stored as one of the following */ 339 struct action { 340 struct symbol *sp; /* The look-ahead symbol */ 341 enum e_action type; 342 union { 343 struct state *stp; /* The new state, if a shift */ 344 struct rule *rp; /* The rule, if a reduce */ 345 } x; 346 struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */ 347 struct action *next; /* Next action for this state */ 348 struct action *collide; /* Next action with the same hash */ 349 }; 350 351 /* Each state of the generated parser's finite state machine 352 ** is encoded as an instance of the following structure. */ 353 struct state { 354 struct config *bp; /* The basis configurations for this state */ 355 struct config *cfp; /* All configurations in this set */ 356 int statenum; /* Sequential number for this state */ 357 struct action *ap; /* List of actions for this state */ 358 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ 359 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ 360 int iDfltReduce; /* Default action is to REDUCE by this rule */ 361 struct rule *pDfltReduce;/* The default REDUCE rule. */ 362 int autoReduce; /* True if this is an auto-reduce state */ 363 }; 364 #define NO_OFFSET (-2147483647) 365 366 /* A followset propagation link indicates that the contents of one 367 ** configuration followset should be propagated to another whenever 368 ** the first changes. */ 369 struct plink { 370 struct config *cfp; /* The configuration to which linked */ 371 struct plink *next; /* The next propagate link */ 372 }; 373 374 /* The state vector for the entire parser generator is recorded as 375 ** follows. (LEMON uses no global variables and makes little use of 376 ** static variables. Fields in the following structure can be thought 377 ** of as begin global variables in the program.) */ 378 struct lemon { 379 struct state **sorted; /* Table of states sorted by state number */ 380 struct rule *rule; /* List of all rules */ 381 struct rule *startRule; /* First rule */ 382 int nstate; /* Number of states */ 383 int nxstate; /* nstate with tail degenerate states removed */ 384 int nrule; /* Number of rules */ 385 int nsymbol; /* Number of terminal and nonterminal symbols */ 386 int nterminal; /* Number of terminal symbols */ 387 struct symbol **symbols; /* Sorted array of pointers to symbols */ 388 int errorcnt; /* Number of errors */ 389 struct symbol *errsym; /* The error symbol */ 390 struct symbol *wildcard; /* Token that matches anything */ 391 char *name; /* Name of the generated parser */ 392 char *arg; /* Declaration of the 3th argument to parser */ 393 char *tokentype; /* Type of terminal symbols in the parser stack */ 394 char *vartype; /* The default type of non-terminal symbols */ 395 char *start; /* Name of the start symbol for the grammar */ 396 char *stacksize; /* Size of the parser stack */ 397 char *include; /* Code to put at the start of the C file */ 398 char *error; /* Code to execute when an error is seen */ 399 char *overflow; /* Code to execute on a stack overflow */ 400 char *failure; /* Code to execute on parser failure */ 401 char *accept; /* Code to execute when the parser excepts */ 402 char *extracode; /* Code appended to the generated file */ 403 char *tokendest; /* Code to execute to destroy token data */ 404 char *vardest; /* Code for the default non-terminal destructor */ 405 char *filename; /* Name of the input file */ 406 char *outname; /* Name of the current output file */ 407 char *tokenprefix; /* A prefix added to token names in the .h file */ 408 int nconflict; /* Number of parsing conflicts */ 409 int nactiontab; /* Number of entries in the yy_action[] table */ 410 int tablesize; /* Total table size of all tables in bytes */ 411 int basisflag; /* Print only basis configurations */ 412 int has_fallback; /* True if any %fallback is seen in the grammar */ 413 int nolinenosflag; /* True if #line statements should not be printed */ 414 char *argv0; /* Name of the program */ 415 }; 416 417 #define MemoryCheck(X) if((X)==0){ \ 418 extern void memory_error(); \ 419 memory_error(); \ 420 } 421 422 /**************** From the file "table.h" *********************************/ 423 /* 424 ** All code in this file has been automatically generated 425 ** from a specification in the file 426 ** "table.q" 427 ** by the associative array code building program "aagen". 428 ** Do not edit this file! Instead, edit the specification 429 ** file, then rerun aagen. 430 */ 431 /* 432 ** Code for processing tables in the LEMON parser generator. 433 */ 434 /* Routines for handling a strings */ 435 436 const char *Strsafe(const char *); 437 438 void Strsafe_init(void); 439 int Strsafe_insert(const char *); 440 const char *Strsafe_find(const char *); 441 442 /* Routines for handling symbols of the grammar */ 443 444 struct symbol *Symbol_new(const char *); 445 int Symbolcmpp(const void *, const void *); 446 void Symbol_init(void); 447 int Symbol_insert(struct symbol *, const char *); 448 struct symbol *Symbol_find(const char *); 449 struct symbol *Symbol_Nth(int); 450 int Symbol_count(void); 451 struct symbol **Symbol_arrayof(void); 452 453 /* Routines to manage the state table */ 454 455 int Configcmp(const char *, const char *); 456 struct state *State_new(void); 457 void State_init(void); 458 int State_insert(struct state *, struct config *); 459 struct state *State_find(struct config *); 460 struct state **State_arrayof(/* */); 461 462 /* Routines used for efficiency in Configlist_add */ 463 464 void Configtable_init(void); 465 int Configtable_insert(struct config *); 466 struct config *Configtable_find(struct config *); 467 void Configtable_clear(int(*)(struct config *)); 468 469 /****************** From the file "action.c" *******************************/ 470 /* 471 ** Routines processing parser actions in the LEMON parser generator. 472 */ 473 474 /* Allocate a new parser action */ 475 static struct action *Action_new(void){ 476 static struct action *freelist = 0; 477 struct action *newaction; 478 479 if( freelist==0 ){ 480 int i; 481 int amt = 100; 482 freelist = (struct action *)calloc(amt, sizeof(struct action)); 483 if( freelist==0 ){ 484 fprintf(stderr,"Unable to allocate memory for a new parser action."); 485 exit(1); 486 } 487 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; 488 freelist[amt-1].next = 0; 489 } 490 newaction = freelist; 491 freelist = freelist->next; 492 return newaction; 493 } 494 495 /* Compare two actions for sorting purposes. Return negative, zero, or 496 ** positive if the first action is less than, equal to, or greater than 497 ** the first 498 */ 499 static int actioncmp( 500 struct action *ap1, 501 struct action *ap2 502 ){ 503 int rc; 504 rc = ap1->sp->index - ap2->sp->index; 505 if( rc==0 ){ 506 rc = (int)ap1->type - (int)ap2->type; 507 } 508 if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){ 509 rc = ap1->x.rp->index - ap2->x.rp->index; 510 } 511 if( rc==0 ){ 512 rc = (int) (ap2 - ap1); 513 } 514 return rc; 515 } 516 517 /* Sort parser actions */ 518 static struct action *Action_sort( 519 struct action *ap 520 ){ 521 ap = (struct action *)msort((char *)ap,(char **)&ap->next, 522 (int(*)(const char*,const char*))actioncmp); 523 return ap; 524 } 525 526 void Action_add( 527 struct action **app, 528 enum e_action type, 529 struct symbol *sp, 530 char *arg 531 ){ 532 struct action *newaction; 533 newaction = Action_new(); 534 newaction->next = *app; 535 *app = newaction; 536 newaction->type = type; 537 newaction->sp = sp; 538 newaction->spOpt = 0; 539 if( type==SHIFT ){ 540 newaction->x.stp = (struct state *)arg; 541 }else{ 542 newaction->x.rp = (struct rule *)arg; 543 } 544 } 545 /********************** New code to implement the "acttab" module ***********/ 546 /* 547 ** This module implements routines use to construct the yy_action[] table. 548 */ 549 550 /* 551 ** The state of the yy_action table under construction is an instance of 552 ** the following structure. 553 ** 554 ** The yy_action table maps the pair (state_number, lookahead) into an 555 ** action_number. The table is an array of integers pairs. The state_number 556 ** determines an initial offset into the yy_action array. The lookahead 557 ** value is then added to this initial offset to get an index X into the 558 ** yy_action array. If the aAction[X].lookahead equals the value of the 559 ** of the lookahead input, then the value of the action_number output is 560 ** aAction[X].action. If the lookaheads do not match then the 561 ** default action for the state_number is returned. 562 ** 563 ** All actions associated with a single state_number are first entered 564 ** into aLookahead[] using multiple calls to acttab_action(). Then the 565 ** actions for that single state_number are placed into the aAction[] 566 ** array with a single call to acttab_insert(). The acttab_insert() call 567 ** also resets the aLookahead[] array in preparation for the next 568 ** state number. 569 */ 570 struct lookahead_action { 571 int lookahead; /* Value of the lookahead token */ 572 int action; /* Action to take on the given lookahead */ 573 }; 574 typedef struct acttab acttab; 575 struct acttab { 576 int nAction; /* Number of used slots in aAction[] */ 577 int nActionAlloc; /* Slots allocated for aAction[] */ 578 struct lookahead_action 579 *aAction, /* The yy_action[] table under construction */ 580 *aLookahead; /* A single new transaction set */ 581 int mnLookahead; /* Minimum aLookahead[].lookahead */ 582 int mnAction; /* Action associated with mnLookahead */ 583 int mxLookahead; /* Maximum aLookahead[].lookahead */ 584 int nLookahead; /* Used slots in aLookahead[] */ 585 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ 586 }; 587 588 /* Return the number of entries in the yy_action table */ 589 #define acttab_size(X) ((X)->nAction) 590 591 /* The value for the N-th entry in yy_action */ 592 #define acttab_yyaction(X,N) ((X)->aAction[N].action) 593 594 /* The value for the N-th entry in yy_lookahead */ 595 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) 596 597 /* Free all memory associated with the given acttab */ 598 void acttab_free(acttab *p){ 599 free( p->aAction ); 600 free( p->aLookahead ); 601 free( p ); 602 } 603 604 /* Allocate a new acttab structure */ 605 acttab *acttab_alloc(void){ 606 acttab *p = (acttab *) calloc( 1, sizeof(*p) ); 607 if( p==0 ){ 608 fprintf(stderr,"Unable to allocate memory for a new acttab."); 609 exit(1); 610 } 611 memset(p, 0, sizeof(*p)); 612 return p; 613 } 614 615 /* Add a new action to the current transaction set. 616 ** 617 ** This routine is called once for each lookahead for a particular 618 ** state. 619 */ 620 void acttab_action(acttab *p, int lookahead, int action){ 621 if( p->nLookahead>=p->nLookaheadAlloc ){ 622 p->nLookaheadAlloc += 25; 623 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, 624 sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); 625 if( p->aLookahead==0 ){ 626 fprintf(stderr,"malloc failed\n"); 627 exit(1); 628 } 629 } 630 if( p->nLookahead==0 ){ 631 p->mxLookahead = lookahead; 632 p->mnLookahead = lookahead; 633 p->mnAction = action; 634 }else{ 635 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; 636 if( p->mnLookahead>lookahead ){ 637 p->mnLookahead = lookahead; 638 p->mnAction = action; 639 } 640 } 641 p->aLookahead[p->nLookahead].lookahead = lookahead; 642 p->aLookahead[p->nLookahead].action = action; 643 p->nLookahead++; 644 } 645 646 /* 647 ** Add the transaction set built up with prior calls to acttab_action() 648 ** into the current action table. Then reset the transaction set back 649 ** to an empty set in preparation for a new round of acttab_action() calls. 650 ** 651 ** Return the offset into the action table of the new transaction. 652 */ 653 int acttab_insert(acttab *p){ 654 int i, j, k, n; 655 assert( p->nLookahead>0 ); 656 657 /* Make sure we have enough space to hold the expanded action table 658 ** in the worst case. The worst case occurs if the transaction set 659 ** must be appended to the current action table 660 */ 661 n = p->mxLookahead + 1; 662 if( p->nAction + n >= p->nActionAlloc ){ 663 int oldAlloc = p->nActionAlloc; 664 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; 665 p->aAction = (struct lookahead_action *) realloc( p->aAction, 666 sizeof(p->aAction[0])*p->nActionAlloc); 667 if( p->aAction==0 ){ 668 fprintf(stderr,"malloc failed\n"); 669 exit(1); 670 } 671 for(i=oldAlloc; i<p->nActionAlloc; i++){ 672 p->aAction[i].lookahead = -1; 673 p->aAction[i].action = -1; 674 } 675 } 676 677 /* Scan the existing action table looking for an offset that is a 678 ** duplicate of the current transaction set. Fall out of the loop 679 ** if and when the duplicate is found. 680 ** 681 ** i is the index in p->aAction[] where p->mnLookahead is inserted. 682 */ 683 for(i=p->nAction-1; i>=0; i--){ 684 if( p->aAction[i].lookahead==p->mnLookahead ){ 685 /* All lookaheads and actions in the aLookahead[] transaction 686 ** must match against the candidate aAction[i] entry. */ 687 if( p->aAction[i].action!=p->mnAction ) continue; 688 for(j=0; j<p->nLookahead; j++){ 689 k = p->aLookahead[j].lookahead - p->mnLookahead + i; 690 if( k<0 || k>=p->nAction ) break; 691 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; 692 if( p->aLookahead[j].action!=p->aAction[k].action ) break; 693 } 694 if( j<p->nLookahead ) continue; 695 696 /* No possible lookahead value that is not in the aLookahead[] 697 ** transaction is allowed to match aAction[i] */ 698 n = 0; 699 for(j=0; j<p->nAction; j++){ 700 if( p->aAction[j].lookahead<0 ) continue; 701 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; 702 } 703 if( n==p->nLookahead ){ 704 break; /* An exact match is found at offset i */ 705 } 706 } 707 } 708 709 /* If no existing offsets exactly match the current transaction, find an 710 ** an empty offset in the aAction[] table in which we can add the 711 ** aLookahead[] transaction. 712 */ 713 if( i<0 ){ 714 /* Look for holes in the aAction[] table that fit the current 715 ** aLookahead[] transaction. Leave i set to the offset of the hole. 716 ** If no holes are found, i is left at p->nAction, which means the 717 ** transaction will be appended. */ 718 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ 719 if( p->aAction[i].lookahead<0 ){ 720 for(j=0; j<p->nLookahead; j++){ 721 k = p->aLookahead[j].lookahead - p->mnLookahead + i; 722 if( k<0 ) break; 723 if( p->aAction[k].lookahead>=0 ) break; 724 } 725 if( j<p->nLookahead ) continue; 726 for(j=0; j<p->nAction; j++){ 727 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; 728 } 729 if( j==p->nAction ){ 730 break; /* Fits in empty slots */ 731 } 732 } 733 } 734 } 735 /* Insert transaction set at index i. */ 736 for(j=0; j<p->nLookahead; j++){ 737 k = p->aLookahead[j].lookahead - p->mnLookahead + i; 738 p->aAction[k] = p->aLookahead[j]; 739 if( k>=p->nAction ) p->nAction = k+1; 740 } 741 p->nLookahead = 0; 742 743 /* Return the offset that is added to the lookahead in order to get the 744 ** index into yy_action of the action */ 745 return i - p->mnLookahead; 746 } 747 748 /********************** From the file "build.c" *****************************/ 749 /* 750 ** Routines to construction the finite state machine for the LEMON 751 ** parser generator. 752 */ 753 754 /* Find a precedence symbol of every rule in the grammar. 755 ** 756 ** Those rules which have a precedence symbol coded in the input 757 ** grammar using the "[symbol]" construct will already have the 758 ** rp->precsym field filled. Other rules take as their precedence 759 ** symbol the first RHS symbol with a defined precedence. If there 760 ** are not RHS symbols with a defined precedence, the precedence 761 ** symbol field is left blank. 762 */ 763 void FindRulePrecedences(struct lemon *xp) 764 { 765 struct rule *rp; 766 for(rp=xp->rule; rp; rp=rp->next){ 767 if( rp->precsym==0 ){ 768 int i, j; 769 for(i=0; i<rp->nrhs && rp->precsym==0; i++){ 770 struct symbol *sp = rp->rhs[i]; 771 if( sp->type==MULTITERMINAL ){ 772 for(j=0; j<sp->nsubsym; j++){ 773 if( sp->subsym[j]->prec>=0 ){ 774 rp->precsym = sp->subsym[j]; 775 break; 776 } 777 } 778 }else if( sp->prec>=0 ){ 779 rp->precsym = rp->rhs[i]; 780 } 781 } 782 } 783 } 784 return; 785 } 786 787 /* Find all nonterminals which will generate the empty string. 788 ** Then go back and compute the first sets of every nonterminal. 789 ** The first set is the set of all terminal symbols which can begin 790 ** a string generated by that nonterminal. 791 */ 792 void FindFirstSets(struct lemon *lemp) 793 { 794 int i, j; 795 struct rule *rp; 796 int progress; 797 798 for(i=0; i<lemp->nsymbol; i++){ 799 lemp->symbols[i]->lambda = LEMON_FALSE; 800 } 801 for(i=lemp->nterminal; i<lemp->nsymbol; i++){ 802 lemp->symbols[i]->firstset = SetNew(); 803 } 804 805 /* First compute all lambdas */ 806 do{ 807 progress = 0; 808 for(rp=lemp->rule; rp; rp=rp->next){ 809 if( rp->lhs->lambda ) continue; 810 for(i=0; i<rp->nrhs; i++){ 811 struct symbol *sp = rp->rhs[i]; 812 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); 813 if( sp->lambda==LEMON_FALSE ) break; 814 } 815 if( i==rp->nrhs ){ 816 rp->lhs->lambda = LEMON_TRUE; 817 progress = 1; 818 } 819 } 820 }while( progress ); 821 822 /* Now compute all first sets */ 823 do{ 824 struct symbol *s1, *s2; 825 progress = 0; 826 for(rp=lemp->rule; rp; rp=rp->next){ 827 s1 = rp->lhs; 828 for(i=0; i<rp->nrhs; i++){ 829 s2 = rp->rhs[i]; 830 if( s2->type==TERMINAL ){ 831 progress += SetAdd(s1->firstset,s2->index); 832 break; 833 }else if( s2->type==MULTITERMINAL ){ 834 for(j=0; j<s2->nsubsym; j++){ 835 progress += SetAdd(s1->firstset,s2->subsym[j]->index); 836 } 837 break; 838 }else if( s1==s2 ){ 839 if( s1->lambda==LEMON_FALSE ) break; 840 }else{ 841 progress += SetUnion(s1->firstset,s2->firstset); 842 if( s2->lambda==LEMON_FALSE ) break; 843 } 844 } 845 } 846 }while( progress ); 847 return; 848 } 849 850 /* Compute all LR(0) states for the grammar. Links 851 ** are added to between some states so that the LR(1) follow sets 852 ** can be computed later. 853 */ 854 PRIVATE struct state *getstate(struct lemon *); /* forward reference */ 855 void FindStates(struct lemon *lemp) 856 { 857 struct symbol *sp; 858 struct rule *rp; 859 860 Configlist_init(); 861 862 /* Find the start symbol */ 863 if( lemp->start ){ 864 sp = Symbol_find(lemp->start); 865 if( sp==0 ){ 866 ErrorMsg(lemp->filename,0, 867 "The specified start symbol \"%s\" is not \ 868 in a nonterminal of the grammar. \"%s\" will be used as the start \ 869 symbol instead.",lemp->start,lemp->startRule->lhs->name); 870 lemp->errorcnt++; 871 sp = lemp->startRule->lhs; 872 } 873 }else{ 874 sp = lemp->startRule->lhs; 875 } 876 877 /* Make sure the start symbol doesn't occur on the right-hand side of 878 ** any rule. Report an error if it does. (YACC would generate a new 879 ** start symbol in this case.) */ 880 for(rp=lemp->rule; rp; rp=rp->next){ 881 int i; 882 for(i=0; i<rp->nrhs; i++){ 883 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ 884 ErrorMsg(lemp->filename,0, 885 "The start symbol \"%s\" occurs on the \ 886 right-hand side of a rule. This will result in a parser which \ 887 does not work properly.",sp->name); 888 lemp->errorcnt++; 889 } 890 } 891 } 892 893 /* The basis configuration set for the first state 894 ** is all rules which have the start symbol as their 895 ** left-hand side */ 896 for(rp=sp->rule; rp; rp=rp->nextlhs){ 897 struct config *newcfp; 898 rp->lhsStart = 1; 899 newcfp = Configlist_addbasis(rp,0); 900 SetAdd(newcfp->fws,0); 901 } 902 903 /* Compute the first state. All other states will be 904 ** computed automatically during the computation of the first one. 905 ** The returned pointer to the first state is not used. */ 906 (void)getstate(lemp); 907 return; 908 } 909 910 /* Return a pointer to a state which is described by the configuration 911 ** list which has been built from calls to Configlist_add. 912 */ 913 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ 914 PRIVATE struct state *getstate(struct lemon *lemp) 915 { 916 struct config *cfp, *bp; 917 struct state *stp; 918 919 /* Extract the sorted basis of the new state. The basis was constructed 920 ** by prior calls to "Configlist_addbasis()". */ 921 Configlist_sortbasis(); 922 bp = Configlist_basis(); 923 924 /* Get a state with the same basis */ 925 stp = State_find(bp); 926 if( stp ){ 927 /* A state with the same basis already exists! Copy all the follow-set 928 ** propagation links from the state under construction into the 929 ** preexisting state, then return a pointer to the preexisting state */ 930 struct config *x, *y; 931 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ 932 Plink_copy(&y->bplp,x->bplp); 933 Plink_delete(x->fplp); 934 x->fplp = x->bplp = 0; 935 } 936 cfp = Configlist_return(); 937 Configlist_eat(cfp); 938 }else{ 939 /* This really is a new state. Construct all the details */ 940 Configlist_closure(lemp); /* Compute the configuration closure */ 941 Configlist_sort(); /* Sort the configuration closure */ 942 cfp = Configlist_return(); /* Get a pointer to the config list */ 943 stp = State_new(); /* A new state structure */ 944 MemoryCheck(stp); 945 stp->bp = bp; /* Remember the configuration basis */ 946 stp->cfp = cfp; /* Remember the configuration closure */ 947 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ 948 stp->ap = 0; /* No actions, yet. */ 949 State_insert(stp,stp->bp); /* Add to the state table */ 950 buildshifts(lemp,stp); /* Recursively compute successor states */ 951 } 952 return stp; 953 } 954 955 /* 956 ** Return true if two symbols are the same. 957 */ 958 int same_symbol(struct symbol *a, struct symbol *b) 959 { 960 int i; 961 if( a==b ) return 1; 962 if( a->type!=MULTITERMINAL ) return 0; 963 if( b->type!=MULTITERMINAL ) return 0; 964 if( a->nsubsym!=b->nsubsym ) return 0; 965 for(i=0; i<a->nsubsym; i++){ 966 if( a->subsym[i]!=b->subsym[i] ) return 0; 967 } 968 return 1; 969 } 970 971 /* Construct all successor states to the given state. A "successor" 972 ** state is any state which can be reached by a shift action. 973 */ 974 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) 975 { 976 struct config *cfp; /* For looping thru the config closure of "stp" */ 977 struct config *bcfp; /* For the inner loop on config closure of "stp" */ 978 struct config *newcfg; /* */ 979 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ 980 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ 981 struct state *newstp; /* A pointer to a successor state */ 982 983 /* Each configuration becomes complete after it contibutes to a successor 984 ** state. Initially, all configurations are incomplete */ 985 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; 986 987 /* Loop through all configurations of the state "stp" */ 988 for(cfp=stp->cfp; cfp; cfp=cfp->next){ 989 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ 990 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ 991 Configlist_reset(); /* Reset the new config set */ 992 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ 993 994 /* For every configuration in the state "stp" which has the symbol "sp" 995 ** following its dot, add the same configuration to the basis set under 996 ** construction but with the dot shifted one symbol to the right. */ 997 for(bcfp=cfp; bcfp; bcfp=bcfp->next){ 998 if( bcfp->status==COMPLETE ) continue; /* Already used */ 999 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ 1000 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ 1001 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ 1002 bcfp->status = COMPLETE; /* Mark this config as used */ 1003 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); 1004 Plink_add(&newcfg->bplp,bcfp); 1005 } 1006 1007 /* Get a pointer to the state described by the basis configuration set 1008 ** constructed in the preceding loop */ 1009 newstp = getstate(lemp); 1010 1011 /* The state "newstp" is reached from the state "stp" by a shift action 1012 ** on the symbol "sp" */ 1013 if( sp->type==MULTITERMINAL ){ 1014 int i; 1015 for(i=0; i<sp->nsubsym; i++){ 1016 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); 1017 } 1018 }else{ 1019 Action_add(&stp->ap,SHIFT,sp,(char *)newstp); 1020 } 1021 } 1022 } 1023 1024 /* 1025 ** Construct the propagation links 1026 */ 1027 void FindLinks(struct lemon *lemp) 1028 { 1029 int i; 1030 struct config *cfp, *other; 1031 struct state *stp; 1032 struct plink *plp; 1033 1034 /* Housekeeping detail: 1035 ** Add to every propagate link a pointer back to the state to 1036 ** which the link is attached. */ 1037 for(i=0; i<lemp->nstate; i++){ 1038 stp = lemp->sorted[i]; 1039 for(cfp=stp->cfp; cfp; cfp=cfp->next){ 1040 cfp->stp = stp; 1041 } 1042 } 1043 1044 /* Convert all backlinks into forward links. Only the forward 1045 ** links are used in the follow-set computation. */ 1046 for(i=0; i<lemp->nstate; i++){ 1047 stp = lemp->sorted[i]; 1048 for(cfp=stp->cfp; cfp; cfp=cfp->next){ 1049 for(plp=cfp->bplp; plp; plp=plp->next){ 1050 other = plp->cfp; 1051 Plink_add(&other->fplp,cfp); 1052 } 1053 } 1054 } 1055 } 1056 1057 /* Compute all followsets. 1058 ** 1059 ** A followset is the set of all symbols which can come immediately 1060 ** after a configuration. 1061 */ 1062 void FindFollowSets(struct lemon *lemp) 1063 { 1064 int i; 1065 struct config *cfp; 1066 struct plink *plp; 1067 int progress; 1068 int change; 1069 1070 for(i=0; i<lemp->nstate; i++){ 1071 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ 1072 cfp->status = INCOMPLETE; 1073 } 1074 } 1075 1076 do{ 1077 progress = 0; 1078 for(i=0; i<lemp->nstate; i++){ 1079 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ 1080 if( cfp->status==COMPLETE ) continue; 1081 for(plp=cfp->fplp; plp; plp=plp->next){ 1082 change = SetUnion(plp->cfp->fws,cfp->fws); 1083 if( change ){ 1084 plp->cfp->status = INCOMPLETE; 1085 progress = 1; 1086 } 1087 } 1088 cfp->status = COMPLETE; 1089 } 1090 } 1091 }while( progress ); 1092 } 1093 1094 static int resolve_conflict(struct action *,struct action *); 1095 1096 /* Compute the reduce actions, and resolve conflicts. 1097 */ 1098 void FindActions(struct lemon *lemp) 1099 { 1100 int i,j; 1101 struct config *cfp; 1102 struct state *stp; 1103 struct symbol *sp; 1104 struct rule *rp; 1105 1106 /* Add all of the reduce actions 1107 ** A reduce action is added for each element of the followset of 1108 ** a configuration which has its dot at the extreme right. 1109 */ 1110 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ 1111 stp = lemp->sorted[i]; 1112 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ 1113 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ 1114 for(j=0; j<lemp->nterminal; j++){ 1115 if( SetFind(cfp->fws,j) ){ 1116 /* Add a reduce action to the state "stp" which will reduce by the 1117 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ 1118 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); 1119 } 1120 } 1121 } 1122 } 1123 } 1124 1125 /* Add the accepting token */ 1126 if( lemp->start ){ 1127 sp = Symbol_find(lemp->start); 1128 if( sp==0 ) sp = lemp->startRule->lhs; 1129 }else{ 1130 sp = lemp->startRule->lhs; 1131 } 1132 /* Add to the first state (which is always the starting state of the 1133 ** finite state machine) an action to ACCEPT if the lookahead is the 1134 ** start nonterminal. */ 1135 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); 1136 1137 /* Resolve conflicts */ 1138 for(i=0; i<lemp->nstate; i++){ 1139 struct action *ap, *nap; 1140 stp = lemp->sorted[i]; 1141 /* assert( stp->ap ); */ 1142 stp->ap = Action_sort(stp->ap); 1143 for(ap=stp->ap; ap && ap->next; ap=ap->next){ 1144 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ 1145 /* The two actions "ap" and "nap" have the same lookahead. 1146 ** Figure out which one should be used */ 1147 lemp->nconflict += resolve_conflict(ap,nap); 1148 } 1149 } 1150 } 1151 1152 /* Report an error for each rule that can never be reduced. */ 1153 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; 1154 for(i=0; i<lemp->nstate; i++){ 1155 struct action *ap; 1156 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ 1157 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; 1158 } 1159 } 1160 for(rp=lemp->rule; rp; rp=rp->next){ 1161 if( rp->canReduce ) continue; 1162 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); 1163 lemp->errorcnt++; 1164 } 1165 } 1166 1167 /* Resolve a conflict between the two given actions. If the 1168 ** conflict can't be resolved, return non-zero. 1169 ** 1170 ** NO LONGER TRUE: 1171 ** To resolve a conflict, first look to see if either action 1172 ** is on an error rule. In that case, take the action which 1173 ** is not associated with the error rule. If neither or both 1174 ** actions are associated with an error rule, then try to 1175 ** use precedence to resolve the conflict. 1176 ** 1177 ** If either action is a SHIFT, then it must be apx. This 1178 ** function won't work if apx->type==REDUCE and apy->type==SHIFT. 1179 */ 1180 static int resolve_conflict( 1181 struct action *apx, 1182 struct action *apy 1183 ){ 1184 struct symbol *spx, *spy; 1185 int errcnt = 0; 1186 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ 1187 if( apx->type==SHIFT && apy->type==SHIFT ){ 1188 apy->type = SSCONFLICT; 1189 errcnt++; 1190 } 1191 if( apx->type==SHIFT && apy->type==REDUCE ){ 1192 spx = apx->sp; 1193 spy = apy->x.rp->precsym; 1194 if( spy==0 || spx->prec<0 || spy->prec<0 ){ 1195 /* Not enough precedence information. */ 1196 apy->type = SRCONFLICT; 1197 errcnt++; 1198 }else if( spx->prec>spy->prec ){ /* higher precedence wins */ 1199 apy->type = RD_RESOLVED; 1200 }else if( spx->prec<spy->prec ){ 1201 apx->type = SH_RESOLVED; 1202 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ 1203 apy->type = RD_RESOLVED; /* associativity */ 1204 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ 1205 apx->type = SH_RESOLVED; 1206 }else{ 1207 assert( spx->prec==spy->prec && spx->assoc==NONE ); 1208 apx->type = ERROR; 1209 } 1210 }else if( apx->type==REDUCE && apy->type==REDUCE ){ 1211 spx = apx->x.rp->precsym; 1212 spy = apy->x.rp->precsym; 1213 if( spx==0 || spy==0 || spx->prec<0 || 1214 spy->prec<0 || spx->prec==spy->prec ){ 1215 apy->type = RRCONFLICT; 1216 errcnt++; 1217 }else if( spx->prec>spy->prec ){ 1218 apy->type = RD_RESOLVED; 1219 }else if( spx->prec<spy->prec ){ 1220 apx->type = RD_RESOLVED; 1221 } 1222 }else{ 1223 assert( 1224 apx->type==SH_RESOLVED || 1225 apx->type==RD_RESOLVED || 1226 apx->type==SSCONFLICT || 1227 apx->type==SRCONFLICT || 1228 apx->type==RRCONFLICT || 1229 apy->type==SH_RESOLVED || 1230 apy->type==RD_RESOLVED || 1231 apy->type==SSCONFLICT || 1232 apy->type==SRCONFLICT || 1233 apy->type==RRCONFLICT 1234 ); 1235 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before 1236 ** REDUCEs on the list. If we reach this point it must be because 1237 ** the parser conflict had already been resolved. */ 1238 } 1239 return errcnt; 1240 } 1241 /********************* From the file "configlist.c" *************************/ 1242 /* 1243 ** Routines to processing a configuration list and building a state 1244 ** in the LEMON parser generator. 1245 */ 1246 1247 static struct config *freelist = 0; /* List of free configurations */ 1248 static struct config *current = 0; /* Top of list of configurations */ 1249 static struct config **currentend = 0; /* Last on list of configs */ 1250 static struct config *basis = 0; /* Top of list of basis configs */ 1251 static struct config **basisend = 0; /* End of list of basis configs */ 1252 1253 /* Return a pointer to a new configuration */ 1254 PRIVATE struct config *newconfig(){ 1255 struct config *newcfg; 1256 if( freelist==0 ){ 1257 int i; 1258 int amt = 3; 1259 freelist = (struct config *)calloc( amt, sizeof(struct config) ); 1260 if( freelist==0 ){ 1261 fprintf(stderr,"Unable to allocate memory for a new configuration."); 1262 exit(1); 1263 } 1264 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; 1265 freelist[amt-1].next = 0; 1266 } 1267 newcfg = freelist; 1268 freelist = freelist->next; 1269 return newcfg; 1270 } 1271 1272 /* The configuration "old" is no longer used */ 1273 PRIVATE void deleteconfig(struct config *old) 1274 { 1275 old->next = freelist; 1276 freelist = old; 1277 } 1278 1279 /* Initialized the configuration list builder */ 1280 void Configlist_init(){ 1281 current = 0; 1282 currentend = ¤t; 1283 basis = 0; 1284 basisend = &basis; 1285 Configtable_init(); 1286 return; 1287 } 1288 1289 /* Initialized the configuration list builder */ 1290 void Configlist_reset(){ 1291 current = 0; 1292 currentend = ¤t; 1293 basis = 0; 1294 basisend = &basis; 1295 Configtable_clear(0); 1296 return; 1297 } 1298 1299 /* Add another configuration to the configuration list */ 1300 struct config *Configlist_add( 1301 struct rule *rp, /* The rule */ 1302 int dot /* Index into the RHS of the rule where the dot goes */ 1303 ){ 1304 struct config *cfp, model; 1305 1306 assert( currentend!=0 ); 1307 model.rp = rp; 1308 model.dot = dot; 1309 cfp = Configtable_find(&model); 1310 if( cfp==0 ){ 1311 cfp = newconfig(); 1312 cfp->rp = rp; 1313 cfp->dot = dot; 1314 cfp->fws = SetNew(); 1315 cfp->stp = 0; 1316 cfp->fplp = cfp->bplp = 0; 1317 cfp->next = 0; 1318 cfp->bp = 0; 1319 *currentend = cfp; 1320 currentend = &cfp->next; 1321 Configtable_insert(cfp); 1322 } 1323 return cfp; 1324 } 1325 1326 /* Add a basis configuration to the configuration list */ 1327 struct config *Configlist_addbasis(struct rule *rp, int dot) 1328 { 1329 struct config *cfp, model; 1330 1331 assert( basisend!=0 ); 1332 assert( currentend!=0 ); 1333 model.rp = rp; 1334 model.dot = dot; 1335 cfp = Configtable_find(&model); 1336 if( cfp==0 ){ 1337 cfp = newconfig(); 1338 cfp->rp = rp; 1339 cfp->dot = dot; 1340 cfp->fws = SetNew(); 1341 cfp->stp = 0; 1342 cfp->fplp = cfp->bplp = 0; 1343 cfp->next = 0; 1344 cfp->bp = 0; 1345 *currentend = cfp; 1346 currentend = &cfp->next; 1347 *basisend = cfp; 1348 basisend = &cfp->bp; 1349 Configtable_insert(cfp); 1350 } 1351 return cfp; 1352 } 1353 1354 /* Compute the closure of the configuration list */ 1355 void Configlist_closure(struct lemon *lemp) 1356 { 1357 struct config *cfp, *newcfp; 1358 struct rule *rp, *newrp; 1359 struct symbol *sp, *xsp; 1360 int i, dot; 1361 1362 assert( currentend!=0 ); 1363 for(cfp=current; cfp; cfp=cfp->next){ 1364 rp = cfp->rp; 1365 dot = cfp->dot; 1366 if( dot>=rp->nrhs ) continue; 1367 sp = rp->rhs[dot]; 1368 if( sp->type==NONTERMINAL ){ 1369 if( sp->rule==0 && sp!=lemp->errsym ){ 1370 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", 1371 sp->name); 1372 lemp->errorcnt++; 1373 } 1374 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ 1375 newcfp = Configlist_add(newrp,0); 1376 for(i=dot+1; i<rp->nrhs; i++){ 1377 xsp = rp->rhs[i]; 1378 if( xsp->type==TERMINAL ){ 1379 SetAdd(newcfp->fws,xsp->index); 1380 break; 1381 }else if( xsp->type==MULTITERMINAL ){ 1382 int k; 1383 for(k=0; k<xsp->nsubsym; k++){ 1384 SetAdd(newcfp->fws, xsp->subsym[k]->index); 1385 } 1386 break; 1387 }else{ 1388 SetUnion(newcfp->fws,xsp->firstset); 1389 if( xsp->lambda==LEMON_FALSE ) break; 1390 } 1391 } 1392 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); 1393 } 1394 } 1395 } 1396 return; 1397 } 1398 1399 /* Sort the configuration list */ 1400 void Configlist_sort(){ 1401 current = (struct config*)msort((char*)current,(char**)&(current->next), 1402 Configcmp); 1403 currentend = 0; 1404 return; 1405 } 1406 1407 /* Sort the basis configuration list */ 1408 void Configlist_sortbasis(){ 1409 basis = (struct config*)msort((char*)current,(char**)&(current->bp), 1410 Configcmp); 1411 basisend = 0; 1412 return; 1413 } 1414 1415 /* Return a pointer to the head of the configuration list and 1416 ** reset the list */ 1417 struct config *Configlist_return(){ 1418 struct config *old; 1419 old = current; 1420 current = 0; 1421 currentend = 0; 1422 return old; 1423 } 1424 1425 /* Return a pointer to the head of the configuration list and 1426 ** reset the list */ 1427 struct config *Configlist_basis(){ 1428 struct config *old; 1429 old = basis; 1430 basis = 0; 1431 basisend = 0; 1432 return old; 1433 } 1434 1435 /* Free all elements of the given configuration list */ 1436 void Configlist_eat(struct config *cfp) 1437 { 1438 struct config *nextcfp; 1439 for(; cfp; cfp=nextcfp){ 1440 nextcfp = cfp->next; 1441 assert( cfp->fplp==0 ); 1442 assert( cfp->bplp==0 ); 1443 if( cfp->fws ) SetFree(cfp->fws); 1444 deleteconfig(cfp); 1445 } 1446 return; 1447 } 1448 /***************** From the file "error.c" *********************************/ 1449 /* 1450 ** Code for printing error message. 1451 */ 1452 1453 void ErrorMsg(const char *filename, int lineno, const char *format, ...){ 1454 va_list ap; 1455 fprintf(stderr, "%s:%d: ", filename, lineno); 1456 va_start(ap, format); 1457 vfprintf(stderr,format,ap); 1458 va_end(ap); 1459 fprintf(stderr, "\n"); 1460 } 1461 /**************** From the file "main.c" ************************************/ 1462 /* 1463 ** Main program file for the LEMON parser generator. 1464 */ 1465 1466 /* Report an out-of-memory condition and abort. This function 1467 ** is used mostly by the "MemoryCheck" macro in struct.h 1468 */ 1469 void memory_error(){ 1470 fprintf(stderr,"Out of memory. Aborting...\n"); 1471 exit(1); 1472 } 1473 1474 static int nDefine = 0; /* Number of -D options on the command line */ 1475 static char **azDefine = 0; /* Name of the -D macros */ 1476 1477 /* This routine is called with the argument to each -D command-line option. 1478 ** Add the macro defined to the azDefine array. 1479 */ 1480 static void handle_D_option(char *z){ 1481 char **paz; 1482 nDefine++; 1483 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); 1484 if( azDefine==0 ){ 1485 fprintf(stderr,"out of memory\n"); 1486 exit(1); 1487 } 1488 paz = &azDefine[nDefine-1]; 1489 *paz = (char *) malloc( lemonStrlen(z)+1 ); 1490 if( *paz==0 ){ 1491 fprintf(stderr,"out of memory\n"); 1492 exit(1); 1493 } 1494 lemon_strcpy(*paz, z); 1495 for(z=*paz; *z && *z!='='; z++){} 1496 *z = 0; 1497 } 1498 1499 static char *user_templatename = NULL; 1500 static void handle_T_option(char *z){ 1501 user_templatename = (char *) malloc( lemonStrlen(z)+1 ); 1502 if( user_templatename==0 ){ 1503 memory_error(); 1504 } 1505 lemon_strcpy(user_templatename, z); 1506 } 1507 1508 /* Merge together to lists of rules ordered by rule.iRule */ 1509 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){ 1510 struct rule *pFirst = 0; 1511 struct rule **ppPrev = &pFirst; 1512 while( pA && pB ){ 1513 if( pA->iRule<pB->iRule ){ 1514 *ppPrev = pA; 1515 ppPrev = &pA->next; 1516 pA = pA->next; 1517 }else{ 1518 *ppPrev = pB; 1519 ppPrev = &pB->next; 1520 pB = pB->next; 1521 } 1522 } 1523 if( pA ){ 1524 *ppPrev = pA; 1525 }else{ 1526 *ppPrev = pB; 1527 } 1528 return pFirst; 1529 } 1530 1531 /* 1532 ** Sort a list of rules in order of increasing iRule value 1533 */ 1534 static struct rule *Rule_sort(struct rule *rp){ 1535 int i; 1536 struct rule *pNext; 1537 struct rule *x[32]; 1538 memset(x, 0, sizeof(x)); 1539 while( rp ){ 1540 pNext = rp->next; 1541 rp->next = 0; 1542 for(i=0; i<sizeof(x)/sizeof(x[0]) && x[i]; i++){ 1543 rp = Rule_merge(x[i], rp); 1544 x[i] = 0; 1545 } 1546 x[i] = rp; 1547 rp = pNext; 1548 } 1549 rp = 0; 1550 for(i=0; i<sizeof(x)/sizeof(x[0]); i++){ 1551 rp = Rule_merge(x[i], rp); 1552 } 1553 return rp; 1554 } 1555 1556 /* forward reference */ 1557 static const char *minimum_size_type(int lwr, int upr, int *pnByte); 1558 1559 /* Print a single line of the "Parser Stats" output 1560 */ 1561 static void stats_line(const char *zLabel, int iValue){ 1562 int nLabel = lemonStrlen(zLabel); 1563 printf(" %s%.*s %5d\n", zLabel, 1564 35-nLabel, "................................", 1565 iValue); 1566 } 1567 1568 /* The main program. Parse the command line and do it... */ 1569 int main(int argc, char **argv) 1570 { 1571 static int version = 0; 1572 static int rpflag = 0; 1573 static int basisflag = 0; 1574 static int compress = 0; 1575 static int quiet = 0; 1576 static int statistics = 0; 1577 static int mhflag = 0; 1578 static int nolinenosflag = 0; 1579 static int noResort = 0; 1580 static struct s_options options[] = { 1581 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, 1582 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, 1583 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, 1584 {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"}, 1585 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, 1586 {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"}, 1587 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, 1588 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, 1589 {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"}, 1590 {OPT_FLAG, "p", (char*)&showPrecedenceConflict, 1591 "Show conflicts resolved by precedence rules"}, 1592 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, 1593 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, 1594 {OPT_FLAG, "s", (char*)&statistics, 1595 "Print parser stats to standard output."}, 1596 {OPT_FLAG, "x", (char*)&version, "Print the version number."}, 1597 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, 1598 {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"}, 1599 {OPT_FLAG,0,0,0} 1600 }; 1601 int i; 1602 int exitcode; 1603 struct lemon lem; 1604 struct rule *rp; 1605 1606 OptInit(argv,options,stderr); 1607 if( version ){ 1608 printf("Lemon version 1.0\n"); 1609 exit(0); 1610 } 1611 if( OptNArgs()!=1 ){ 1612 fprintf(stderr,"Exactly one filename argument is required.\n"); 1613 exit(1); 1614 } 1615 memset(&lem, 0, sizeof(lem)); 1616 lem.errorcnt = 0; 1617 1618 /* Initialize the machine */ 1619 Strsafe_init(); 1620 Symbol_init(); 1621 State_init(); 1622 lem.argv0 = argv[0]; 1623 lem.filename = OptArg(0); 1624 lem.basisflag = basisflag; 1625 lem.nolinenosflag = nolinenosflag; 1626 Symbol_new("$"); 1627 lem.errsym = Symbol_new("error"); 1628 lem.errsym->useCnt = 0; 1629 1630 /* Parse the input file */ 1631 Parse(&lem); 1632 if( lem.errorcnt ) exit(lem.errorcnt); 1633 if( lem.nrule==0 ){ 1634 fprintf(stderr,"Empty grammar.\n"); 1635 exit(1); 1636 } 1637 1638 /* Count and index the symbols of the grammar */ 1639 Symbol_new("{default}"); 1640 lem.nsymbol = Symbol_count(); 1641 lem.symbols = Symbol_arrayof(); 1642 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; 1643 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); 1644 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; 1645 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } 1646 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); 1647 lem.nsymbol = i - 1; 1648 for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++); 1649 lem.nterminal = i; 1650 1651 /* Assign sequential rule numbers. Start with 0. Put rules that have no 1652 ** reduce action C-code associated with them last, so that the switch() 1653 ** statement that selects reduction actions will have a smaller jump table. 1654 */ 1655 for(i=0, rp=lem.rule; rp; rp=rp->next){ 1656 rp->iRule = rp->code ? i++ : -1; 1657 } 1658 for(rp=lem.rule; rp; rp=rp->next){ 1659 if( rp->iRule<0 ) rp->iRule = i++; 1660 } 1661 lem.startRule = lem.rule; 1662 lem.rule = Rule_sort(lem.rule); 1663 1664 /* Generate a reprint of the grammar, if requested on the command line */ 1665 if( rpflag ){ 1666 Reprint(&lem); 1667 }else{ 1668 /* Initialize the size for all follow and first sets */ 1669 SetSize(lem.nterminal+1); 1670 1671 /* Find the precedence for every production rule (that has one) */ 1672 FindRulePrecedences(&lem); 1673 1674 /* Compute the lambda-nonterminals and the first-sets for every 1675 ** nonterminal */ 1676 FindFirstSets(&lem); 1677 1678 /* Compute all LR(0) states. Also record follow-set propagation 1679 ** links so that the follow-set can be computed later */ 1680 lem.nstate = 0; 1681 FindStates(&lem); 1682 lem.sorted = State_arrayof(); 1683 1684 /* Tie up loose ends on the propagation links */ 1685 FindLinks(&lem); 1686 1687 /* Compute the follow set of every reducible configuration */ 1688 FindFollowSets(&lem); 1689 1690 /* Compute the action tables */ 1691 FindActions(&lem); 1692 1693 /* Compress the action tables */ 1694 if( compress==0 ) CompressTables(&lem); 1695 1696 /* Reorder and renumber the states so that states with fewer choices 1697 ** occur at the end. This is an optimization that helps make the 1698 ** generated parser tables smaller. */ 1699 if( noResort==0 ) ResortStates(&lem); 1700 1701 /* Generate a report of the parser generated. (the "y.output" file) */ 1702 if( !quiet ) ReportOutput(&lem); 1703 1704 /* Generate the source code for the parser */ 1705 ReportTable(&lem, mhflag); 1706 1707 /* Produce a header file for use by the scanner. (This step is 1708 ** omitted if the "-m" option is used because makeheaders will 1709 ** generate the file for us.) */ 1710 if( !mhflag ) ReportHeader(&lem); 1711 } 1712 if( statistics ){ 1713 printf("Parser statistics:\n"); 1714 stats_line("terminal symbols", lem.nterminal); 1715 stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal); 1716 stats_line("total symbols", lem.nsymbol); 1717 stats_line("rules", lem.nrule); 1718 stats_line("states", lem.nxstate); 1719 stats_line("conflicts", lem.nconflict); 1720 stats_line("action table entries", lem.nactiontab); 1721 stats_line("total table size (bytes)", lem.tablesize); 1722 } 1723 if( lem.nconflict > 0 ){ 1724 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); 1725 } 1726 1727 /* return 0 on success, 1 on failure. */ 1728 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; 1729 exit(exitcode); 1730 return (exitcode); 1731 } 1732 /******************** From the file "msort.c" *******************************/ 1733 /* 1734 ** A generic merge-sort program. 1735 ** 1736 ** USAGE: 1737 ** Let "ptr" be a pointer to some structure which is at the head of 1738 ** a null-terminated list. Then to sort the list call: 1739 ** 1740 ** ptr = msort(ptr,&(ptr->next),cmpfnc); 1741 ** 1742 ** In the above, "cmpfnc" is a pointer to a function which compares 1743 ** two instances of the structure and returns an integer, as in 1744 ** strcmp. The second argument is a pointer to the pointer to the 1745 ** second element of the linked list. This address is used to compute 1746 ** the offset to the "next" field within the structure. The offset to 1747 ** the "next" field must be constant for all structures in the list. 1748 ** 1749 ** The function returns a new pointer which is the head of the list 1750 ** after sorting. 1751 ** 1752 ** ALGORITHM: 1753 ** Merge-sort. 1754 */ 1755 1756 /* 1757 ** Return a pointer to the next structure in the linked list. 1758 */ 1759 #define NEXT(A) (*(char**)(((char*)A)+offset)) 1760 1761 /* 1762 ** Inputs: 1763 ** a: A sorted, null-terminated linked list. (May be null). 1764 ** b: A sorted, null-terminated linked list. (May be null). 1765 ** cmp: A pointer to the comparison function. 1766 ** offset: Offset in the structure to the "next" field. 1767 ** 1768 ** Return Value: 1769 ** A pointer to the head of a sorted list containing the elements 1770 ** of both a and b. 1771 ** 1772 ** Side effects: 1773 ** The "next" pointers for elements in the lists a and b are 1774 ** changed. 1775 */ 1776 static char *merge( 1777 char *a, 1778 char *b, 1779 int (*cmp)(const char*,const char*), 1780 int offset 1781 ){ 1782 char *ptr, *head; 1783 1784 if( a==0 ){ 1785 head = b; 1786 }else if( b==0 ){ 1787 head = a; 1788 }else{ 1789 if( (*cmp)(a,b)<=0 ){ 1790 ptr = a; 1791 a = NEXT(a); 1792 }else{ 1793 ptr = b; 1794 b = NEXT(b); 1795 } 1796 head = ptr; 1797 while( a && b ){ 1798 if( (*cmp)(a,b)<=0 ){ 1799 NEXT(ptr) = a; 1800 ptr = a; 1801 a = NEXT(a); 1802 }else{ 1803 NEXT(ptr) = b; 1804 ptr = b; 1805 b = NEXT(b); 1806 } 1807 } 1808 if( a ) NEXT(ptr) = a; 1809 else NEXT(ptr) = b; 1810 } 1811 return head; 1812 } 1813 1814 /* 1815 ** Inputs: 1816 ** list: Pointer to a singly-linked list of structures. 1817 ** next: Pointer to pointer to the second element of the list. 1818 ** cmp: A comparison function. 1819 ** 1820 ** Return Value: 1821 ** A pointer to the head of a sorted list containing the elements 1822 ** orginally in list. 1823 ** 1824 ** Side effects: 1825 ** The "next" pointers for elements in list are changed. 1826 */ 1827 #define LISTSIZE 30 1828 static char *msort( 1829 char *list, 1830 char **next, 1831 int (*cmp)(const char*,const char*) 1832 ){ 1833 unsigned long offset; 1834 char *ep; 1835 char *set[LISTSIZE]; 1836 int i; 1837 offset = (unsigned long)((char*)next - (char*)list); 1838 for(i=0; i<LISTSIZE; i++) set[i] = 0; 1839 while( list ){ 1840 ep = list; 1841 list = NEXT(list); 1842 NEXT(ep) = 0; 1843 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ 1844 ep = merge(ep,set[i],cmp,offset); 1845 set[i] = 0; 1846 } 1847 set[i] = ep; 1848 } 1849 ep = 0; 1850 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); 1851 return ep; 1852 } 1853 /************************ From the file "option.c" **************************/ 1854 static char **argv; 1855 static struct s_options *op; 1856 static FILE *errstream; 1857 1858 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) 1859 1860 /* 1861 ** Print the command line with a carrot pointing to the k-th character 1862 ** of the n-th field. 1863 */ 1864 static void errline(int n, int k, FILE *err) 1865 { 1866 int spcnt, i; 1867 if( argv[0] ) fprintf(err,"%s",argv[0]); 1868 spcnt = lemonStrlen(argv[0]) + 1; 1869 for(i=1; i<n && argv[i]; i++){ 1870 fprintf(err," %s",argv[i]); 1871 spcnt += lemonStrlen(argv[i])+1; 1872 } 1873 spcnt += k; 1874 for(; argv[i]; i++) fprintf(err," %s",argv[i]); 1875 if( spcnt<20 ){ 1876 fprintf(err,"\n%*s^-- here\n",spcnt,""); 1877 }else{ 1878 fprintf(err,"\n%*shere --^\n",spcnt-7,""); 1879 } 1880 } 1881 1882 /* 1883 ** Return the index of the N-th non-switch argument. Return -1 1884 ** if N is out of range. 1885 */ 1886 static int argindex(int n) 1887 { 1888 int i; 1889 int dashdash = 0; 1890 if( argv!=0 && *argv!=0 ){ 1891 for(i=1; argv[i]; i++){ 1892 if( dashdash || !ISOPT(argv[i]) ){ 1893 if( n==0 ) return i; 1894 n--; 1895 } 1896 if( strcmp(argv[i],"--")==0 ) dashdash = 1; 1897 } 1898 } 1899 return -1; 1900 } 1901 1902 static char emsg[] = "Command line syntax error: "; 1903 1904 /* 1905 ** Process a flag command line argument. 1906 */ 1907 static int handleflags(int i, FILE *err) 1908 { 1909 int v; 1910 int errcnt = 0; 1911 int j; 1912 for(j=0; op[j].label; j++){ 1913 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; 1914 } 1915 v = argv[i][0]=='-' ? 1 : 0; 1916 if( op[j].label==0 ){ 1917 if( err ){ 1918 fprintf(err,"%sundefined option.\n",emsg); 1919 errline(i,1,err); 1920 } 1921 errcnt++; 1922 }else if( op[j].arg==0 ){ 1923 /* Ignore this option */ 1924 }else if( op[j].type==OPT_FLAG ){ 1925 *((int*)op[j].arg) = v; 1926 }else if( op[j].type==OPT_FFLAG ){ 1927 (*(void(*)(int))(op[j].arg))(v); 1928 }else if( op[j].type==OPT_FSTR ){ 1929 (*(void(*)(char *))(op[j].arg))(&argv[i][2]); 1930 }else{ 1931 if( err ){ 1932 fprintf(err,"%smissing argument on switch.\n",emsg); 1933 errline(i,1,err); 1934 } 1935 errcnt++; 1936 } 1937 return errcnt; 1938 } 1939 1940 /* 1941 ** Process a command line switch which has an argument. 1942 */ 1943 static int handleswitch(int i, FILE *err) 1944 { 1945 int lv = 0; 1946 double dv = 0.0; 1947 char *sv = 0, *end; 1948 char *cp; 1949 int j; 1950 int errcnt = 0; 1951 cp = strchr(argv[i],'='); 1952 assert( cp!=0 ); 1953 *cp = 0; 1954 for(j=0; op[j].label; j++){ 1955 if( strcmp(argv[i],op[j].label)==0 ) break; 1956 } 1957 *cp = '='; 1958 if( op[j].label==0 ){ 1959 if( err ){ 1960 fprintf(err,"%sundefined option.\n",emsg); 1961 errline(i,0,err); 1962 } 1963 errcnt++; 1964 }else{ 1965 cp++; 1966 switch( op[j].type ){ 1967 case OPT_FLAG: 1968 case OPT_FFLAG: 1969 if( err ){ 1970 fprintf(err,"%soption requires an argument.\n",emsg); 1971 errline(i,0,err); 1972 } 1973 errcnt++; 1974 break; 1975 case OPT_DBL: 1976 case OPT_FDBL: 1977 dv = strtod(cp,&end); 1978 if( *end ){ 1979 if( err ){ 1980 fprintf(err, 1981 "%sillegal character in floating-point argument.\n",emsg); 1982 errline(i,(int)((char*)end-(char*)argv[i]),err); 1983 } 1984 errcnt++; 1985 } 1986 break; 1987 case OPT_INT: 1988 case OPT_FINT: 1989 lv = strtol(cp,&end,0); 1990 if( *end ){ 1991 if( err ){ 1992 fprintf(err,"%sillegal character in integer argument.\n",emsg); 1993 errline(i,(int)((char*)end-(char*)argv[i]),err); 1994 } 1995 errcnt++; 1996 } 1997 break; 1998 case OPT_STR: 1999 case OPT_FSTR: 2000 sv = cp; 2001 break; 2002 } 2003 switch( op[j].type ){ 2004 case OPT_FLAG: 2005 case OPT_FFLAG: 2006 break; 2007 case OPT_DBL: 2008 *(double*)(op[j].arg) = dv; 2009 break; 2010 case OPT_FDBL: 2011 (*(void(*)(double))(op[j].arg))(dv); 2012 break; 2013 case OPT_INT: 2014 *(int*)(op[j].arg) = lv; 2015 break; 2016 case OPT_FINT: 2017 (*(void(*)(int))(op[j].arg))((int)lv); 2018 break; 2019 case OPT_STR: 2020 *(char**)(op[j].arg) = sv; 2021 break; 2022 case OPT_FSTR: 2023 (*(void(*)(char *))(op[j].arg))(sv); 2024 break; 2025 } 2026 } 2027 return errcnt; 2028 } 2029 2030 int OptInit(char **a, struct s_options *o, FILE *err) 2031 { 2032 int errcnt = 0; 2033 argv = a; 2034 op = o; 2035 errstream = err; 2036 if( argv && *argv && op ){ 2037 int i; 2038 for(i=1; argv[i]; i++){ 2039 if( argv[i][0]=='+' || argv[i][0]=='-' ){ 2040 errcnt += handleflags(i,err); 2041 }else if( strchr(argv[i],'=') ){ 2042 errcnt += handleswitch(i,err); 2043 } 2044 } 2045 } 2046 if( errcnt>0 ){ 2047 fprintf(err,"Valid command line options for \"%s\" are:\n",*a); 2048 OptPrint(); 2049 exit(1); 2050 } 2051 return 0; 2052 } 2053 2054 int OptNArgs(){ 2055 int cnt = 0; 2056 int dashdash = 0; 2057 int i; 2058 if( argv!=0 && argv[0]!=0 ){ 2059 for(i=1; argv[i]; i++){ 2060 if( dashdash || !ISOPT(argv[i]) ) cnt++; 2061 if( strcmp(argv[i],"--")==0 ) dashdash = 1; 2062 } 2063 } 2064 return cnt; 2065 } 2066 2067 char *OptArg(int n) 2068 { 2069 int i; 2070 i = argindex(n); 2071 return i>=0 ? argv[i] : 0; 2072 } 2073 2074 void OptErr(int n) 2075 { 2076 int i; 2077 i = argindex(n); 2078 if( i>=0 ) errline(i,0,errstream); 2079 } 2080 2081 void OptPrint(){ 2082 int i; 2083 int max, len; 2084 max = 0; 2085 for(i=0; op[i].label; i++){ 2086 len = lemonStrlen(op[i].label) + 1; 2087 switch( op[i].type ){ 2088 case OPT_FLAG: 2089 case OPT_FFLAG: 2090 break; 2091 case OPT_INT: 2092 case OPT_FINT: 2093 len += 9; /* length of "<integer>" */ 2094 break; 2095 case OPT_DBL: 2096 case OPT_FDBL: 2097 len += 6; /* length of "<real>" */ 2098 break; 2099 case OPT_STR: 2100 case OPT_FSTR: 2101 len += 8; /* length of "<string>" */ 2102 break; 2103 } 2104 if( len>max ) max = len; 2105 } 2106 for(i=0; op[i].label; i++){ 2107 switch( op[i].type ){ 2108 case OPT_FLAG: 2109 case OPT_FFLAG: 2110 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); 2111 break; 2112 case OPT_INT: 2113 case OPT_FINT: 2114 fprintf(errstream," -%s<integer>%*s %s\n",op[i].label, 2115 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); 2116 break; 2117 case OPT_DBL: 2118 case OPT_FDBL: 2119 fprintf(errstream," -%s<real>%*s %s\n",op[i].label, 2120 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); 2121 break; 2122 case OPT_STR: 2123 case OPT_FSTR: 2124 fprintf(errstream," -%s<string>%*s %s\n",op[i].label, 2125 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); 2126 break; 2127 } 2128 } 2129 } 2130 /*********************** From the file "parse.c" ****************************/ 2131 /* 2132 ** Input file parser for the LEMON parser generator. 2133 */ 2134 2135 /* The state of the parser */ 2136 enum e_state { 2137 INITIALIZE, 2138 WAITING_FOR_DECL_OR_RULE, 2139 WAITING_FOR_DECL_KEYWORD, 2140 WAITING_FOR_DECL_ARG, 2141 WAITING_FOR_PRECEDENCE_SYMBOL, 2142 WAITING_FOR_ARROW, 2143 IN_RHS, 2144 LHS_ALIAS_1, 2145 LHS_ALIAS_2, 2146 LHS_ALIAS_3, 2147 RHS_ALIAS_1, 2148 RHS_ALIAS_2, 2149 PRECEDENCE_MARK_1, 2150 PRECEDENCE_MARK_2, 2151 RESYNC_AFTER_RULE_ERROR, 2152 RESYNC_AFTER_DECL_ERROR, 2153 WAITING_FOR_DESTRUCTOR_SYMBOL, 2154 WAITING_FOR_DATATYPE_SYMBOL, 2155 WAITING_FOR_FALLBACK_ID, 2156 WAITING_FOR_WILDCARD_ID, 2157 WAITING_FOR_CLASS_ID, 2158 WAITING_FOR_CLASS_TOKEN 2159 }; 2160 struct pstate { 2161 char *filename; /* Name of the input file */ 2162 int tokenlineno; /* Linenumber at which current token starts */ 2163 int errorcnt; /* Number of errors so far */ 2164 char *tokenstart; /* Text of current token */ 2165 struct lemon *gp; /* Global state vector */ 2166 enum e_state state; /* The state of the parser */ 2167 struct symbol *fallback; /* The fallback token */ 2168 struct symbol *tkclass; /* Token class symbol */ 2169 struct symbol *lhs; /* Left-hand side of current rule */ 2170 const char *lhsalias; /* Alias for the LHS */ 2171 int nrhs; /* Number of right-hand side symbols seen */ 2172 struct symbol *rhs[MAXRHS]; /* RHS symbols */ 2173 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ 2174 struct rule *prevrule; /* Previous rule parsed */ 2175 const char *declkeyword; /* Keyword of a declaration */ 2176 char **declargslot; /* Where the declaration argument should be put */ 2177 int insertLineMacro; /* Add #line before declaration insert */ 2178 int *decllinenoslot; /* Where to write declaration line number */ 2179 enum e_assoc declassoc; /* Assign this association to decl arguments */ 2180 int preccounter; /* Assign this precedence to decl arguments */ 2181 struct rule *firstrule; /* Pointer to first rule in the grammar */ 2182 struct rule *lastrule; /* Pointer to the most recently parsed rule */ 2183 }; 2184 2185 /* Parse a single token */ 2186 static void parseonetoken(struct pstate *psp) 2187 { 2188 const char *x; 2189 x = Strsafe(psp->tokenstart); /* Save the token permanently */ 2190 #if 0 2191 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, 2192 x,psp->state); 2193 #endif 2194 switch( psp->state ){ 2195 case INITIALIZE: 2196 psp->prevrule = 0; 2197 psp->preccounter = 0; 2198 psp->firstrule = psp->lastrule = 0; 2199 psp->gp->nrule = 0; 2200 /* Fall thru to next case */ 2201 case WAITING_FOR_DECL_OR_RULE: 2202 if( x[0]=='%' ){ 2203 psp->state = WAITING_FOR_DECL_KEYWORD; 2204 }else if( ISLOWER(x[0]) ){ 2205 psp->lhs = Symbol_new(x); 2206 psp->nrhs = 0; 2207 psp->lhsalias = 0; 2208 psp->state = WAITING_FOR_ARROW; 2209 }else if( x[0]=='{' ){ 2210 if( psp->prevrule==0 ){ 2211 ErrorMsg(psp->filename,psp->tokenlineno, 2212 "There is no prior rule upon which to attach the code \ 2213 fragment which begins on this line."); 2214 psp->errorcnt++; 2215 }else if( psp->prevrule->code!=0 ){ 2216 ErrorMsg(psp->filename,psp->tokenlineno, 2217 "Code fragment beginning on this line is not the first \ 2218 to follow the previous rule."); 2219 psp->errorcnt++; 2220 }else{ 2221 psp->prevrule->line = psp->tokenlineno; 2222 psp->prevrule->code = &x[1]; 2223 psp->prevrule->noCode = 0; 2224 } 2225 }else if( x[0]=='[' ){ 2226 psp->state = PRECEDENCE_MARK_1; 2227 }else{ 2228 ErrorMsg(psp->filename,psp->tokenlineno, 2229 "Token \"%s\" should be either \"%%\" or a nonterminal name.", 2230 x); 2231 psp->errorcnt++; 2232 } 2233 break; 2234 case PRECEDENCE_MARK_1: 2235 if( !ISUPPER(x[0]) ){ 2236 ErrorMsg(psp->filename,psp->tokenlineno, 2237 "The precedence symbol must be a terminal."); 2238 psp->errorcnt++; 2239 }else if( psp->prevrule==0 ){ 2240 ErrorMsg(psp->filename,psp->tokenlineno, 2241 "There is no prior rule to assign precedence \"[%s]\".",x); 2242 psp->errorcnt++; 2243 }else if( psp->prevrule->precsym!=0 ){ 2244 ErrorMsg(psp->filename,psp->tokenlineno, 2245 "Precedence mark on this line is not the first \ 2246 to follow the previous rule."); 2247 psp->errorcnt++; 2248 }else{ 2249 psp->prevrule->precsym = Symbol_new(x); 2250 } 2251 psp->state = PRECEDENCE_MARK_2; 2252 break; 2253 case PRECEDENCE_MARK_2: 2254 if( x[0]!=']' ){ 2255 ErrorMsg(psp->filename,psp->tokenlineno, 2256 "Missing \"]\" on precedence mark."); 2257 psp->errorcnt++; 2258 } 2259 psp->state = WAITING_FOR_DECL_OR_RULE; 2260 break; 2261 case WAITING_FOR_ARROW: 2262 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ 2263 psp->state = IN_RHS; 2264 }else if( x[0]=='(' ){ 2265 psp->state = LHS_ALIAS_1; 2266 }else{ 2267 ErrorMsg(psp->filename,psp->tokenlineno, 2268 "Expected to see a \":\" following the LHS symbol \"%s\".", 2269 psp->lhs->name); 2270 psp->errorcnt++; 2271 psp->state = RESYNC_AFTER_RULE_ERROR; 2272 } 2273 break; 2274 case LHS_ALIAS_1: 2275 if( ISALPHA(x[0]) ){ 2276 psp->lhsalias = x; 2277 psp->state = LHS_ALIAS_2; 2278 }else{ 2279 ErrorMsg(psp->filename,psp->tokenlineno, 2280 "\"%s\" is not a valid alias for the LHS \"%s\"\n", 2281 x,psp->lhs->name); 2282 psp->errorcnt++; 2283 psp->state = RESYNC_AFTER_RULE_ERROR; 2284 } 2285 break; 2286 case LHS_ALIAS_2: 2287 if( x[0]==')' ){ 2288 psp->state = LHS_ALIAS_3; 2289 }else{ 2290 ErrorMsg(psp->filename,psp->tokenlineno, 2291 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); 2292 psp->errorcnt++; 2293 psp->state = RESYNC_AFTER_RULE_ERROR; 2294 } 2295 break; 2296 case LHS_ALIAS_3: 2297 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ 2298 psp->state = IN_RHS; 2299 }else{ 2300 ErrorMsg(psp->filename,psp->tokenlineno, 2301 "Missing \"->\" following: \"%s(%s)\".", 2302 psp->lhs->name,psp->lhsalias); 2303 psp->errorcnt++; 2304 psp->state = RESYNC_AFTER_RULE_ERROR; 2305 } 2306 break; 2307 case IN_RHS: 2308 if( x[0]=='.' ){ 2309 struct rule *rp; 2310 rp = (struct rule *)calloc( sizeof(struct rule) + 2311 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); 2312 if( rp==0 ){ 2313 ErrorMsg(psp->filename,psp->tokenlineno, 2314 "Can't allocate enough memory for this rule."); 2315 psp->errorcnt++; 2316 psp->prevrule = 0; 2317 }else{ 2318 int i; 2319 rp->ruleline = psp->tokenlineno; 2320 rp->rhs = (struct symbol**)&rp[1]; 2321 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); 2322 for(i=0; i<psp->nrhs; i++){ 2323 rp->rhs[i] = psp->rhs[i]; 2324 rp->rhsalias[i] = psp->alias[i]; 2325 } 2326 rp->lhs = psp->lhs; 2327 rp->lhsalias = psp->lhsalias; 2328 rp->nrhs = psp->nrhs; 2329 rp->code = 0; 2330 rp->noCode = 1; 2331 rp->precsym = 0; 2332 rp->index = psp->gp->nrule++; 2333 rp->nextlhs = rp->lhs->rule; 2334 rp->lhs->rule = rp; 2335 rp->next = 0; 2336 if( psp->firstrule==0 ){ 2337 psp->firstrule = psp->lastrule = rp; 2338 }else{ 2339 psp->lastrule->next = rp; 2340 psp->lastrule = rp; 2341 } 2342 psp->prevrule = rp; 2343 } 2344 psp->state = WAITING_FOR_DECL_OR_RULE; 2345 }else if( ISALPHA(x[0]) ){ 2346 if( psp->nrhs>=MAXRHS ){ 2347 ErrorMsg(psp->filename,psp->tokenlineno, 2348 "Too many symbols on RHS of rule beginning at \"%s\".", 2349 x); 2350 psp->errorcnt++; 2351 psp->state = RESYNC_AFTER_RULE_ERROR; 2352 }else{ 2353 psp->rhs[psp->nrhs] = Symbol_new(x); 2354 psp->alias[psp->nrhs] = 0; 2355 psp->nrhs++; 2356 } 2357 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ 2358 struct symbol *msp = psp->rhs[psp->nrhs-1]; 2359 if( msp->type!=MULTITERMINAL ){ 2360 struct symbol *origsp = msp; 2361 msp = (struct symbol *) calloc(1,sizeof(*msp)); 2362 memset(msp, 0, sizeof(*msp)); 2363 msp->type = MULTITERMINAL; 2364 msp->nsubsym = 1; 2365 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); 2366 msp->subsym[0] = origsp; 2367 msp->name = origsp->name; 2368 psp->rhs[psp->nrhs-1] = msp; 2369 } 2370 msp->nsubsym++; 2371 msp->subsym = (struct symbol **) realloc(msp->subsym, 2372 sizeof(struct symbol*)*msp->nsubsym); 2373 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); 2374 if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){ 2375 ErrorMsg(psp->filename,psp->tokenlineno, 2376 "Cannot form a compound containing a non-terminal"); 2377 psp->errorcnt++; 2378 } 2379 }else if( x[0]=='(' && psp->nrhs>0 ){ 2380 psp->state = RHS_ALIAS_1; 2381 }else{ 2382 ErrorMsg(psp->filename,psp->tokenlineno, 2383 "Illegal character on RHS of rule: \"%s\".",x); 2384 psp->errorcnt++; 2385 psp->state = RESYNC_AFTER_RULE_ERROR; 2386 } 2387 break; 2388 case RHS_ALIAS_1: 2389 if( ISALPHA(x[0]) ){ 2390 psp->alias[psp->nrhs-1] = x; 2391 psp->state = RHS_ALIAS_2; 2392 }else{ 2393 ErrorMsg(psp->filename,psp->tokenlineno, 2394 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", 2395 x,psp->rhs[psp->nrhs-1]->name); 2396 psp->errorcnt++; 2397 psp->state = RESYNC_AFTER_RULE_ERROR; 2398 } 2399 break; 2400 case RHS_ALIAS_2: 2401 if( x[0]==')' ){ 2402 psp->state = IN_RHS; 2403 }else{ 2404 ErrorMsg(psp->filename,psp->tokenlineno, 2405 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); 2406 psp->errorcnt++; 2407 psp->state = RESYNC_AFTER_RULE_ERROR; 2408 } 2409 break; 2410 case WAITING_FOR_DECL_KEYWORD: 2411 if( ISALPHA(x[0]) ){ 2412 psp->declkeyword = x; 2413 psp->declargslot = 0; 2414 psp->decllinenoslot = 0; 2415 psp->insertLineMacro = 1; 2416 psp->state = WAITING_FOR_DECL_ARG; 2417 if( strcmp(x,"name")==0 ){ 2418 psp->declargslot = &(psp->gp->name); 2419 psp->insertLineMacro = 0; 2420 }else if( strcmp(x,"include")==0 ){ 2421 psp->declargslot = &(psp->gp->include); 2422 }else if( strcmp(x,"code")==0 ){ 2423 psp->declargslot = &(psp->gp->extracode); 2424 }else if( strcmp(x,"token_destructor")==0 ){ 2425 psp->declargslot = &psp->gp->tokendest; 2426 }else if( strcmp(x,"default_destructor")==0 ){ 2427 psp->declargslot = &psp->gp->vardest; 2428 }else if( strcmp(x,"token_prefix")==0 ){ 2429 psp->declargslot = &psp->gp->tokenprefix; 2430 psp->insertLineMacro = 0; 2431 }else if( strcmp(x,"syntax_error")==0 ){ 2432 psp->declargslot = &(psp->gp->error); 2433 }else if( strcmp(x,"parse_accept")==0 ){ 2434 psp->declargslot = &(psp->gp->accept); 2435 }else if( strcmp(x,"parse_failure")==0 ){ 2436 psp->declargslot = &(psp->gp->failure); 2437 }else if( strcmp(x,"stack_overflow")==0 ){ 2438 psp->declargslot = &(psp->gp->overflow); 2439 }else if( strcmp(x,"extra_argument")==0 ){ 2440 psp->declargslot = &(psp->gp->arg); 2441 psp->insertLineMacro = 0; 2442 }else if( strcmp(x,"token_type")==0 ){ 2443 psp->declargslot = &(psp->gp->tokentype); 2444 psp->insertLineMacro = 0; 2445 }else if( strcmp(x,"default_type")==0 ){ 2446 psp->declargslot = &(psp->gp->vartype); 2447 psp->insertLineMacro = 0; 2448 }else if( strcmp(x,"stack_size")==0 ){ 2449 psp->declargslot = &(psp->gp->stacksize); 2450 psp->insertLineMacro = 0; 2451 }else if( strcmp(x,"start_symbol")==0 ){ 2452 psp->declargslot = &(psp->gp->start); 2453 psp->insertLineMacro = 0; 2454 }else if( strcmp(x,"left")==0 ){ 2455 psp->preccounter++; 2456 psp->declassoc = LEFT; 2457 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; 2458 }else if( strcmp(x,"right")==0 ){ 2459 psp->preccounter++; 2460 psp->declassoc = RIGHT; 2461 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; 2462 }else if( strcmp(x,"nonassoc")==0 ){ 2463 psp->preccounter++; 2464 psp->declassoc = NONE; 2465 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; 2466 }else if( strcmp(x,"destructor")==0 ){ 2467 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; 2468 }else if( strcmp(x,"type")==0 ){ 2469 psp->state = WAITING_FOR_DATATYPE_SYMBOL; 2470 }else if( strcmp(x,"fallback")==0 ){ 2471 psp->fallback = 0; 2472 psp->state = WAITING_FOR_FALLBACK_ID; 2473 }else if( strcmp(x,"wildcard")==0 ){ 2474 psp->state = WAITING_FOR_WILDCARD_ID; 2475 }else if( strcmp(x,"token_class")==0 ){ 2476 psp->state = WAITING_FOR_CLASS_ID; 2477 }else{ 2478 ErrorMsg(psp->filename,psp->tokenlineno, 2479 "Unknown declaration keyword: \"%%%s\".",x); 2480 psp->errorcnt++; 2481 psp->state = RESYNC_AFTER_DECL_ERROR; 2482 } 2483 }else{ 2484 ErrorMsg(psp->filename,psp->tokenlineno, 2485 "Illegal declaration keyword: \"%s\".",x); 2486 psp->errorcnt++; 2487 psp->state = RESYNC_AFTER_DECL_ERROR; 2488 } 2489 break; 2490 case WAITING_FOR_DESTRUCTOR_SYMBOL: 2491 if( !ISALPHA(x[0]) ){ 2492 ErrorMsg(psp->filename,psp->tokenlineno, 2493 "Symbol name missing after %%destructor keyword"); 2494 psp->errorcnt++; 2495 psp->state = RESYNC_AFTER_DECL_ERROR; 2496 }else{ 2497 struct symbol *sp = Symbol_new(x); 2498 psp->declargslot = &sp->destructor; 2499 psp->decllinenoslot = &sp->destLineno; 2500 psp->insertLineMacro = 1; 2501 psp->state = WAITING_FOR_DECL_ARG; 2502 } 2503 break; 2504 case WAITING_FOR_DATATYPE_SYMBOL: 2505 if( !ISALPHA(x[0]) ){ 2506 ErrorMsg(psp->filename,psp->tokenlineno, 2507 "Symbol name missing after %%type keyword"); 2508 psp->errorcnt++; 2509 psp->state = RESYNC_AFTER_DECL_ERROR; 2510 }else{ 2511 struct symbol *sp = Symbol_find(x); 2512 if((sp) && (sp->datatype)){ 2513 ErrorMsg(psp->filename,psp->tokenlineno, 2514 "Symbol %%type \"%s\" already defined", x); 2515 psp->errorcnt++; 2516 psp->state = RESYNC_AFTER_DECL_ERROR; 2517 }else{ 2518 if (!sp){ 2519 sp = Symbol_new(x); 2520 } 2521 psp->declargslot = &sp->datatype; 2522 psp->insertLineMacro = 0; 2523 psp->state = WAITING_FOR_DECL_ARG; 2524 } 2525 } 2526 break; 2527 case WAITING_FOR_PRECEDENCE_SYMBOL: 2528 if( x[0]=='.' ){ 2529 psp->state = WAITING_FOR_DECL_OR_RULE; 2530 }else if( ISUPPER(x[0]) ){ 2531 struct symbol *sp; 2532 sp = Symbol_new(x); 2533 if( sp->prec>=0 ){ 2534 ErrorMsg(psp->filename,psp->tokenlineno, 2535 "Symbol \"%s\" has already be given a precedence.",x); 2536 psp->errorcnt++; 2537 }else{ 2538 sp->prec = psp->preccounter; 2539 sp->assoc = psp->declassoc; 2540 } 2541 }else{ 2542 ErrorMsg(psp->filename,psp->tokenlineno, 2543 "Can't assign a precedence to \"%s\".",x); 2544 psp->errorcnt++; 2545 } 2546 break; 2547 case WAITING_FOR_DECL_ARG: 2548 if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){ 2549 const char *zOld, *zNew; 2550 char *zBuf, *z; 2551 int nOld, n, nLine = 0, nNew, nBack; 2552 int addLineMacro; 2553 char zLine[50]; 2554 zNew = x; 2555 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; 2556 nNew = lemonStrlen(zNew); 2557 if( *psp->declargslot ){ 2558 zOld = *psp->declargslot; 2559 }else{ 2560 zOld = ""; 2561 } 2562 nOld = lemonStrlen(zOld); 2563 n = nOld + nNew + 20; 2564 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && 2565 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); 2566 if( addLineMacro ){ 2567 for(z=psp->filename, nBack=0; *z; z++){ 2568 if( *z=='\\' ) nBack++; 2569 } 2570 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); 2571 nLine = lemonStrlen(zLine); 2572 n += nLine + lemonStrlen(psp->filename) + nBack; 2573 } 2574 *psp->declargslot = (char *) realloc(*psp->declargslot, n); 2575 zBuf = *psp->declargslot + nOld; 2576 if( addLineMacro ){ 2577 if( nOld && zBuf[-1]!='\n' ){ 2578 *(zBuf++) = '\n'; 2579 } 2580 memcpy(zBuf, zLine, nLine); 2581 zBuf += nLine; 2582 *(zBuf++) = '"'; 2583 for(z=psp->filename; *z; z++){ 2584 if( *z=='\\' ){ 2585 *(zBuf++) = '\\'; 2586 } 2587 *(zBuf++) = *z; 2588 } 2589 *(zBuf++) = '"'; 2590 *(zBuf++) = '\n'; 2591 } 2592 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ 2593 psp->decllinenoslot[0] = psp->tokenlineno; 2594 } 2595 memcpy(zBuf, zNew, nNew); 2596 zBuf += nNew; 2597 *zBuf = 0; 2598 psp->state = WAITING_FOR_DECL_OR_RULE; 2599 }else{ 2600 ErrorMsg(psp->filename,psp->tokenlineno, 2601 "Illegal argument to %%%s: %s",psp->declkeyword,x); 2602 psp->errorcnt++; 2603 psp->state = RESYNC_AFTER_DECL_ERROR; 2604 } 2605 break; 2606 case WAITING_FOR_FALLBACK_ID: 2607 if( x[0]=='.' ){ 2608 psp->state = WAITING_FOR_DECL_OR_RULE; 2609 }else if( !ISUPPER(x[0]) ){ 2610 ErrorMsg(psp->filename, psp->tokenlineno, 2611 "%%fallback argument \"%s\" should be a token", x); 2612 psp->errorcnt++; 2613 }else{ 2614 struct symbol *sp = Symbol_new(x); 2615 if( psp->fallback==0 ){ 2616 psp->fallback = sp; 2617 }else if( sp->fallback ){ 2618 ErrorMsg(psp->filename, psp->tokenlineno, 2619 "More than one fallback assigned to token %s", x); 2620 psp->errorcnt++; 2621 }else{ 2622 sp->fallback = psp->fallback; 2623 psp->gp->has_fallback = 1; 2624 } 2625 } 2626 break; 2627 case WAITING_FOR_WILDCARD_ID: 2628 if( x[0]=='.' ){ 2629 psp->state = WAITING_FOR_DECL_OR_RULE; 2630 }else if( !ISUPPER(x[0]) ){ 2631 ErrorMsg(psp->filename, psp->tokenlineno, 2632 "%%wildcard argument \"%s\" should be a token", x); 2633 psp->errorcnt++; 2634 }else{ 2635 struct symbol *sp = Symbol_new(x); 2636 if( psp->gp->wildcard==0 ){ 2637 psp->gp->wildcard = sp; 2638 }else{ 2639 ErrorMsg(psp->filename, psp->tokenlineno, 2640 "Extra wildcard to token: %s", x); 2641 psp->errorcnt++; 2642 } 2643 } 2644 break; 2645 case WAITING_FOR_CLASS_ID: 2646 if( !ISLOWER(x[0]) ){ 2647 ErrorMsg(psp->filename, psp->tokenlineno, 2648 "%%token_class must be followed by an identifier: ", x); 2649 psp->errorcnt++; 2650 psp->state = RESYNC_AFTER_DECL_ERROR; 2651 }else if( Symbol_find(x) ){ 2652 ErrorMsg(psp->filename, psp->tokenlineno, 2653 "Symbol \"%s\" already used", x); 2654 psp->errorcnt++; 2655 psp->state = RESYNC_AFTER_DECL_ERROR; 2656 }else{ 2657 psp->tkclass = Symbol_new(x); 2658 psp->tkclass->type = MULTITERMINAL; 2659 psp->state = WAITING_FOR_CLASS_TOKEN; 2660 } 2661 break; 2662 case WAITING_FOR_CLASS_TOKEN: 2663 if( x[0]=='.' ){ 2664 psp->state = WAITING_FOR_DECL_OR_RULE; 2665 }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){ 2666 struct symbol *msp = psp->tkclass; 2667 msp->nsubsym++; 2668 msp->subsym = (struct symbol **) realloc(msp->subsym, 2669 sizeof(struct symbol*)*msp->nsubsym); 2670 if( !ISUPPER(x[0]) ) x++; 2671 msp->subsym[msp->nsubsym-1] = Symbol_new(x); 2672 }else{ 2673 ErrorMsg(psp->filename, psp->tokenlineno, 2674 "%%token_class argument \"%s\" should be a token", x); 2675 psp->errorcnt++; 2676 psp->state = RESYNC_AFTER_DECL_ERROR; 2677 } 2678 break; 2679 case RESYNC_AFTER_RULE_ERROR: 2680 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; 2681 ** break; */ 2682 case RESYNC_AFTER_DECL_ERROR: 2683 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; 2684 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; 2685 break; 2686 } 2687 } 2688 2689 /* Run the preprocessor over the input file text. The global variables 2690 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined 2691 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and 2692 ** comments them out. Text in between is also commented out as appropriate. 2693 */ 2694 static void preprocess_input(char *z){ 2695 int i, j, k, n; 2696 int exclude = 0; 2697 int start = 0; 2698 int lineno = 1; 2699 int start_lineno = 1; 2700 for(i=0; z[i]; i++){ 2701 if( z[i]=='\n' ) lineno++; 2702 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; 2703 if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){ 2704 if( exclude ){ 2705 exclude--; 2706 if( exclude==0 ){ 2707 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; 2708 } 2709 } 2710 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; 2711 }else if( (strncmp(&z[i],"%ifdef",6)==0 && ISSPACE(z[i+6])) 2712 || (strncmp(&z[i],"%ifndef",7)==0 && ISSPACE(z[i+7])) ){ 2713 if( exclude ){ 2714 exclude++; 2715 }else{ 2716 for(j=i+7; ISSPACE(z[j]); j++){} 2717 for(n=0; z[j+n] && !ISSPACE(z[j+n]); n++){} 2718 exclude = 1; 2719 for(k=0; k<nDefine; k++){ 2720 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ 2721 exclude = 0; 2722 break; 2723 } 2724 } 2725 if( z[i+3]=='n' ) exclude = !exclude; 2726 if( exclude ){ 2727 start = i; 2728 start_lineno = lineno; 2729 } 2730 } 2731 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; 2732 } 2733 } 2734 if( exclude ){ 2735 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); 2736 exit(1); 2737 } 2738 } 2739 2740 /* In spite of its name, this function is really a scanner. It read 2741 ** in the entire input file (all at once) then tokenizes it. Each 2742 ** token is passed to the function "parseonetoken" which builds all 2743 ** the appropriate data structures in the global state vector "gp". 2744 */ 2745 void Parse(struct lemon *gp) 2746 { 2747 struct pstate ps; 2748 FILE *fp; 2749 char *filebuf; 2750 unsigned int filesize; 2751 int lineno; 2752 int c; 2753 char *cp, *nextcp; 2754 int startline = 0; 2755 2756 memset(&ps, '\0', sizeof(ps)); 2757 ps.gp = gp; 2758 ps.filename = gp->filename; 2759 ps.errorcnt = 0; 2760 ps.state = INITIALIZE; 2761 2762 /* Begin by reading the input file */ 2763 fp = fopen(ps.filename,"rb"); 2764 if( fp==0 ){ 2765 ErrorMsg(ps.filename,0,"Can't open this file for reading."); 2766 gp->errorcnt++; 2767 return; 2768 } 2769 fseek(fp,0,2); 2770 filesize = ftell(fp); 2771 rewind(fp); 2772 filebuf = (char *)malloc( filesize+1 ); 2773 if( filesize>100000000 || filebuf==0 ){ 2774 ErrorMsg(ps.filename,0,"Input file too large."); 2775 gp->errorcnt++; 2776 fclose(fp); 2777 return; 2778 } 2779 if( fread(filebuf,1,filesize,fp)!=filesize ){ 2780 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", 2781 filesize); 2782 free(filebuf); 2783 gp->errorcnt++; 2784 fclose(fp); 2785 return; 2786 } 2787 fclose(fp); 2788 filebuf[filesize] = 0; 2789 2790 /* Make an initial pass through the file to handle %ifdef and %ifndef */ 2791 preprocess_input(filebuf); 2792 2793 /* Now scan the text of the input file */ 2794 lineno = 1; 2795 for(cp=filebuf; (c= *cp)!=0; ){ 2796 if( c=='\n' ) lineno++; /* Keep track of the line number */ 2797 if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */ 2798 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ 2799 cp+=2; 2800 while( (c= *cp)!=0 && c!='\n' ) cp++; 2801 continue; 2802 } 2803 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ 2804 cp+=2; 2805 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ 2806 if( c=='\n' ) lineno++; 2807 cp++; 2808 } 2809 if( c ) cp++; 2810 continue; 2811 } 2812 ps.tokenstart = cp; /* Mark the beginning of the token */ 2813 ps.tokenlineno = lineno; /* Linenumber on which token begins */ 2814 if( c=='\"' ){ /* String literals */ 2815 cp++; 2816 while( (c= *cp)!=0 && c!='\"' ){ 2817 if( c=='\n' ) lineno++; 2818 cp++; 2819 } 2820 if( c==0 ){ 2821 ErrorMsg(ps.filename,startline, 2822 "String starting on this line is not terminated before the end of the file."); 2823 ps.errorcnt++; 2824 nextcp = cp; 2825 }else{ 2826 nextcp = cp+1; 2827 } 2828 }else if( c=='{' ){ /* A block of C code */ 2829 int level; 2830 cp++; 2831 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ 2832 if( c=='\n' ) lineno++; 2833 else if( c=='{' ) level++; 2834 else if( c=='}' ) level--; 2835 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ 2836 int prevc; 2837 cp = &cp[2]; 2838 prevc = 0; 2839 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ 2840 if( c=='\n' ) lineno++; 2841 prevc = c; 2842 cp++; 2843 } 2844 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ 2845 cp = &cp[2]; 2846 while( (c= *cp)!=0 && c!='\n' ) cp++; 2847 if( c ) lineno++; 2848 }else if( c=='\'' || c=='\"' ){ /* String a character literals */ 2849 int startchar, prevc; 2850 startchar = c; 2851 prevc = 0; 2852 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ 2853 if( c=='\n' ) lineno++; 2854 if( prevc=='\\' ) prevc = 0; 2855 else prevc = c; 2856 } 2857 } 2858 } 2859 if( c==0 ){ 2860 ErrorMsg(ps.filename,ps.tokenlineno, 2861 "C code starting on this line is not terminated before the end of the file."); 2862 ps.errorcnt++; 2863 nextcp = cp; 2864 }else{ 2865 nextcp = cp+1; 2866 } 2867 }else if( ISALNUM(c) ){ /* Identifiers */ 2868 while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; 2869 nextcp = cp; 2870 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ 2871 cp += 3; 2872 nextcp = cp; 2873 }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){ 2874 cp += 2; 2875 while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; 2876 nextcp = cp; 2877 }else{ /* All other (one character) operators */ 2878 cp++; 2879 nextcp = cp; 2880 } 2881 c = *cp; 2882 *cp = 0; /* Null terminate the token */ 2883 parseonetoken(&ps); /* Parse the token */ 2884 *cp = (char)c; /* Restore the buffer */ 2885 cp = nextcp; 2886 } 2887 free(filebuf); /* Release the buffer after parsing */ 2888 gp->rule = ps.firstrule; 2889 gp->errorcnt = ps.errorcnt; 2890 } 2891 /*************************** From the file "plink.c" *********************/ 2892 /* 2893 ** Routines processing configuration follow-set propagation links 2894 ** in the LEMON parser generator. 2895 */ 2896 static struct plink *plink_freelist = 0; 2897 2898 /* Allocate a new plink */ 2899 struct plink *Plink_new(){ 2900 struct plink *newlink; 2901 2902 if( plink_freelist==0 ){ 2903 int i; 2904 int amt = 100; 2905 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); 2906 if( plink_freelist==0 ){ 2907 fprintf(stderr, 2908 "Unable to allocate memory for a new follow-set propagation link.\n"); 2909 exit(1); 2910 } 2911 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; 2912 plink_freelist[amt-1].next = 0; 2913 } 2914 newlink = plink_freelist; 2915 plink_freelist = plink_freelist->next; 2916 return newlink; 2917 } 2918 2919 /* Add a plink to a plink list */ 2920 void Plink_add(struct plink **plpp, struct config *cfp) 2921 { 2922 struct plink *newlink; 2923 newlink = Plink_new(); 2924 newlink->next = *plpp; 2925 *plpp = newlink; 2926 newlink->cfp = cfp; 2927 } 2928 2929 /* Transfer every plink on the list "from" to the list "to" */ 2930 void Plink_copy(struct plink **to, struct plink *from) 2931 { 2932 struct plink *nextpl; 2933 while( from ){ 2934 nextpl = from->next; 2935 from->next = *to; 2936 *to = from; 2937 from = nextpl; 2938 } 2939 } 2940 2941 /* Delete every plink on the list */ 2942 void Plink_delete(struct plink *plp) 2943 { 2944 struct plink *nextpl; 2945 2946 while( plp ){ 2947 nextpl = plp->next; 2948 plp->next = plink_freelist; 2949 plink_freelist = plp; 2950 plp = nextpl; 2951 } 2952 } 2953 /*********************** From the file "report.c" **************************/ 2954 /* 2955 ** Procedures for generating reports and tables in the LEMON parser generator. 2956 */ 2957 2958 /* Generate a filename with the given suffix. Space to hold the 2959 ** name comes from malloc() and must be freed by the calling 2960 ** function. 2961 */ 2962 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) 2963 { 2964 char *name; 2965 char *cp; 2966 2967 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); 2968 if( name==0 ){ 2969 fprintf(stderr,"Can't allocate space for a filename.\n"); 2970 exit(1); 2971 } 2972 lemon_strcpy(name,lemp->filename); 2973 cp = strrchr(name,'.'); 2974 if( cp ) *cp = 0; 2975 lemon_strcat(name,suffix); 2976 return name; 2977 } 2978 2979 /* Open a file with a name based on the name of the input file, 2980 ** but with a different (specified) suffix, and return a pointer 2981 ** to the stream */ 2982 PRIVATE FILE *file_open( 2983 struct lemon *lemp, 2984 const char *suffix, 2985 const char *mode 2986 ){ 2987 FILE *fp; 2988 2989 if( lemp->outname ) free(lemp->outname); 2990 lemp->outname = file_makename(lemp, suffix); 2991 fp = fopen(lemp->outname,mode); 2992 if( fp==0 && *mode=='w' ){ 2993 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); 2994 lemp->errorcnt++; 2995 return 0; 2996 } 2997 return fp; 2998 } 2999 3000 /* Duplicate the input file without comments and without actions 3001 ** on rules */ 3002 void Reprint(struct lemon *lemp) 3003 { 3004 struct rule *rp; 3005 struct symbol *sp; 3006 int i, j, maxlen, len, ncolumns, skip; 3007 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); 3008 maxlen = 10; 3009 for(i=0; i<lemp->nsymbol; i++){ 3010 sp = lemp->symbols[i]; 3011 len = lemonStrlen(sp->name); 3012 if( len>maxlen ) maxlen = len; 3013 } 3014 ncolumns = 76/(maxlen+5); 3015 if( ncolumns<1 ) ncolumns = 1; 3016 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; 3017 for(i=0; i<skip; i++){ 3018 printf("//"); 3019 for(j=i; j<lemp->nsymbol; j+=skip){ 3020 sp = lemp->symbols[j]; 3021 assert( sp->index==j ); 3022 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); 3023 } 3024 printf("\n"); 3025 } 3026 for(rp=lemp->rule; rp; rp=rp->next){ 3027 printf("%s",rp->lhs->name); 3028 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ 3029 printf(" ::="); 3030 for(i=0; i<rp->nrhs; i++){ 3031 sp = rp->rhs[i]; 3032 if( sp->type==MULTITERMINAL ){ 3033 printf(" %s", sp->subsym[0]->name); 3034 for(j=1; j<sp->nsubsym; j++){ 3035 printf("|%s", sp->subsym[j]->name); 3036 } 3037 }else{ 3038 printf(" %s", sp->name); 3039 } 3040 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ 3041 } 3042 printf("."); 3043 if( rp->precsym ) printf(" [%s]",rp->precsym->name); 3044 /* if( rp->code ) printf("\n %s",rp->code); */ 3045 printf("\n"); 3046 } 3047 } 3048 3049 /* Print a single rule. 3050 */ 3051 void RulePrint(FILE *fp, struct rule *rp, int iCursor){ 3052 struct symbol *sp; 3053 int i, j; 3054 fprintf(fp,"%s ::=",rp->lhs->name); 3055 for(i=0; i<=rp->nrhs; i++){ 3056 if( i==iCursor ) fprintf(fp," *"); 3057 if( i==rp->nrhs ) break; 3058 sp = rp->rhs[i]; 3059 if( sp->type==MULTITERMINAL ){ 3060 fprintf(fp," %s", sp->subsym[0]->name); 3061 for(j=1; j<sp->nsubsym; j++){ 3062 fprintf(fp,"|%s",sp->subsym[j]->name); 3063 } 3064 }else{ 3065 fprintf(fp," %s", sp->name); 3066 } 3067 } 3068 } 3069 3070 /* Print the rule for a configuration. 3071 */ 3072 void ConfigPrint(FILE *fp, struct config *cfp){ 3073 RulePrint(fp, cfp->rp, cfp->dot); 3074 } 3075 3076 /* #define TEST */ 3077 #if 0 3078 /* Print a set */ 3079 PRIVATE void SetPrint(out,set,lemp) 3080 FILE *out; 3081 char *set; 3082 struct lemon *lemp; 3083 { 3084 int i; 3085 char *spacer; 3086 spacer = ""; 3087 fprintf(out,"%12s[",""); 3088 for(i=0; i<lemp->nterminal; i++){ 3089 if( SetFind(set,i) ){ 3090 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); 3091 spacer = " "; 3092 } 3093 } 3094 fprintf(out,"]\n"); 3095 } 3096 3097 /* Print a plink chain */ 3098 PRIVATE void PlinkPrint(out,plp,tag) 3099 FILE *out; 3100 struct plink *plp; 3101 char *tag; 3102 { 3103 while( plp ){ 3104 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); 3105 ConfigPrint(out,plp->cfp); 3106 fprintf(out,"\n"); 3107 plp = plp->next; 3108 } 3109 } 3110 #endif 3111 3112 /* Print an action to the given file descriptor. Return FALSE if 3113 ** nothing was actually printed. 3114 */ 3115 int PrintAction( 3116 struct action *ap, /* The action to print */ 3117 FILE *fp, /* Print the action here */ 3118 int indent /* Indent by this amount */ 3119 ){ 3120 int result = 1; 3121 switch( ap->type ){ 3122 case SHIFT: { 3123 struct state *stp = ap->x.stp; 3124 fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum); 3125 break; 3126 } 3127 case REDUCE: { 3128 struct rule *rp = ap->x.rp; 3129 fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule); 3130 RulePrint(fp, rp, -1); 3131 break; 3132 } 3133 case SHIFTREDUCE: { 3134 struct rule *rp = ap->x.rp; 3135 fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule); 3136 RulePrint(fp, rp, -1); 3137 break; 3138 } 3139 case ACCEPT: 3140 fprintf(fp,"%*s accept",indent,ap->sp->name); 3141 break; 3142 case ERROR: 3143 fprintf(fp,"%*s error",indent,ap->sp->name); 3144 break; 3145 case SRCONFLICT: 3146 case RRCONFLICT: 3147 fprintf(fp,"%*s reduce %-7d ** Parsing conflict **", 3148 indent,ap->sp->name,ap->x.rp->iRule); 3149 break; 3150 case SSCONFLICT: 3151 fprintf(fp,"%*s shift %-7d ** Parsing conflict **", 3152 indent,ap->sp->name,ap->x.stp->statenum); 3153 break; 3154 case SH_RESOLVED: 3155 if( showPrecedenceConflict ){ 3156 fprintf(fp,"%*s shift %-7d -- dropped by precedence", 3157 indent,ap->sp->name,ap->x.stp->statenum); 3158 }else{ 3159 result = 0; 3160 } 3161 break; 3162 case RD_RESOLVED: 3163 if( showPrecedenceConflict ){ 3164 fprintf(fp,"%*s reduce %-7d -- dropped by precedence", 3165 indent,ap->sp->name,ap->x.rp->iRule); 3166 }else{ 3167 result = 0; 3168 } 3169 break; 3170 case NOT_USED: 3171 result = 0; 3172 break; 3173 } 3174 if( result && ap->spOpt ){ 3175 fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name); 3176 } 3177 return result; 3178 } 3179 3180 /* Generate the "*.out" log file */ 3181 void ReportOutput(struct lemon *lemp) 3182 { 3183 int i; 3184 struct state *stp; 3185 struct config *cfp; 3186 struct action *ap; 3187 FILE *fp; 3188 3189 fp = file_open(lemp,".out","wb"); 3190 if( fp==0 ) return; 3191 for(i=0; i<lemp->nxstate; i++){ 3192 stp = lemp->sorted[i]; 3193 fprintf(fp,"State %d:\n",stp->statenum); 3194 if( lemp->basisflag ) cfp=stp->bp; 3195 else cfp=stp->cfp; 3196 while( cfp ){ 3197 char buf[20]; 3198 if( cfp->dot==cfp->rp->nrhs ){ 3199 lemon_sprintf(buf,"(%d)",cfp->rp->iRule); 3200 fprintf(fp," %5s ",buf); 3201 }else{ 3202 fprintf(fp," "); 3203 } 3204 ConfigPrint(fp,cfp); 3205 fprintf(fp,"\n"); 3206 #if 0 3207 SetPrint(fp,cfp->fws,lemp); 3208 PlinkPrint(fp,cfp->fplp,"To "); 3209 PlinkPrint(fp,cfp->bplp,"From"); 3210 #endif 3211 if( lemp->basisflag ) cfp=cfp->bp; 3212 else cfp=cfp->next; 3213 } 3214 fprintf(fp,"\n"); 3215 for(ap=stp->ap; ap; ap=ap->next){ 3216 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); 3217 } 3218 fprintf(fp,"\n"); 3219 } 3220 fprintf(fp, "----------------------------------------------------\n"); 3221 fprintf(fp, "Symbols:\n"); 3222 for(i=0; i<lemp->nsymbol; i++){ 3223 int j; 3224 struct symbol *sp; 3225 3226 sp = lemp->symbols[i]; 3227 fprintf(fp, " %3d: %s", i, sp->name); 3228 if( sp->type==NONTERMINAL ){ 3229 fprintf(fp, ":"); 3230 if( sp->lambda ){ 3231 fprintf(fp, " <lambda>"); 3232 } 3233 for(j=0; j<lemp->nterminal; j++){ 3234 if( sp->firstset && SetFind(sp->firstset, j) ){ 3235 fprintf(fp, " %s", lemp->symbols[j]->name); 3236 } 3237 } 3238 } 3239 fprintf(fp, "\n"); 3240 } 3241 fclose(fp); 3242 return; 3243 } 3244 3245 /* Search for the file "name" which is in the same directory as 3246 ** the exacutable */ 3247 PRIVATE char *pathsearch(char *argv0, char *name, int modemask) 3248 { 3249 const char *pathlist; 3250 char *pathbufptr; 3251 char *pathbuf; 3252 char *path,*cp; 3253 char c; 3254 3255 #ifdef __WIN32__ 3256 cp = strrchr(argv0,'\\'); 3257 #else 3258 cp = strrchr(argv0,'/'); 3259 #endif 3260 if( cp ){ 3261 c = *cp; 3262 *cp = 0; 3263 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); 3264 if( path ) lemon_sprintf(path,"%s/%s",argv0,name); 3265 *cp = c; 3266 }else{ 3267 pathlist = getenv("PATH"); 3268 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; 3269 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); 3270 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); 3271 if( (pathbuf != 0) && (path!=0) ){ 3272 pathbufptr = pathbuf; 3273 lemon_strcpy(pathbuf, pathlist); 3274 while( *pathbuf ){ 3275 cp = strchr(pathbuf,':'); 3276 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; 3277 c = *cp; 3278 *cp = 0; 3279 lemon_sprintf(path,"%s/%s",pathbuf,name); 3280 *cp = c; 3281 if( c==0 ) pathbuf[0] = 0; 3282 else pathbuf = &cp[1]; 3283 if( access(path,modemask)==0 ) break; 3284 } 3285 free(pathbufptr); 3286 } 3287 } 3288 return path; 3289 } 3290 3291 /* Given an action, compute the integer value for that action 3292 ** which is to be put in the action table of the generated machine. 3293 ** Return negative if no action should be generated. 3294 */ 3295 PRIVATE int compute_action(struct lemon *lemp, struct action *ap) 3296 { 3297 int act; 3298 switch( ap->type ){ 3299 case SHIFT: act = ap->x.stp->statenum; break; 3300 case SHIFTREDUCE: act = ap->x.rp->iRule + lemp->nstate; break; 3301 case REDUCE: act = ap->x.rp->iRule + lemp->nstate+lemp->nrule; break; 3302 case ERROR: act = lemp->nstate + lemp->nrule*2; break; 3303 case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1; break; 3304 default: act = -1; break; 3305 } 3306 return act; 3307 } 3308 3309 #define LINESIZE 1000 3310 /* The next cluster of routines are for reading the template file 3311 ** and writing the results to the generated parser */ 3312 /* The first function transfers data from "in" to "out" until 3313 ** a line is seen which begins with "%%". The line number is 3314 ** tracked. 3315 ** 3316 ** if name!=0, then any word that begin with "Parse" is changed to 3317 ** begin with *name instead. 3318 */ 3319 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) 3320 { 3321 int i, iStart; 3322 char line[LINESIZE]; 3323 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ 3324 (*lineno)++; 3325 iStart = 0; 3326 if( name ){ 3327 for(i=0; line[i]; i++){ 3328 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 3329 && (i==0 || !ISALPHA(line[i-1])) 3330 ){ 3331 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); 3332 fprintf(out,"%s",name); 3333 i += 4; 3334 iStart = i+1; 3335 } 3336 } 3337 } 3338 fprintf(out,"%s",&line[iStart]); 3339 } 3340 } 3341 3342 /* The next function finds the template file and opens it, returning 3343 ** a pointer to the opened file. */ 3344 PRIVATE FILE *tplt_open(struct lemon *lemp) 3345 { 3346 static char templatename[] = "lempar.c"; 3347 char buf[1000]; 3348 FILE *in; 3349 char *tpltname; 3350 char *cp; 3351 3352 /* first, see if user specified a template filename on the command line. */ 3353 if (user_templatename != 0) { 3354 if( access(user_templatename,004)==-1 ){ 3355 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", 3356 user_templatename); 3357 lemp->errorcnt++; 3358 return 0; 3359 } 3360 in = fopen(user_templatename,"rb"); 3361 if( in==0 ){ 3362 fprintf(stderr,"Can't open the template file \"%s\".\n", 3363 user_templatename); 3364 lemp->errorcnt++; 3365 return 0; 3366 } 3367 return in; 3368 } 3369 3370 cp = strrchr(lemp->filename,'.'); 3371 if( cp ){ 3372 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); 3373 }else{ 3374 lemon_sprintf(buf,"%s.lt",lemp->filename); 3375 } 3376 if( access(buf,004)==0 ){ 3377 tpltname = buf; 3378 }else if( access(templatename,004)==0 ){ 3379 tpltname = templatename; 3380 }else{ 3381 tpltname = pathsearch(lemp->argv0,templatename,0); 3382 } 3383 if( tpltname==0 ){ 3384 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", 3385 templatename); 3386 lemp->errorcnt++; 3387 return 0; 3388 } 3389 in = fopen(tpltname,"rb"); 3390 if( in==0 ){ 3391 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); 3392 lemp->errorcnt++; 3393 return 0; 3394 } 3395 return in; 3396 } 3397 3398 /* Print a #line directive line to the output file. */ 3399 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) 3400 { 3401 fprintf(out,"#line %d \"",lineno); 3402 while( *filename ){ 3403 if( *filename == '\\' ) putc('\\',out); 3404 putc(*filename,out); 3405 filename++; 3406 } 3407 fprintf(out,"\"\n"); 3408 } 3409 3410 /* Print a string to the file and keep the linenumber up to date */ 3411 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) 3412 { 3413 if( str==0 ) return; 3414 while( *str ){ 3415 putc(*str,out); 3416 if( *str=='\n' ) (*lineno)++; 3417 str++; 3418 } 3419 if( str[-1]!='\n' ){ 3420 putc('\n',out); 3421 (*lineno)++; 3422 } 3423 if (!lemp->nolinenosflag) { 3424 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 3425 } 3426 return; 3427 } 3428 3429 /* 3430 ** The following routine emits code for the destructor for the 3431 ** symbol sp 3432 */ 3433 void emit_destructor_code( 3434 FILE *out, 3435 struct symbol *sp, 3436 struct lemon *lemp, 3437 int *lineno 3438 ){ 3439 char *cp = 0; 3440 3441 if( sp->type==TERMINAL ){ 3442 cp = lemp->tokendest; 3443 if( cp==0 ) return; 3444 fprintf(out,"{\n"); (*lineno)++; 3445 }else if( sp->destructor ){ 3446 cp = sp->destructor; 3447 fprintf(out,"{\n"); (*lineno)++; 3448 if( !lemp->nolinenosflag ){ 3449 (*lineno)++; 3450 tplt_linedir(out,sp->destLineno,lemp->filename); 3451 } 3452 }else if( lemp->vardest ){ 3453 cp = lemp->vardest; 3454 if( cp==0 ) return; 3455 fprintf(out,"{\n"); (*lineno)++; 3456 }else{ 3457 assert( 0 ); /* Cannot happen */ 3458 } 3459 for(; *cp; cp++){ 3460 if( *cp=='$' && cp[1]=='$' ){ 3461 fprintf(out,"(yypminor->yy%d)",sp->dtnum); 3462 cp++; 3463 continue; 3464 } 3465 if( *cp=='\n' ) (*lineno)++; 3466 fputc(*cp,out); 3467 } 3468 fprintf(out,"\n"); (*lineno)++; 3469 if (!lemp->nolinenosflag) { 3470 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 3471 } 3472 fprintf(out,"}\n"); (*lineno)++; 3473 return; 3474 } 3475 3476 /* 3477 ** Return TRUE (non-zero) if the given symbol has a destructor. 3478 */ 3479 int has_destructor(struct symbol *sp, struct lemon *lemp) 3480 { 3481 int ret; 3482 if( sp->type==TERMINAL ){ 3483 ret = lemp->tokendest!=0; 3484 }else{ 3485 ret = lemp->vardest!=0 || sp->destructor!=0; 3486 } 3487 return ret; 3488 } 3489 3490 /* 3491 ** Append text to a dynamically allocated string. If zText is 0 then 3492 ** reset the string to be empty again. Always return the complete text 3493 ** of the string (which is overwritten with each call). 3494 ** 3495 ** n bytes of zText are stored. If n==0 then all of zText up to the first 3496 ** \000 terminator is stored. zText can contain up to two instances of 3497 ** %d. The values of p1 and p2 are written into the first and second 3498 ** %d. 3499 ** 3500 ** If n==-1, then the previous character is overwritten. 3501 */ 3502 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ 3503 static char empty[1] = { 0 }; 3504 static char *z = 0; 3505 static int alloced = 0; 3506 static int used = 0; 3507 int c; 3508 char zInt[40]; 3509 if( zText==0 ){ 3510 if( used==0 && z!=0 ) z[0] = 0; 3511 used = 0; 3512 return z; 3513 } 3514 if( n<=0 ){ 3515 if( n<0 ){ 3516 used += n; 3517 assert( used>=0 ); 3518 } 3519 n = lemonStrlen(zText); 3520 } 3521 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ 3522 alloced = n + sizeof(zInt)*2 + used + 200; 3523 z = (char *) realloc(z, alloced); 3524 } 3525 if( z==0 ) return empty; 3526 while( n-- > 0 ){ 3527 c = *(zText++); 3528 if( c=='%' && n>0 && zText[0]=='d' ){ 3529 lemon_sprintf(zInt, "%d", p1); 3530 p1 = p2; 3531 lemon_strcpy(&z[used], zInt); 3532 used += lemonStrlen(&z[used]); 3533 zText++; 3534 n--; 3535 }else{ 3536 z[used++] = (char)c; 3537 } 3538 } 3539 z[used] = 0; 3540 return z; 3541 } 3542 3543 /* 3544 ** Write and transform the rp->code string so that symbols are expanded. 3545 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate. 3546 ** 3547 ** Return 1 if the expanded code requires that "yylhsminor" local variable 3548 ** to be defined. 3549 */ 3550 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){ 3551 char *cp, *xp; 3552 int i; 3553 int rc = 0; /* True if yylhsminor is used */ 3554 int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */ 3555 const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */ 3556 char lhsused = 0; /* True if the LHS element has been used */ 3557 char lhsdirect; /* True if LHS writes directly into stack */ 3558 char used[MAXRHS]; /* True for each RHS element which is used */ 3559 char zLhs[50]; /* Convert the LHS symbol into this string */ 3560 char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */ 3561 3562 for(i=0; i<rp->nrhs; i++) used[i] = 0; 3563 lhsused = 0; 3564 3565 if( rp->code==0 ){ 3566 static char newlinestr[2] = { '\n', '\0' }; 3567 rp->code = newlinestr; 3568 rp->line = rp->ruleline; 3569 rp->noCode = 1; 3570 }else{ 3571 rp->noCode = 0; 3572 } 3573 3574 3575 if( rp->nrhs==0 ){ 3576 /* If there are no RHS symbols, then writing directly to the LHS is ok */ 3577 lhsdirect = 1; 3578 }else if( rp->rhsalias[0]==0 ){ 3579 /* The left-most RHS symbol has no value. LHS direct is ok. But 3580 ** we have to call the distructor on the RHS symbol first. */ 3581 lhsdirect = 1; 3582 if( has_destructor(rp->rhs[0],lemp) ){ 3583 append_str(0,0,0,0); 3584 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, 3585 rp->rhs[0]->index,1-rp->nrhs); 3586 rp->codePrefix = Strsafe(append_str(0,0,0,0)); 3587 rp->noCode = 0; 3588 } 3589 }else if( rp->lhsalias==0 ){ 3590 /* There is no LHS value symbol. */ 3591 lhsdirect = 1; 3592 }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){ 3593 /* The LHS symbol and the left-most RHS symbol are the same, so 3594 ** direct writing is allowed */ 3595 lhsdirect = 1; 3596 lhsused = 1; 3597 used[0] = 1; 3598 if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){ 3599 ErrorMsg(lemp->filename,rp->ruleline, 3600 "%s(%s) and %s(%s) share the same label but have " 3601 "different datatypes.", 3602 rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]); 3603 lemp->errorcnt++; 3604 } 3605 }else{ 3606 lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/", 3607 rp->lhsalias, rp->rhsalias[0]); 3608 zSkip = strstr(rp->code, zOvwrt); 3609 if( zSkip!=0 ){ 3610 /* The code contains a special comment that indicates that it is safe 3611 ** for the LHS label to overwrite left-most RHS label. */ 3612 lhsdirect = 1; 3613 }else{ 3614 lhsdirect = 0; 3615 } 3616 } 3617 if( lhsdirect ){ 3618 sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum); 3619 }else{ 3620 rc = 1; 3621 sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum); 3622 } 3623 3624 append_str(0,0,0,0); 3625 3626 /* This const cast is wrong but harmless, if we're careful. */ 3627 for(cp=(char *)rp->code; *cp; cp++){ 3628 if( cp==zSkip ){ 3629 append_str(zOvwrt,0,0,0); 3630 cp += lemonStrlen(zOvwrt)-1; 3631 dontUseRhs0 = 1; 3632 continue; 3633 } 3634 if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){ 3635 char saved; 3636 for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++); 3637 saved = *xp; 3638 *xp = 0; 3639 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ 3640 append_str(zLhs,0,0,0); 3641 cp = xp; 3642 lhsused = 1; 3643 }else{ 3644 for(i=0; i<rp->nrhs; i++){ 3645 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ 3646 if( i==0 && dontUseRhs0 ){ 3647 ErrorMsg(lemp->filename,rp->ruleline, 3648 "Label %s used after '%s'.", 3649 rp->rhsalias[0], zOvwrt); 3650 lemp->errorcnt++; 3651 }else if( cp!=rp->code && cp[-1]=='@' ){ 3652 /* If the argument is of the form @X then substituted 3653 ** the token number of X, not the value of X */ 3654 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); 3655 }else{ 3656 struct symbol *sp = rp->rhs[i]; 3657 int dtnum; 3658 if( sp->type==MULTITERMINAL ){ 3659 dtnum = sp->subsym[0]->dtnum; 3660 }else{ 3661 dtnum = sp->dtnum; 3662 } 3663 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); 3664 } 3665 cp = xp; 3666 used[i] = 1; 3667 break; 3668 } 3669 } 3670 } 3671 *xp = saved; 3672 } 3673 append_str(cp, 1, 0, 0); 3674 } /* End loop */ 3675 3676 /* Main code generation completed */ 3677 cp = append_str(0,0,0,0); 3678 if( cp && cp[0] ) rp->code = Strsafe(cp); 3679 append_str(0,0,0,0); 3680 3681 /* Check to make sure the LHS has been used */ 3682 if( rp->lhsalias && !lhsused ){ 3683 ErrorMsg(lemp->filename,rp->ruleline, 3684 "Label \"%s\" for \"%s(%s)\" is never used.", 3685 rp->lhsalias,rp->lhs->name,rp->lhsalias); 3686 lemp->errorcnt++; 3687 } 3688 3689 /* Generate destructor code for RHS minor values which are not referenced. 3690 ** Generate error messages for unused labels and duplicate labels. 3691 */ 3692 for(i=0; i<rp->nrhs; i++){ 3693 if( rp->rhsalias[i] ){ 3694 if( i>0 ){ 3695 int j; 3696 if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){ 3697 ErrorMsg(lemp->filename,rp->ruleline, 3698 "%s(%s) has the same label as the LHS but is not the left-most " 3699 "symbol on the RHS.", 3700 rp->rhs[i]->name, rp->rhsalias); 3701 lemp->errorcnt++; 3702 } 3703 for(j=0; j<i; j++){ 3704 if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){ 3705 ErrorMsg(lemp->filename,rp->ruleline, 3706 "Label %s used for multiple symbols on the RHS of a rule.", 3707 rp->rhsalias[i]); 3708 lemp->errorcnt++; 3709 break; 3710 } 3711 } 3712 } 3713 if( !used[i] ){ 3714 ErrorMsg(lemp->filename,rp->ruleline, 3715 "Label %s for \"%s(%s)\" is never used.", 3716 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); 3717 lemp->errorcnt++; 3718 } 3719 }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){ 3720 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, 3721 rp->rhs[i]->index,i-rp->nrhs+1); 3722 } 3723 } 3724 3725 /* If unable to write LHS values directly into the stack, write the 3726 ** saved LHS value now. */ 3727 if( lhsdirect==0 ){ 3728 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum); 3729 append_str(zLhs, 0, 0, 0); 3730 append_str(";\n", 0, 0, 0); 3731 } 3732 3733 /* Suffix code generation complete */ 3734 cp = append_str(0,0,0,0); 3735 if( cp && cp[0] ){ 3736 rp->codeSuffix = Strsafe(cp); 3737 rp->noCode = 0; 3738 } 3739 3740 return rc; 3741 } 3742 3743 /* 3744 ** Generate code which executes when the rule "rp" is reduced. Write 3745 ** the code to "out". Make sure lineno stays up-to-date. 3746 */ 3747 PRIVATE void emit_code( 3748 FILE *out, 3749 struct rule *rp, 3750 struct lemon *lemp, 3751 int *lineno 3752 ){ 3753 const char *cp; 3754 3755 /* Setup code prior to the #line directive */ 3756 if( rp->codePrefix && rp->codePrefix[0] ){ 3757 fprintf(out, "{%s", rp->codePrefix); 3758 for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } 3759 } 3760 3761 /* Generate code to do the reduce action */ 3762 if( rp->code ){ 3763 if( !lemp->nolinenosflag ){ 3764 (*lineno)++; 3765 tplt_linedir(out,rp->line,lemp->filename); 3766 } 3767 fprintf(out,"{%s",rp->code); 3768 for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } 3769 fprintf(out,"}\n"); (*lineno)++; 3770 if( !lemp->nolinenosflag ){ 3771 (*lineno)++; 3772 tplt_linedir(out,*lineno,lemp->outname); 3773 } 3774 } 3775 3776 /* Generate breakdown code that occurs after the #line directive */ 3777 if( rp->codeSuffix && rp->codeSuffix[0] ){ 3778 fprintf(out, "%s", rp->codeSuffix); 3779 for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } 3780 } 3781 3782 if( rp->codePrefix ){ 3783 fprintf(out, "}\n"); (*lineno)++; 3784 } 3785 3786 return; 3787 } 3788 3789 /* 3790 ** Print the definition of the union used for the parser's data stack. 3791 ** This union contains fields for every possible data type for tokens 3792 ** and nonterminals. In the process of computing and printing this 3793 ** union, also set the ".dtnum" field of every terminal and nonterminal 3794 ** symbol. 3795 */ 3796 void print_stack_union( 3797 FILE *out, /* The output stream */ 3798 struct lemon *lemp, /* The main info structure for this parser */ 3799 int *plineno, /* Pointer to the line number */ 3800 int mhflag /* True if generating makeheaders output */ 3801 ){ 3802 int lineno = *plineno; /* The line number of the output */ 3803 char **types; /* A hash table of datatypes */ 3804 int arraysize; /* Size of the "types" array */ 3805 int maxdtlength; /* Maximum length of any ".datatype" field. */ 3806 char *stddt; /* Standardized name for a datatype */ 3807 int i,j; /* Loop counters */ 3808 unsigned hash; /* For hashing the name of a type */ 3809 const char *name; /* Name of the parser */ 3810 3811 /* Allocate and initialize types[] and allocate stddt[] */ 3812 arraysize = lemp->nsymbol * 2; 3813 types = (char**)calloc( arraysize, sizeof(char*) ); 3814 if( types==0 ){ 3815 fprintf(stderr,"Out of memory.\n"); 3816 exit(1); 3817 } 3818 for(i=0; i<arraysize; i++) types[i] = 0; 3819 maxdtlength = 0; 3820 if( lemp->vartype ){ 3821 maxdtlength = lemonStrlen(lemp->vartype); 3822 } 3823 for(i=0; i<lemp->nsymbol; i++){ 3824 int len; 3825 struct symbol *sp = lemp->symbols[i]; 3826 if( sp->datatype==0 ) continue; 3827 len = lemonStrlen(sp->datatype); 3828 if( len>maxdtlength ) maxdtlength = len; 3829 } 3830 stddt = (char*)malloc( maxdtlength*2 + 1 ); 3831 if( stddt==0 ){ 3832 fprintf(stderr,"Out of memory.\n"); 3833 exit(1); 3834 } 3835 3836 /* Build a hash table of datatypes. The ".dtnum" field of each symbol 3837 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is 3838 ** used for terminal symbols. If there is no %default_type defined then 3839 ** 0 is also used as the .dtnum value for nonterminals which do not specify 3840 ** a datatype using the %type directive. 3841 */ 3842 for(i=0; i<lemp->nsymbol; i++){ 3843 struct symbol *sp = lemp->symbols[i]; 3844 char *cp; 3845 if( sp==lemp->errsym ){ 3846 sp->dtnum = arraysize+1; 3847 continue; 3848 } 3849 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ 3850 sp->dtnum = 0; 3851 continue; 3852 } 3853 cp = sp->datatype; 3854 if( cp==0 ) cp = lemp->vartype; 3855 j = 0; 3856 while( ISSPACE(*cp) ) cp++; 3857 while( *cp ) stddt[j++] = *cp++; 3858 while( j>0 && ISSPACE(stddt[j-1]) ) j--; 3859 stddt[j] = 0; 3860 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ 3861 sp->dtnum = 0; 3862 continue; 3863 } 3864 hash = 0; 3865 for(j=0; stddt[j]; j++){ 3866 hash = hash*53 + stddt[j]; 3867 } 3868 hash = (hash & 0x7fffffff)%arraysize; 3869 while( types[hash] ){ 3870 if( strcmp(types[hash],stddt)==0 ){ 3871 sp->dtnum = hash + 1; 3872 break; 3873 } 3874 hash++; 3875 if( hash>=(unsigned)arraysize ) hash = 0; 3876 } 3877 if( types[hash]==0 ){ 3878 sp->dtnum = hash + 1; 3879 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); 3880 if( types[hash]==0 ){ 3881 fprintf(stderr,"Out of memory.\n"); 3882 exit(1); 3883 } 3884 lemon_strcpy(types[hash],stddt); 3885 } 3886 } 3887 3888 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ 3889 name = lemp->name ? lemp->name : "Parse"; 3890 lineno = *plineno; 3891 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } 3892 fprintf(out,"#define %sTOKENTYPE %s\n",name, 3893 lemp->tokentype?lemp->tokentype:"void*"); lineno++; 3894 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } 3895 fprintf(out,"typedef union {\n"); lineno++; 3896 fprintf(out," int yyinit;\n"); lineno++; 3897 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; 3898 for(i=0; i<arraysize; i++){ 3899 if( types[i]==0 ) continue; 3900 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; 3901 free(types[i]); 3902 } 3903 if( lemp->errsym->useCnt ){ 3904 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; 3905 } 3906 free(stddt); 3907 free(types); 3908 fprintf(out,"} YYMINORTYPE;\n"); lineno++; 3909 *plineno = lineno; 3910 } 3911 3912 /* 3913 ** Return the name of a C datatype able to represent values between 3914 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof 3915 ** for that type (1, 2, or 4) into *pnByte. 3916 */ 3917 static const char *minimum_size_type(int lwr, int upr, int *pnByte){ 3918 const char *zType = "int"; 3919 int nByte = 4; 3920 if( lwr>=0 ){ 3921 if( upr<=255 ){ 3922 zType = "unsigned char"; 3923 nByte = 1; 3924 }else if( upr<65535 ){ 3925 zType = "unsigned short int"; 3926 nByte = 2; 3927 }else{ 3928 zType = "unsigned int"; 3929 nByte = 4; 3930 } 3931 }else if( lwr>=-127 && upr<=127 ){ 3932 zType = "signed char"; 3933 nByte = 1; 3934 }else if( lwr>=-32767 && upr<32767 ){ 3935 zType = "short"; 3936 nByte = 2; 3937 } 3938 if( pnByte ) *pnByte = nByte; 3939 return zType; 3940 } 3941 3942 /* 3943 ** Each state contains a set of token transaction and a set of 3944 ** nonterminal transactions. Each of these sets makes an instance 3945 ** of the following structure. An array of these structures is used 3946 ** to order the creation of entries in the yy_action[] table. 3947 */ 3948 struct axset { 3949 struct state *stp; /* A pointer to a state */ 3950 int isTkn; /* True to use tokens. False for non-terminals */ 3951 int nAction; /* Number of actions */ 3952 int iOrder; /* Original order of action sets */ 3953 }; 3954 3955 /* 3956 ** Compare to axset structures for sorting purposes 3957 */ 3958 static int axset_compare(const void *a, const void *b){ 3959 struct axset *p1 = (struct axset*)a; 3960 struct axset *p2 = (struct axset*)b; 3961 int c; 3962 c = p2->nAction - p1->nAction; 3963 if( c==0 ){ 3964 c = p1->iOrder - p2->iOrder; 3965 } 3966 assert( c!=0 || p1==p2 ); 3967 return c; 3968 } 3969 3970 /* 3971 ** Write text on "out" that describes the rule "rp". 3972 */ 3973 static void writeRuleText(FILE *out, struct rule *rp){ 3974 int j; 3975 fprintf(out,"%s ::=", rp->lhs->name); 3976 for(j=0; j<rp->nrhs; j++){ 3977 struct symbol *sp = rp->rhs[j]; 3978 if( sp->type!=MULTITERMINAL ){ 3979 fprintf(out," %s", sp->name); 3980 }else{ 3981 int k; 3982 fprintf(out," %s", sp->subsym[0]->name); 3983 for(k=1; k<sp->nsubsym; k++){ 3984 fprintf(out,"|%s",sp->subsym[k]->name); 3985 } 3986 } 3987 } 3988 } 3989 3990 3991 /* Generate C source code for the parser */ 3992 void ReportTable( 3993 struct lemon *lemp, 3994 int mhflag /* Output in makeheaders format if true */ 3995 ){ 3996 FILE *out, *in; 3997 char line[LINESIZE]; 3998 int lineno; 3999 struct state *stp; 4000 struct action *ap; 4001 struct rule *rp; 4002 struct acttab *pActtab; 4003 int i, j, n, sz; 4004 int szActionType; /* sizeof(YYACTIONTYPE) */ 4005 int szCodeType; /* sizeof(YYCODETYPE) */ 4006 const char *name; 4007 int mnTknOfst, mxTknOfst; 4008 int mnNtOfst, mxNtOfst; 4009 struct axset *ax; 4010 4011 in = tplt_open(lemp); 4012 if( in==0 ) return; 4013 out = file_open(lemp,".c","wb"); 4014 if( out==0 ){ 4015 fclose(in); 4016 return; 4017 } 4018 lineno = 1; 4019 tplt_xfer(lemp->name,in,out,&lineno); 4020 4021 /* Generate the include code, if any */ 4022 tplt_print(out,lemp,lemp->include,&lineno); 4023 if( mhflag ){ 4024 char *incName = file_makename(lemp, ".h"); 4025 fprintf(out,"#include \"%s\"\n", incName); lineno++; 4026 free(incName); 4027 } 4028 tplt_xfer(lemp->name,in,out,&lineno); 4029 4030 /* Generate #defines for all tokens */ 4031 if( mhflag ){ 4032 const char *prefix; 4033 fprintf(out,"#if INTERFACE\n"); lineno++; 4034 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; 4035 else prefix = ""; 4036 for(i=1; i<lemp->nterminal; i++){ 4037 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); 4038 lineno++; 4039 } 4040 fprintf(out,"#endif\n"); lineno++; 4041 } 4042 tplt_xfer(lemp->name,in,out,&lineno); 4043 4044 /* Generate the defines */ 4045 fprintf(out,"#define YYCODETYPE %s\n", 4046 minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++; 4047 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; 4048 fprintf(out,"#define YYACTIONTYPE %s\n", 4049 minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++; 4050 if( lemp->wildcard ){ 4051 fprintf(out,"#define YYWILDCARD %d\n", 4052 lemp->wildcard->index); lineno++; 4053 } 4054 print_stack_union(out,lemp,&lineno,mhflag); 4055 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; 4056 if( lemp->stacksize ){ 4057 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; 4058 }else{ 4059 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; 4060 } 4061 fprintf(out, "#endif\n"); lineno++; 4062 if( mhflag ){ 4063 fprintf(out,"#if INTERFACE\n"); lineno++; 4064 } 4065 name = lemp->name ? lemp->name : "Parse"; 4066 if( lemp->arg && lemp->arg[0] ){ 4067 i = lemonStrlen(lemp->arg); 4068 while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--; 4069 while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; 4070 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; 4071 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; 4072 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", 4073 name,lemp->arg,&lemp->arg[i]); lineno++; 4074 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", 4075 name,&lemp->arg[i],&lemp->arg[i]); lineno++; 4076 }else{ 4077 fprintf(out,"#define %sARG_SDECL\n",name); lineno++; 4078 fprintf(out,"#define %sARG_PDECL\n",name); lineno++; 4079 fprintf(out,"#define %sARG_FETCH\n",name); lineno++; 4080 fprintf(out,"#define %sARG_STORE\n",name); lineno++; 4081 } 4082 if( mhflag ){ 4083 fprintf(out,"#endif\n"); lineno++; 4084 } 4085 if( lemp->errsym->useCnt ){ 4086 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; 4087 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; 4088 } 4089 if( lemp->has_fallback ){ 4090 fprintf(out,"#define YYFALLBACK 1\n"); lineno++; 4091 } 4092 4093 /* Compute the action table, but do not output it yet. The action 4094 ** table must be computed before generating the YYNSTATE macro because 4095 ** we need to know how many states can be eliminated. 4096 */ 4097 ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0])); 4098 if( ax==0 ){ 4099 fprintf(stderr,"malloc failed\n"); 4100 exit(1); 4101 } 4102 for(i=0; i<lemp->nxstate; i++){ 4103 stp = lemp->sorted[i]; 4104 ax[i*2].stp = stp; 4105 ax[i*2].isTkn = 1; 4106 ax[i*2].nAction = stp->nTknAct; 4107 ax[i*2+1].stp = stp; 4108 ax[i*2+1].isTkn = 0; 4109 ax[i*2+1].nAction = stp->nNtAct; 4110 } 4111 mxTknOfst = mnTknOfst = 0; 4112 mxNtOfst = mnNtOfst = 0; 4113 /* In an effort to minimize the action table size, use the heuristic 4114 ** of placing the largest action sets first */ 4115 for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i; 4116 qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare); 4117 pActtab = acttab_alloc(); 4118 for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){ 4119 stp = ax[i].stp; 4120 if( ax[i].isTkn ){ 4121 for(ap=stp->ap; ap; ap=ap->next){ 4122 int action; 4123 if( ap->sp->index>=lemp->nterminal ) continue; 4124 action = compute_action(lemp, ap); 4125 if( action<0 ) continue; 4126 acttab_action(pActtab, ap->sp->index, action); 4127 } 4128 stp->iTknOfst = acttab_insert(pActtab); 4129 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; 4130 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; 4131 }else{ 4132 for(ap=stp->ap; ap; ap=ap->next){ 4133 int action; 4134 if( ap->sp->index<lemp->nterminal ) continue; 4135 if( ap->sp->index==lemp->nsymbol ) continue; 4136 action = compute_action(lemp, ap); 4137 if( action<0 ) continue; 4138 acttab_action(pActtab, ap->sp->index, action); 4139 } 4140 stp->iNtOfst = acttab_insert(pActtab); 4141 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; 4142 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; 4143 } 4144 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */ 4145 { int jj, nn; 4146 for(jj=nn=0; jj<pActtab->nAction; jj++){ 4147 if( pActtab->aAction[jj].action<0 ) nn++; 4148 } 4149 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n", 4150 i, stp->statenum, ax[i].isTkn ? "Token" : "Var ", 4151 ax[i].nAction, pActtab->nAction, nn); 4152 } 4153 #endif 4154 } 4155 free(ax); 4156 4157 /* Mark rules that are actually used for reduce actions after all 4158 ** optimizations have been applied 4159 */ 4160 for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE; 4161 for(i=0; i<lemp->nxstate; i++){ 4162 struct action *ap; 4163 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ 4164 if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){ 4165 ap->x.rp->doesReduce = i; 4166 } 4167 } 4168 } 4169 4170 /* Finish rendering the constants now that the action table has 4171 ** been computed */ 4172 fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++; 4173 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; 4174 fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++; 4175 fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",lemp->nstate); lineno++; 4176 i = lemp->nstate + lemp->nrule; 4177 fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++; 4178 fprintf(out,"#define YY_MIN_REDUCE %d\n", i); lineno++; 4179 i = lemp->nstate + lemp->nrule*2; 4180 fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++; 4181 fprintf(out,"#define YY_ERROR_ACTION %d\n", i); lineno++; 4182 fprintf(out,"#define YY_ACCEPT_ACTION %d\n", i+1); lineno++; 4183 fprintf(out,"#define YY_NO_ACTION %d\n", i+2); lineno++; 4184 tplt_xfer(lemp->name,in,out,&lineno); 4185 4186 /* Now output the action table and its associates: 4187 ** 4188 ** yy_action[] A single table containing all actions. 4189 ** yy_lookahead[] A table containing the lookahead for each entry in 4190 ** yy_action. Used to detect hash collisions. 4191 ** yy_shift_ofst[] For each state, the offset into yy_action for 4192 ** shifting terminals. 4193 ** yy_reduce_ofst[] For each state, the offset into yy_action for 4194 ** shifting non-terminals after a reduce. 4195 ** yy_default[] Default action for each state. 4196 */ 4197 4198 /* Output the yy_action table */ 4199 lemp->nactiontab = n = acttab_size(pActtab); 4200 lemp->tablesize += n*szActionType; 4201 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; 4202 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; 4203 for(i=j=0; i<n; i++){ 4204 int action = acttab_yyaction(pActtab, i); 4205 if( action<0 ) action = lemp->nstate + lemp->nrule + 2; 4206 if( j==0 ) fprintf(out," /* %5d */ ", i); 4207 fprintf(out, " %4d,", action); 4208 if( j==9 || i==n-1 ){ 4209 fprintf(out, "\n"); lineno++; 4210 j = 0; 4211 }else{ 4212 j++; 4213 } 4214 } 4215 fprintf(out, "};\n"); lineno++; 4216 4217 /* Output the yy_lookahead table */ 4218 lemp->tablesize += n*szCodeType; 4219 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; 4220 for(i=j=0; i<n; i++){ 4221 int la = acttab_yylookahead(pActtab, i); 4222 if( la<0 ) la = lemp->nsymbol; 4223 if( j==0 ) fprintf(out," /* %5d */ ", i); 4224 fprintf(out, " %4d,", la); 4225 if( j==9 || i==n-1 ){ 4226 fprintf(out, "\n"); lineno++; 4227 j = 0; 4228 }else{ 4229 j++; 4230 } 4231 } 4232 fprintf(out, "};\n"); lineno++; 4233 4234 /* Output the yy_shift_ofst[] table */ 4235 n = lemp->nxstate; 4236 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; 4237 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++; 4238 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; 4239 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; 4240 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; 4241 fprintf(out, "static const %s yy_shift_ofst[] = {\n", 4242 minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz)); 4243 lineno++; 4244 lemp->tablesize += n*sz; 4245 for(i=j=0; i<n; i++){ 4246 int ofst; 4247 stp = lemp->sorted[i]; 4248 ofst = stp->iTknOfst; 4249 if( ofst==NO_OFFSET ) ofst = lemp->nactiontab; 4250 if( j==0 ) fprintf(out," /* %5d */ ", i); 4251 fprintf(out, " %4d,", ofst); 4252 if( j==9 || i==n-1 ){ 4253 fprintf(out, "\n"); lineno++; 4254 j = 0; 4255 }else{ 4256 j++; 4257 } 4258 } 4259 fprintf(out, "};\n"); lineno++; 4260 4261 /* Output the yy_reduce_ofst[] table */ 4262 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; 4263 n = lemp->nxstate; 4264 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; 4265 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; 4266 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; 4267 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; 4268 fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 4269 minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++; 4270 lemp->tablesize += n*sz; 4271 for(i=j=0; i<n; i++){ 4272 int ofst; 4273 stp = lemp->sorted[i]; 4274 ofst = stp->iNtOfst; 4275 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; 4276 if( j==0 ) fprintf(out," /* %5d */ ", i); 4277 fprintf(out, " %4d,", ofst); 4278 if( j==9 || i==n-1 ){ 4279 fprintf(out, "\n"); lineno++; 4280 j = 0; 4281 }else{ 4282 j++; 4283 } 4284 } 4285 fprintf(out, "};\n"); lineno++; 4286 4287 /* Output the default action table */ 4288 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; 4289 n = lemp->nxstate; 4290 lemp->tablesize += n*szActionType; 4291 for(i=j=0; i<n; i++){ 4292 stp = lemp->sorted[i]; 4293 if( j==0 ) fprintf(out," /* %5d */ ", i); 4294 fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule); 4295 if( j==9 || i==n-1 ){ 4296 fprintf(out, "\n"); lineno++; 4297 j = 0; 4298 }else{ 4299 j++; 4300 } 4301 } 4302 fprintf(out, "};\n"); lineno++; 4303 tplt_xfer(lemp->name,in,out,&lineno); 4304 4305 /* Generate the table of fallback tokens. 4306 */ 4307 if( lemp->has_fallback ){ 4308 int mx = lemp->nterminal - 1; 4309 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } 4310 lemp->tablesize += (mx+1)*szCodeType; 4311 for(i=0; i<=mx; i++){ 4312 struct symbol *p = lemp->symbols[i]; 4313 if( p->fallback==0 ){ 4314 fprintf(out, " 0, /* %10s => nothing */\n", p->name); 4315 }else{ 4316 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, 4317 p->name, p->fallback->name); 4318 } 4319 lineno++; 4320 } 4321 } 4322 tplt_xfer(lemp->name, in, out, &lineno); 4323 4324 /* Generate a table containing the symbolic name of every symbol 4325 */ 4326 for(i=0; i<lemp->nsymbol; i++){ 4327 lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); 4328 fprintf(out," %-15s",line); 4329 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } 4330 } 4331 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } 4332 tplt_xfer(lemp->name,in,out,&lineno); 4333 4334 /* Generate a table containing a text string that describes every 4335 ** rule in the rule set of the grammar. This information is used 4336 ** when tracing REDUCE actions. 4337 */ 4338 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ 4339 assert( rp->iRule==i ); 4340 fprintf(out," /* %3d */ \"", i); 4341 writeRuleText(out, rp); 4342 fprintf(out,"\",\n"); lineno++; 4343 } 4344 tplt_xfer(lemp->name,in,out,&lineno); 4345 4346 /* Generate code which executes every time a symbol is popped from 4347 ** the stack while processing errors or while destroying the parser. 4348 ** (In other words, generate the %destructor actions) 4349 */ 4350 if( lemp->tokendest ){ 4351 int once = 1; 4352 for(i=0; i<lemp->nsymbol; i++){ 4353 struct symbol *sp = lemp->symbols[i]; 4354 if( sp==0 || sp->type!=TERMINAL ) continue; 4355 if( once ){ 4356 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; 4357 once = 0; 4358 } 4359 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; 4360 } 4361 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); 4362 if( i<lemp->nsymbol ){ 4363 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); 4364 fprintf(out," break;\n"); lineno++; 4365 } 4366 } 4367 if( lemp->vardest ){ 4368 struct symbol *dflt_sp = 0; 4369 int once = 1; 4370 for(i=0; i<lemp->nsymbol; i++){ 4371 struct symbol *sp = lemp->symbols[i]; 4372 if( sp==0 || sp->type==TERMINAL || 4373 sp->index<=0 || sp->destructor!=0 ) continue; 4374 if( once ){ 4375 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; 4376 once = 0; 4377 } 4378 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; 4379 dflt_sp = sp; 4380 } 4381 if( dflt_sp!=0 ){ 4382 emit_destructor_code(out,dflt_sp,lemp,&lineno); 4383 } 4384 fprintf(out," break;\n"); lineno++; 4385 } 4386 for(i=0; i<lemp->nsymbol; i++){ 4387 struct symbol *sp = lemp->symbols[i]; 4388 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; 4389 if( sp->destLineno<0 ) continue; /* Already emitted */ 4390 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; 4391 4392 /* Combine duplicate destructors into a single case */ 4393 for(j=i+1; j<lemp->nsymbol; j++){ 4394 struct symbol *sp2 = lemp->symbols[j]; 4395 if( sp2 && sp2->type!=TERMINAL && sp2->destructor 4396 && sp2->dtnum==sp->dtnum 4397 && strcmp(sp->destructor,sp2->destructor)==0 ){ 4398 fprintf(out," case %d: /* %s */\n", 4399 sp2->index, sp2->name); lineno++; 4400 sp2->destLineno = -1; /* Avoid emitting this destructor again */ 4401 } 4402 } 4403 4404 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); 4405 fprintf(out," break;\n"); lineno++; 4406 } 4407 tplt_xfer(lemp->name,in,out,&lineno); 4408 4409 /* Generate code which executes whenever the parser stack overflows */ 4410 tplt_print(out,lemp,lemp->overflow,&lineno); 4411 tplt_xfer(lemp->name,in,out,&lineno); 4412 4413 /* Generate the table of rule information 4414 ** 4415 ** Note: This code depends on the fact that rules are number 4416 ** sequentually beginning with 0. 4417 */ 4418 for(rp=lemp->rule; rp; rp=rp->next){ 4419 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; 4420 } 4421 tplt_xfer(lemp->name,in,out,&lineno); 4422 4423 /* Generate code which execution during each REDUCE action */ 4424 i = 0; 4425 for(rp=lemp->rule; rp; rp=rp->next){ 4426 i += translate_code(lemp, rp); 4427 } 4428 if( i ){ 4429 fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++; 4430 } 4431 /* First output rules other than the default: rule */ 4432 for(rp=lemp->rule; rp; rp=rp->next){ 4433 struct rule *rp2; /* Other rules with the same action */ 4434 if( rp->codeEmitted ) continue; 4435 if( rp->noCode ){ 4436 /* No C code actions, so this will be part of the "default:" rule */ 4437 continue; 4438 } 4439 fprintf(out," case %d: /* ", rp->iRule); 4440 writeRuleText(out, rp); 4441 fprintf(out, " */\n"); lineno++; 4442 for(rp2=rp->next; rp2; rp2=rp2->next){ 4443 if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix 4444 && rp2->codeSuffix==rp->codeSuffix ){ 4445 fprintf(out," case %d: /* ", rp2->iRule); 4446 writeRuleText(out, rp2); 4447 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++; 4448 rp2->codeEmitted = 1; 4449 } 4450 } 4451 emit_code(out,rp,lemp,&lineno); 4452 fprintf(out," break;\n"); lineno++; 4453 rp->codeEmitted = 1; 4454 } 4455 /* Finally, output the default: rule. We choose as the default: all 4456 ** empty actions. */ 4457 fprintf(out," default:\n"); lineno++; 4458 for(rp=lemp->rule; rp; rp=rp->next){ 4459 if( rp->codeEmitted ) continue; 4460 assert( rp->noCode ); 4461 fprintf(out," /* (%d) ", rp->iRule); 4462 writeRuleText(out, rp); 4463 if( rp->doesReduce ){ 4464 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++; 4465 }else{ 4466 fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n", 4467 rp->iRule); lineno++; 4468 } 4469 } 4470 fprintf(out," break;\n"); lineno++; 4471 tplt_xfer(lemp->name,in,out,&lineno); 4472 4473 /* Generate code which executes if a parse fails */ 4474 tplt_print(out,lemp,lemp->failure,&lineno); 4475 tplt_xfer(lemp->name,in,out,&lineno); 4476 4477 /* Generate code which executes when a syntax error occurs */ 4478 tplt_print(out,lemp,lemp->error,&lineno); 4479 tplt_xfer(lemp->name,in,out,&lineno); 4480 4481 /* Generate code which executes when the parser accepts its input */ 4482 tplt_print(out,lemp,lemp->accept,&lineno); 4483 tplt_xfer(lemp->name,in,out,&lineno); 4484 4485 /* Append any addition code the user desires */ 4486 tplt_print(out,lemp,lemp->extracode,&lineno); 4487 4488 fclose(in); 4489 fclose(out); 4490 return; 4491 } 4492 4493 /* Generate a header file for the parser */ 4494 void ReportHeader(struct lemon *lemp) 4495 { 4496 FILE *out, *in; 4497 const char *prefix; 4498 char line[LINESIZE]; 4499 char pattern[LINESIZE]; 4500 int i; 4501 4502 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; 4503 else prefix = ""; 4504 in = file_open(lemp,".h","rb"); 4505 if( in ){ 4506 int nextChar; 4507 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ 4508 lemon_sprintf(pattern,"#define %s%-30s %3d\n", 4509 prefix,lemp->symbols[i]->name,i); 4510 if( strcmp(line,pattern) ) break; 4511 } 4512 nextChar = fgetc(in); 4513 fclose(in); 4514 if( i==lemp->nterminal && nextChar==EOF ){ 4515 /* No change in the file. Don't rewrite it. */ 4516 return; 4517 } 4518 } 4519 out = file_open(lemp,".h","wb"); 4520 if( out ){ 4521 for(i=1; i<lemp->nterminal; i++){ 4522 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); 4523 } 4524 fclose(out); 4525 } 4526 return; 4527 } 4528 4529 /* Reduce the size of the action tables, if possible, by making use 4530 ** of defaults. 4531 ** 4532 ** In this version, we take the most frequent REDUCE action and make 4533 ** it the default. Except, there is no default if the wildcard token 4534 ** is a possible look-ahead. 4535 */ 4536 void CompressTables(struct lemon *lemp) 4537 { 4538 struct state *stp; 4539 struct action *ap, *ap2, *nextap; 4540 struct rule *rp, *rp2, *rbest; 4541 int nbest, n; 4542 int i; 4543 int usesWildcard; 4544 4545 for(i=0; i<lemp->nstate; i++){ 4546 stp = lemp->sorted[i]; 4547 nbest = 0; 4548 rbest = 0; 4549 usesWildcard = 0; 4550 4551 for(ap=stp->ap; ap; ap=ap->next){ 4552 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ 4553 usesWildcard = 1; 4554 } 4555 if( ap->type!=REDUCE ) continue; 4556 rp = ap->x.rp; 4557 if( rp->lhsStart ) continue; 4558 if( rp==rbest ) continue; 4559 n = 1; 4560 for(ap2=ap->next; ap2; ap2=ap2->next){ 4561 if( ap2->type!=REDUCE ) continue; 4562 rp2 = ap2->x.rp; 4563 if( rp2==rbest ) continue; 4564 if( rp2==rp ) n++; 4565 } 4566 if( n>nbest ){ 4567 nbest = n; 4568 rbest = rp; 4569 } 4570 } 4571 4572 /* Do not make a default if the number of rules to default 4573 ** is not at least 1 or if the wildcard token is a possible 4574 ** lookahead. 4575 */ 4576 if( nbest<1 || usesWildcard ) continue; 4577 4578 4579 /* Combine matching REDUCE actions into a single default */ 4580 for(ap=stp->ap; ap; ap=ap->next){ 4581 if( ap->type==REDUCE && ap->x.rp==rbest ) break; 4582 } 4583 assert( ap ); 4584 ap->sp = Symbol_new("{default}"); 4585 for(ap=ap->next; ap; ap=ap->next){ 4586 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; 4587 } 4588 stp->ap = Action_sort(stp->ap); 4589 4590 for(ap=stp->ap; ap; ap=ap->next){ 4591 if( ap->type==SHIFT ) break; 4592 if( ap->type==REDUCE && ap->x.rp!=rbest ) break; 4593 } 4594 if( ap==0 ){ 4595 stp->autoReduce = 1; 4596 stp->pDfltReduce = rbest; 4597 } 4598 } 4599 4600 /* Make a second pass over all states and actions. Convert 4601 ** every action that is a SHIFT to an autoReduce state into 4602 ** a SHIFTREDUCE action. 4603 */ 4604 for(i=0; i<lemp->nstate; i++){ 4605 stp = lemp->sorted[i]; 4606 for(ap=stp->ap; ap; ap=ap->next){ 4607 struct state *pNextState; 4608 if( ap->type!=SHIFT ) continue; 4609 pNextState = ap->x.stp; 4610 if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){ 4611 ap->type = SHIFTREDUCE; 4612 ap->x.rp = pNextState->pDfltReduce; 4613 } 4614 } 4615 } 4616 4617 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term 4618 ** (meaning that the SHIFTREDUCE will land back in the state where it 4619 ** started) and if there is no C-code associated with the reduce action, 4620 ** then we can go ahead and convert the action to be the same as the 4621 ** action for the RHS of the rule. 4622 */ 4623 for(i=0; i<lemp->nstate; i++){ 4624 stp = lemp->sorted[i]; 4625 for(ap=stp->ap; ap; ap=nextap){ 4626 nextap = ap->next; 4627 if( ap->type!=SHIFTREDUCE ) continue; 4628 rp = ap->x.rp; 4629 if( rp->noCode==0 ) continue; 4630 if( rp->nrhs!=1 ) continue; 4631 #if 1 4632 /* Only apply this optimization to non-terminals. It would be OK to 4633 ** apply it to terminal symbols too, but that makes the parser tables 4634 ** larger. */ 4635 if( ap->sp->index<lemp->nterminal ) continue; 4636 #endif 4637 /* If we reach this point, it means the optimization can be applied */ 4638 nextap = ap; 4639 for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){} 4640 assert( ap2!=0 ); 4641 ap->spOpt = ap2->sp; 4642 ap->type = ap2->type; 4643 ap->x = ap2->x; 4644 } 4645 } 4646 } 4647 4648 4649 /* 4650 ** Compare two states for sorting purposes. The smaller state is the 4651 ** one with the most non-terminal actions. If they have the same number 4652 ** of non-terminal actions, then the smaller is the one with the most 4653 ** token actions. 4654 */ 4655 static int stateResortCompare(const void *a, const void *b){ 4656 const struct state *pA = *(const struct state**)a; 4657 const struct state *pB = *(const struct state**)b; 4658 int n; 4659 4660 n = pB->nNtAct - pA->nNtAct; 4661 if( n==0 ){ 4662 n = pB->nTknAct - pA->nTknAct; 4663 if( n==0 ){ 4664 n = pB->statenum - pA->statenum; 4665 } 4666 } 4667 assert( n!=0 ); 4668 return n; 4669 } 4670 4671 4672 /* 4673 ** Renumber and resort states so that states with fewer choices 4674 ** occur at the end. Except, keep state 0 as the first state. 4675 */ 4676 void ResortStates(struct lemon *lemp) 4677 { 4678 int i; 4679 struct state *stp; 4680 struct action *ap; 4681 4682 for(i=0; i<lemp->nstate; i++){ 4683 stp = lemp->sorted[i]; 4684 stp->nTknAct = stp->nNtAct = 0; 4685 stp->iDfltReduce = lemp->nrule; /* Init dflt action to "syntax error" */ 4686 stp->iTknOfst = NO_OFFSET; 4687 stp->iNtOfst = NO_OFFSET; 4688 for(ap=stp->ap; ap; ap=ap->next){ 4689 int iAction = compute_action(lemp,ap); 4690 if( iAction>=0 ){ 4691 if( ap->sp->index<lemp->nterminal ){ 4692 stp->nTknAct++; 4693 }else if( ap->sp->index<lemp->nsymbol ){ 4694 stp->nNtAct++; 4695 }else{ 4696 assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp ); 4697 stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule; 4698 } 4699 } 4700 } 4701 } 4702 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), 4703 stateResortCompare); 4704 for(i=0; i<lemp->nstate; i++){ 4705 lemp->sorted[i]->statenum = i; 4706 } 4707 lemp->nxstate = lemp->nstate; 4708 while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){ 4709 lemp->nxstate--; 4710 } 4711 } 4712 4713 4714 /***************** From the file "set.c" ************************************/ 4715 /* 4716 ** Set manipulation routines for the LEMON parser generator. 4717 */ 4718 4719 static int size = 0; 4720 4721 /* Set the set size */ 4722 void SetSize(int n) 4723 { 4724 size = n+1; 4725 } 4726 4727 /* Allocate a new set */ 4728 char *SetNew(){ 4729 char *s; 4730 s = (char*)calloc( size, 1); 4731 if( s==0 ){ 4732 extern void memory_error(); 4733 memory_error(); 4734 } 4735 return s; 4736 } 4737 4738 /* Deallocate a set */ 4739 void SetFree(char *s) 4740 { 4741 free(s); 4742 } 4743 4744 /* Add a new element to the set. Return TRUE if the element was added 4745 ** and FALSE if it was already there. */ 4746 int SetAdd(char *s, int e) 4747 { 4748 int rv; 4749 assert( e>=0 && e<size ); 4750 rv = s[e]; 4751 s[e] = 1; 4752 return !rv; 4753 } 4754 4755 /* Add every element of s2 to s1. Return TRUE if s1 changes. */ 4756 int SetUnion(char *s1, char *s2) 4757 { 4758 int i, progress; 4759 progress = 0; 4760 for(i=0; i<size; i++){ 4761 if( s2[i]==0 ) continue; 4762 if( s1[i]==0 ){ 4763 progress = 1; 4764 s1[i] = 1; 4765 } 4766 } 4767 return progress; 4768 } 4769 /********************** From the file "table.c" ****************************/ 4770 /* 4771 ** All code in this file has been automatically generated 4772 ** from a specification in the file 4773 ** "table.q" 4774 ** by the associative array code building program "aagen". 4775 ** Do not edit this file! Instead, edit the specification 4776 ** file, then rerun aagen. 4777 */ 4778 /* 4779 ** Code for processing tables in the LEMON parser generator. 4780 */ 4781 4782 PRIVATE unsigned strhash(const char *x) 4783 { 4784 unsigned h = 0; 4785 while( *x ) h = h*13 + *(x++); 4786 return h; 4787 } 4788 4789 /* Works like strdup, sort of. Save a string in malloced memory, but 4790 ** keep strings in a table so that the same string is not in more 4791 ** than one place. 4792 */ 4793 const char *Strsafe(const char *y) 4794 { 4795 const char *z; 4796 char *cpy; 4797 4798 if( y==0 ) return 0; 4799 z = Strsafe_find(y); 4800 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ 4801 lemon_strcpy(cpy,y); 4802 z = cpy; 4803 Strsafe_insert(z); 4804 } 4805 MemoryCheck(z); 4806 return z; 4807 } 4808 4809 /* There is one instance of the following structure for each 4810 ** associative array of type "x1". 4811 */ 4812 struct s_x1 { 4813 int size; /* The number of available slots. */ 4814 /* Must be a power of 2 greater than or */ 4815 /* equal to 1 */ 4816 int count; /* Number of currently slots filled */ 4817 struct s_x1node *tbl; /* The data stored here */ 4818 struct s_x1node **ht; /* Hash table for lookups */ 4819 }; 4820 4821 /* There is one instance of this structure for every data element 4822 ** in an associative array of type "x1". 4823 */ 4824 typedef struct s_x1node { 4825 const char *data; /* The data */ 4826 struct s_x1node *next; /* Next entry with the same hash */ 4827 struct s_x1node **from; /* Previous link */ 4828 } x1node; 4829 4830 /* There is only one instance of the array, which is the following */ 4831 static struct s_x1 *x1a; 4832 4833 /* Allocate a new associative array */ 4834 void Strsafe_init(){ 4835 if( x1a ) return; 4836 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); 4837 if( x1a ){ 4838 x1a->size = 1024; 4839 x1a->count = 0; 4840 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); 4841 if( x1a->tbl==0 ){ 4842 free(x1a); 4843 x1a = 0; 4844 }else{ 4845 int i; 4846 x1a->ht = (x1node**)&(x1a->tbl[1024]); 4847 for(i=0; i<1024; i++) x1a->ht[i] = 0; 4848 } 4849 } 4850 } 4851 /* Insert a new record into the array. Return TRUE if successful. 4852 ** Prior data with the same key is NOT overwritten */ 4853 int Strsafe_insert(const char *data) 4854 { 4855 x1node *np; 4856 unsigned h; 4857 unsigned ph; 4858 4859 if( x1a==0 ) return 0; 4860 ph = strhash(data); 4861 h = ph & (x1a->size-1); 4862 np = x1a->ht[h]; 4863 while( np ){ 4864 if( strcmp(np->data,data)==0 ){ 4865 /* An existing entry with the same key is found. */ 4866 /* Fail because overwrite is not allows. */ 4867 return 0; 4868 } 4869 np = np->next; 4870 } 4871 if( x1a->count>=x1a->size ){ 4872 /* Need to make the hash table bigger */ 4873 int i,arrSize; 4874 struct s_x1 array; 4875 array.size = arrSize = x1a->size*2; 4876 array.count = x1a->count; 4877 array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*)); 4878 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 4879 array.ht = (x1node**)&(array.tbl[arrSize]); 4880 for(i=0; i<arrSize; i++) array.ht[i] = 0; 4881 for(i=0; i<x1a->count; i++){ 4882 x1node *oldnp, *newnp; 4883 oldnp = &(x1a->tbl[i]); 4884 h = strhash(oldnp->data) & (arrSize-1); 4885 newnp = &(array.tbl[i]); 4886 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 4887 newnp->next = array.ht[h]; 4888 newnp->data = oldnp->data; 4889 newnp->from = &(array.ht[h]); 4890 array.ht[h] = newnp; 4891 } 4892 free(x1a->tbl); 4893 *x1a = array; 4894 } 4895 /* Insert the new data */ 4896 h = ph & (x1a->size-1); 4897 np = &(x1a->tbl[x1a->count++]); 4898 np->data = data; 4899 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); 4900 np->next = x1a->ht[h]; 4901 x1a->ht[h] = np; 4902 np->from = &(x1a->ht[h]); 4903 return 1; 4904 } 4905 4906 /* Return a pointer to data assigned to the given key. Return NULL 4907 ** if no such key. */ 4908 const char *Strsafe_find(const char *key) 4909 { 4910 unsigned h; 4911 x1node *np; 4912 4913 if( x1a==0 ) return 0; 4914 h = strhash(key) & (x1a->size-1); 4915 np = x1a->ht[h]; 4916 while( np ){ 4917 if( strcmp(np->data,key)==0 ) break; 4918 np = np->next; 4919 } 4920 return np ? np->data : 0; 4921 } 4922 4923 /* Return a pointer to the (terminal or nonterminal) symbol "x". 4924 ** Create a new symbol if this is the first time "x" has been seen. 4925 */ 4926 struct symbol *Symbol_new(const char *x) 4927 { 4928 struct symbol *sp; 4929 4930 sp = Symbol_find(x); 4931 if( sp==0 ){ 4932 sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); 4933 MemoryCheck(sp); 4934 sp->name = Strsafe(x); 4935 sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL; 4936 sp->rule = 0; 4937 sp->fallback = 0; 4938 sp->prec = -1; 4939 sp->assoc = UNK; 4940 sp->firstset = 0; 4941 sp->lambda = LEMON_FALSE; 4942 sp->destructor = 0; 4943 sp->destLineno = 0; 4944 sp->datatype = 0; 4945 sp->useCnt = 0; 4946 Symbol_insert(sp,sp->name); 4947 } 4948 sp->useCnt++; 4949 return sp; 4950 } 4951 4952 /* Compare two symbols for sorting purposes. Return negative, 4953 ** zero, or positive if a is less then, equal to, or greater 4954 ** than b. 4955 ** 4956 ** Symbols that begin with upper case letters (terminals or tokens) 4957 ** must sort before symbols that begin with lower case letters 4958 ** (non-terminals). And MULTITERMINAL symbols (created using the 4959 ** %token_class directive) must sort at the very end. Other than 4960 ** that, the order does not matter. 4961 ** 4962 ** We find experimentally that leaving the symbols in their original 4963 ** order (the order they appeared in the grammar file) gives the 4964 ** smallest parser tables in SQLite. 4965 */ 4966 int Symbolcmpp(const void *_a, const void *_b) 4967 { 4968 const struct symbol *a = *(const struct symbol **) _a; 4969 const struct symbol *b = *(const struct symbol **) _b; 4970 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; 4971 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; 4972 return i1==i2 ? a->index - b->index : i1 - i2; 4973 } 4974 4975 /* There is one instance of the following structure for each 4976 ** associative array of type "x2". 4977 */ 4978 struct s_x2 { 4979 int size; /* The number of available slots. */ 4980 /* Must be a power of 2 greater than or */ 4981 /* equal to 1 */ 4982 int count; /* Number of currently slots filled */ 4983 struct s_x2node *tbl; /* The data stored here */ 4984 struct s_x2node **ht; /* Hash table for lookups */ 4985 }; 4986 4987 /* There is one instance of this structure for every data element 4988 ** in an associative array of type "x2". 4989 */ 4990 typedef struct s_x2node { 4991 struct symbol *data; /* The data */ 4992 const char *key; /* The key */ 4993 struct s_x2node *next; /* Next entry with the same hash */ 4994 struct s_x2node **from; /* Previous link */ 4995 } x2node; 4996 4997 /* There is only one instance of the array, which is the following */ 4998 static struct s_x2 *x2a; 4999 5000 /* Allocate a new associative array */ 5001 void Symbol_init(){ 5002 if( x2a ) return; 5003 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); 5004 if( x2a ){ 5005 x2a->size = 128; 5006 x2a->count = 0; 5007 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); 5008 if( x2a->tbl==0 ){ 5009 free(x2a); 5010 x2a = 0; 5011 }else{ 5012 int i; 5013 x2a->ht = (x2node**)&(x2a->tbl[128]); 5014 for(i=0; i<128; i++) x2a->ht[i] = 0; 5015 } 5016 } 5017 } 5018 /* Insert a new record into the array. Return TRUE if successful. 5019 ** Prior data with the same key is NOT overwritten */ 5020 int Symbol_insert(struct symbol *data, const char *key) 5021 { 5022 x2node *np; 5023 unsigned h; 5024 unsigned ph; 5025 5026 if( x2a==0 ) return 0; 5027 ph = strhash(key); 5028 h = ph & (x2a->size-1); 5029 np = x2a->ht[h]; 5030 while( np ){ 5031 if( strcmp(np->key,key)==0 ){ 5032 /* An existing entry with the same key is found. */ 5033 /* Fail because overwrite is not allows. */ 5034 return 0; 5035 } 5036 np = np->next; 5037 } 5038 if( x2a->count>=x2a->size ){ 5039 /* Need to make the hash table bigger */ 5040 int i,arrSize; 5041 struct s_x2 array; 5042 array.size = arrSize = x2a->size*2; 5043 array.count = x2a->count; 5044 array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*)); 5045 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 5046 array.ht = (x2node**)&(array.tbl[arrSize]); 5047 for(i=0; i<arrSize; i++) array.ht[i] = 0; 5048 for(i=0; i<x2a->count; i++){ 5049 x2node *oldnp, *newnp; 5050 oldnp = &(x2a->tbl[i]); 5051 h = strhash(oldnp->key) & (arrSize-1); 5052 newnp = &(array.tbl[i]); 5053 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 5054 newnp->next = array.ht[h]; 5055 newnp->key = oldnp->key; 5056 newnp->data = oldnp->data; 5057 newnp->from = &(array.ht[h]); 5058 array.ht[h] = newnp; 5059 } 5060 free(x2a->tbl); 5061 *x2a = array; 5062 } 5063 /* Insert the new data */ 5064 h = ph & (x2a->size-1); 5065 np = &(x2a->tbl[x2a->count++]); 5066 np->key = key; 5067 np->data = data; 5068 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); 5069 np->next = x2a->ht[h]; 5070 x2a->ht[h] = np; 5071 np->from = &(x2a->ht[h]); 5072 return 1; 5073 } 5074 5075 /* Return a pointer to data assigned to the given key. Return NULL 5076 ** if no such key. */ 5077 struct symbol *Symbol_find(const char *key) 5078 { 5079 unsigned h; 5080 x2node *np; 5081 5082 if( x2a==0 ) return 0; 5083 h = strhash(key) & (x2a->size-1); 5084 np = x2a->ht[h]; 5085 while( np ){ 5086 if( strcmp(np->key,key)==0 ) break; 5087 np = np->next; 5088 } 5089 return np ? np->data : 0; 5090 } 5091 5092 /* Return the n-th data. Return NULL if n is out of range. */ 5093 struct symbol *Symbol_Nth(int n) 5094 { 5095 struct symbol *data; 5096 if( x2a && n>0 && n<=x2a->count ){ 5097 data = x2a->tbl[n-1].data; 5098 }else{ 5099 data = 0; 5100 } 5101 return data; 5102 } 5103 5104 /* Return the size of the array */ 5105 int Symbol_count() 5106 { 5107 return x2a ? x2a->count : 0; 5108 } 5109 5110 /* Return an array of pointers to all data in the table. 5111 ** The array is obtained from malloc. Return NULL if memory allocation 5112 ** problems, or if the array is empty. */ 5113 struct symbol **Symbol_arrayof() 5114 { 5115 struct symbol **array; 5116 int i,arrSize; 5117 if( x2a==0 ) return 0; 5118 arrSize = x2a->count; 5119 array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *)); 5120 if( array ){ 5121 for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data; 5122 } 5123 return array; 5124 } 5125 5126 /* Compare two configurations */ 5127 int Configcmp(const char *_a,const char *_b) 5128 { 5129 const struct config *a = (struct config *) _a; 5130 const struct config *b = (struct config *) _b; 5131 int x; 5132 x = a->rp->index - b->rp->index; 5133 if( x==0 ) x = a->dot - b->dot; 5134 return x; 5135 } 5136 5137 /* Compare two states */ 5138 PRIVATE int statecmp(struct config *a, struct config *b) 5139 { 5140 int rc; 5141 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ 5142 rc = a->rp->index - b->rp->index; 5143 if( rc==0 ) rc = a->dot - b->dot; 5144 } 5145 if( rc==0 ){ 5146 if( a ) rc = 1; 5147 if( b ) rc = -1; 5148 } 5149 return rc; 5150 } 5151 5152 /* Hash a state */ 5153 PRIVATE unsigned statehash(struct config *a) 5154 { 5155 unsigned h=0; 5156 while( a ){ 5157 h = h*571 + a->rp->index*37 + a->dot; 5158 a = a->bp; 5159 } 5160 return h; 5161 } 5162 5163 /* Allocate a new state structure */ 5164 struct state *State_new() 5165 { 5166 struct state *newstate; 5167 newstate = (struct state *)calloc(1, sizeof(struct state) ); 5168 MemoryCheck(newstate); 5169 return newstate; 5170 } 5171 5172 /* There is one instance of the following structure for each 5173 ** associative array of type "x3". 5174 */ 5175 struct s_x3 { 5176 int size; /* The number of available slots. */ 5177 /* Must be a power of 2 greater than or */ 5178 /* equal to 1 */ 5179 int count; /* Number of currently slots filled */ 5180 struct s_x3node *tbl; /* The data stored here */ 5181 struct s_x3node **ht; /* Hash table for lookups */ 5182 }; 5183 5184 /* There is one instance of this structure for every data element 5185 ** in an associative array of type "x3". 5186 */ 5187 typedef struct s_x3node { 5188 struct state *data; /* The data */ 5189 struct config *key; /* The key */ 5190 struct s_x3node *next; /* Next entry with the same hash */ 5191 struct s_x3node **from; /* Previous link */ 5192 } x3node; 5193 5194 /* There is only one instance of the array, which is the following */ 5195 static struct s_x3 *x3a; 5196 5197 /* Allocate a new associative array */ 5198 void State_init(){ 5199 if( x3a ) return; 5200 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); 5201 if( x3a ){ 5202 x3a->size = 128; 5203 x3a->count = 0; 5204 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); 5205 if( x3a->tbl==0 ){ 5206 free(x3a); 5207 x3a = 0; 5208 }else{ 5209 int i; 5210 x3a->ht = (x3node**)&(x3a->tbl[128]); 5211 for(i=0; i<128; i++) x3a->ht[i] = 0; 5212 } 5213 } 5214 } 5215 /* Insert a new record into the array. Return TRUE if successful. 5216 ** Prior data with the same key is NOT overwritten */ 5217 int State_insert(struct state *data, struct config *key) 5218 { 5219 x3node *np; 5220 unsigned h; 5221 unsigned ph; 5222 5223 if( x3a==0 ) return 0; 5224 ph = statehash(key); 5225 h = ph & (x3a->size-1); 5226 np = x3a->ht[h]; 5227 while( np ){ 5228 if( statecmp(np->key,key)==0 ){ 5229 /* An existing entry with the same key is found. */ 5230 /* Fail because overwrite is not allows. */ 5231 return 0; 5232 } 5233 np = np->next; 5234 } 5235 if( x3a->count>=x3a->size ){ 5236 /* Need to make the hash table bigger */ 5237 int i,arrSize; 5238 struct s_x3 array; 5239 array.size = arrSize = x3a->size*2; 5240 array.count = x3a->count; 5241 array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*)); 5242 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 5243 array.ht = (x3node**)&(array.tbl[arrSize]); 5244 for(i=0; i<arrSize; i++) array.ht[i] = 0; 5245 for(i=0; i<x3a->count; i++){ 5246 x3node *oldnp, *newnp; 5247 oldnp = &(x3a->tbl[i]); 5248 h = statehash(oldnp->key) & (arrSize-1); 5249 newnp = &(array.tbl[i]); 5250 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 5251 newnp->next = array.ht[h]; 5252 newnp->key = oldnp->key; 5253 newnp->data = oldnp->data; 5254 newnp->from = &(array.ht[h]); 5255 array.ht[h] = newnp; 5256 } 5257 free(x3a->tbl); 5258 *x3a = array; 5259 } 5260 /* Insert the new data */ 5261 h = ph & (x3a->size-1); 5262 np = &(x3a->tbl[x3a->count++]); 5263 np->key = key; 5264 np->data = data; 5265 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); 5266 np->next = x3a->ht[h]; 5267 x3a->ht[h] = np; 5268 np->from = &(x3a->ht[h]); 5269 return 1; 5270 } 5271 5272 /* Return a pointer to data assigned to the given key. Return NULL 5273 ** if no such key. */ 5274 struct state *State_find(struct config *key) 5275 { 5276 unsigned h; 5277 x3node *np; 5278 5279 if( x3a==0 ) return 0; 5280 h = statehash(key) & (x3a->size-1); 5281 np = x3a->ht[h]; 5282 while( np ){ 5283 if( statecmp(np->key,key)==0 ) break; 5284 np = np->next; 5285 } 5286 return np ? np->data : 0; 5287 } 5288 5289 /* Return an array of pointers to all data in the table. 5290 ** The array is obtained from malloc. Return NULL if memory allocation 5291 ** problems, or if the array is empty. */ 5292 struct state **State_arrayof() 5293 { 5294 struct state **array; 5295 int i,arrSize; 5296 if( x3a==0 ) return 0; 5297 arrSize = x3a->count; 5298 array = (struct state **)calloc(arrSize, sizeof(struct state *)); 5299 if( array ){ 5300 for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data; 5301 } 5302 return array; 5303 } 5304 5305 /* Hash a configuration */ 5306 PRIVATE unsigned confighash(struct config *a) 5307 { 5308 unsigned h=0; 5309 h = h*571 + a->rp->index*37 + a->dot; 5310 return h; 5311 } 5312 5313 /* There is one instance of the following structure for each 5314 ** associative array of type "x4". 5315 */ 5316 struct s_x4 { 5317 int size; /* The number of available slots. */ 5318 /* Must be a power of 2 greater than or */ 5319 /* equal to 1 */ 5320 int count; /* Number of currently slots filled */ 5321 struct s_x4node *tbl; /* The data stored here */ 5322 struct s_x4node **ht; /* Hash table for lookups */ 5323 }; 5324 5325 /* There is one instance of this structure for every data element 5326 ** in an associative array of type "x4". 5327 */ 5328 typedef struct s_x4node { 5329 struct config *data; /* The data */ 5330 struct s_x4node *next; /* Next entry with the same hash */ 5331 struct s_x4node **from; /* Previous link */ 5332 } x4node; 5333 5334 /* There is only one instance of the array, which is the following */ 5335 static struct s_x4 *x4a; 5336 5337 /* Allocate a new associative array */ 5338 void Configtable_init(){ 5339 if( x4a ) return; 5340 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); 5341 if( x4a ){ 5342 x4a->size = 64; 5343 x4a->count = 0; 5344 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); 5345 if( x4a->tbl==0 ){ 5346 free(x4a); 5347 x4a = 0; 5348 }else{ 5349 int i; 5350 x4a->ht = (x4node**)&(x4a->tbl[64]); 5351 for(i=0; i<64; i++) x4a->ht[i] = 0; 5352 } 5353 } 5354 } 5355 /* Insert a new record into the array. Return TRUE if successful. 5356 ** Prior data with the same key is NOT overwritten */ 5357 int Configtable_insert(struct config *data) 5358 { 5359 x4node *np; 5360 unsigned h; 5361 unsigned ph; 5362 5363 if( x4a==0 ) return 0; 5364 ph = confighash(data); 5365 h = ph & (x4a->size-1); 5366 np = x4a->ht[h]; 5367 while( np ){ 5368 if( Configcmp((const char *) np->data,(const char *) data)==0 ){ 5369 /* An existing entry with the same key is found. */ 5370 /* Fail because overwrite is not allows. */ 5371 return 0; 5372 } 5373 np = np->next; 5374 } 5375 if( x4a->count>=x4a->size ){ 5376 /* Need to make the hash table bigger */ 5377 int i,arrSize; 5378 struct s_x4 array; 5379 array.size = arrSize = x4a->size*2; 5380 array.count = x4a->count; 5381 array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*)); 5382 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 5383 array.ht = (x4node**)&(array.tbl[arrSize]); 5384 for(i=0; i<arrSize; i++) array.ht[i] = 0; 5385 for(i=0; i<x4a->count; i++){ 5386 x4node *oldnp, *newnp; 5387 oldnp = &(x4a->tbl[i]); 5388 h = confighash(oldnp->data) & (arrSize-1); 5389 newnp = &(array.tbl[i]); 5390 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 5391 newnp->next = array.ht[h]; 5392 newnp->data = oldnp->data; 5393 newnp->from = &(array.ht[h]); 5394 array.ht[h] = newnp; 5395 } 5396 free(x4a->tbl); 5397 *x4a = array; 5398 } 5399 /* Insert the new data */ 5400 h = ph & (x4a->size-1); 5401 np = &(x4a->tbl[x4a->count++]); 5402 np->data = data; 5403 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); 5404 np->next = x4a->ht[h]; 5405 x4a->ht[h] = np; 5406 np->from = &(x4a->ht[h]); 5407 return 1; 5408 } 5409 5410 /* Return a pointer to data assigned to the given key. Return NULL 5411 ** if no such key. */ 5412 struct config *Configtable_find(struct config *key) 5413 { 5414 int h; 5415 x4node *np; 5416 5417 if( x4a==0 ) return 0; 5418 h = confighash(key) & (x4a->size-1); 5419 np = x4a->ht[h]; 5420 while( np ){ 5421 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; 5422 np = np->next; 5423 } 5424 return np ? np->data : 0; 5425 } 5426 5427 /* Remove all data from the table. Pass each data to the function "f" 5428 ** as it is removed. ("f" may be null to avoid this step.) */ 5429 void Configtable_clear(int(*f)(struct config *)) 5430 { 5431 int i; 5432 if( x4a==0 || x4a->count==0 ) return; 5433 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); 5434 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; 5435 x4a->count = 0; 5436 return; 5437 } 5438