1 /* 2 ** This file contains all sources (including headers) to the LEMON 3 ** LALR(1) parser generator. The sources have been combined into a 4 ** single file to make it easy to include LEMON in the source tree 5 ** and Makefile of another program. 6 ** 7 ** The author of this program disclaims copyright. 8 */ 9 #include <stdio.h> 10 #include <stdarg.h> 11 #include <string.h> 12 #include <ctype.h> 13 #include <stdlib.h> 14 #include <assert.h> 15 16 #define ISSPACE(X) isspace((unsigned char)(X)) 17 #define ISDIGIT(X) isdigit((unsigned char)(X)) 18 #define ISALNUM(X) isalnum((unsigned char)(X)) 19 #define ISALPHA(X) isalpha((unsigned char)(X)) 20 #define ISUPPER(X) isupper((unsigned char)(X)) 21 #define ISLOWER(X) islower((unsigned char)(X)) 22 23 24 #ifndef __WIN32__ 25 # if defined(_WIN32) || defined(WIN32) 26 # define __WIN32__ 27 # endif 28 #endif 29 30 #ifdef __WIN32__ 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 extern int access(const char *path, int mode); 35 #ifdef __cplusplus 36 } 37 #endif 38 #else 39 #include <unistd.h> 40 #endif 41 42 /* #define PRIVATE static */ 43 #define PRIVATE 44 45 #ifdef TEST 46 #define MAXRHS 5 /* Set low to exercise exception code */ 47 #else 48 #define MAXRHS 1000 49 #endif 50 51 extern void memory_error(); 52 static int showPrecedenceConflict = 0; 53 static char *msort(char*,char**,int(*)(const char*,const char*)); 54 55 /* 56 ** Compilers are getting increasingly pedantic about type conversions 57 ** as C evolves ever closer to Ada.... To work around the latest problems 58 ** we have to define the following variant of strlen(). 59 */ 60 #define lemonStrlen(X) ((int)strlen(X)) 61 62 /* 63 ** Compilers are starting to complain about the use of sprintf() and strcpy(), 64 ** saying they are unsafe. So we define our own versions of those routines too. 65 ** 66 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and 67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). 68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a 69 ** buffer, making sure the buffer is always zero-terminated. 70 ** 71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only 72 ** a few simply conversions: 73 ** 74 ** %d 75 ** %s 76 ** %.*s 77 ** 78 */ 79 static void lemon_addtext( 80 char *zBuf, /* The buffer to which text is added */ 81 int *pnUsed, /* Slots of the buffer used so far */ 82 const char *zIn, /* Text to add */ 83 int nIn, /* Bytes of text to add. -1 to use strlen() */ 84 int iWidth /* Field width. Negative to left justify */ 85 ){ 86 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} 87 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } 88 if( nIn==0 ) return; 89 memcpy(&zBuf[*pnUsed], zIn, nIn); 90 *pnUsed += nIn; 91 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } 92 zBuf[*pnUsed] = 0; 93 } 94 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ 95 int i, j, k, c; 96 int nUsed = 0; 97 const char *z; 98 char zTemp[50]; 99 str[0] = 0; 100 for(i=j=0; (c = zFormat[i])!=0; i++){ 101 if( c=='%' ){ 102 int iWidth = 0; 103 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); 104 c = zFormat[++i]; 105 if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){ 106 if( c=='-' ) i++; 107 while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; 108 if( c=='-' ) iWidth = -iWidth; 109 c = zFormat[i]; 110 } 111 if( c=='d' ){ 112 int v = va_arg(ap, int); 113 if( v<0 ){ 114 lemon_addtext(str, &nUsed, "-", 1, iWidth); 115 v = -v; 116 }else if( v==0 ){ 117 lemon_addtext(str, &nUsed, "0", 1, iWidth); 118 } 119 k = 0; 120 while( v>0 ){ 121 k++; 122 zTemp[sizeof(zTemp)-k] = (v%10) + '0'; 123 v /= 10; 124 } 125 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); 126 }else if( c=='s' ){ 127 z = va_arg(ap, const char*); 128 lemon_addtext(str, &nUsed, z, -1, iWidth); 129 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ 130 i += 2; 131 k = va_arg(ap, int); 132 z = va_arg(ap, const char*); 133 lemon_addtext(str, &nUsed, z, k, iWidth); 134 }else if( c=='%' ){ 135 lemon_addtext(str, &nUsed, "%", 1, 0); 136 }else{ 137 fprintf(stderr, "illegal format\n"); 138 exit(1); 139 } 140 j = i+1; 141 } 142 } 143 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); 144 return nUsed; 145 } 146 static int lemon_sprintf(char *str, const char *format, ...){ 147 va_list ap; 148 int rc; 149 va_start(ap, format); 150 rc = lemon_vsprintf(str, format, ap); 151 va_end(ap); 152 return rc; 153 } 154 static void lemon_strcpy(char *dest, const char *src){ 155 while( (*(dest++) = *(src++))!=0 ){} 156 } 157 static void lemon_strcat(char *dest, const char *src){ 158 while( *dest ) dest++; 159 lemon_strcpy(dest, src); 160 } 161 162 163 /* a few forward declarations... */ 164 struct rule; 165 struct lemon; 166 struct action; 167 168 static struct action *Action_new(void); 169 static struct action *Action_sort(struct action *); 170 171 /********** From the file "build.h" ************************************/ 172 void FindRulePrecedences(struct lemon*); 173 void FindFirstSets(struct lemon*); 174 void FindStates(struct lemon*); 175 void FindLinks(struct lemon*); 176 void FindFollowSets(struct lemon*); 177 void FindActions(struct lemon*); 178 179 /********* From the file "configlist.h" *********************************/ 180 void Configlist_init(void); 181 struct config *Configlist_add(struct rule *, int); 182 struct config *Configlist_addbasis(struct rule *, int); 183 void Configlist_closure(struct lemon *); 184 void Configlist_sort(void); 185 void Configlist_sortbasis(void); 186 struct config *Configlist_return(void); 187 struct config *Configlist_basis(void); 188 void Configlist_eat(struct config *); 189 void Configlist_reset(void); 190 191 /********* From the file "error.h" ***************************************/ 192 void ErrorMsg(const char *, int,const char *, ...); 193 194 /****** From the file "option.h" ******************************************/ 195 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, 196 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; 197 struct s_options { 198 enum option_type type; 199 const char *label; 200 char *arg; 201 const char *message; 202 }; 203 int OptInit(char**,struct s_options*,FILE*); 204 int OptNArgs(void); 205 char *OptArg(int); 206 void OptErr(int); 207 void OptPrint(void); 208 209 /******** From the file "parse.h" *****************************************/ 210 void Parse(struct lemon *lemp); 211 212 /********* From the file "plink.h" ***************************************/ 213 struct plink *Plink_new(void); 214 void Plink_add(struct plink **, struct config *); 215 void Plink_copy(struct plink **, struct plink *); 216 void Plink_delete(struct plink *); 217 218 /********** From the file "report.h" *************************************/ 219 void Reprint(struct lemon *); 220 void ReportOutput(struct lemon *); 221 void ReportTable(struct lemon *, int, int); 222 void ReportHeader(struct lemon *); 223 void CompressTables(struct lemon *); 224 void ResortStates(struct lemon *); 225 226 /********** From the file "set.h" ****************************************/ 227 void SetSize(int); /* All sets will be of size N */ 228 char *SetNew(void); /* A new set for element 0..N */ 229 void SetFree(char*); /* Deallocate a set */ 230 int SetAdd(char*,int); /* Add element to a set */ 231 int SetUnion(char *,char *); /* A <- A U B, thru element N */ 232 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ 233 234 /********** From the file "struct.h" *************************************/ 235 /* 236 ** Principal data structures for the LEMON parser generator. 237 */ 238 239 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; 240 241 /* Symbols (terminals and nonterminals) of the grammar are stored 242 ** in the following: */ 243 enum symbol_type { 244 TERMINAL, 245 NONTERMINAL, 246 MULTITERMINAL 247 }; 248 enum e_assoc { 249 LEFT, 250 RIGHT, 251 NONE, 252 UNK 253 }; 254 struct symbol { 255 const char *name; /* Name of the symbol */ 256 int index; /* Index number for this symbol */ 257 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ 258 struct rule *rule; /* Linked list of rules of this (if an NT) */ 259 struct symbol *fallback; /* fallback token in case this token doesn't parse */ 260 int prec; /* Precedence if defined (-1 otherwise) */ 261 enum e_assoc assoc; /* Associativity if precedence is defined */ 262 char *firstset; /* First-set for all rules of this symbol */ 263 Boolean lambda; /* True if NT and can generate an empty string */ 264 int useCnt; /* Number of times used */ 265 char *destructor; /* Code which executes whenever this symbol is 266 ** popped from the stack during error processing */ 267 int destLineno; /* Line number for start of destructor. Set to 268 ** -1 for duplicate destructors. */ 269 char *datatype; /* The data type of information held by this 270 ** object. Only used if type==NONTERMINAL */ 271 int dtnum; /* The data type number. In the parser, the value 272 ** stack is a union. The .yy%d element of this 273 ** union is the correct data type for this object */ 274 int bContent; /* True if this symbol ever carries content - if 275 ** it is ever more than just syntax */ 276 /* The following fields are used by MULTITERMINALs only */ 277 int nsubsym; /* Number of constituent symbols in the MULTI */ 278 struct symbol **subsym; /* Array of constituent symbols */ 279 }; 280 281 /* Each production rule in the grammar is stored in the following 282 ** structure. */ 283 struct rule { 284 struct symbol *lhs; /* Left-hand side of the rule */ 285 const char *lhsalias; /* Alias for the LHS (NULL if none) */ 286 int lhsStart; /* True if left-hand side is the start symbol */ 287 int ruleline; /* Line number for the rule */ 288 int nrhs; /* Number of RHS symbols */ 289 struct symbol **rhs; /* The RHS symbols */ 290 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ 291 int line; /* Line number at which code begins */ 292 const char *code; /* The code executed when this rule is reduced */ 293 const char *codePrefix; /* Setup code before code[] above */ 294 const char *codeSuffix; /* Breakdown code after code[] above */ 295 struct symbol *precsym; /* Precedence symbol for this rule */ 296 int index; /* An index number for this rule */ 297 int iRule; /* Rule number as used in the generated tables */ 298 Boolean noCode; /* True if this rule has no associated C code */ 299 Boolean codeEmitted; /* True if the code has been emitted already */ 300 Boolean canReduce; /* True if this rule is ever reduced */ 301 Boolean doesReduce; /* Reduce actions occur after optimization */ 302 Boolean neverReduce; /* Reduce is theoretically possible, but prevented 303 ** by actions or other outside implementation */ 304 struct rule *nextlhs; /* Next rule with the same LHS */ 305 struct rule *next; /* Next rule in the global list */ 306 }; 307 308 /* A configuration is a production rule of the grammar together with 309 ** a mark (dot) showing how much of that rule has been processed so far. 310 ** Configurations also contain a follow-set which is a list of terminal 311 ** symbols which are allowed to immediately follow the end of the rule. 312 ** Every configuration is recorded as an instance of the following: */ 313 enum cfgstatus { 314 COMPLETE, 315 INCOMPLETE 316 }; 317 struct config { 318 struct rule *rp; /* The rule upon which the configuration is based */ 319 int dot; /* The parse point */ 320 char *fws; /* Follow-set for this configuration only */ 321 struct plink *fplp; /* Follow-set forward propagation links */ 322 struct plink *bplp; /* Follow-set backwards propagation links */ 323 struct state *stp; /* Pointer to state which contains this */ 324 enum cfgstatus status; /* used during followset and shift computations */ 325 struct config *next; /* Next configuration in the state */ 326 struct config *bp; /* The next basis configuration */ 327 }; 328 329 enum e_action { 330 SHIFT, 331 ACCEPT, 332 REDUCE, 333 ERROR, 334 SSCONFLICT, /* A shift/shift conflict */ 335 SRCONFLICT, /* Was a reduce, but part of a conflict */ 336 RRCONFLICT, /* Was a reduce, but part of a conflict */ 337 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ 338 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ 339 NOT_USED, /* Deleted by compression */ 340 SHIFTREDUCE /* Shift first, then reduce */ 341 }; 342 343 /* Every shift or reduce operation is stored as one of the following */ 344 struct action { 345 struct symbol *sp; /* The look-ahead symbol */ 346 enum e_action type; 347 union { 348 struct state *stp; /* The new state, if a shift */ 349 struct rule *rp; /* The rule, if a reduce */ 350 } x; 351 struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */ 352 struct action *next; /* Next action for this state */ 353 struct action *collide; /* Next action with the same hash */ 354 }; 355 356 /* Each state of the generated parser's finite state machine 357 ** is encoded as an instance of the following structure. */ 358 struct state { 359 struct config *bp; /* The basis configurations for this state */ 360 struct config *cfp; /* All configurations in this set */ 361 int statenum; /* Sequential number for this state */ 362 struct action *ap; /* List of actions for this state */ 363 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ 364 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ 365 int iDfltReduce; /* Default action is to REDUCE by this rule */ 366 struct rule *pDfltReduce;/* The default REDUCE rule. */ 367 int autoReduce; /* True if this is an auto-reduce state */ 368 }; 369 #define NO_OFFSET (-2147483647) 370 371 /* A followset propagation link indicates that the contents of one 372 ** configuration followset should be propagated to another whenever 373 ** the first changes. */ 374 struct plink { 375 struct config *cfp; /* The configuration to which linked */ 376 struct plink *next; /* The next propagate link */ 377 }; 378 379 /* The state vector for the entire parser generator is recorded as 380 ** follows. (LEMON uses no global variables and makes little use of 381 ** static variables. Fields in the following structure can be thought 382 ** of as begin global variables in the program.) */ 383 struct lemon { 384 struct state **sorted; /* Table of states sorted by state number */ 385 struct rule *rule; /* List of all rules */ 386 struct rule *startRule; /* First rule */ 387 int nstate; /* Number of states */ 388 int nxstate; /* nstate with tail degenerate states removed */ 389 int nrule; /* Number of rules */ 390 int nruleWithAction; /* Number of rules with actions */ 391 int nsymbol; /* Number of terminal and nonterminal symbols */ 392 int nterminal; /* Number of terminal symbols */ 393 int minShiftReduce; /* Minimum shift-reduce action value */ 394 int errAction; /* Error action value */ 395 int accAction; /* Accept action value */ 396 int noAction; /* No-op action value */ 397 int minReduce; /* Minimum reduce action */ 398 int maxAction; /* Maximum action value of any kind */ 399 struct symbol **symbols; /* Sorted array of pointers to symbols */ 400 int errorcnt; /* Number of errors */ 401 struct symbol *errsym; /* The error symbol */ 402 struct symbol *wildcard; /* Token that matches anything */ 403 char *name; /* Name of the generated parser */ 404 char *arg; /* Declaration of the 3th argument to parser */ 405 char *ctx; /* Declaration of 2nd argument to constructor */ 406 char *tokentype; /* Type of terminal symbols in the parser stack */ 407 char *vartype; /* The default type of non-terminal symbols */ 408 char *start; /* Name of the start symbol for the grammar */ 409 char *stacksize; /* Size of the parser stack */ 410 char *include; /* Code to put at the start of the C file */ 411 char *error; /* Code to execute when an error is seen */ 412 char *overflow; /* Code to execute on a stack overflow */ 413 char *failure; /* Code to execute on parser failure */ 414 char *accept; /* Code to execute when the parser excepts */ 415 char *extracode; /* Code appended to the generated file */ 416 char *tokendest; /* Code to execute to destroy token data */ 417 char *vardest; /* Code for the default non-terminal destructor */ 418 char *filename; /* Name of the input file */ 419 char *outname; /* Name of the current output file */ 420 char *tokenprefix; /* A prefix added to token names in the .h file */ 421 int nconflict; /* Number of parsing conflicts */ 422 int nactiontab; /* Number of entries in the yy_action[] table */ 423 int nlookaheadtab; /* Number of entries in yy_lookahead[] */ 424 int tablesize; /* Total table size of all tables in bytes */ 425 int basisflag; /* Print only basis configurations */ 426 int printPreprocessed; /* Show preprocessor output on stdout */ 427 int has_fallback; /* True if any %fallback is seen in the grammar */ 428 int nolinenosflag; /* True if #line statements should not be printed */ 429 char *argv0; /* Name of the program */ 430 }; 431 432 #define MemoryCheck(X) if((X)==0){ \ 433 extern void memory_error(); \ 434 memory_error(); \ 435 } 436 437 /**************** From the file "table.h" *********************************/ 438 /* 439 ** All code in this file has been automatically generated 440 ** from a specification in the file 441 ** "table.q" 442 ** by the associative array code building program "aagen". 443 ** Do not edit this file! Instead, edit the specification 444 ** file, then rerun aagen. 445 */ 446 /* 447 ** Code for processing tables in the LEMON parser generator. 448 */ 449 /* Routines for handling a strings */ 450 451 const char *Strsafe(const char *); 452 453 void Strsafe_init(void); 454 int Strsafe_insert(const char *); 455 const char *Strsafe_find(const char *); 456 457 /* Routines for handling symbols of the grammar */ 458 459 struct symbol *Symbol_new(const char *); 460 int Symbolcmpp(const void *, const void *); 461 void Symbol_init(void); 462 int Symbol_insert(struct symbol *, const char *); 463 struct symbol *Symbol_find(const char *); 464 struct symbol *Symbol_Nth(int); 465 int Symbol_count(void); 466 struct symbol **Symbol_arrayof(void); 467 468 /* Routines to manage the state table */ 469 470 int Configcmp(const char *, const char *); 471 struct state *State_new(void); 472 void State_init(void); 473 int State_insert(struct state *, struct config *); 474 struct state *State_find(struct config *); 475 struct state **State_arrayof(void); 476 477 /* Routines used for efficiency in Configlist_add */ 478 479 void Configtable_init(void); 480 int Configtable_insert(struct config *); 481 struct config *Configtable_find(struct config *); 482 void Configtable_clear(int(*)(struct config *)); 483 484 /****************** From the file "action.c" *******************************/ 485 /* 486 ** Routines processing parser actions in the LEMON parser generator. 487 */ 488 489 /* Allocate a new parser action */ 490 static struct action *Action_new(void){ 491 static struct action *actionfreelist = 0; 492 struct action *newaction; 493 494 if( actionfreelist==0 ){ 495 int i; 496 int amt = 100; 497 actionfreelist = (struct action *)calloc(amt, sizeof(struct action)); 498 if( actionfreelist==0 ){ 499 fprintf(stderr,"Unable to allocate memory for a new parser action."); 500 exit(1); 501 } 502 for(i=0; i<amt-1; i++) actionfreelist[i].next = &actionfreelist[i+1]; 503 actionfreelist[amt-1].next = 0; 504 } 505 newaction = actionfreelist; 506 actionfreelist = actionfreelist->next; 507 return newaction; 508 } 509 510 /* Compare two actions for sorting purposes. Return negative, zero, or 511 ** positive if the first action is less than, equal to, or greater than 512 ** the first 513 */ 514 static int actioncmp( 515 struct action *ap1, 516 struct action *ap2 517 ){ 518 int rc; 519 rc = ap1->sp->index - ap2->sp->index; 520 if( rc==0 ){ 521 rc = (int)ap1->type - (int)ap2->type; 522 } 523 if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){ 524 rc = ap1->x.rp->index - ap2->x.rp->index; 525 } 526 if( rc==0 ){ 527 rc = (int) (ap2 - ap1); 528 } 529 return rc; 530 } 531 532 /* Sort parser actions */ 533 static struct action *Action_sort( 534 struct action *ap 535 ){ 536 ap = (struct action *)msort((char *)ap,(char **)&ap->next, 537 (int(*)(const char*,const char*))actioncmp); 538 return ap; 539 } 540 541 void Action_add( 542 struct action **app, 543 enum e_action type, 544 struct symbol *sp, 545 char *arg 546 ){ 547 struct action *newaction; 548 newaction = Action_new(); 549 newaction->next = *app; 550 *app = newaction; 551 newaction->type = type; 552 newaction->sp = sp; 553 newaction->spOpt = 0; 554 if( type==SHIFT ){ 555 newaction->x.stp = (struct state *)arg; 556 }else{ 557 newaction->x.rp = (struct rule *)arg; 558 } 559 } 560 /********************** New code to implement the "acttab" module ***********/ 561 /* 562 ** This module implements routines use to construct the yy_action[] table. 563 */ 564 565 /* 566 ** The state of the yy_action table under construction is an instance of 567 ** the following structure. 568 ** 569 ** The yy_action table maps the pair (state_number, lookahead) into an 570 ** action_number. The table is an array of integers pairs. The state_number 571 ** determines an initial offset into the yy_action array. The lookahead 572 ** value is then added to this initial offset to get an index X into the 573 ** yy_action array. If the aAction[X].lookahead equals the value of the 574 ** of the lookahead input, then the value of the action_number output is 575 ** aAction[X].action. If the lookaheads do not match then the 576 ** default action for the state_number is returned. 577 ** 578 ** All actions associated with a single state_number are first entered 579 ** into aLookahead[] using multiple calls to acttab_action(). Then the 580 ** actions for that single state_number are placed into the aAction[] 581 ** array with a single call to acttab_insert(). The acttab_insert() call 582 ** also resets the aLookahead[] array in preparation for the next 583 ** state number. 584 */ 585 struct lookahead_action { 586 int lookahead; /* Value of the lookahead token */ 587 int action; /* Action to take on the given lookahead */ 588 }; 589 typedef struct acttab acttab; 590 struct acttab { 591 int nAction; /* Number of used slots in aAction[] */ 592 int nActionAlloc; /* Slots allocated for aAction[] */ 593 struct lookahead_action 594 *aAction, /* The yy_action[] table under construction */ 595 *aLookahead; /* A single new transaction set */ 596 int mnLookahead; /* Minimum aLookahead[].lookahead */ 597 int mnAction; /* Action associated with mnLookahead */ 598 int mxLookahead; /* Maximum aLookahead[].lookahead */ 599 int nLookahead; /* Used slots in aLookahead[] */ 600 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ 601 int nterminal; /* Number of terminal symbols */ 602 int nsymbol; /* total number of symbols */ 603 }; 604 605 /* Return the number of entries in the yy_action table */ 606 #define acttab_lookahead_size(X) ((X)->nAction) 607 608 /* The value for the N-th entry in yy_action */ 609 #define acttab_yyaction(X,N) ((X)->aAction[N].action) 610 611 /* The value for the N-th entry in yy_lookahead */ 612 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) 613 614 /* Free all memory associated with the given acttab */ 615 void acttab_free(acttab *p){ 616 free( p->aAction ); 617 free( p->aLookahead ); 618 free( p ); 619 } 620 621 /* Allocate a new acttab structure */ 622 acttab *acttab_alloc(int nsymbol, int nterminal){ 623 acttab *p = (acttab *) calloc( 1, sizeof(*p) ); 624 if( p==0 ){ 625 fprintf(stderr,"Unable to allocate memory for a new acttab."); 626 exit(1); 627 } 628 memset(p, 0, sizeof(*p)); 629 p->nsymbol = nsymbol; 630 p->nterminal = nterminal; 631 return p; 632 } 633 634 /* Add a new action to the current transaction set. 635 ** 636 ** This routine is called once for each lookahead for a particular 637 ** state. 638 */ 639 void acttab_action(acttab *p, int lookahead, int action){ 640 if( p->nLookahead>=p->nLookaheadAlloc ){ 641 p->nLookaheadAlloc += 25; 642 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, 643 sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); 644 if( p->aLookahead==0 ){ 645 fprintf(stderr,"malloc failed\n"); 646 exit(1); 647 } 648 } 649 if( p->nLookahead==0 ){ 650 p->mxLookahead = lookahead; 651 p->mnLookahead = lookahead; 652 p->mnAction = action; 653 }else{ 654 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; 655 if( p->mnLookahead>lookahead ){ 656 p->mnLookahead = lookahead; 657 p->mnAction = action; 658 } 659 } 660 p->aLookahead[p->nLookahead].lookahead = lookahead; 661 p->aLookahead[p->nLookahead].action = action; 662 p->nLookahead++; 663 } 664 665 /* 666 ** Add the transaction set built up with prior calls to acttab_action() 667 ** into the current action table. Then reset the transaction set back 668 ** to an empty set in preparation for a new round of acttab_action() calls. 669 ** 670 ** Return the offset into the action table of the new transaction. 671 ** 672 ** If the makeItSafe parameter is true, then the offset is chosen so that 673 ** it is impossible to overread the yy_lookaside[] table regardless of 674 ** the lookaside token. This is done for the terminal symbols, as they 675 ** come from external inputs and can contain syntax errors. When makeItSafe 676 ** is false, there is more flexibility in selecting offsets, resulting in 677 ** a smaller table. For non-terminal symbols, which are never syntax errors, 678 ** makeItSafe can be false. 679 */ 680 int acttab_insert(acttab *p, int makeItSafe){ 681 int i, j, k, n, end; 682 assert( p->nLookahead>0 ); 683 684 /* Make sure we have enough space to hold the expanded action table 685 ** in the worst case. The worst case occurs if the transaction set 686 ** must be appended to the current action table 687 */ 688 n = p->nsymbol + 1; 689 if( p->nAction + n >= p->nActionAlloc ){ 690 int oldAlloc = p->nActionAlloc; 691 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; 692 p->aAction = (struct lookahead_action *) realloc( p->aAction, 693 sizeof(p->aAction[0])*p->nActionAlloc); 694 if( p->aAction==0 ){ 695 fprintf(stderr,"malloc failed\n"); 696 exit(1); 697 } 698 for(i=oldAlloc; i<p->nActionAlloc; i++){ 699 p->aAction[i].lookahead = -1; 700 p->aAction[i].action = -1; 701 } 702 } 703 704 /* Scan the existing action table looking for an offset that is a 705 ** duplicate of the current transaction set. Fall out of the loop 706 ** if and when the duplicate is found. 707 ** 708 ** i is the index in p->aAction[] where p->mnLookahead is inserted. 709 */ 710 end = makeItSafe ? p->mnLookahead : 0; 711 for(i=p->nAction-1; i>=end; i--){ 712 if( p->aAction[i].lookahead==p->mnLookahead ){ 713 /* All lookaheads and actions in the aLookahead[] transaction 714 ** must match against the candidate aAction[i] entry. */ 715 if( p->aAction[i].action!=p->mnAction ) continue; 716 for(j=0; j<p->nLookahead; j++){ 717 k = p->aLookahead[j].lookahead - p->mnLookahead + i; 718 if( k<0 || k>=p->nAction ) break; 719 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; 720 if( p->aLookahead[j].action!=p->aAction[k].action ) break; 721 } 722 if( j<p->nLookahead ) continue; 723 724 /* No possible lookahead value that is not in the aLookahead[] 725 ** transaction is allowed to match aAction[i] */ 726 n = 0; 727 for(j=0; j<p->nAction; j++){ 728 if( p->aAction[j].lookahead<0 ) continue; 729 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; 730 } 731 if( n==p->nLookahead ){ 732 break; /* An exact match is found at offset i */ 733 } 734 } 735 } 736 737 /* If no existing offsets exactly match the current transaction, find an 738 ** an empty offset in the aAction[] table in which we can add the 739 ** aLookahead[] transaction. 740 */ 741 if( i<end ){ 742 /* Look for holes in the aAction[] table that fit the current 743 ** aLookahead[] transaction. Leave i set to the offset of the hole. 744 ** If no holes are found, i is left at p->nAction, which means the 745 ** transaction will be appended. */ 746 i = makeItSafe ? p->mnLookahead : 0; 747 for(; i<p->nActionAlloc - p->mxLookahead; i++){ 748 if( p->aAction[i].lookahead<0 ){ 749 for(j=0; j<p->nLookahead; j++){ 750 k = p->aLookahead[j].lookahead - p->mnLookahead + i; 751 if( k<0 ) break; 752 if( p->aAction[k].lookahead>=0 ) break; 753 } 754 if( j<p->nLookahead ) continue; 755 for(j=0; j<p->nAction; j++){ 756 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; 757 } 758 if( j==p->nAction ){ 759 break; /* Fits in empty slots */ 760 } 761 } 762 } 763 } 764 /* Insert transaction set at index i. */ 765 #if 0 766 printf("Acttab:"); 767 for(j=0; j<p->nLookahead; j++){ 768 printf(" %d", p->aLookahead[j].lookahead); 769 } 770 printf(" inserted at %d\n", i); 771 #endif 772 for(j=0; j<p->nLookahead; j++){ 773 k = p->aLookahead[j].lookahead - p->mnLookahead + i; 774 p->aAction[k] = p->aLookahead[j]; 775 if( k>=p->nAction ) p->nAction = k+1; 776 } 777 if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1; 778 p->nLookahead = 0; 779 780 /* Return the offset that is added to the lookahead in order to get the 781 ** index into yy_action of the action */ 782 return i - p->mnLookahead; 783 } 784 785 /* 786 ** Return the size of the action table without the trailing syntax error 787 ** entries. 788 */ 789 int acttab_action_size(acttab *p){ 790 int n = p->nAction; 791 while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; } 792 return n; 793 } 794 795 /********************** From the file "build.c" *****************************/ 796 /* 797 ** Routines to construction the finite state machine for the LEMON 798 ** parser generator. 799 */ 800 801 /* Find a precedence symbol of every rule in the grammar. 802 ** 803 ** Those rules which have a precedence symbol coded in the input 804 ** grammar using the "[symbol]" construct will already have the 805 ** rp->precsym field filled. Other rules take as their precedence 806 ** symbol the first RHS symbol with a defined precedence. If there 807 ** are not RHS symbols with a defined precedence, the precedence 808 ** symbol field is left blank. 809 */ 810 void FindRulePrecedences(struct lemon *xp) 811 { 812 struct rule *rp; 813 for(rp=xp->rule; rp; rp=rp->next){ 814 if( rp->precsym==0 ){ 815 int i, j; 816 for(i=0; i<rp->nrhs && rp->precsym==0; i++){ 817 struct symbol *sp = rp->rhs[i]; 818 if( sp->type==MULTITERMINAL ){ 819 for(j=0; j<sp->nsubsym; j++){ 820 if( sp->subsym[j]->prec>=0 ){ 821 rp->precsym = sp->subsym[j]; 822 break; 823 } 824 } 825 }else if( sp->prec>=0 ){ 826 rp->precsym = rp->rhs[i]; 827 } 828 } 829 } 830 } 831 return; 832 } 833 834 /* Find all nonterminals which will generate the empty string. 835 ** Then go back and compute the first sets of every nonterminal. 836 ** The first set is the set of all terminal symbols which can begin 837 ** a string generated by that nonterminal. 838 */ 839 void FindFirstSets(struct lemon *lemp) 840 { 841 int i, j; 842 struct rule *rp; 843 int progress; 844 845 for(i=0; i<lemp->nsymbol; i++){ 846 lemp->symbols[i]->lambda = LEMON_FALSE; 847 } 848 for(i=lemp->nterminal; i<lemp->nsymbol; i++){ 849 lemp->symbols[i]->firstset = SetNew(); 850 } 851 852 /* First compute all lambdas */ 853 do{ 854 progress = 0; 855 for(rp=lemp->rule; rp; rp=rp->next){ 856 if( rp->lhs->lambda ) continue; 857 for(i=0; i<rp->nrhs; i++){ 858 struct symbol *sp = rp->rhs[i]; 859 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); 860 if( sp->lambda==LEMON_FALSE ) break; 861 } 862 if( i==rp->nrhs ){ 863 rp->lhs->lambda = LEMON_TRUE; 864 progress = 1; 865 } 866 } 867 }while( progress ); 868 869 /* Now compute all first sets */ 870 do{ 871 struct symbol *s1, *s2; 872 progress = 0; 873 for(rp=lemp->rule; rp; rp=rp->next){ 874 s1 = rp->lhs; 875 for(i=0; i<rp->nrhs; i++){ 876 s2 = rp->rhs[i]; 877 if( s2->type==TERMINAL ){ 878 progress += SetAdd(s1->firstset,s2->index); 879 break; 880 }else if( s2->type==MULTITERMINAL ){ 881 for(j=0; j<s2->nsubsym; j++){ 882 progress += SetAdd(s1->firstset,s2->subsym[j]->index); 883 } 884 break; 885 }else if( s1==s2 ){ 886 if( s1->lambda==LEMON_FALSE ) break; 887 }else{ 888 progress += SetUnion(s1->firstset,s2->firstset); 889 if( s2->lambda==LEMON_FALSE ) break; 890 } 891 } 892 } 893 }while( progress ); 894 return; 895 } 896 897 /* Compute all LR(0) states for the grammar. Links 898 ** are added to between some states so that the LR(1) follow sets 899 ** can be computed later. 900 */ 901 PRIVATE struct state *getstate(struct lemon *); /* forward reference */ 902 void FindStates(struct lemon *lemp) 903 { 904 struct symbol *sp; 905 struct rule *rp; 906 907 Configlist_init(); 908 909 /* Find the start symbol */ 910 if( lemp->start ){ 911 sp = Symbol_find(lemp->start); 912 if( sp==0 ){ 913 ErrorMsg(lemp->filename,0, 914 "The specified start symbol \"%s\" is not " 915 "in a nonterminal of the grammar. \"%s\" will be used as the start " 916 "symbol instead.",lemp->start,lemp->startRule->lhs->name); 917 lemp->errorcnt++; 918 sp = lemp->startRule->lhs; 919 } 920 }else{ 921 sp = lemp->startRule->lhs; 922 } 923 924 /* Make sure the start symbol doesn't occur on the right-hand side of 925 ** any rule. Report an error if it does. (YACC would generate a new 926 ** start symbol in this case.) */ 927 for(rp=lemp->rule; rp; rp=rp->next){ 928 int i; 929 for(i=0; i<rp->nrhs; i++){ 930 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ 931 ErrorMsg(lemp->filename,0, 932 "The start symbol \"%s\" occurs on the " 933 "right-hand side of a rule. This will result in a parser which " 934 "does not work properly.",sp->name); 935 lemp->errorcnt++; 936 } 937 } 938 } 939 940 /* The basis configuration set for the first state 941 ** is all rules which have the start symbol as their 942 ** left-hand side */ 943 for(rp=sp->rule; rp; rp=rp->nextlhs){ 944 struct config *newcfp; 945 rp->lhsStart = 1; 946 newcfp = Configlist_addbasis(rp,0); 947 SetAdd(newcfp->fws,0); 948 } 949 950 /* Compute the first state. All other states will be 951 ** computed automatically during the computation of the first one. 952 ** The returned pointer to the first state is not used. */ 953 (void)getstate(lemp); 954 return; 955 } 956 957 /* Return a pointer to a state which is described by the configuration 958 ** list which has been built from calls to Configlist_add. 959 */ 960 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ 961 PRIVATE struct state *getstate(struct lemon *lemp) 962 { 963 struct config *cfp, *bp; 964 struct state *stp; 965 966 /* Extract the sorted basis of the new state. The basis was constructed 967 ** by prior calls to "Configlist_addbasis()". */ 968 Configlist_sortbasis(); 969 bp = Configlist_basis(); 970 971 /* Get a state with the same basis */ 972 stp = State_find(bp); 973 if( stp ){ 974 /* A state with the same basis already exists! Copy all the follow-set 975 ** propagation links from the state under construction into the 976 ** preexisting state, then return a pointer to the preexisting state */ 977 struct config *x, *y; 978 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ 979 Plink_copy(&y->bplp,x->bplp); 980 Plink_delete(x->fplp); 981 x->fplp = x->bplp = 0; 982 } 983 cfp = Configlist_return(); 984 Configlist_eat(cfp); 985 }else{ 986 /* This really is a new state. Construct all the details */ 987 Configlist_closure(lemp); /* Compute the configuration closure */ 988 Configlist_sort(); /* Sort the configuration closure */ 989 cfp = Configlist_return(); /* Get a pointer to the config list */ 990 stp = State_new(); /* A new state structure */ 991 MemoryCheck(stp); 992 stp->bp = bp; /* Remember the configuration basis */ 993 stp->cfp = cfp; /* Remember the configuration closure */ 994 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ 995 stp->ap = 0; /* No actions, yet. */ 996 State_insert(stp,stp->bp); /* Add to the state table */ 997 buildshifts(lemp,stp); /* Recursively compute successor states */ 998 } 999 return stp; 1000 } 1001 1002 /* 1003 ** Return true if two symbols are the same. 1004 */ 1005 int same_symbol(struct symbol *a, struct symbol *b) 1006 { 1007 int i; 1008 if( a==b ) return 1; 1009 if( a->type!=MULTITERMINAL ) return 0; 1010 if( b->type!=MULTITERMINAL ) return 0; 1011 if( a->nsubsym!=b->nsubsym ) return 0; 1012 for(i=0; i<a->nsubsym; i++){ 1013 if( a->subsym[i]!=b->subsym[i] ) return 0; 1014 } 1015 return 1; 1016 } 1017 1018 /* Construct all successor states to the given state. A "successor" 1019 ** state is any state which can be reached by a shift action. 1020 */ 1021 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) 1022 { 1023 struct config *cfp; /* For looping thru the config closure of "stp" */ 1024 struct config *bcfp; /* For the inner loop on config closure of "stp" */ 1025 struct config *newcfg; /* */ 1026 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ 1027 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ 1028 struct state *newstp; /* A pointer to a successor state */ 1029 1030 /* Each configuration becomes complete after it contibutes to a successor 1031 ** state. Initially, all configurations are incomplete */ 1032 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; 1033 1034 /* Loop through all configurations of the state "stp" */ 1035 for(cfp=stp->cfp; cfp; cfp=cfp->next){ 1036 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ 1037 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ 1038 Configlist_reset(); /* Reset the new config set */ 1039 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ 1040 1041 /* For every configuration in the state "stp" which has the symbol "sp" 1042 ** following its dot, add the same configuration to the basis set under 1043 ** construction but with the dot shifted one symbol to the right. */ 1044 for(bcfp=cfp; bcfp; bcfp=bcfp->next){ 1045 if( bcfp->status==COMPLETE ) continue; /* Already used */ 1046 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ 1047 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ 1048 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ 1049 bcfp->status = COMPLETE; /* Mark this config as used */ 1050 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); 1051 Plink_add(&newcfg->bplp,bcfp); 1052 } 1053 1054 /* Get a pointer to the state described by the basis configuration set 1055 ** constructed in the preceding loop */ 1056 newstp = getstate(lemp); 1057 1058 /* The state "newstp" is reached from the state "stp" by a shift action 1059 ** on the symbol "sp" */ 1060 if( sp->type==MULTITERMINAL ){ 1061 int i; 1062 for(i=0; i<sp->nsubsym; i++){ 1063 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); 1064 } 1065 }else{ 1066 Action_add(&stp->ap,SHIFT,sp,(char *)newstp); 1067 } 1068 } 1069 } 1070 1071 /* 1072 ** Construct the propagation links 1073 */ 1074 void FindLinks(struct lemon *lemp) 1075 { 1076 int i; 1077 struct config *cfp, *other; 1078 struct state *stp; 1079 struct plink *plp; 1080 1081 /* Housekeeping detail: 1082 ** Add to every propagate link a pointer back to the state to 1083 ** which the link is attached. */ 1084 for(i=0; i<lemp->nstate; i++){ 1085 stp = lemp->sorted[i]; 1086 for(cfp=stp->cfp; cfp; cfp=cfp->next){ 1087 cfp->stp = stp; 1088 } 1089 } 1090 1091 /* Convert all backlinks into forward links. Only the forward 1092 ** links are used in the follow-set computation. */ 1093 for(i=0; i<lemp->nstate; i++){ 1094 stp = lemp->sorted[i]; 1095 for(cfp=stp->cfp; cfp; cfp=cfp->next){ 1096 for(plp=cfp->bplp; plp; plp=plp->next){ 1097 other = plp->cfp; 1098 Plink_add(&other->fplp,cfp); 1099 } 1100 } 1101 } 1102 } 1103 1104 /* Compute all followsets. 1105 ** 1106 ** A followset is the set of all symbols which can come immediately 1107 ** after a configuration. 1108 */ 1109 void FindFollowSets(struct lemon *lemp) 1110 { 1111 int i; 1112 struct config *cfp; 1113 struct plink *plp; 1114 int progress; 1115 int change; 1116 1117 for(i=0; i<lemp->nstate; i++){ 1118 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ 1119 cfp->status = INCOMPLETE; 1120 } 1121 } 1122 1123 do{ 1124 progress = 0; 1125 for(i=0; i<lemp->nstate; i++){ 1126 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ 1127 if( cfp->status==COMPLETE ) continue; 1128 for(plp=cfp->fplp; plp; plp=plp->next){ 1129 change = SetUnion(plp->cfp->fws,cfp->fws); 1130 if( change ){ 1131 plp->cfp->status = INCOMPLETE; 1132 progress = 1; 1133 } 1134 } 1135 cfp->status = COMPLETE; 1136 } 1137 } 1138 }while( progress ); 1139 } 1140 1141 static int resolve_conflict(struct action *,struct action *); 1142 1143 /* Compute the reduce actions, and resolve conflicts. 1144 */ 1145 void FindActions(struct lemon *lemp) 1146 { 1147 int i,j; 1148 struct config *cfp; 1149 struct state *stp; 1150 struct symbol *sp; 1151 struct rule *rp; 1152 1153 /* Add all of the reduce actions 1154 ** A reduce action is added for each element of the followset of 1155 ** a configuration which has its dot at the extreme right. 1156 */ 1157 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ 1158 stp = lemp->sorted[i]; 1159 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ 1160 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ 1161 for(j=0; j<lemp->nterminal; j++){ 1162 if( SetFind(cfp->fws,j) ){ 1163 /* Add a reduce action to the state "stp" which will reduce by the 1164 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ 1165 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); 1166 } 1167 } 1168 } 1169 } 1170 } 1171 1172 /* Add the accepting token */ 1173 if( lemp->start ){ 1174 sp = Symbol_find(lemp->start); 1175 if( sp==0 ) sp = lemp->startRule->lhs; 1176 }else{ 1177 sp = lemp->startRule->lhs; 1178 } 1179 /* Add to the first state (which is always the starting state of the 1180 ** finite state machine) an action to ACCEPT if the lookahead is the 1181 ** start nonterminal. */ 1182 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); 1183 1184 /* Resolve conflicts */ 1185 for(i=0; i<lemp->nstate; i++){ 1186 struct action *ap, *nap; 1187 stp = lemp->sorted[i]; 1188 /* assert( stp->ap ); */ 1189 stp->ap = Action_sort(stp->ap); 1190 for(ap=stp->ap; ap && ap->next; ap=ap->next){ 1191 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ 1192 /* The two actions "ap" and "nap" have the same lookahead. 1193 ** Figure out which one should be used */ 1194 lemp->nconflict += resolve_conflict(ap,nap); 1195 } 1196 } 1197 } 1198 1199 /* Report an error for each rule that can never be reduced. */ 1200 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; 1201 for(i=0; i<lemp->nstate; i++){ 1202 struct action *ap; 1203 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ 1204 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; 1205 } 1206 } 1207 for(rp=lemp->rule; rp; rp=rp->next){ 1208 if( rp->canReduce ) continue; 1209 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); 1210 lemp->errorcnt++; 1211 } 1212 } 1213 1214 /* Resolve a conflict between the two given actions. If the 1215 ** conflict can't be resolved, return non-zero. 1216 ** 1217 ** NO LONGER TRUE: 1218 ** To resolve a conflict, first look to see if either action 1219 ** is on an error rule. In that case, take the action which 1220 ** is not associated with the error rule. If neither or both 1221 ** actions are associated with an error rule, then try to 1222 ** use precedence to resolve the conflict. 1223 ** 1224 ** If either action is a SHIFT, then it must be apx. This 1225 ** function won't work if apx->type==REDUCE and apy->type==SHIFT. 1226 */ 1227 static int resolve_conflict( 1228 struct action *apx, 1229 struct action *apy 1230 ){ 1231 struct symbol *spx, *spy; 1232 int errcnt = 0; 1233 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ 1234 if( apx->type==SHIFT && apy->type==SHIFT ){ 1235 apy->type = SSCONFLICT; 1236 errcnt++; 1237 } 1238 if( apx->type==SHIFT && apy->type==REDUCE ){ 1239 spx = apx->sp; 1240 spy = apy->x.rp->precsym; 1241 if( spy==0 || spx->prec<0 || spy->prec<0 ){ 1242 /* Not enough precedence information. */ 1243 apy->type = SRCONFLICT; 1244 errcnt++; 1245 }else if( spx->prec>spy->prec ){ /* higher precedence wins */ 1246 apy->type = RD_RESOLVED; 1247 }else if( spx->prec<spy->prec ){ 1248 apx->type = SH_RESOLVED; 1249 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ 1250 apy->type = RD_RESOLVED; /* associativity */ 1251 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ 1252 apx->type = SH_RESOLVED; 1253 }else{ 1254 assert( spx->prec==spy->prec && spx->assoc==NONE ); 1255 apx->type = ERROR; 1256 } 1257 }else if( apx->type==REDUCE && apy->type==REDUCE ){ 1258 spx = apx->x.rp->precsym; 1259 spy = apy->x.rp->precsym; 1260 if( spx==0 || spy==0 || spx->prec<0 || 1261 spy->prec<0 || spx->prec==spy->prec ){ 1262 apy->type = RRCONFLICT; 1263 errcnt++; 1264 }else if( spx->prec>spy->prec ){ 1265 apy->type = RD_RESOLVED; 1266 }else if( spx->prec<spy->prec ){ 1267 apx->type = RD_RESOLVED; 1268 } 1269 }else{ 1270 assert( 1271 apx->type==SH_RESOLVED || 1272 apx->type==RD_RESOLVED || 1273 apx->type==SSCONFLICT || 1274 apx->type==SRCONFLICT || 1275 apx->type==RRCONFLICT || 1276 apy->type==SH_RESOLVED || 1277 apy->type==RD_RESOLVED || 1278 apy->type==SSCONFLICT || 1279 apy->type==SRCONFLICT || 1280 apy->type==RRCONFLICT 1281 ); 1282 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before 1283 ** REDUCEs on the list. If we reach this point it must be because 1284 ** the parser conflict had already been resolved. */ 1285 } 1286 return errcnt; 1287 } 1288 /********************* From the file "configlist.c" *************************/ 1289 /* 1290 ** Routines to processing a configuration list and building a state 1291 ** in the LEMON parser generator. 1292 */ 1293 1294 static struct config *freelist = 0; /* List of free configurations */ 1295 static struct config *current = 0; /* Top of list of configurations */ 1296 static struct config **currentend = 0; /* Last on list of configs */ 1297 static struct config *basis = 0; /* Top of list of basis configs */ 1298 static struct config **basisend = 0; /* End of list of basis configs */ 1299 1300 /* Return a pointer to a new configuration */ 1301 PRIVATE struct config *newconfig(void){ 1302 struct config *newcfg; 1303 if( freelist==0 ){ 1304 int i; 1305 int amt = 3; 1306 freelist = (struct config *)calloc( amt, sizeof(struct config) ); 1307 if( freelist==0 ){ 1308 fprintf(stderr,"Unable to allocate memory for a new configuration."); 1309 exit(1); 1310 } 1311 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; 1312 freelist[amt-1].next = 0; 1313 } 1314 newcfg = freelist; 1315 freelist = freelist->next; 1316 return newcfg; 1317 } 1318 1319 /* The configuration "old" is no longer used */ 1320 PRIVATE void deleteconfig(struct config *old) 1321 { 1322 old->next = freelist; 1323 freelist = old; 1324 } 1325 1326 /* Initialized the configuration list builder */ 1327 void Configlist_init(void){ 1328 current = 0; 1329 currentend = ¤t; 1330 basis = 0; 1331 basisend = &basis; 1332 Configtable_init(); 1333 return; 1334 } 1335 1336 /* Initialized the configuration list builder */ 1337 void Configlist_reset(void){ 1338 current = 0; 1339 currentend = ¤t; 1340 basis = 0; 1341 basisend = &basis; 1342 Configtable_clear(0); 1343 return; 1344 } 1345 1346 /* Add another configuration to the configuration list */ 1347 struct config *Configlist_add( 1348 struct rule *rp, /* The rule */ 1349 int dot /* Index into the RHS of the rule where the dot goes */ 1350 ){ 1351 struct config *cfp, model; 1352 1353 assert( currentend!=0 ); 1354 model.rp = rp; 1355 model.dot = dot; 1356 cfp = Configtable_find(&model); 1357 if( cfp==0 ){ 1358 cfp = newconfig(); 1359 cfp->rp = rp; 1360 cfp->dot = dot; 1361 cfp->fws = SetNew(); 1362 cfp->stp = 0; 1363 cfp->fplp = cfp->bplp = 0; 1364 cfp->next = 0; 1365 cfp->bp = 0; 1366 *currentend = cfp; 1367 currentend = &cfp->next; 1368 Configtable_insert(cfp); 1369 } 1370 return cfp; 1371 } 1372 1373 /* Add a basis configuration to the configuration list */ 1374 struct config *Configlist_addbasis(struct rule *rp, int dot) 1375 { 1376 struct config *cfp, model; 1377 1378 assert( basisend!=0 ); 1379 assert( currentend!=0 ); 1380 model.rp = rp; 1381 model.dot = dot; 1382 cfp = Configtable_find(&model); 1383 if( cfp==0 ){ 1384 cfp = newconfig(); 1385 cfp->rp = rp; 1386 cfp->dot = dot; 1387 cfp->fws = SetNew(); 1388 cfp->stp = 0; 1389 cfp->fplp = cfp->bplp = 0; 1390 cfp->next = 0; 1391 cfp->bp = 0; 1392 *currentend = cfp; 1393 currentend = &cfp->next; 1394 *basisend = cfp; 1395 basisend = &cfp->bp; 1396 Configtable_insert(cfp); 1397 } 1398 return cfp; 1399 } 1400 1401 /* Compute the closure of the configuration list */ 1402 void Configlist_closure(struct lemon *lemp) 1403 { 1404 struct config *cfp, *newcfp; 1405 struct rule *rp, *newrp; 1406 struct symbol *sp, *xsp; 1407 int i, dot; 1408 1409 assert( currentend!=0 ); 1410 for(cfp=current; cfp; cfp=cfp->next){ 1411 rp = cfp->rp; 1412 dot = cfp->dot; 1413 if( dot>=rp->nrhs ) continue; 1414 sp = rp->rhs[dot]; 1415 if( sp->type==NONTERMINAL ){ 1416 if( sp->rule==0 && sp!=lemp->errsym ){ 1417 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", 1418 sp->name); 1419 lemp->errorcnt++; 1420 } 1421 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ 1422 newcfp = Configlist_add(newrp,0); 1423 for(i=dot+1; i<rp->nrhs; i++){ 1424 xsp = rp->rhs[i]; 1425 if( xsp->type==TERMINAL ){ 1426 SetAdd(newcfp->fws,xsp->index); 1427 break; 1428 }else if( xsp->type==MULTITERMINAL ){ 1429 int k; 1430 for(k=0; k<xsp->nsubsym; k++){ 1431 SetAdd(newcfp->fws, xsp->subsym[k]->index); 1432 } 1433 break; 1434 }else{ 1435 SetUnion(newcfp->fws,xsp->firstset); 1436 if( xsp->lambda==LEMON_FALSE ) break; 1437 } 1438 } 1439 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); 1440 } 1441 } 1442 } 1443 return; 1444 } 1445 1446 /* Sort the configuration list */ 1447 void Configlist_sort(void){ 1448 current = (struct config*)msort((char*)current,(char**)&(current->next), 1449 Configcmp); 1450 currentend = 0; 1451 return; 1452 } 1453 1454 /* Sort the basis configuration list */ 1455 void Configlist_sortbasis(void){ 1456 basis = (struct config*)msort((char*)current,(char**)&(current->bp), 1457 Configcmp); 1458 basisend = 0; 1459 return; 1460 } 1461 1462 /* Return a pointer to the head of the configuration list and 1463 ** reset the list */ 1464 struct config *Configlist_return(void){ 1465 struct config *old; 1466 old = current; 1467 current = 0; 1468 currentend = 0; 1469 return old; 1470 } 1471 1472 /* Return a pointer to the head of the configuration list and 1473 ** reset the list */ 1474 struct config *Configlist_basis(void){ 1475 struct config *old; 1476 old = basis; 1477 basis = 0; 1478 basisend = 0; 1479 return old; 1480 } 1481 1482 /* Free all elements of the given configuration list */ 1483 void Configlist_eat(struct config *cfp) 1484 { 1485 struct config *nextcfp; 1486 for(; cfp; cfp=nextcfp){ 1487 nextcfp = cfp->next; 1488 assert( cfp->fplp==0 ); 1489 assert( cfp->bplp==0 ); 1490 if( cfp->fws ) SetFree(cfp->fws); 1491 deleteconfig(cfp); 1492 } 1493 return; 1494 } 1495 /***************** From the file "error.c" *********************************/ 1496 /* 1497 ** Code for printing error message. 1498 */ 1499 1500 void ErrorMsg(const char *filename, int lineno, const char *format, ...){ 1501 va_list ap; 1502 fprintf(stderr, "%s:%d: ", filename, lineno); 1503 va_start(ap, format); 1504 vfprintf(stderr,format,ap); 1505 va_end(ap); 1506 fprintf(stderr, "\n"); 1507 } 1508 /**************** From the file "main.c" ************************************/ 1509 /* 1510 ** Main program file for the LEMON parser generator. 1511 */ 1512 1513 /* Report an out-of-memory condition and abort. This function 1514 ** is used mostly by the "MemoryCheck" macro in struct.h 1515 */ 1516 void memory_error(void){ 1517 fprintf(stderr,"Out of memory. Aborting...\n"); 1518 exit(1); 1519 } 1520 1521 static int nDefine = 0; /* Number of -D options on the command line */ 1522 static char **azDefine = 0; /* Name of the -D macros */ 1523 1524 /* This routine is called with the argument to each -D command-line option. 1525 ** Add the macro defined to the azDefine array. 1526 */ 1527 static void handle_D_option(char *z){ 1528 char **paz; 1529 nDefine++; 1530 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); 1531 if( azDefine==0 ){ 1532 fprintf(stderr,"out of memory\n"); 1533 exit(1); 1534 } 1535 paz = &azDefine[nDefine-1]; 1536 *paz = (char *) malloc( lemonStrlen(z)+1 ); 1537 if( *paz==0 ){ 1538 fprintf(stderr,"out of memory\n"); 1539 exit(1); 1540 } 1541 lemon_strcpy(*paz, z); 1542 for(z=*paz; *z && *z!='='; z++){} 1543 *z = 0; 1544 } 1545 1546 /* Rember the name of the output directory 1547 */ 1548 static char *outputDir = NULL; 1549 static void handle_d_option(char *z){ 1550 outputDir = (char *) malloc( lemonStrlen(z)+1 ); 1551 if( outputDir==0 ){ 1552 fprintf(stderr,"out of memory\n"); 1553 exit(1); 1554 } 1555 lemon_strcpy(outputDir, z); 1556 } 1557 1558 static char *user_templatename = NULL; 1559 static void handle_T_option(char *z){ 1560 user_templatename = (char *) malloc( lemonStrlen(z)+1 ); 1561 if( user_templatename==0 ){ 1562 memory_error(); 1563 } 1564 lemon_strcpy(user_templatename, z); 1565 } 1566 1567 /* Merge together to lists of rules ordered by rule.iRule */ 1568 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){ 1569 struct rule *pFirst = 0; 1570 struct rule **ppPrev = &pFirst; 1571 while( pA && pB ){ 1572 if( pA->iRule<pB->iRule ){ 1573 *ppPrev = pA; 1574 ppPrev = &pA->next; 1575 pA = pA->next; 1576 }else{ 1577 *ppPrev = pB; 1578 ppPrev = &pB->next; 1579 pB = pB->next; 1580 } 1581 } 1582 if( pA ){ 1583 *ppPrev = pA; 1584 }else{ 1585 *ppPrev = pB; 1586 } 1587 return pFirst; 1588 } 1589 1590 /* 1591 ** Sort a list of rules in order of increasing iRule value 1592 */ 1593 static struct rule *Rule_sort(struct rule *rp){ 1594 unsigned int i; 1595 struct rule *pNext; 1596 struct rule *x[32]; 1597 memset(x, 0, sizeof(x)); 1598 while( rp ){ 1599 pNext = rp->next; 1600 rp->next = 0; 1601 for(i=0; i<sizeof(x)/sizeof(x[0])-1 && x[i]; i++){ 1602 rp = Rule_merge(x[i], rp); 1603 x[i] = 0; 1604 } 1605 x[i] = rp; 1606 rp = pNext; 1607 } 1608 rp = 0; 1609 for(i=0; i<sizeof(x)/sizeof(x[0]); i++){ 1610 rp = Rule_merge(x[i], rp); 1611 } 1612 return rp; 1613 } 1614 1615 /* forward reference */ 1616 static const char *minimum_size_type(int lwr, int upr, int *pnByte); 1617 1618 /* Print a single line of the "Parser Stats" output 1619 */ 1620 static void stats_line(const char *zLabel, int iValue){ 1621 int nLabel = lemonStrlen(zLabel); 1622 printf(" %s%.*s %5d\n", zLabel, 1623 35-nLabel, "................................", 1624 iValue); 1625 } 1626 1627 /* The main program. Parse the command line and do it... */ 1628 int main(int argc, char **argv){ 1629 static int version = 0; 1630 static int rpflag = 0; 1631 static int basisflag = 0; 1632 static int compress = 0; 1633 static int quiet = 0; 1634 static int statistics = 0; 1635 static int mhflag = 0; 1636 static int nolinenosflag = 0; 1637 static int noResort = 0; 1638 static int sqlFlag = 0; 1639 static int printPP = 0; 1640 1641 static struct s_options options[] = { 1642 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, 1643 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, 1644 {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory. Default '.'"}, 1645 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, 1646 {OPT_FLAG, "E", (char*)&printPP, "Print input file after preprocessing."}, 1647 {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"}, 1648 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, 1649 {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"}, 1650 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, 1651 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, 1652 {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"}, 1653 {OPT_FLAG, "p", (char*)&showPrecedenceConflict, 1654 "Show conflicts resolved by precedence rules"}, 1655 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, 1656 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, 1657 {OPT_FLAG, "s", (char*)&statistics, 1658 "Print parser stats to standard output."}, 1659 {OPT_FLAG, "S", (char*)&sqlFlag, 1660 "Generate the *.sql file describing the parser tables."}, 1661 {OPT_FLAG, "x", (char*)&version, "Print the version number."}, 1662 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, 1663 {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"}, 1664 {OPT_FLAG,0,0,0} 1665 }; 1666 int i; 1667 int exitcode; 1668 struct lemon lem; 1669 struct rule *rp; 1670 1671 (void)argc; 1672 OptInit(argv,options,stderr); 1673 if( version ){ 1674 printf("Lemon version 1.0\n"); 1675 exit(0); 1676 } 1677 if( OptNArgs()!=1 ){ 1678 fprintf(stderr,"Exactly one filename argument is required.\n"); 1679 exit(1); 1680 } 1681 memset(&lem, 0, sizeof(lem)); 1682 lem.errorcnt = 0; 1683 1684 /* Initialize the machine */ 1685 Strsafe_init(); 1686 Symbol_init(); 1687 State_init(); 1688 lem.argv0 = argv[0]; 1689 lem.filename = OptArg(0); 1690 lem.basisflag = basisflag; 1691 lem.nolinenosflag = nolinenosflag; 1692 lem.printPreprocessed = printPP; 1693 Symbol_new("$"); 1694 1695 /* Parse the input file */ 1696 Parse(&lem); 1697 if( lem.printPreprocessed || lem.errorcnt ) exit(lem.errorcnt); 1698 if( lem.nrule==0 ){ 1699 fprintf(stderr,"Empty grammar.\n"); 1700 exit(1); 1701 } 1702 lem.errsym = Symbol_find("error"); 1703 1704 /* Count and index the symbols of the grammar */ 1705 Symbol_new("{default}"); 1706 lem.nsymbol = Symbol_count(); 1707 lem.symbols = Symbol_arrayof(); 1708 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; 1709 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); 1710 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; 1711 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } 1712 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); 1713 lem.nsymbol = i - 1; 1714 for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++); 1715 lem.nterminal = i; 1716 1717 /* Assign sequential rule numbers. Start with 0. Put rules that have no 1718 ** reduce action C-code associated with them last, so that the switch() 1719 ** statement that selects reduction actions will have a smaller jump table. 1720 */ 1721 for(i=0, rp=lem.rule; rp; rp=rp->next){ 1722 rp->iRule = rp->code ? i++ : -1; 1723 } 1724 lem.nruleWithAction = i; 1725 for(rp=lem.rule; rp; rp=rp->next){ 1726 if( rp->iRule<0 ) rp->iRule = i++; 1727 } 1728 lem.startRule = lem.rule; 1729 lem.rule = Rule_sort(lem.rule); 1730 1731 /* Generate a reprint of the grammar, if requested on the command line */ 1732 if( rpflag ){ 1733 Reprint(&lem); 1734 }else{ 1735 /* Initialize the size for all follow and first sets */ 1736 SetSize(lem.nterminal+1); 1737 1738 /* Find the precedence for every production rule (that has one) */ 1739 FindRulePrecedences(&lem); 1740 1741 /* Compute the lambda-nonterminals and the first-sets for every 1742 ** nonterminal */ 1743 FindFirstSets(&lem); 1744 1745 /* Compute all LR(0) states. Also record follow-set propagation 1746 ** links so that the follow-set can be computed later */ 1747 lem.nstate = 0; 1748 FindStates(&lem); 1749 lem.sorted = State_arrayof(); 1750 1751 /* Tie up loose ends on the propagation links */ 1752 FindLinks(&lem); 1753 1754 /* Compute the follow set of every reducible configuration */ 1755 FindFollowSets(&lem); 1756 1757 /* Compute the action tables */ 1758 FindActions(&lem); 1759 1760 /* Compress the action tables */ 1761 if( compress==0 ) CompressTables(&lem); 1762 1763 /* Reorder and renumber the states so that states with fewer choices 1764 ** occur at the end. This is an optimization that helps make the 1765 ** generated parser tables smaller. */ 1766 if( noResort==0 ) ResortStates(&lem); 1767 1768 /* Generate a report of the parser generated. (the "y.output" file) */ 1769 if( !quiet ) ReportOutput(&lem); 1770 1771 /* Generate the source code for the parser */ 1772 ReportTable(&lem, mhflag, sqlFlag); 1773 1774 /* Produce a header file for use by the scanner. (This step is 1775 ** omitted if the "-m" option is used because makeheaders will 1776 ** generate the file for us.) */ 1777 if( !mhflag ) ReportHeader(&lem); 1778 } 1779 if( statistics ){ 1780 printf("Parser statistics:\n"); 1781 stats_line("terminal symbols", lem.nterminal); 1782 stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal); 1783 stats_line("total symbols", lem.nsymbol); 1784 stats_line("rules", lem.nrule); 1785 stats_line("states", lem.nxstate); 1786 stats_line("conflicts", lem.nconflict); 1787 stats_line("action table entries", lem.nactiontab); 1788 stats_line("lookahead table entries", lem.nlookaheadtab); 1789 stats_line("total table size (bytes)", lem.tablesize); 1790 } 1791 if( lem.nconflict > 0 ){ 1792 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); 1793 } 1794 1795 /* return 0 on success, 1 on failure. */ 1796 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; 1797 exit(exitcode); 1798 return (exitcode); 1799 } 1800 /******************** From the file "msort.c" *******************************/ 1801 /* 1802 ** A generic merge-sort program. 1803 ** 1804 ** USAGE: 1805 ** Let "ptr" be a pointer to some structure which is at the head of 1806 ** a null-terminated list. Then to sort the list call: 1807 ** 1808 ** ptr = msort(ptr,&(ptr->next),cmpfnc); 1809 ** 1810 ** In the above, "cmpfnc" is a pointer to a function which compares 1811 ** two instances of the structure and returns an integer, as in 1812 ** strcmp. The second argument is a pointer to the pointer to the 1813 ** second element of the linked list. This address is used to compute 1814 ** the offset to the "next" field within the structure. The offset to 1815 ** the "next" field must be constant for all structures in the list. 1816 ** 1817 ** The function returns a new pointer which is the head of the list 1818 ** after sorting. 1819 ** 1820 ** ALGORITHM: 1821 ** Merge-sort. 1822 */ 1823 1824 /* 1825 ** Return a pointer to the next structure in the linked list. 1826 */ 1827 #define NEXT(A) (*(char**)(((char*)A)+offset)) 1828 1829 /* 1830 ** Inputs: 1831 ** a: A sorted, null-terminated linked list. (May be null). 1832 ** b: A sorted, null-terminated linked list. (May be null). 1833 ** cmp: A pointer to the comparison function. 1834 ** offset: Offset in the structure to the "next" field. 1835 ** 1836 ** Return Value: 1837 ** A pointer to the head of a sorted list containing the elements 1838 ** of both a and b. 1839 ** 1840 ** Side effects: 1841 ** The "next" pointers for elements in the lists a and b are 1842 ** changed. 1843 */ 1844 static char *merge( 1845 char *a, 1846 char *b, 1847 int (*cmp)(const char*,const char*), 1848 int offset 1849 ){ 1850 char *ptr, *head; 1851 1852 if( a==0 ){ 1853 head = b; 1854 }else if( b==0 ){ 1855 head = a; 1856 }else{ 1857 if( (*cmp)(a,b)<=0 ){ 1858 ptr = a; 1859 a = NEXT(a); 1860 }else{ 1861 ptr = b; 1862 b = NEXT(b); 1863 } 1864 head = ptr; 1865 while( a && b ){ 1866 if( (*cmp)(a,b)<=0 ){ 1867 NEXT(ptr) = a; 1868 ptr = a; 1869 a = NEXT(a); 1870 }else{ 1871 NEXT(ptr) = b; 1872 ptr = b; 1873 b = NEXT(b); 1874 } 1875 } 1876 if( a ) NEXT(ptr) = a; 1877 else NEXT(ptr) = b; 1878 } 1879 return head; 1880 } 1881 1882 /* 1883 ** Inputs: 1884 ** list: Pointer to a singly-linked list of structures. 1885 ** next: Pointer to pointer to the second element of the list. 1886 ** cmp: A comparison function. 1887 ** 1888 ** Return Value: 1889 ** A pointer to the head of a sorted list containing the elements 1890 ** orginally in list. 1891 ** 1892 ** Side effects: 1893 ** The "next" pointers for elements in list are changed. 1894 */ 1895 #define LISTSIZE 30 1896 static char *msort( 1897 char *list, 1898 char **next, 1899 int (*cmp)(const char*,const char*) 1900 ){ 1901 unsigned long offset; 1902 char *ep; 1903 char *set[LISTSIZE]; 1904 int i; 1905 offset = (unsigned long)((char*)next - (char*)list); 1906 for(i=0; i<LISTSIZE; i++) set[i] = 0; 1907 while( list ){ 1908 ep = list; 1909 list = NEXT(list); 1910 NEXT(ep) = 0; 1911 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ 1912 ep = merge(ep,set[i],cmp,offset); 1913 set[i] = 0; 1914 } 1915 set[i] = ep; 1916 } 1917 ep = 0; 1918 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); 1919 return ep; 1920 } 1921 /************************ From the file "option.c" **************************/ 1922 static char **g_argv; 1923 static struct s_options *op; 1924 static FILE *errstream; 1925 1926 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) 1927 1928 /* 1929 ** Print the command line with a carrot pointing to the k-th character 1930 ** of the n-th field. 1931 */ 1932 static void errline(int n, int k, FILE *err) 1933 { 1934 int spcnt, i; 1935 if( g_argv[0] ) fprintf(err,"%s",g_argv[0]); 1936 spcnt = lemonStrlen(g_argv[0]) + 1; 1937 for(i=1; i<n && g_argv[i]; i++){ 1938 fprintf(err," %s",g_argv[i]); 1939 spcnt += lemonStrlen(g_argv[i])+1; 1940 } 1941 spcnt += k; 1942 for(; g_argv[i]; i++) fprintf(err," %s",g_argv[i]); 1943 if( spcnt<20 ){ 1944 fprintf(err,"\n%*s^-- here\n",spcnt,""); 1945 }else{ 1946 fprintf(err,"\n%*shere --^\n",spcnt-7,""); 1947 } 1948 } 1949 1950 /* 1951 ** Return the index of the N-th non-switch argument. Return -1 1952 ** if N is out of range. 1953 */ 1954 static int argindex(int n) 1955 { 1956 int i; 1957 int dashdash = 0; 1958 if( g_argv!=0 && *g_argv!=0 ){ 1959 for(i=1; g_argv[i]; i++){ 1960 if( dashdash || !ISOPT(g_argv[i]) ){ 1961 if( n==0 ) return i; 1962 n--; 1963 } 1964 if( strcmp(g_argv[i],"--")==0 ) dashdash = 1; 1965 } 1966 } 1967 return -1; 1968 } 1969 1970 static char emsg[] = "Command line syntax error: "; 1971 1972 /* 1973 ** Process a flag command line argument. 1974 */ 1975 static int handleflags(int i, FILE *err) 1976 { 1977 int v; 1978 int errcnt = 0; 1979 int j; 1980 for(j=0; op[j].label; j++){ 1981 if( strncmp(&g_argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; 1982 } 1983 v = g_argv[i][0]=='-' ? 1 : 0; 1984 if( op[j].label==0 ){ 1985 if( err ){ 1986 fprintf(err,"%sundefined option.\n",emsg); 1987 errline(i,1,err); 1988 } 1989 errcnt++; 1990 }else if( op[j].arg==0 ){ 1991 /* Ignore this option */ 1992 }else if( op[j].type==OPT_FLAG ){ 1993 *((int*)op[j].arg) = v; 1994 }else if( op[j].type==OPT_FFLAG ){ 1995 (*(void(*)(int))(op[j].arg))(v); 1996 }else if( op[j].type==OPT_FSTR ){ 1997 (*(void(*)(char *))(op[j].arg))(&g_argv[i][2]); 1998 }else{ 1999 if( err ){ 2000 fprintf(err,"%smissing argument on switch.\n",emsg); 2001 errline(i,1,err); 2002 } 2003 errcnt++; 2004 } 2005 return errcnt; 2006 } 2007 2008 /* 2009 ** Process a command line switch which has an argument. 2010 */ 2011 static int handleswitch(int i, FILE *err) 2012 { 2013 int lv = 0; 2014 double dv = 0.0; 2015 char *sv = 0, *end; 2016 char *cp; 2017 int j; 2018 int errcnt = 0; 2019 cp = strchr(g_argv[i],'='); 2020 assert( cp!=0 ); 2021 *cp = 0; 2022 for(j=0; op[j].label; j++){ 2023 if( strcmp(g_argv[i],op[j].label)==0 ) break; 2024 } 2025 *cp = '='; 2026 if( op[j].label==0 ){ 2027 if( err ){ 2028 fprintf(err,"%sundefined option.\n",emsg); 2029 errline(i,0,err); 2030 } 2031 errcnt++; 2032 }else{ 2033 cp++; 2034 switch( op[j].type ){ 2035 case OPT_FLAG: 2036 case OPT_FFLAG: 2037 if( err ){ 2038 fprintf(err,"%soption requires an argument.\n",emsg); 2039 errline(i,0,err); 2040 } 2041 errcnt++; 2042 break; 2043 case OPT_DBL: 2044 case OPT_FDBL: 2045 dv = strtod(cp,&end); 2046 if( *end ){ 2047 if( err ){ 2048 fprintf(err, 2049 "%sillegal character in floating-point argument.\n",emsg); 2050 errline(i,(int)((char*)end-(char*)g_argv[i]),err); 2051 } 2052 errcnt++; 2053 } 2054 break; 2055 case OPT_INT: 2056 case OPT_FINT: 2057 lv = strtol(cp,&end,0); 2058 if( *end ){ 2059 if( err ){ 2060 fprintf(err,"%sillegal character in integer argument.\n",emsg); 2061 errline(i,(int)((char*)end-(char*)g_argv[i]),err); 2062 } 2063 errcnt++; 2064 } 2065 break; 2066 case OPT_STR: 2067 case OPT_FSTR: 2068 sv = cp; 2069 break; 2070 } 2071 switch( op[j].type ){ 2072 case OPT_FLAG: 2073 case OPT_FFLAG: 2074 break; 2075 case OPT_DBL: 2076 *(double*)(op[j].arg) = dv; 2077 break; 2078 case OPT_FDBL: 2079 (*(void(*)(double))(op[j].arg))(dv); 2080 break; 2081 case OPT_INT: 2082 *(int*)(op[j].arg) = lv; 2083 break; 2084 case OPT_FINT: 2085 (*(void(*)(int))(op[j].arg))((int)lv); 2086 break; 2087 case OPT_STR: 2088 *(char**)(op[j].arg) = sv; 2089 break; 2090 case OPT_FSTR: 2091 (*(void(*)(char *))(op[j].arg))(sv); 2092 break; 2093 } 2094 } 2095 return errcnt; 2096 } 2097 2098 int OptInit(char **a, struct s_options *o, FILE *err) 2099 { 2100 int errcnt = 0; 2101 g_argv = a; 2102 op = o; 2103 errstream = err; 2104 if( g_argv && *g_argv && op ){ 2105 int i; 2106 for(i=1; g_argv[i]; i++){ 2107 if( g_argv[i][0]=='+' || g_argv[i][0]=='-' ){ 2108 errcnt += handleflags(i,err); 2109 }else if( strchr(g_argv[i],'=') ){ 2110 errcnt += handleswitch(i,err); 2111 } 2112 } 2113 } 2114 if( errcnt>0 ){ 2115 fprintf(err,"Valid command line options for \"%s\" are:\n",*a); 2116 OptPrint(); 2117 exit(1); 2118 } 2119 return 0; 2120 } 2121 2122 int OptNArgs(void){ 2123 int cnt = 0; 2124 int dashdash = 0; 2125 int i; 2126 if( g_argv!=0 && g_argv[0]!=0 ){ 2127 for(i=1; g_argv[i]; i++){ 2128 if( dashdash || !ISOPT(g_argv[i]) ) cnt++; 2129 if( strcmp(g_argv[i],"--")==0 ) dashdash = 1; 2130 } 2131 } 2132 return cnt; 2133 } 2134 2135 char *OptArg(int n) 2136 { 2137 int i; 2138 i = argindex(n); 2139 return i>=0 ? g_argv[i] : 0; 2140 } 2141 2142 void OptErr(int n) 2143 { 2144 int i; 2145 i = argindex(n); 2146 if( i>=0 ) errline(i,0,errstream); 2147 } 2148 2149 void OptPrint(void){ 2150 int i; 2151 int max, len; 2152 max = 0; 2153 for(i=0; op[i].label; i++){ 2154 len = lemonStrlen(op[i].label) + 1; 2155 switch( op[i].type ){ 2156 case OPT_FLAG: 2157 case OPT_FFLAG: 2158 break; 2159 case OPT_INT: 2160 case OPT_FINT: 2161 len += 9; /* length of "<integer>" */ 2162 break; 2163 case OPT_DBL: 2164 case OPT_FDBL: 2165 len += 6; /* length of "<real>" */ 2166 break; 2167 case OPT_STR: 2168 case OPT_FSTR: 2169 len += 8; /* length of "<string>" */ 2170 break; 2171 } 2172 if( len>max ) max = len; 2173 } 2174 for(i=0; op[i].label; i++){ 2175 switch( op[i].type ){ 2176 case OPT_FLAG: 2177 case OPT_FFLAG: 2178 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); 2179 break; 2180 case OPT_INT: 2181 case OPT_FINT: 2182 fprintf(errstream," -%s<integer>%*s %s\n",op[i].label, 2183 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); 2184 break; 2185 case OPT_DBL: 2186 case OPT_FDBL: 2187 fprintf(errstream," -%s<real>%*s %s\n",op[i].label, 2188 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); 2189 break; 2190 case OPT_STR: 2191 case OPT_FSTR: 2192 fprintf(errstream," -%s<string>%*s %s\n",op[i].label, 2193 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); 2194 break; 2195 } 2196 } 2197 } 2198 /*********************** From the file "parse.c" ****************************/ 2199 /* 2200 ** Input file parser for the LEMON parser generator. 2201 */ 2202 2203 /* The state of the parser */ 2204 enum e_state { 2205 INITIALIZE, 2206 WAITING_FOR_DECL_OR_RULE, 2207 WAITING_FOR_DECL_KEYWORD, 2208 WAITING_FOR_DECL_ARG, 2209 WAITING_FOR_PRECEDENCE_SYMBOL, 2210 WAITING_FOR_ARROW, 2211 IN_RHS, 2212 LHS_ALIAS_1, 2213 LHS_ALIAS_2, 2214 LHS_ALIAS_3, 2215 RHS_ALIAS_1, 2216 RHS_ALIAS_2, 2217 PRECEDENCE_MARK_1, 2218 PRECEDENCE_MARK_2, 2219 RESYNC_AFTER_RULE_ERROR, 2220 RESYNC_AFTER_DECL_ERROR, 2221 WAITING_FOR_DESTRUCTOR_SYMBOL, 2222 WAITING_FOR_DATATYPE_SYMBOL, 2223 WAITING_FOR_FALLBACK_ID, 2224 WAITING_FOR_WILDCARD_ID, 2225 WAITING_FOR_CLASS_ID, 2226 WAITING_FOR_CLASS_TOKEN, 2227 WAITING_FOR_TOKEN_NAME 2228 }; 2229 struct pstate { 2230 char *filename; /* Name of the input file */ 2231 int tokenlineno; /* Linenumber at which current token starts */ 2232 int errorcnt; /* Number of errors so far */ 2233 char *tokenstart; /* Text of current token */ 2234 struct lemon *gp; /* Global state vector */ 2235 enum e_state state; /* The state of the parser */ 2236 struct symbol *fallback; /* The fallback token */ 2237 struct symbol *tkclass; /* Token class symbol */ 2238 struct symbol *lhs; /* Left-hand side of current rule */ 2239 const char *lhsalias; /* Alias for the LHS */ 2240 int nrhs; /* Number of right-hand side symbols seen */ 2241 struct symbol *rhs[MAXRHS]; /* RHS symbols */ 2242 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ 2243 struct rule *prevrule; /* Previous rule parsed */ 2244 const char *declkeyword; /* Keyword of a declaration */ 2245 char **declargslot; /* Where the declaration argument should be put */ 2246 int insertLineMacro; /* Add #line before declaration insert */ 2247 int *decllinenoslot; /* Where to write declaration line number */ 2248 enum e_assoc declassoc; /* Assign this association to decl arguments */ 2249 int preccounter; /* Assign this precedence to decl arguments */ 2250 struct rule *firstrule; /* Pointer to first rule in the grammar */ 2251 struct rule *lastrule; /* Pointer to the most recently parsed rule */ 2252 }; 2253 2254 /* Parse a single token */ 2255 static void parseonetoken(struct pstate *psp) 2256 { 2257 const char *x; 2258 x = Strsafe(psp->tokenstart); /* Save the token permanently */ 2259 #if 0 2260 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, 2261 x,psp->state); 2262 #endif 2263 switch( psp->state ){ 2264 case INITIALIZE: 2265 psp->prevrule = 0; 2266 psp->preccounter = 0; 2267 psp->firstrule = psp->lastrule = 0; 2268 psp->gp->nrule = 0; 2269 /* fall through */ 2270 case WAITING_FOR_DECL_OR_RULE: 2271 if( x[0]=='%' ){ 2272 psp->state = WAITING_FOR_DECL_KEYWORD; 2273 }else if( ISLOWER(x[0]) ){ 2274 psp->lhs = Symbol_new(x); 2275 psp->nrhs = 0; 2276 psp->lhsalias = 0; 2277 psp->state = WAITING_FOR_ARROW; 2278 }else if( x[0]=='{' ){ 2279 if( psp->prevrule==0 ){ 2280 ErrorMsg(psp->filename,psp->tokenlineno, 2281 "There is no prior rule upon which to attach the code " 2282 "fragment which begins on this line."); 2283 psp->errorcnt++; 2284 }else if( psp->prevrule->code!=0 ){ 2285 ErrorMsg(psp->filename,psp->tokenlineno, 2286 "Code fragment beginning on this line is not the first " 2287 "to follow the previous rule."); 2288 psp->errorcnt++; 2289 }else if( strcmp(x, "{NEVER-REDUCE")==0 ){ 2290 psp->prevrule->neverReduce = 1; 2291 }else{ 2292 psp->prevrule->line = psp->tokenlineno; 2293 psp->prevrule->code = &x[1]; 2294 psp->prevrule->noCode = 0; 2295 } 2296 }else if( x[0]=='[' ){ 2297 psp->state = PRECEDENCE_MARK_1; 2298 }else{ 2299 ErrorMsg(psp->filename,psp->tokenlineno, 2300 "Token \"%s\" should be either \"%%\" or a nonterminal name.", 2301 x); 2302 psp->errorcnt++; 2303 } 2304 break; 2305 case PRECEDENCE_MARK_1: 2306 if( !ISUPPER(x[0]) ){ 2307 ErrorMsg(psp->filename,psp->tokenlineno, 2308 "The precedence symbol must be a terminal."); 2309 psp->errorcnt++; 2310 }else if( psp->prevrule==0 ){ 2311 ErrorMsg(psp->filename,psp->tokenlineno, 2312 "There is no prior rule to assign precedence \"[%s]\".",x); 2313 psp->errorcnt++; 2314 }else if( psp->prevrule->precsym!=0 ){ 2315 ErrorMsg(psp->filename,psp->tokenlineno, 2316 "Precedence mark on this line is not the first " 2317 "to follow the previous rule."); 2318 psp->errorcnt++; 2319 }else{ 2320 psp->prevrule->precsym = Symbol_new(x); 2321 } 2322 psp->state = PRECEDENCE_MARK_2; 2323 break; 2324 case PRECEDENCE_MARK_2: 2325 if( x[0]!=']' ){ 2326 ErrorMsg(psp->filename,psp->tokenlineno, 2327 "Missing \"]\" on precedence mark."); 2328 psp->errorcnt++; 2329 } 2330 psp->state = WAITING_FOR_DECL_OR_RULE; 2331 break; 2332 case WAITING_FOR_ARROW: 2333 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ 2334 psp->state = IN_RHS; 2335 }else if( x[0]=='(' ){ 2336 psp->state = LHS_ALIAS_1; 2337 }else{ 2338 ErrorMsg(psp->filename,psp->tokenlineno, 2339 "Expected to see a \":\" following the LHS symbol \"%s\".", 2340 psp->lhs->name); 2341 psp->errorcnt++; 2342 psp->state = RESYNC_AFTER_RULE_ERROR; 2343 } 2344 break; 2345 case LHS_ALIAS_1: 2346 if( ISALPHA(x[0]) ){ 2347 psp->lhsalias = x; 2348 psp->state = LHS_ALIAS_2; 2349 }else{ 2350 ErrorMsg(psp->filename,psp->tokenlineno, 2351 "\"%s\" is not a valid alias for the LHS \"%s\"\n", 2352 x,psp->lhs->name); 2353 psp->errorcnt++; 2354 psp->state = RESYNC_AFTER_RULE_ERROR; 2355 } 2356 break; 2357 case LHS_ALIAS_2: 2358 if( x[0]==')' ){ 2359 psp->state = LHS_ALIAS_3; 2360 }else{ 2361 ErrorMsg(psp->filename,psp->tokenlineno, 2362 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); 2363 psp->errorcnt++; 2364 psp->state = RESYNC_AFTER_RULE_ERROR; 2365 } 2366 break; 2367 case LHS_ALIAS_3: 2368 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ 2369 psp->state = IN_RHS; 2370 }else{ 2371 ErrorMsg(psp->filename,psp->tokenlineno, 2372 "Missing \"->\" following: \"%s(%s)\".", 2373 psp->lhs->name,psp->lhsalias); 2374 psp->errorcnt++; 2375 psp->state = RESYNC_AFTER_RULE_ERROR; 2376 } 2377 break; 2378 case IN_RHS: 2379 if( x[0]=='.' ){ 2380 struct rule *rp; 2381 rp = (struct rule *)calloc( sizeof(struct rule) + 2382 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); 2383 if( rp==0 ){ 2384 ErrorMsg(psp->filename,psp->tokenlineno, 2385 "Can't allocate enough memory for this rule."); 2386 psp->errorcnt++; 2387 psp->prevrule = 0; 2388 }else{ 2389 int i; 2390 rp->ruleline = psp->tokenlineno; 2391 rp->rhs = (struct symbol**)&rp[1]; 2392 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); 2393 for(i=0; i<psp->nrhs; i++){ 2394 rp->rhs[i] = psp->rhs[i]; 2395 rp->rhsalias[i] = psp->alias[i]; 2396 if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; } 2397 } 2398 rp->lhs = psp->lhs; 2399 rp->lhsalias = psp->lhsalias; 2400 rp->nrhs = psp->nrhs; 2401 rp->code = 0; 2402 rp->noCode = 1; 2403 rp->precsym = 0; 2404 rp->index = psp->gp->nrule++; 2405 rp->nextlhs = rp->lhs->rule; 2406 rp->lhs->rule = rp; 2407 rp->next = 0; 2408 if( psp->firstrule==0 ){ 2409 psp->firstrule = psp->lastrule = rp; 2410 }else{ 2411 psp->lastrule->next = rp; 2412 psp->lastrule = rp; 2413 } 2414 psp->prevrule = rp; 2415 } 2416 psp->state = WAITING_FOR_DECL_OR_RULE; 2417 }else if( ISALPHA(x[0]) ){ 2418 if( psp->nrhs>=MAXRHS ){ 2419 ErrorMsg(psp->filename,psp->tokenlineno, 2420 "Too many symbols on RHS of rule beginning at \"%s\".", 2421 x); 2422 psp->errorcnt++; 2423 psp->state = RESYNC_AFTER_RULE_ERROR; 2424 }else{ 2425 psp->rhs[psp->nrhs] = Symbol_new(x); 2426 psp->alias[psp->nrhs] = 0; 2427 psp->nrhs++; 2428 } 2429 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 && ISUPPER(x[1]) ){ 2430 struct symbol *msp = psp->rhs[psp->nrhs-1]; 2431 if( msp->type!=MULTITERMINAL ){ 2432 struct symbol *origsp = msp; 2433 msp = (struct symbol *) calloc(1,sizeof(*msp)); 2434 memset(msp, 0, sizeof(*msp)); 2435 msp->type = MULTITERMINAL; 2436 msp->nsubsym = 1; 2437 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); 2438 msp->subsym[0] = origsp; 2439 msp->name = origsp->name; 2440 psp->rhs[psp->nrhs-1] = msp; 2441 } 2442 msp->nsubsym++; 2443 msp->subsym = (struct symbol **) realloc(msp->subsym, 2444 sizeof(struct symbol*)*msp->nsubsym); 2445 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); 2446 if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){ 2447 ErrorMsg(psp->filename,psp->tokenlineno, 2448 "Cannot form a compound containing a non-terminal"); 2449 psp->errorcnt++; 2450 } 2451 }else if( x[0]=='(' && psp->nrhs>0 ){ 2452 psp->state = RHS_ALIAS_1; 2453 }else{ 2454 ErrorMsg(psp->filename,psp->tokenlineno, 2455 "Illegal character on RHS of rule: \"%s\".",x); 2456 psp->errorcnt++; 2457 psp->state = RESYNC_AFTER_RULE_ERROR; 2458 } 2459 break; 2460 case RHS_ALIAS_1: 2461 if( ISALPHA(x[0]) ){ 2462 psp->alias[psp->nrhs-1] = x; 2463 psp->state = RHS_ALIAS_2; 2464 }else{ 2465 ErrorMsg(psp->filename,psp->tokenlineno, 2466 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", 2467 x,psp->rhs[psp->nrhs-1]->name); 2468 psp->errorcnt++; 2469 psp->state = RESYNC_AFTER_RULE_ERROR; 2470 } 2471 break; 2472 case RHS_ALIAS_2: 2473 if( x[0]==')' ){ 2474 psp->state = IN_RHS; 2475 }else{ 2476 ErrorMsg(psp->filename,psp->tokenlineno, 2477 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); 2478 psp->errorcnt++; 2479 psp->state = RESYNC_AFTER_RULE_ERROR; 2480 } 2481 break; 2482 case WAITING_FOR_DECL_KEYWORD: 2483 if( ISALPHA(x[0]) ){ 2484 psp->declkeyword = x; 2485 psp->declargslot = 0; 2486 psp->decllinenoslot = 0; 2487 psp->insertLineMacro = 1; 2488 psp->state = WAITING_FOR_DECL_ARG; 2489 if( strcmp(x,"name")==0 ){ 2490 psp->declargslot = &(psp->gp->name); 2491 psp->insertLineMacro = 0; 2492 }else if( strcmp(x,"include")==0 ){ 2493 psp->declargslot = &(psp->gp->include); 2494 }else if( strcmp(x,"code")==0 ){ 2495 psp->declargslot = &(psp->gp->extracode); 2496 }else if( strcmp(x,"token_destructor")==0 ){ 2497 psp->declargslot = &psp->gp->tokendest; 2498 }else if( strcmp(x,"default_destructor")==0 ){ 2499 psp->declargslot = &psp->gp->vardest; 2500 }else if( strcmp(x,"token_prefix")==0 ){ 2501 psp->declargslot = &psp->gp->tokenprefix; 2502 psp->insertLineMacro = 0; 2503 }else if( strcmp(x,"syntax_error")==0 ){ 2504 psp->declargslot = &(psp->gp->error); 2505 }else if( strcmp(x,"parse_accept")==0 ){ 2506 psp->declargslot = &(psp->gp->accept); 2507 }else if( strcmp(x,"parse_failure")==0 ){ 2508 psp->declargslot = &(psp->gp->failure); 2509 }else if( strcmp(x,"stack_overflow")==0 ){ 2510 psp->declargslot = &(psp->gp->overflow); 2511 }else if( strcmp(x,"extra_argument")==0 ){ 2512 psp->declargslot = &(psp->gp->arg); 2513 psp->insertLineMacro = 0; 2514 }else if( strcmp(x,"extra_context")==0 ){ 2515 psp->declargslot = &(psp->gp->ctx); 2516 psp->insertLineMacro = 0; 2517 }else if( strcmp(x,"token_type")==0 ){ 2518 psp->declargslot = &(psp->gp->tokentype); 2519 psp->insertLineMacro = 0; 2520 }else if( strcmp(x,"default_type")==0 ){ 2521 psp->declargslot = &(psp->gp->vartype); 2522 psp->insertLineMacro = 0; 2523 }else if( strcmp(x,"stack_size")==0 ){ 2524 psp->declargslot = &(psp->gp->stacksize); 2525 psp->insertLineMacro = 0; 2526 }else if( strcmp(x,"start_symbol")==0 ){ 2527 psp->declargslot = &(psp->gp->start); 2528 psp->insertLineMacro = 0; 2529 }else if( strcmp(x,"left")==0 ){ 2530 psp->preccounter++; 2531 psp->declassoc = LEFT; 2532 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; 2533 }else if( strcmp(x,"right")==0 ){ 2534 psp->preccounter++; 2535 psp->declassoc = RIGHT; 2536 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; 2537 }else if( strcmp(x,"nonassoc")==0 ){ 2538 psp->preccounter++; 2539 psp->declassoc = NONE; 2540 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; 2541 }else if( strcmp(x,"destructor")==0 ){ 2542 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; 2543 }else if( strcmp(x,"type")==0 ){ 2544 psp->state = WAITING_FOR_DATATYPE_SYMBOL; 2545 }else if( strcmp(x,"fallback")==0 ){ 2546 psp->fallback = 0; 2547 psp->state = WAITING_FOR_FALLBACK_ID; 2548 }else if( strcmp(x,"token")==0 ){ 2549 psp->state = WAITING_FOR_TOKEN_NAME; 2550 }else if( strcmp(x,"wildcard")==0 ){ 2551 psp->state = WAITING_FOR_WILDCARD_ID; 2552 }else if( strcmp(x,"token_class")==0 ){ 2553 psp->state = WAITING_FOR_CLASS_ID; 2554 }else{ 2555 ErrorMsg(psp->filename,psp->tokenlineno, 2556 "Unknown declaration keyword: \"%%%s\".",x); 2557 psp->errorcnt++; 2558 psp->state = RESYNC_AFTER_DECL_ERROR; 2559 } 2560 }else{ 2561 ErrorMsg(psp->filename,psp->tokenlineno, 2562 "Illegal declaration keyword: \"%s\".",x); 2563 psp->errorcnt++; 2564 psp->state = RESYNC_AFTER_DECL_ERROR; 2565 } 2566 break; 2567 case WAITING_FOR_DESTRUCTOR_SYMBOL: 2568 if( !ISALPHA(x[0]) ){ 2569 ErrorMsg(psp->filename,psp->tokenlineno, 2570 "Symbol name missing after %%destructor keyword"); 2571 psp->errorcnt++; 2572 psp->state = RESYNC_AFTER_DECL_ERROR; 2573 }else{ 2574 struct symbol *sp = Symbol_new(x); 2575 psp->declargslot = &sp->destructor; 2576 psp->decllinenoslot = &sp->destLineno; 2577 psp->insertLineMacro = 1; 2578 psp->state = WAITING_FOR_DECL_ARG; 2579 } 2580 break; 2581 case WAITING_FOR_DATATYPE_SYMBOL: 2582 if( !ISALPHA(x[0]) ){ 2583 ErrorMsg(psp->filename,psp->tokenlineno, 2584 "Symbol name missing after %%type keyword"); 2585 psp->errorcnt++; 2586 psp->state = RESYNC_AFTER_DECL_ERROR; 2587 }else{ 2588 struct symbol *sp = Symbol_find(x); 2589 if((sp) && (sp->datatype)){ 2590 ErrorMsg(psp->filename,psp->tokenlineno, 2591 "Symbol %%type \"%s\" already defined", x); 2592 psp->errorcnt++; 2593 psp->state = RESYNC_AFTER_DECL_ERROR; 2594 }else{ 2595 if (!sp){ 2596 sp = Symbol_new(x); 2597 } 2598 psp->declargslot = &sp->datatype; 2599 psp->insertLineMacro = 0; 2600 psp->state = WAITING_FOR_DECL_ARG; 2601 } 2602 } 2603 break; 2604 case WAITING_FOR_PRECEDENCE_SYMBOL: 2605 if( x[0]=='.' ){ 2606 psp->state = WAITING_FOR_DECL_OR_RULE; 2607 }else if( ISUPPER(x[0]) ){ 2608 struct symbol *sp; 2609 sp = Symbol_new(x); 2610 if( sp->prec>=0 ){ 2611 ErrorMsg(psp->filename,psp->tokenlineno, 2612 "Symbol \"%s\" has already be given a precedence.",x); 2613 psp->errorcnt++; 2614 }else{ 2615 sp->prec = psp->preccounter; 2616 sp->assoc = psp->declassoc; 2617 } 2618 }else{ 2619 ErrorMsg(psp->filename,psp->tokenlineno, 2620 "Can't assign a precedence to \"%s\".",x); 2621 psp->errorcnt++; 2622 } 2623 break; 2624 case WAITING_FOR_DECL_ARG: 2625 if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){ 2626 const char *zOld, *zNew; 2627 char *zBuf, *z; 2628 int nOld, n, nLine = 0, nNew, nBack; 2629 int addLineMacro; 2630 char zLine[50]; 2631 zNew = x; 2632 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; 2633 nNew = lemonStrlen(zNew); 2634 if( *psp->declargslot ){ 2635 zOld = *psp->declargslot; 2636 }else{ 2637 zOld = ""; 2638 } 2639 nOld = lemonStrlen(zOld); 2640 n = nOld + nNew + 20; 2641 addLineMacro = !psp->gp->nolinenosflag 2642 && psp->insertLineMacro 2643 && psp->tokenlineno>1 2644 && (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); 2645 if( addLineMacro ){ 2646 for(z=psp->filename, nBack=0; *z; z++){ 2647 if( *z=='\\' ) nBack++; 2648 } 2649 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); 2650 nLine = lemonStrlen(zLine); 2651 n += nLine + lemonStrlen(psp->filename) + nBack; 2652 } 2653 *psp->declargslot = (char *) realloc(*psp->declargslot, n); 2654 zBuf = *psp->declargslot + nOld; 2655 if( addLineMacro ){ 2656 if( nOld && zBuf[-1]!='\n' ){ 2657 *(zBuf++) = '\n'; 2658 } 2659 memcpy(zBuf, zLine, nLine); 2660 zBuf += nLine; 2661 *(zBuf++) = '"'; 2662 for(z=psp->filename; *z; z++){ 2663 if( *z=='\\' ){ 2664 *(zBuf++) = '\\'; 2665 } 2666 *(zBuf++) = *z; 2667 } 2668 *(zBuf++) = '"'; 2669 *(zBuf++) = '\n'; 2670 } 2671 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ 2672 psp->decllinenoslot[0] = psp->tokenlineno; 2673 } 2674 memcpy(zBuf, zNew, nNew); 2675 zBuf += nNew; 2676 *zBuf = 0; 2677 psp->state = WAITING_FOR_DECL_OR_RULE; 2678 }else{ 2679 ErrorMsg(psp->filename,psp->tokenlineno, 2680 "Illegal argument to %%%s: %s",psp->declkeyword,x); 2681 psp->errorcnt++; 2682 psp->state = RESYNC_AFTER_DECL_ERROR; 2683 } 2684 break; 2685 case WAITING_FOR_FALLBACK_ID: 2686 if( x[0]=='.' ){ 2687 psp->state = WAITING_FOR_DECL_OR_RULE; 2688 }else if( !ISUPPER(x[0]) ){ 2689 ErrorMsg(psp->filename, psp->tokenlineno, 2690 "%%fallback argument \"%s\" should be a token", x); 2691 psp->errorcnt++; 2692 }else{ 2693 struct symbol *sp = Symbol_new(x); 2694 if( psp->fallback==0 ){ 2695 psp->fallback = sp; 2696 }else if( sp->fallback ){ 2697 ErrorMsg(psp->filename, psp->tokenlineno, 2698 "More than one fallback assigned to token %s", x); 2699 psp->errorcnt++; 2700 }else{ 2701 sp->fallback = psp->fallback; 2702 psp->gp->has_fallback = 1; 2703 } 2704 } 2705 break; 2706 case WAITING_FOR_TOKEN_NAME: 2707 /* Tokens do not have to be declared before use. But they can be 2708 ** in order to control their assigned integer number. The number for 2709 ** each token is assigned when it is first seen. So by including 2710 ** 2711 ** %token ONE TWO THREE 2712 ** 2713 ** early in the grammar file, that assigns small consecutive values 2714 ** to each of the tokens ONE TWO and THREE. 2715 */ 2716 if( x[0]=='.' ){ 2717 psp->state = WAITING_FOR_DECL_OR_RULE; 2718 }else if( !ISUPPER(x[0]) ){ 2719 ErrorMsg(psp->filename, psp->tokenlineno, 2720 "%%token argument \"%s\" should be a token", x); 2721 psp->errorcnt++; 2722 }else{ 2723 (void)Symbol_new(x); 2724 } 2725 break; 2726 case WAITING_FOR_WILDCARD_ID: 2727 if( x[0]=='.' ){ 2728 psp->state = WAITING_FOR_DECL_OR_RULE; 2729 }else if( !ISUPPER(x[0]) ){ 2730 ErrorMsg(psp->filename, psp->tokenlineno, 2731 "%%wildcard argument \"%s\" should be a token", x); 2732 psp->errorcnt++; 2733 }else{ 2734 struct symbol *sp = Symbol_new(x); 2735 if( psp->gp->wildcard==0 ){ 2736 psp->gp->wildcard = sp; 2737 }else{ 2738 ErrorMsg(psp->filename, psp->tokenlineno, 2739 "Extra wildcard to token: %s", x); 2740 psp->errorcnt++; 2741 } 2742 } 2743 break; 2744 case WAITING_FOR_CLASS_ID: 2745 if( !ISLOWER(x[0]) ){ 2746 ErrorMsg(psp->filename, psp->tokenlineno, 2747 "%%token_class must be followed by an identifier: %s", x); 2748 psp->errorcnt++; 2749 psp->state = RESYNC_AFTER_DECL_ERROR; 2750 }else if( Symbol_find(x) ){ 2751 ErrorMsg(psp->filename, psp->tokenlineno, 2752 "Symbol \"%s\" already used", x); 2753 psp->errorcnt++; 2754 psp->state = RESYNC_AFTER_DECL_ERROR; 2755 }else{ 2756 psp->tkclass = Symbol_new(x); 2757 psp->tkclass->type = MULTITERMINAL; 2758 psp->state = WAITING_FOR_CLASS_TOKEN; 2759 } 2760 break; 2761 case WAITING_FOR_CLASS_TOKEN: 2762 if( x[0]=='.' ){ 2763 psp->state = WAITING_FOR_DECL_OR_RULE; 2764 }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){ 2765 struct symbol *msp = psp->tkclass; 2766 msp->nsubsym++; 2767 msp->subsym = (struct symbol **) realloc(msp->subsym, 2768 sizeof(struct symbol*)*msp->nsubsym); 2769 if( !ISUPPER(x[0]) ) x++; 2770 msp->subsym[msp->nsubsym-1] = Symbol_new(x); 2771 }else{ 2772 ErrorMsg(psp->filename, psp->tokenlineno, 2773 "%%token_class argument \"%s\" should be a token", x); 2774 psp->errorcnt++; 2775 psp->state = RESYNC_AFTER_DECL_ERROR; 2776 } 2777 break; 2778 case RESYNC_AFTER_RULE_ERROR: 2779 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; 2780 ** break; */ 2781 case RESYNC_AFTER_DECL_ERROR: 2782 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; 2783 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; 2784 break; 2785 } 2786 } 2787 2788 /* The text in the input is part of the argument to an %ifdef or %ifndef. 2789 ** Evaluate the text as a boolean expression. Return true or false. 2790 */ 2791 static int eval_preprocessor_boolean(char *z, int lineno){ 2792 int neg = 0; 2793 int res = 0; 2794 int okTerm = 1; 2795 int i; 2796 for(i=0; z[i]!=0; i++){ 2797 if( ISSPACE(z[i]) ) continue; 2798 if( z[i]=='!' ){ 2799 if( !okTerm ) goto pp_syntax_error; 2800 neg = !neg; 2801 continue; 2802 } 2803 if( z[i]=='|' && z[i+1]=='|' ){ 2804 if( okTerm ) goto pp_syntax_error; 2805 if( res ) return 1; 2806 i++; 2807 okTerm = 1; 2808 continue; 2809 } 2810 if( z[i]=='&' && z[i+1]=='&' ){ 2811 if( okTerm ) goto pp_syntax_error; 2812 if( !res ) return 0; 2813 i++; 2814 okTerm = 1; 2815 continue; 2816 } 2817 if( z[i]=='(' ){ 2818 int k; 2819 int n = 1; 2820 if( !okTerm ) goto pp_syntax_error; 2821 for(k=i+1; z[k]; k++){ 2822 if( z[k]==')' ){ 2823 n--; 2824 if( n==0 ){ 2825 z[k] = 0; 2826 res = eval_preprocessor_boolean(&z[i+1], -1); 2827 z[k] = ')'; 2828 if( res<0 ){ 2829 i = i-res; 2830 goto pp_syntax_error; 2831 } 2832 i = k; 2833 break; 2834 } 2835 }else if( z[k]=='(' ){ 2836 n++; 2837 }else if( z[k]==0 ){ 2838 i = k; 2839 goto pp_syntax_error; 2840 } 2841 } 2842 if( neg ){ 2843 res = !res; 2844 neg = 0; 2845 } 2846 okTerm = 0; 2847 continue; 2848 } 2849 if( ISALPHA(z[i]) ){ 2850 int j, k, n; 2851 if( !okTerm ) goto pp_syntax_error; 2852 for(k=i+1; ISALNUM(z[k]) || z[k]=='_'; k++){} 2853 n = k - i; 2854 res = 0; 2855 for(j=0; j<nDefine; j++){ 2856 if( strncmp(azDefine[j],&z[i],n)==0 && azDefine[j][n]==0 ){ 2857 res = 1; 2858 break; 2859 } 2860 } 2861 i = k-1; 2862 if( neg ){ 2863 res = !res; 2864 neg = 0; 2865 } 2866 okTerm = 0; 2867 continue; 2868 } 2869 goto pp_syntax_error; 2870 } 2871 return res; 2872 2873 pp_syntax_error: 2874 if( lineno>0 ){ 2875 fprintf(stderr, "%%if syntax error on line %d.\n", lineno); 2876 fprintf(stderr, " %.*s <-- syntax error here\n", i+1, z); 2877 exit(1); 2878 }else{ 2879 return -(i+1); 2880 } 2881 } 2882 2883 /* Run the preprocessor over the input file text. The global variables 2884 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined 2885 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and 2886 ** comments them out. Text in between is also commented out as appropriate. 2887 */ 2888 static void preprocess_input(char *z){ 2889 int i, j, k; 2890 int exclude = 0; 2891 int start = 0; 2892 int lineno = 1; 2893 int start_lineno = 1; 2894 for(i=0; z[i]; i++){ 2895 if( z[i]=='\n' ) lineno++; 2896 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; 2897 if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){ 2898 if( exclude ){ 2899 exclude--; 2900 if( exclude==0 ){ 2901 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; 2902 } 2903 } 2904 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; 2905 }else if( strncmp(&z[i],"%else",5)==0 && ISSPACE(z[i+5]) ){ 2906 if( exclude==1){ 2907 exclude = 0; 2908 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; 2909 }else if( exclude==0 ){ 2910 exclude = 1; 2911 start = i; 2912 start_lineno = lineno; 2913 } 2914 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; 2915 }else if( strncmp(&z[i],"%ifdef ",7)==0 2916 || strncmp(&z[i],"%if ",4)==0 2917 || strncmp(&z[i],"%ifndef ",8)==0 ){ 2918 if( exclude ){ 2919 exclude++; 2920 }else{ 2921 int isNot; 2922 int iBool; 2923 for(j=i; z[j] && !ISSPACE(z[j]); j++){} 2924 iBool = j; 2925 isNot = (j==i+7); 2926 while( z[j] && z[j]!='\n' ){ j++; } 2927 k = z[j]; 2928 z[j] = 0; 2929 exclude = eval_preprocessor_boolean(&z[iBool], lineno); 2930 z[j] = k; 2931 if( !isNot ) exclude = !exclude; 2932 if( exclude ){ 2933 start = i; 2934 start_lineno = lineno; 2935 } 2936 } 2937 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; 2938 } 2939 } 2940 if( exclude ){ 2941 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); 2942 exit(1); 2943 } 2944 } 2945 2946 /* In spite of its name, this function is really a scanner. It read 2947 ** in the entire input file (all at once) then tokenizes it. Each 2948 ** token is passed to the function "parseonetoken" which builds all 2949 ** the appropriate data structures in the global state vector "gp". 2950 */ 2951 void Parse(struct lemon *gp) 2952 { 2953 struct pstate ps; 2954 FILE *fp; 2955 char *filebuf; 2956 unsigned int filesize; 2957 int lineno; 2958 int c; 2959 char *cp, *nextcp; 2960 int startline = 0; 2961 2962 memset(&ps, '\0', sizeof(ps)); 2963 ps.gp = gp; 2964 ps.filename = gp->filename; 2965 ps.errorcnt = 0; 2966 ps.state = INITIALIZE; 2967 2968 /* Begin by reading the input file */ 2969 fp = fopen(ps.filename,"rb"); 2970 if( fp==0 ){ 2971 ErrorMsg(ps.filename,0,"Can't open this file for reading."); 2972 gp->errorcnt++; 2973 return; 2974 } 2975 fseek(fp,0,2); 2976 filesize = ftell(fp); 2977 rewind(fp); 2978 filebuf = (char *)malloc( filesize+1 ); 2979 if( filesize>100000000 || filebuf==0 ){ 2980 ErrorMsg(ps.filename,0,"Input file too large."); 2981 free(filebuf); 2982 gp->errorcnt++; 2983 fclose(fp); 2984 return; 2985 } 2986 if( fread(filebuf,1,filesize,fp)!=filesize ){ 2987 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", 2988 filesize); 2989 free(filebuf); 2990 gp->errorcnt++; 2991 fclose(fp); 2992 return; 2993 } 2994 fclose(fp); 2995 filebuf[filesize] = 0; 2996 2997 /* Make an initial pass through the file to handle %ifdef and %ifndef */ 2998 preprocess_input(filebuf); 2999 if( gp->printPreprocessed ){ 3000 printf("%s\n", filebuf); 3001 return; 3002 } 3003 3004 /* Now scan the text of the input file */ 3005 lineno = 1; 3006 for(cp=filebuf; (c= *cp)!=0; ){ 3007 if( c=='\n' ) lineno++; /* Keep track of the line number */ 3008 if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */ 3009 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ 3010 cp+=2; 3011 while( (c= *cp)!=0 && c!='\n' ) cp++; 3012 continue; 3013 } 3014 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ 3015 cp+=2; 3016 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ 3017 if( c=='\n' ) lineno++; 3018 cp++; 3019 } 3020 if( c ) cp++; 3021 continue; 3022 } 3023 ps.tokenstart = cp; /* Mark the beginning of the token */ 3024 ps.tokenlineno = lineno; /* Linenumber on which token begins */ 3025 if( c=='\"' ){ /* String literals */ 3026 cp++; 3027 while( (c= *cp)!=0 && c!='\"' ){ 3028 if( c=='\n' ) lineno++; 3029 cp++; 3030 } 3031 if( c==0 ){ 3032 ErrorMsg(ps.filename,startline, 3033 "String starting on this line is not terminated before " 3034 "the end of the file."); 3035 ps.errorcnt++; 3036 nextcp = cp; 3037 }else{ 3038 nextcp = cp+1; 3039 } 3040 }else if( c=='{' ){ /* A block of C code */ 3041 int level; 3042 cp++; 3043 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ 3044 if( c=='\n' ) lineno++; 3045 else if( c=='{' ) level++; 3046 else if( c=='}' ) level--; 3047 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ 3048 int prevc; 3049 cp = &cp[2]; 3050 prevc = 0; 3051 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ 3052 if( c=='\n' ) lineno++; 3053 prevc = c; 3054 cp++; 3055 } 3056 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ 3057 cp = &cp[2]; 3058 while( (c= *cp)!=0 && c!='\n' ) cp++; 3059 if( c ) lineno++; 3060 }else if( c=='\'' || c=='\"' ){ /* String a character literals */ 3061 int startchar, prevc; 3062 startchar = c; 3063 prevc = 0; 3064 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ 3065 if( c=='\n' ) lineno++; 3066 if( prevc=='\\' ) prevc = 0; 3067 else prevc = c; 3068 } 3069 } 3070 } 3071 if( c==0 ){ 3072 ErrorMsg(ps.filename,ps.tokenlineno, 3073 "C code starting on this line is not terminated before " 3074 "the end of the file."); 3075 ps.errorcnt++; 3076 nextcp = cp; 3077 }else{ 3078 nextcp = cp+1; 3079 } 3080 }else if( ISALNUM(c) ){ /* Identifiers */ 3081 while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; 3082 nextcp = cp; 3083 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ 3084 cp += 3; 3085 nextcp = cp; 3086 }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){ 3087 cp += 2; 3088 while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; 3089 nextcp = cp; 3090 }else{ /* All other (one character) operators */ 3091 cp++; 3092 nextcp = cp; 3093 } 3094 c = *cp; 3095 *cp = 0; /* Null terminate the token */ 3096 parseonetoken(&ps); /* Parse the token */ 3097 *cp = (char)c; /* Restore the buffer */ 3098 cp = nextcp; 3099 } 3100 free(filebuf); /* Release the buffer after parsing */ 3101 gp->rule = ps.firstrule; 3102 gp->errorcnt = ps.errorcnt; 3103 } 3104 /*************************** From the file "plink.c" *********************/ 3105 /* 3106 ** Routines processing configuration follow-set propagation links 3107 ** in the LEMON parser generator. 3108 */ 3109 static struct plink *plink_freelist = 0; 3110 3111 /* Allocate a new plink */ 3112 struct plink *Plink_new(void){ 3113 struct plink *newlink; 3114 3115 if( plink_freelist==0 ){ 3116 int i; 3117 int amt = 100; 3118 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); 3119 if( plink_freelist==0 ){ 3120 fprintf(stderr, 3121 "Unable to allocate memory for a new follow-set propagation link.\n"); 3122 exit(1); 3123 } 3124 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; 3125 plink_freelist[amt-1].next = 0; 3126 } 3127 newlink = plink_freelist; 3128 plink_freelist = plink_freelist->next; 3129 return newlink; 3130 } 3131 3132 /* Add a plink to a plink list */ 3133 void Plink_add(struct plink **plpp, struct config *cfp) 3134 { 3135 struct plink *newlink; 3136 newlink = Plink_new(); 3137 newlink->next = *plpp; 3138 *plpp = newlink; 3139 newlink->cfp = cfp; 3140 } 3141 3142 /* Transfer every plink on the list "from" to the list "to" */ 3143 void Plink_copy(struct plink **to, struct plink *from) 3144 { 3145 struct plink *nextpl; 3146 while( from ){ 3147 nextpl = from->next; 3148 from->next = *to; 3149 *to = from; 3150 from = nextpl; 3151 } 3152 } 3153 3154 /* Delete every plink on the list */ 3155 void Plink_delete(struct plink *plp) 3156 { 3157 struct plink *nextpl; 3158 3159 while( plp ){ 3160 nextpl = plp->next; 3161 plp->next = plink_freelist; 3162 plink_freelist = plp; 3163 plp = nextpl; 3164 } 3165 } 3166 /*********************** From the file "report.c" **************************/ 3167 /* 3168 ** Procedures for generating reports and tables in the LEMON parser generator. 3169 */ 3170 3171 /* Generate a filename with the given suffix. Space to hold the 3172 ** name comes from malloc() and must be freed by the calling 3173 ** function. 3174 */ 3175 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) 3176 { 3177 char *name; 3178 char *cp; 3179 char *filename = lemp->filename; 3180 int sz; 3181 3182 if( outputDir ){ 3183 cp = strrchr(filename, '/'); 3184 if( cp ) filename = cp + 1; 3185 } 3186 sz = lemonStrlen(filename); 3187 sz += lemonStrlen(suffix); 3188 if( outputDir ) sz += lemonStrlen(outputDir) + 1; 3189 sz += 5; 3190 name = (char*)malloc( sz ); 3191 if( name==0 ){ 3192 fprintf(stderr,"Can't allocate space for a filename.\n"); 3193 exit(1); 3194 } 3195 name[0] = 0; 3196 if( outputDir ){ 3197 lemon_strcpy(name, outputDir); 3198 lemon_strcat(name, "/"); 3199 } 3200 lemon_strcat(name,filename); 3201 cp = strrchr(name,'.'); 3202 if( cp ) *cp = 0; 3203 lemon_strcat(name,suffix); 3204 return name; 3205 } 3206 3207 /* Open a file with a name based on the name of the input file, 3208 ** but with a different (specified) suffix, and return a pointer 3209 ** to the stream */ 3210 PRIVATE FILE *file_open( 3211 struct lemon *lemp, 3212 const char *suffix, 3213 const char *mode 3214 ){ 3215 FILE *fp; 3216 3217 if( lemp->outname ) free(lemp->outname); 3218 lemp->outname = file_makename(lemp, suffix); 3219 fp = fopen(lemp->outname,mode); 3220 if( fp==0 && *mode=='w' ){ 3221 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); 3222 lemp->errorcnt++; 3223 return 0; 3224 } 3225 return fp; 3226 } 3227 3228 /* Print the text of a rule 3229 */ 3230 void rule_print(FILE *out, struct rule *rp){ 3231 int i, j; 3232 fprintf(out, "%s",rp->lhs->name); 3233 /* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */ 3234 fprintf(out," ::="); 3235 for(i=0; i<rp->nrhs; i++){ 3236 struct symbol *sp = rp->rhs[i]; 3237 if( sp->type==MULTITERMINAL ){ 3238 fprintf(out," %s", sp->subsym[0]->name); 3239 for(j=1; j<sp->nsubsym; j++){ 3240 fprintf(out,"|%s", sp->subsym[j]->name); 3241 } 3242 }else{ 3243 fprintf(out," %s", sp->name); 3244 } 3245 /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */ 3246 } 3247 } 3248 3249 /* Duplicate the input file without comments and without actions 3250 ** on rules */ 3251 void Reprint(struct lemon *lemp) 3252 { 3253 struct rule *rp; 3254 struct symbol *sp; 3255 int i, j, maxlen, len, ncolumns, skip; 3256 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); 3257 maxlen = 10; 3258 for(i=0; i<lemp->nsymbol; i++){ 3259 sp = lemp->symbols[i]; 3260 len = lemonStrlen(sp->name); 3261 if( len>maxlen ) maxlen = len; 3262 } 3263 ncolumns = 76/(maxlen+5); 3264 if( ncolumns<1 ) ncolumns = 1; 3265 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; 3266 for(i=0; i<skip; i++){ 3267 printf("//"); 3268 for(j=i; j<lemp->nsymbol; j+=skip){ 3269 sp = lemp->symbols[j]; 3270 assert( sp->index==j ); 3271 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); 3272 } 3273 printf("\n"); 3274 } 3275 for(rp=lemp->rule; rp; rp=rp->next){ 3276 rule_print(stdout, rp); 3277 printf("."); 3278 if( rp->precsym ) printf(" [%s]",rp->precsym->name); 3279 /* if( rp->code ) printf("\n %s",rp->code); */ 3280 printf("\n"); 3281 } 3282 } 3283 3284 /* Print a single rule. 3285 */ 3286 void RulePrint(FILE *fp, struct rule *rp, int iCursor){ 3287 struct symbol *sp; 3288 int i, j; 3289 fprintf(fp,"%s ::=",rp->lhs->name); 3290 for(i=0; i<=rp->nrhs; i++){ 3291 if( i==iCursor ) fprintf(fp," *"); 3292 if( i==rp->nrhs ) break; 3293 sp = rp->rhs[i]; 3294 if( sp->type==MULTITERMINAL ){ 3295 fprintf(fp," %s", sp->subsym[0]->name); 3296 for(j=1; j<sp->nsubsym; j++){ 3297 fprintf(fp,"|%s",sp->subsym[j]->name); 3298 } 3299 }else{ 3300 fprintf(fp," %s", sp->name); 3301 } 3302 } 3303 } 3304 3305 /* Print the rule for a configuration. 3306 */ 3307 void ConfigPrint(FILE *fp, struct config *cfp){ 3308 RulePrint(fp, cfp->rp, cfp->dot); 3309 } 3310 3311 /* #define TEST */ 3312 #if 0 3313 /* Print a set */ 3314 PRIVATE void SetPrint(out,set,lemp) 3315 FILE *out; 3316 char *set; 3317 struct lemon *lemp; 3318 { 3319 int i; 3320 char *spacer; 3321 spacer = ""; 3322 fprintf(out,"%12s[",""); 3323 for(i=0; i<lemp->nterminal; i++){ 3324 if( SetFind(set,i) ){ 3325 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); 3326 spacer = " "; 3327 } 3328 } 3329 fprintf(out,"]\n"); 3330 } 3331 3332 /* Print a plink chain */ 3333 PRIVATE void PlinkPrint(out,plp,tag) 3334 FILE *out; 3335 struct plink *plp; 3336 char *tag; 3337 { 3338 while( plp ){ 3339 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); 3340 ConfigPrint(out,plp->cfp); 3341 fprintf(out,"\n"); 3342 plp = plp->next; 3343 } 3344 } 3345 #endif 3346 3347 /* Print an action to the given file descriptor. Return FALSE if 3348 ** nothing was actually printed. 3349 */ 3350 int PrintAction( 3351 struct action *ap, /* The action to print */ 3352 FILE *fp, /* Print the action here */ 3353 int indent /* Indent by this amount */ 3354 ){ 3355 int result = 1; 3356 switch( ap->type ){ 3357 case SHIFT: { 3358 struct state *stp = ap->x.stp; 3359 fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum); 3360 break; 3361 } 3362 case REDUCE: { 3363 struct rule *rp = ap->x.rp; 3364 fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule); 3365 RulePrint(fp, rp, -1); 3366 break; 3367 } 3368 case SHIFTREDUCE: { 3369 struct rule *rp = ap->x.rp; 3370 fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule); 3371 RulePrint(fp, rp, -1); 3372 break; 3373 } 3374 case ACCEPT: 3375 fprintf(fp,"%*s accept",indent,ap->sp->name); 3376 break; 3377 case ERROR: 3378 fprintf(fp,"%*s error",indent,ap->sp->name); 3379 break; 3380 case SRCONFLICT: 3381 case RRCONFLICT: 3382 fprintf(fp,"%*s reduce %-7d ** Parsing conflict **", 3383 indent,ap->sp->name,ap->x.rp->iRule); 3384 break; 3385 case SSCONFLICT: 3386 fprintf(fp,"%*s shift %-7d ** Parsing conflict **", 3387 indent,ap->sp->name,ap->x.stp->statenum); 3388 break; 3389 case SH_RESOLVED: 3390 if( showPrecedenceConflict ){ 3391 fprintf(fp,"%*s shift %-7d -- dropped by precedence", 3392 indent,ap->sp->name,ap->x.stp->statenum); 3393 }else{ 3394 result = 0; 3395 } 3396 break; 3397 case RD_RESOLVED: 3398 if( showPrecedenceConflict ){ 3399 fprintf(fp,"%*s reduce %-7d -- dropped by precedence", 3400 indent,ap->sp->name,ap->x.rp->iRule); 3401 }else{ 3402 result = 0; 3403 } 3404 break; 3405 case NOT_USED: 3406 result = 0; 3407 break; 3408 } 3409 if( result && ap->spOpt ){ 3410 fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name); 3411 } 3412 return result; 3413 } 3414 3415 /* Generate the "*.out" log file */ 3416 void ReportOutput(struct lemon *lemp) 3417 { 3418 int i, n; 3419 struct state *stp; 3420 struct config *cfp; 3421 struct action *ap; 3422 struct rule *rp; 3423 FILE *fp; 3424 3425 fp = file_open(lemp,".out","wb"); 3426 if( fp==0 ) return; 3427 for(i=0; i<lemp->nxstate; i++){ 3428 stp = lemp->sorted[i]; 3429 fprintf(fp,"State %d:\n",stp->statenum); 3430 if( lemp->basisflag ) cfp=stp->bp; 3431 else cfp=stp->cfp; 3432 while( cfp ){ 3433 char buf[20]; 3434 if( cfp->dot==cfp->rp->nrhs ){ 3435 lemon_sprintf(buf,"(%d)",cfp->rp->iRule); 3436 fprintf(fp," %5s ",buf); 3437 }else{ 3438 fprintf(fp," "); 3439 } 3440 ConfigPrint(fp,cfp); 3441 fprintf(fp,"\n"); 3442 #if 0 3443 SetPrint(fp,cfp->fws,lemp); 3444 PlinkPrint(fp,cfp->fplp,"To "); 3445 PlinkPrint(fp,cfp->bplp,"From"); 3446 #endif 3447 if( lemp->basisflag ) cfp=cfp->bp; 3448 else cfp=cfp->next; 3449 } 3450 fprintf(fp,"\n"); 3451 for(ap=stp->ap; ap; ap=ap->next){ 3452 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); 3453 } 3454 fprintf(fp,"\n"); 3455 } 3456 fprintf(fp, "----------------------------------------------------\n"); 3457 fprintf(fp, "Symbols:\n"); 3458 fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n"); 3459 for(i=0; i<lemp->nsymbol; i++){ 3460 int j; 3461 struct symbol *sp; 3462 3463 sp = lemp->symbols[i]; 3464 fprintf(fp, " %3d: %s", i, sp->name); 3465 if( sp->type==NONTERMINAL ){ 3466 fprintf(fp, ":"); 3467 if( sp->lambda ){ 3468 fprintf(fp, " <lambda>"); 3469 } 3470 for(j=0; j<lemp->nterminal; j++){ 3471 if( sp->firstset && SetFind(sp->firstset, j) ){ 3472 fprintf(fp, " %s", lemp->symbols[j]->name); 3473 } 3474 } 3475 } 3476 if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec); 3477 fprintf(fp, "\n"); 3478 } 3479 fprintf(fp, "----------------------------------------------------\n"); 3480 fprintf(fp, "Syntax-only Symbols:\n"); 3481 fprintf(fp, "The following symbols never carry semantic content.\n\n"); 3482 for(i=n=0; i<lemp->nsymbol; i++){ 3483 int w; 3484 struct symbol *sp = lemp->symbols[i]; 3485 if( sp->bContent ) continue; 3486 w = (int)strlen(sp->name); 3487 if( n>0 && n+w>75 ){ 3488 fprintf(fp,"\n"); 3489 n = 0; 3490 } 3491 if( n>0 ){ 3492 fprintf(fp, " "); 3493 n++; 3494 } 3495 fprintf(fp, "%s", sp->name); 3496 n += w; 3497 } 3498 if( n>0 ) fprintf(fp, "\n"); 3499 fprintf(fp, "----------------------------------------------------\n"); 3500 fprintf(fp, "Rules:\n"); 3501 for(rp=lemp->rule; rp; rp=rp->next){ 3502 fprintf(fp, "%4d: ", rp->iRule); 3503 rule_print(fp, rp); 3504 fprintf(fp,"."); 3505 if( rp->precsym ){ 3506 fprintf(fp," [%s precedence=%d]", 3507 rp->precsym->name, rp->precsym->prec); 3508 } 3509 fprintf(fp,"\n"); 3510 } 3511 fclose(fp); 3512 return; 3513 } 3514 3515 /* Search for the file "name" which is in the same directory as 3516 ** the exacutable */ 3517 PRIVATE char *pathsearch(char *argv0, char *name, int modemask) 3518 { 3519 const char *pathlist; 3520 char *pathbufptr = 0; 3521 char *pathbuf = 0; 3522 char *path,*cp; 3523 char c; 3524 3525 #ifdef __WIN32__ 3526 cp = strrchr(argv0,'\\'); 3527 #else 3528 cp = strrchr(argv0,'/'); 3529 #endif 3530 if( cp ){ 3531 c = *cp; 3532 *cp = 0; 3533 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); 3534 if( path ) lemon_sprintf(path,"%s/%s",argv0,name); 3535 *cp = c; 3536 }else{ 3537 pathlist = getenv("PATH"); 3538 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; 3539 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); 3540 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); 3541 if( (pathbuf != 0) && (path!=0) ){ 3542 pathbufptr = pathbuf; 3543 lemon_strcpy(pathbuf, pathlist); 3544 while( *pathbuf ){ 3545 cp = strchr(pathbuf,':'); 3546 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; 3547 c = *cp; 3548 *cp = 0; 3549 lemon_sprintf(path,"%s/%s",pathbuf,name); 3550 *cp = c; 3551 if( c==0 ) pathbuf[0] = 0; 3552 else pathbuf = &cp[1]; 3553 if( access(path,modemask)==0 ) break; 3554 } 3555 } 3556 free(pathbufptr); 3557 } 3558 return path; 3559 } 3560 3561 /* Given an action, compute the integer value for that action 3562 ** which is to be put in the action table of the generated machine. 3563 ** Return negative if no action should be generated. 3564 */ 3565 PRIVATE int compute_action(struct lemon *lemp, struct action *ap) 3566 { 3567 int act; 3568 switch( ap->type ){ 3569 case SHIFT: act = ap->x.stp->statenum; break; 3570 case SHIFTREDUCE: { 3571 /* Since a SHIFT is inherient after a prior REDUCE, convert any 3572 ** SHIFTREDUCE action with a nonterminal on the LHS into a simple 3573 ** REDUCE action: */ 3574 if( ap->sp->index>=lemp->nterminal ){ 3575 act = lemp->minReduce + ap->x.rp->iRule; 3576 }else{ 3577 act = lemp->minShiftReduce + ap->x.rp->iRule; 3578 } 3579 break; 3580 } 3581 case REDUCE: act = lemp->minReduce + ap->x.rp->iRule; break; 3582 case ERROR: act = lemp->errAction; break; 3583 case ACCEPT: act = lemp->accAction; break; 3584 default: act = -1; break; 3585 } 3586 return act; 3587 } 3588 3589 #define LINESIZE 1000 3590 /* The next cluster of routines are for reading the template file 3591 ** and writing the results to the generated parser */ 3592 /* The first function transfers data from "in" to "out" until 3593 ** a line is seen which begins with "%%". The line number is 3594 ** tracked. 3595 ** 3596 ** if name!=0, then any word that begin with "Parse" is changed to 3597 ** begin with *name instead. 3598 */ 3599 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) 3600 { 3601 int i, iStart; 3602 char line[LINESIZE]; 3603 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ 3604 (*lineno)++; 3605 iStart = 0; 3606 if( name ){ 3607 for(i=0; line[i]; i++){ 3608 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 3609 && (i==0 || !ISALPHA(line[i-1])) 3610 ){ 3611 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); 3612 fprintf(out,"%s",name); 3613 i += 4; 3614 iStart = i+1; 3615 } 3616 } 3617 } 3618 fprintf(out,"%s",&line[iStart]); 3619 } 3620 } 3621 3622 /* Skip forward past the header of the template file to the first "%%" 3623 */ 3624 PRIVATE void tplt_skip_header(FILE *in, int *lineno) 3625 { 3626 char line[LINESIZE]; 3627 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ 3628 (*lineno)++; 3629 } 3630 } 3631 3632 /* The next function finds the template file and opens it, returning 3633 ** a pointer to the opened file. */ 3634 PRIVATE FILE *tplt_open(struct lemon *lemp) 3635 { 3636 static char templatename[] = "lempar.c"; 3637 char buf[1000]; 3638 FILE *in; 3639 char *tpltname; 3640 char *toFree = 0; 3641 char *cp; 3642 3643 /* first, see if user specified a template filename on the command line. */ 3644 if (user_templatename != 0) { 3645 if( access(user_templatename,004)==-1 ){ 3646 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", 3647 user_templatename); 3648 lemp->errorcnt++; 3649 return 0; 3650 } 3651 in = fopen(user_templatename,"rb"); 3652 if( in==0 ){ 3653 fprintf(stderr,"Can't open the template file \"%s\".\n", 3654 user_templatename); 3655 lemp->errorcnt++; 3656 return 0; 3657 } 3658 return in; 3659 } 3660 3661 cp = strrchr(lemp->filename,'.'); 3662 if( cp ){ 3663 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); 3664 }else{ 3665 lemon_sprintf(buf,"%s.lt",lemp->filename); 3666 } 3667 if( access(buf,004)==0 ){ 3668 tpltname = buf; 3669 }else if( access(templatename,004)==0 ){ 3670 tpltname = templatename; 3671 }else{ 3672 toFree = tpltname = pathsearch(lemp->argv0,templatename,0); 3673 } 3674 if( tpltname==0 ){ 3675 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", 3676 templatename); 3677 lemp->errorcnt++; 3678 return 0; 3679 } 3680 in = fopen(tpltname,"rb"); 3681 if( in==0 ){ 3682 fprintf(stderr,"Can't open the template file \"%s\".\n",tpltname); 3683 lemp->errorcnt++; 3684 } 3685 free(toFree); 3686 return in; 3687 } 3688 3689 /* Print a #line directive line to the output file. */ 3690 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) 3691 { 3692 fprintf(out,"#line %d \"",lineno); 3693 while( *filename ){ 3694 if( *filename == '\\' ) putc('\\',out); 3695 putc(*filename,out); 3696 filename++; 3697 } 3698 fprintf(out,"\"\n"); 3699 } 3700 3701 /* Print a string to the file and keep the linenumber up to date */ 3702 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) 3703 { 3704 if( str==0 ) return; 3705 while( *str ){ 3706 putc(*str,out); 3707 if( *str=='\n' ) (*lineno)++; 3708 str++; 3709 } 3710 if( str[-1]!='\n' ){ 3711 putc('\n',out); 3712 (*lineno)++; 3713 } 3714 if (!lemp->nolinenosflag) { 3715 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 3716 } 3717 return; 3718 } 3719 3720 /* 3721 ** The following routine emits code for the destructor for the 3722 ** symbol sp 3723 */ 3724 void emit_destructor_code( 3725 FILE *out, 3726 struct symbol *sp, 3727 struct lemon *lemp, 3728 int *lineno 3729 ){ 3730 char *cp = 0; 3731 3732 if( sp->type==TERMINAL ){ 3733 cp = lemp->tokendest; 3734 if( cp==0 ) return; 3735 fprintf(out,"{\n"); (*lineno)++; 3736 }else if( sp->destructor ){ 3737 cp = sp->destructor; 3738 fprintf(out,"{\n"); (*lineno)++; 3739 if( !lemp->nolinenosflag ){ 3740 (*lineno)++; 3741 tplt_linedir(out,sp->destLineno,lemp->filename); 3742 } 3743 }else if( lemp->vardest ){ 3744 cp = lemp->vardest; 3745 if( cp==0 ) return; 3746 fprintf(out,"{\n"); (*lineno)++; 3747 }else{ 3748 assert( 0 ); /* Cannot happen */ 3749 } 3750 for(; *cp; cp++){ 3751 if( *cp=='$' && cp[1]=='$' ){ 3752 fprintf(out,"(yypminor->yy%d)",sp->dtnum); 3753 cp++; 3754 continue; 3755 } 3756 if( *cp=='\n' ) (*lineno)++; 3757 fputc(*cp,out); 3758 } 3759 fprintf(out,"\n"); (*lineno)++; 3760 if (!lemp->nolinenosflag) { 3761 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 3762 } 3763 fprintf(out,"}\n"); (*lineno)++; 3764 return; 3765 } 3766 3767 /* 3768 ** Return TRUE (non-zero) if the given symbol has a destructor. 3769 */ 3770 int has_destructor(struct symbol *sp, struct lemon *lemp) 3771 { 3772 int ret; 3773 if( sp->type==TERMINAL ){ 3774 ret = lemp->tokendest!=0; 3775 }else{ 3776 ret = lemp->vardest!=0 || sp->destructor!=0; 3777 } 3778 return ret; 3779 } 3780 3781 /* 3782 ** Append text to a dynamically allocated string. If zText is 0 then 3783 ** reset the string to be empty again. Always return the complete text 3784 ** of the string (which is overwritten with each call). 3785 ** 3786 ** n bytes of zText are stored. If n==0 then all of zText up to the first 3787 ** \000 terminator is stored. zText can contain up to two instances of 3788 ** %d. The values of p1 and p2 are written into the first and second 3789 ** %d. 3790 ** 3791 ** If n==-1, then the previous character is overwritten. 3792 */ 3793 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ 3794 static char empty[1] = { 0 }; 3795 static char *z = 0; 3796 static int alloced = 0; 3797 static int used = 0; 3798 int c; 3799 char zInt[40]; 3800 if( zText==0 ){ 3801 if( used==0 && z!=0 ) z[0] = 0; 3802 used = 0; 3803 return z; 3804 } 3805 if( n<=0 ){ 3806 if( n<0 ){ 3807 used += n; 3808 assert( used>=0 ); 3809 } 3810 n = lemonStrlen(zText); 3811 } 3812 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ 3813 alloced = n + sizeof(zInt)*2 + used + 200; 3814 z = (char *) realloc(z, alloced); 3815 } 3816 if( z==0 ) return empty; 3817 while( n-- > 0 ){ 3818 c = *(zText++); 3819 if( c=='%' && n>0 && zText[0]=='d' ){ 3820 lemon_sprintf(zInt, "%d", p1); 3821 p1 = p2; 3822 lemon_strcpy(&z[used], zInt); 3823 used += lemonStrlen(&z[used]); 3824 zText++; 3825 n--; 3826 }else{ 3827 z[used++] = (char)c; 3828 } 3829 } 3830 z[used] = 0; 3831 return z; 3832 } 3833 3834 /* 3835 ** Write and transform the rp->code string so that symbols are expanded. 3836 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate. 3837 ** 3838 ** Return 1 if the expanded code requires that "yylhsminor" local variable 3839 ** to be defined. 3840 */ 3841 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){ 3842 char *cp, *xp; 3843 int i; 3844 int rc = 0; /* True if yylhsminor is used */ 3845 int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */ 3846 const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */ 3847 char lhsused = 0; /* True if the LHS element has been used */ 3848 char lhsdirect; /* True if LHS writes directly into stack */ 3849 char used[MAXRHS]; /* True for each RHS element which is used */ 3850 char zLhs[50]; /* Convert the LHS symbol into this string */ 3851 char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */ 3852 3853 for(i=0; i<rp->nrhs; i++) used[i] = 0; 3854 lhsused = 0; 3855 3856 if( rp->code==0 ){ 3857 static char newlinestr[2] = { '\n', '\0' }; 3858 rp->code = newlinestr; 3859 rp->line = rp->ruleline; 3860 rp->noCode = 1; 3861 }else{ 3862 rp->noCode = 0; 3863 } 3864 3865 3866 if( rp->nrhs==0 ){ 3867 /* If there are no RHS symbols, then writing directly to the LHS is ok */ 3868 lhsdirect = 1; 3869 }else if( rp->rhsalias[0]==0 ){ 3870 /* The left-most RHS symbol has no value. LHS direct is ok. But 3871 ** we have to call the distructor on the RHS symbol first. */ 3872 lhsdirect = 1; 3873 if( has_destructor(rp->rhs[0],lemp) ){ 3874 append_str(0,0,0,0); 3875 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, 3876 rp->rhs[0]->index,1-rp->nrhs); 3877 rp->codePrefix = Strsafe(append_str(0,0,0,0)); 3878 rp->noCode = 0; 3879 } 3880 }else if( rp->lhsalias==0 ){ 3881 /* There is no LHS value symbol. */ 3882 lhsdirect = 1; 3883 }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){ 3884 /* The LHS symbol and the left-most RHS symbol are the same, so 3885 ** direct writing is allowed */ 3886 lhsdirect = 1; 3887 lhsused = 1; 3888 used[0] = 1; 3889 if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){ 3890 ErrorMsg(lemp->filename,rp->ruleline, 3891 "%s(%s) and %s(%s) share the same label but have " 3892 "different datatypes.", 3893 rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]); 3894 lemp->errorcnt++; 3895 } 3896 }else{ 3897 lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/", 3898 rp->lhsalias, rp->rhsalias[0]); 3899 zSkip = strstr(rp->code, zOvwrt); 3900 if( zSkip!=0 ){ 3901 /* The code contains a special comment that indicates that it is safe 3902 ** for the LHS label to overwrite left-most RHS label. */ 3903 lhsdirect = 1; 3904 }else{ 3905 lhsdirect = 0; 3906 } 3907 } 3908 if( lhsdirect ){ 3909 sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum); 3910 }else{ 3911 rc = 1; 3912 sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum); 3913 } 3914 3915 append_str(0,0,0,0); 3916 3917 /* This const cast is wrong but harmless, if we're careful. */ 3918 for(cp=(char *)rp->code; *cp; cp++){ 3919 if( cp==zSkip ){ 3920 append_str(zOvwrt,0,0,0); 3921 cp += lemonStrlen(zOvwrt)-1; 3922 dontUseRhs0 = 1; 3923 continue; 3924 } 3925 if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){ 3926 char saved; 3927 for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++); 3928 saved = *xp; 3929 *xp = 0; 3930 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ 3931 append_str(zLhs,0,0,0); 3932 cp = xp; 3933 lhsused = 1; 3934 }else{ 3935 for(i=0; i<rp->nrhs; i++){ 3936 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ 3937 if( i==0 && dontUseRhs0 ){ 3938 ErrorMsg(lemp->filename,rp->ruleline, 3939 "Label %s used after '%s'.", 3940 rp->rhsalias[0], zOvwrt); 3941 lemp->errorcnt++; 3942 }else if( cp!=rp->code && cp[-1]=='@' ){ 3943 /* If the argument is of the form @X then substituted 3944 ** the token number of X, not the value of X */ 3945 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); 3946 }else{ 3947 struct symbol *sp = rp->rhs[i]; 3948 int dtnum; 3949 if( sp->type==MULTITERMINAL ){ 3950 dtnum = sp->subsym[0]->dtnum; 3951 }else{ 3952 dtnum = sp->dtnum; 3953 } 3954 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); 3955 } 3956 cp = xp; 3957 used[i] = 1; 3958 break; 3959 } 3960 } 3961 } 3962 *xp = saved; 3963 } 3964 append_str(cp, 1, 0, 0); 3965 } /* End loop */ 3966 3967 /* Main code generation completed */ 3968 cp = append_str(0,0,0,0); 3969 if( cp && cp[0] ) rp->code = Strsafe(cp); 3970 append_str(0,0,0,0); 3971 3972 /* Check to make sure the LHS has been used */ 3973 if( rp->lhsalias && !lhsused ){ 3974 ErrorMsg(lemp->filename,rp->ruleline, 3975 "Label \"%s\" for \"%s(%s)\" is never used.", 3976 rp->lhsalias,rp->lhs->name,rp->lhsalias); 3977 lemp->errorcnt++; 3978 } 3979 3980 /* Generate destructor code for RHS minor values which are not referenced. 3981 ** Generate error messages for unused labels and duplicate labels. 3982 */ 3983 for(i=0; i<rp->nrhs; i++){ 3984 if( rp->rhsalias[i] ){ 3985 if( i>0 ){ 3986 int j; 3987 if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){ 3988 ErrorMsg(lemp->filename,rp->ruleline, 3989 "%s(%s) has the same label as the LHS but is not the left-most " 3990 "symbol on the RHS.", 3991 rp->rhs[i]->name, rp->rhsalias[i]); 3992 lemp->errorcnt++; 3993 } 3994 for(j=0; j<i; j++){ 3995 if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){ 3996 ErrorMsg(lemp->filename,rp->ruleline, 3997 "Label %s used for multiple symbols on the RHS of a rule.", 3998 rp->rhsalias[i]); 3999 lemp->errorcnt++; 4000 break; 4001 } 4002 } 4003 } 4004 if( !used[i] ){ 4005 ErrorMsg(lemp->filename,rp->ruleline, 4006 "Label %s for \"%s(%s)\" is never used.", 4007 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); 4008 lemp->errorcnt++; 4009 } 4010 }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){ 4011 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, 4012 rp->rhs[i]->index,i-rp->nrhs+1); 4013 } 4014 } 4015 4016 /* If unable to write LHS values directly into the stack, write the 4017 ** saved LHS value now. */ 4018 if( lhsdirect==0 ){ 4019 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum); 4020 append_str(zLhs, 0, 0, 0); 4021 append_str(";\n", 0, 0, 0); 4022 } 4023 4024 /* Suffix code generation complete */ 4025 cp = append_str(0,0,0,0); 4026 if( cp && cp[0] ){ 4027 rp->codeSuffix = Strsafe(cp); 4028 rp->noCode = 0; 4029 } 4030 4031 return rc; 4032 } 4033 4034 /* 4035 ** Generate code which executes when the rule "rp" is reduced. Write 4036 ** the code to "out". Make sure lineno stays up-to-date. 4037 */ 4038 PRIVATE void emit_code( 4039 FILE *out, 4040 struct rule *rp, 4041 struct lemon *lemp, 4042 int *lineno 4043 ){ 4044 const char *cp; 4045 4046 /* Setup code prior to the #line directive */ 4047 if( rp->codePrefix && rp->codePrefix[0] ){ 4048 fprintf(out, "{%s", rp->codePrefix); 4049 for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } 4050 } 4051 4052 /* Generate code to do the reduce action */ 4053 if( rp->code ){ 4054 if( !lemp->nolinenosflag ){ 4055 (*lineno)++; 4056 tplt_linedir(out,rp->line,lemp->filename); 4057 } 4058 fprintf(out,"{%s",rp->code); 4059 for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } 4060 fprintf(out,"}\n"); (*lineno)++; 4061 if( !lemp->nolinenosflag ){ 4062 (*lineno)++; 4063 tplt_linedir(out,*lineno,lemp->outname); 4064 } 4065 } 4066 4067 /* Generate breakdown code that occurs after the #line directive */ 4068 if( rp->codeSuffix && rp->codeSuffix[0] ){ 4069 fprintf(out, "%s", rp->codeSuffix); 4070 for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } 4071 } 4072 4073 if( rp->codePrefix ){ 4074 fprintf(out, "}\n"); (*lineno)++; 4075 } 4076 4077 return; 4078 } 4079 4080 /* 4081 ** Print the definition of the union used for the parser's data stack. 4082 ** This union contains fields for every possible data type for tokens 4083 ** and nonterminals. In the process of computing and printing this 4084 ** union, also set the ".dtnum" field of every terminal and nonterminal 4085 ** symbol. 4086 */ 4087 void print_stack_union( 4088 FILE *out, /* The output stream */ 4089 struct lemon *lemp, /* The main info structure for this parser */ 4090 int *plineno, /* Pointer to the line number */ 4091 int mhflag /* True if generating makeheaders output */ 4092 ){ 4093 int lineno = *plineno; /* The line number of the output */ 4094 char **types; /* A hash table of datatypes */ 4095 int arraysize; /* Size of the "types" array */ 4096 int maxdtlength; /* Maximum length of any ".datatype" field. */ 4097 char *stddt; /* Standardized name for a datatype */ 4098 int i,j; /* Loop counters */ 4099 unsigned hash; /* For hashing the name of a type */ 4100 const char *name; /* Name of the parser */ 4101 4102 /* Allocate and initialize types[] and allocate stddt[] */ 4103 arraysize = lemp->nsymbol * 2; 4104 types = (char**)calloc( arraysize, sizeof(char*) ); 4105 if( types==0 ){ 4106 fprintf(stderr,"Out of memory.\n"); 4107 exit(1); 4108 } 4109 for(i=0; i<arraysize; i++) types[i] = 0; 4110 maxdtlength = 0; 4111 if( lemp->vartype ){ 4112 maxdtlength = lemonStrlen(lemp->vartype); 4113 } 4114 for(i=0; i<lemp->nsymbol; i++){ 4115 int len; 4116 struct symbol *sp = lemp->symbols[i]; 4117 if( sp->datatype==0 ) continue; 4118 len = lemonStrlen(sp->datatype); 4119 if( len>maxdtlength ) maxdtlength = len; 4120 } 4121 stddt = (char*)malloc( maxdtlength*2 + 1 ); 4122 if( stddt==0 ){ 4123 fprintf(stderr,"Out of memory.\n"); 4124 exit(1); 4125 } 4126 4127 /* Build a hash table of datatypes. The ".dtnum" field of each symbol 4128 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is 4129 ** used for terminal symbols. If there is no %default_type defined then 4130 ** 0 is also used as the .dtnum value for nonterminals which do not specify 4131 ** a datatype using the %type directive. 4132 */ 4133 for(i=0; i<lemp->nsymbol; i++){ 4134 struct symbol *sp = lemp->symbols[i]; 4135 char *cp; 4136 if( sp==lemp->errsym ){ 4137 sp->dtnum = arraysize+1; 4138 continue; 4139 } 4140 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ 4141 sp->dtnum = 0; 4142 continue; 4143 } 4144 cp = sp->datatype; 4145 if( cp==0 ) cp = lemp->vartype; 4146 j = 0; 4147 while( ISSPACE(*cp) ) cp++; 4148 while( *cp ) stddt[j++] = *cp++; 4149 while( j>0 && ISSPACE(stddt[j-1]) ) j--; 4150 stddt[j] = 0; 4151 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ 4152 sp->dtnum = 0; 4153 continue; 4154 } 4155 hash = 0; 4156 for(j=0; stddt[j]; j++){ 4157 hash = hash*53 + stddt[j]; 4158 } 4159 hash = (hash & 0x7fffffff)%arraysize; 4160 while( types[hash] ){ 4161 if( strcmp(types[hash],stddt)==0 ){ 4162 sp->dtnum = hash + 1; 4163 break; 4164 } 4165 hash++; 4166 if( hash>=(unsigned)arraysize ) hash = 0; 4167 } 4168 if( types[hash]==0 ){ 4169 sp->dtnum = hash + 1; 4170 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); 4171 if( types[hash]==0 ){ 4172 fprintf(stderr,"Out of memory.\n"); 4173 exit(1); 4174 } 4175 lemon_strcpy(types[hash],stddt); 4176 } 4177 } 4178 4179 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ 4180 name = lemp->name ? lemp->name : "Parse"; 4181 lineno = *plineno; 4182 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } 4183 fprintf(out,"#define %sTOKENTYPE %s\n",name, 4184 lemp->tokentype?lemp->tokentype:"void*"); lineno++; 4185 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } 4186 fprintf(out,"typedef union {\n"); lineno++; 4187 fprintf(out," int yyinit;\n"); lineno++; 4188 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; 4189 for(i=0; i<arraysize; i++){ 4190 if( types[i]==0 ) continue; 4191 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; 4192 free(types[i]); 4193 } 4194 if( lemp->errsym && lemp->errsym->useCnt ){ 4195 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; 4196 } 4197 free(stddt); 4198 free(types); 4199 fprintf(out,"} YYMINORTYPE;\n"); lineno++; 4200 *plineno = lineno; 4201 } 4202 4203 /* 4204 ** Return the name of a C datatype able to represent values between 4205 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof 4206 ** for that type (1, 2, or 4) into *pnByte. 4207 */ 4208 static const char *minimum_size_type(int lwr, int upr, int *pnByte){ 4209 const char *zType = "int"; 4210 int nByte = 4; 4211 if( lwr>=0 ){ 4212 if( upr<=255 ){ 4213 zType = "unsigned char"; 4214 nByte = 1; 4215 }else if( upr<65535 ){ 4216 zType = "unsigned short int"; 4217 nByte = 2; 4218 }else{ 4219 zType = "unsigned int"; 4220 nByte = 4; 4221 } 4222 }else if( lwr>=-127 && upr<=127 ){ 4223 zType = "signed char"; 4224 nByte = 1; 4225 }else if( lwr>=-32767 && upr<32767 ){ 4226 zType = "short"; 4227 nByte = 2; 4228 } 4229 if( pnByte ) *pnByte = nByte; 4230 return zType; 4231 } 4232 4233 /* 4234 ** Each state contains a set of token transaction and a set of 4235 ** nonterminal transactions. Each of these sets makes an instance 4236 ** of the following structure. An array of these structures is used 4237 ** to order the creation of entries in the yy_action[] table. 4238 */ 4239 struct axset { 4240 struct state *stp; /* A pointer to a state */ 4241 int isTkn; /* True to use tokens. False for non-terminals */ 4242 int nAction; /* Number of actions */ 4243 int iOrder; /* Original order of action sets */ 4244 }; 4245 4246 /* 4247 ** Compare to axset structures for sorting purposes 4248 */ 4249 static int axset_compare(const void *a, const void *b){ 4250 struct axset *p1 = (struct axset*)a; 4251 struct axset *p2 = (struct axset*)b; 4252 int c; 4253 c = p2->nAction - p1->nAction; 4254 if( c==0 ){ 4255 c = p1->iOrder - p2->iOrder; 4256 } 4257 assert( c!=0 || p1==p2 ); 4258 return c; 4259 } 4260 4261 /* 4262 ** Write text on "out" that describes the rule "rp". 4263 */ 4264 static void writeRuleText(FILE *out, struct rule *rp){ 4265 int j; 4266 fprintf(out,"%s ::=", rp->lhs->name); 4267 for(j=0; j<rp->nrhs; j++){ 4268 struct symbol *sp = rp->rhs[j]; 4269 if( sp->type!=MULTITERMINAL ){ 4270 fprintf(out," %s", sp->name); 4271 }else{ 4272 int k; 4273 fprintf(out," %s", sp->subsym[0]->name); 4274 for(k=1; k<sp->nsubsym; k++){ 4275 fprintf(out,"|%s",sp->subsym[k]->name); 4276 } 4277 } 4278 } 4279 } 4280 4281 4282 /* Generate C source code for the parser */ 4283 void ReportTable( 4284 struct lemon *lemp, 4285 int mhflag, /* Output in makeheaders format if true */ 4286 int sqlFlag /* Generate the *.sql file too */ 4287 ){ 4288 FILE *out, *in, *sql; 4289 char line[LINESIZE]; 4290 int lineno; 4291 struct state *stp; 4292 struct action *ap; 4293 struct rule *rp; 4294 struct acttab *pActtab; 4295 int i, j, n, sz; 4296 int nLookAhead; 4297 int szActionType; /* sizeof(YYACTIONTYPE) */ 4298 int szCodeType; /* sizeof(YYCODETYPE) */ 4299 const char *name; 4300 int mnTknOfst, mxTknOfst; 4301 int mnNtOfst, mxNtOfst; 4302 struct axset *ax; 4303 char *prefix; 4304 4305 lemp->minShiftReduce = lemp->nstate; 4306 lemp->errAction = lemp->minShiftReduce + lemp->nrule; 4307 lemp->accAction = lemp->errAction + 1; 4308 lemp->noAction = lemp->accAction + 1; 4309 lemp->minReduce = lemp->noAction + 1; 4310 lemp->maxAction = lemp->minReduce + lemp->nrule; 4311 4312 in = tplt_open(lemp); 4313 if( in==0 ) return; 4314 out = file_open(lemp,".c","wb"); 4315 if( out==0 ){ 4316 fclose(in); 4317 return; 4318 } 4319 if( sqlFlag==0 ){ 4320 sql = 0; 4321 }else{ 4322 sql = file_open(lemp, ".sql", "wb"); 4323 if( sql==0 ){ 4324 fclose(in); 4325 fclose(out); 4326 return; 4327 } 4328 fprintf(sql, 4329 "BEGIN;\n" 4330 "CREATE TABLE symbol(\n" 4331 " id INTEGER PRIMARY KEY,\n" 4332 " name TEXT NOT NULL,\n" 4333 " isTerminal BOOLEAN NOT NULL,\n" 4334 " fallback INTEGER REFERENCES symbol" 4335 " DEFERRABLE INITIALLY DEFERRED\n" 4336 ");\n" 4337 ); 4338 for(i=0; i<lemp->nsymbol; i++){ 4339 fprintf(sql, 4340 "INSERT INTO symbol(id,name,isTerminal,fallback)" 4341 "VALUES(%d,'%s',%s", 4342 i, lemp->symbols[i]->name, 4343 i<lemp->nterminal ? "TRUE" : "FALSE" 4344 ); 4345 if( lemp->symbols[i]->fallback ){ 4346 fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index); 4347 }else{ 4348 fprintf(sql, ",NULL);\n"); 4349 } 4350 } 4351 fprintf(sql, 4352 "CREATE TABLE rule(\n" 4353 " ruleid INTEGER PRIMARY KEY,\n" 4354 " lhs INTEGER REFERENCES symbol(id),\n" 4355 " txt TEXT\n" 4356 ");\n" 4357 "CREATE TABLE rulerhs(\n" 4358 " ruleid INTEGER REFERENCES rule(ruleid),\n" 4359 " pos INTEGER,\n" 4360 " sym INTEGER REFERENCES symbol(id)\n" 4361 ");\n" 4362 ); 4363 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ 4364 assert( i==rp->iRule ); 4365 fprintf(sql, 4366 "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'", 4367 rp->iRule, rp->lhs->index 4368 ); 4369 writeRuleText(sql, rp); 4370 fprintf(sql,"');\n"); 4371 for(j=0; j<rp->nrhs; j++){ 4372 struct symbol *sp = rp->rhs[j]; 4373 if( sp->type!=MULTITERMINAL ){ 4374 fprintf(sql, 4375 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n", 4376 i,j,sp->index 4377 ); 4378 }else{ 4379 int k; 4380 for(k=0; k<sp->nsubsym; k++){ 4381 fprintf(sql, 4382 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n", 4383 i,j,sp->subsym[k]->index 4384 ); 4385 } 4386 } 4387 } 4388 } 4389 fprintf(sql, "COMMIT;\n"); 4390 } 4391 lineno = 1; 4392 4393 fprintf(out, 4394 "/* This file is automatically generated by Lemon from input grammar\n" 4395 "** source file \"%s\". */\n", lemp->filename); lineno += 2; 4396 4397 /* The first %include directive begins with a C-language comment, 4398 ** then skip over the header comment of the template file 4399 */ 4400 if( lemp->include==0 ) lemp->include = ""; 4401 for(i=0; ISSPACE(lemp->include[i]); i++){ 4402 if( lemp->include[i]=='\n' ){ 4403 lemp->include += i+1; 4404 i = -1; 4405 } 4406 } 4407 if( lemp->include[0]=='/' ){ 4408 tplt_skip_header(in,&lineno); 4409 }else{ 4410 tplt_xfer(lemp->name,in,out,&lineno); 4411 } 4412 4413 /* Generate the include code, if any */ 4414 tplt_print(out,lemp,lemp->include,&lineno); 4415 if( mhflag ){ 4416 char *incName = file_makename(lemp, ".h"); 4417 fprintf(out,"#include \"%s\"\n", incName); lineno++; 4418 free(incName); 4419 } 4420 tplt_xfer(lemp->name,in,out,&lineno); 4421 4422 /* Generate #defines for all tokens */ 4423 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; 4424 else prefix = ""; 4425 if( mhflag ){ 4426 fprintf(out,"#if INTERFACE\n"); lineno++; 4427 }else{ 4428 fprintf(out,"#ifndef %s%s\n", prefix, lemp->symbols[1]->name); 4429 } 4430 for(i=1; i<lemp->nterminal; i++){ 4431 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); 4432 lineno++; 4433 } 4434 fprintf(out,"#endif\n"); lineno++; 4435 tplt_xfer(lemp->name,in,out,&lineno); 4436 4437 /* Generate the defines */ 4438 fprintf(out,"#define YYCODETYPE %s\n", 4439 minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++; 4440 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol); lineno++; 4441 fprintf(out,"#define YYACTIONTYPE %s\n", 4442 minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++; 4443 if( lemp->wildcard ){ 4444 fprintf(out,"#define YYWILDCARD %d\n", 4445 lemp->wildcard->index); lineno++; 4446 } 4447 print_stack_union(out,lemp,&lineno,mhflag); 4448 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; 4449 if( lemp->stacksize ){ 4450 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; 4451 }else{ 4452 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; 4453 } 4454 fprintf(out, "#endif\n"); lineno++; 4455 if( mhflag ){ 4456 fprintf(out,"#if INTERFACE\n"); lineno++; 4457 } 4458 name = lemp->name ? lemp->name : "Parse"; 4459 if( lemp->arg && lemp->arg[0] ){ 4460 i = lemonStrlen(lemp->arg); 4461 while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--; 4462 while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; 4463 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; 4464 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; 4465 fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]); lineno++; 4466 fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n", 4467 name,lemp->arg,&lemp->arg[i]); lineno++; 4468 fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n", 4469 name,&lemp->arg[i],&lemp->arg[i]); lineno++; 4470 }else{ 4471 fprintf(out,"#define %sARG_SDECL\n",name); lineno++; 4472 fprintf(out,"#define %sARG_PDECL\n",name); lineno++; 4473 fprintf(out,"#define %sARG_PARAM\n",name); lineno++; 4474 fprintf(out,"#define %sARG_FETCH\n",name); lineno++; 4475 fprintf(out,"#define %sARG_STORE\n",name); lineno++; 4476 } 4477 if( lemp->ctx && lemp->ctx[0] ){ 4478 i = lemonStrlen(lemp->ctx); 4479 while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--; 4480 while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--; 4481 fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx); lineno++; 4482 fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx); lineno++; 4483 fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]); lineno++; 4484 fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n", 4485 name,lemp->ctx,&lemp->ctx[i]); lineno++; 4486 fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n", 4487 name,&lemp->ctx[i],&lemp->ctx[i]); lineno++; 4488 }else{ 4489 fprintf(out,"#define %sCTX_SDECL\n",name); lineno++; 4490 fprintf(out,"#define %sCTX_PDECL\n",name); lineno++; 4491 fprintf(out,"#define %sCTX_PARAM\n",name); lineno++; 4492 fprintf(out,"#define %sCTX_FETCH\n",name); lineno++; 4493 fprintf(out,"#define %sCTX_STORE\n",name); lineno++; 4494 } 4495 if( mhflag ){ 4496 fprintf(out,"#endif\n"); lineno++; 4497 } 4498 if( lemp->errsym && lemp->errsym->useCnt ){ 4499 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; 4500 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; 4501 } 4502 if( lemp->has_fallback ){ 4503 fprintf(out,"#define YYFALLBACK 1\n"); lineno++; 4504 } 4505 4506 /* Compute the action table, but do not output it yet. The action 4507 ** table must be computed before generating the YYNSTATE macro because 4508 ** we need to know how many states can be eliminated. 4509 */ 4510 ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0])); 4511 if( ax==0 ){ 4512 fprintf(stderr,"malloc failed\n"); 4513 exit(1); 4514 } 4515 for(i=0; i<lemp->nxstate; i++){ 4516 stp = lemp->sorted[i]; 4517 ax[i*2].stp = stp; 4518 ax[i*2].isTkn = 1; 4519 ax[i*2].nAction = stp->nTknAct; 4520 ax[i*2+1].stp = stp; 4521 ax[i*2+1].isTkn = 0; 4522 ax[i*2+1].nAction = stp->nNtAct; 4523 } 4524 mxTknOfst = mnTknOfst = 0; 4525 mxNtOfst = mnNtOfst = 0; 4526 /* In an effort to minimize the action table size, use the heuristic 4527 ** of placing the largest action sets first */ 4528 for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i; 4529 qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare); 4530 pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal); 4531 for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){ 4532 stp = ax[i].stp; 4533 if( ax[i].isTkn ){ 4534 for(ap=stp->ap; ap; ap=ap->next){ 4535 int action; 4536 if( ap->sp->index>=lemp->nterminal ) continue; 4537 action = compute_action(lemp, ap); 4538 if( action<0 ) continue; 4539 acttab_action(pActtab, ap->sp->index, action); 4540 } 4541 stp->iTknOfst = acttab_insert(pActtab, 1); 4542 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; 4543 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; 4544 }else{ 4545 for(ap=stp->ap; ap; ap=ap->next){ 4546 int action; 4547 if( ap->sp->index<lemp->nterminal ) continue; 4548 if( ap->sp->index==lemp->nsymbol ) continue; 4549 action = compute_action(lemp, ap); 4550 if( action<0 ) continue; 4551 acttab_action(pActtab, ap->sp->index, action); 4552 } 4553 stp->iNtOfst = acttab_insert(pActtab, 0); 4554 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; 4555 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; 4556 } 4557 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */ 4558 { int jj, nn; 4559 for(jj=nn=0; jj<pActtab->nAction; jj++){ 4560 if( pActtab->aAction[jj].action<0 ) nn++; 4561 } 4562 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n", 4563 i, stp->statenum, ax[i].isTkn ? "Token" : "Var ", 4564 ax[i].nAction, pActtab->nAction, nn); 4565 } 4566 #endif 4567 } 4568 free(ax); 4569 4570 /* Mark rules that are actually used for reduce actions after all 4571 ** optimizations have been applied 4572 */ 4573 for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE; 4574 for(i=0; i<lemp->nxstate; i++){ 4575 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ 4576 if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){ 4577 ap->x.rp->doesReduce = 1; 4578 } 4579 } 4580 } 4581 4582 /* Finish rendering the constants now that the action table has 4583 ** been computed */ 4584 fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++; 4585 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; 4586 fprintf(out,"#define YYNRULE_WITH_ACTION %d\n",lemp->nruleWithAction); 4587 lineno++; 4588 fprintf(out,"#define YYNTOKEN %d\n",lemp->nterminal); lineno++; 4589 fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++; 4590 i = lemp->minShiftReduce; 4591 fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",i); lineno++; 4592 i += lemp->nrule; 4593 fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++; 4594 fprintf(out,"#define YY_ERROR_ACTION %d\n", lemp->errAction); lineno++; 4595 fprintf(out,"#define YY_ACCEPT_ACTION %d\n", lemp->accAction); lineno++; 4596 fprintf(out,"#define YY_NO_ACTION %d\n", lemp->noAction); lineno++; 4597 fprintf(out,"#define YY_MIN_REDUCE %d\n", lemp->minReduce); lineno++; 4598 i = lemp->minReduce + lemp->nrule; 4599 fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++; 4600 tplt_xfer(lemp->name,in,out,&lineno); 4601 4602 /* Now output the action table and its associates: 4603 ** 4604 ** yy_action[] A single table containing all actions. 4605 ** yy_lookahead[] A table containing the lookahead for each entry in 4606 ** yy_action. Used to detect hash collisions. 4607 ** yy_shift_ofst[] For each state, the offset into yy_action for 4608 ** shifting terminals. 4609 ** yy_reduce_ofst[] For each state, the offset into yy_action for 4610 ** shifting non-terminals after a reduce. 4611 ** yy_default[] Default action for each state. 4612 */ 4613 4614 /* Output the yy_action table */ 4615 lemp->nactiontab = n = acttab_action_size(pActtab); 4616 lemp->tablesize += n*szActionType; 4617 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; 4618 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; 4619 for(i=j=0; i<n; i++){ 4620 int action = acttab_yyaction(pActtab, i); 4621 if( action<0 ) action = lemp->noAction; 4622 if( j==0 ) fprintf(out," /* %5d */ ", i); 4623 fprintf(out, " %4d,", action); 4624 if( j==9 || i==n-1 ){ 4625 fprintf(out, "\n"); lineno++; 4626 j = 0; 4627 }else{ 4628 j++; 4629 } 4630 } 4631 fprintf(out, "};\n"); lineno++; 4632 4633 /* Output the yy_lookahead table */ 4634 lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab); 4635 lemp->tablesize += n*szCodeType; 4636 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; 4637 for(i=j=0; i<n; i++){ 4638 int la = acttab_yylookahead(pActtab, i); 4639 if( la<0 ) la = lemp->nsymbol; 4640 if( j==0 ) fprintf(out," /* %5d */ ", i); 4641 fprintf(out, " %4d,", la); 4642 if( j==9 ){ 4643 fprintf(out, "\n"); lineno++; 4644 j = 0; 4645 }else{ 4646 j++; 4647 } 4648 } 4649 /* Add extra entries to the end of the yy_lookahead[] table so that 4650 ** yy_shift_ofst[]+iToken will always be a valid index into the array, 4651 ** even for the largest possible value of yy_shift_ofst[] and iToken. */ 4652 nLookAhead = lemp->nterminal + lemp->nactiontab; 4653 while( i<nLookAhead ){ 4654 if( j==0 ) fprintf(out," /* %5d */ ", i); 4655 fprintf(out, " %4d,", lemp->nterminal); 4656 if( j==9 ){ 4657 fprintf(out, "\n"); lineno++; 4658 j = 0; 4659 }else{ 4660 j++; 4661 } 4662 i++; 4663 } 4664 if( j>0 ){ fprintf(out, "\n"); lineno++; } 4665 fprintf(out, "};\n"); lineno++; 4666 4667 /* Output the yy_shift_ofst[] table */ 4668 n = lemp->nxstate; 4669 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; 4670 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; 4671 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; 4672 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; 4673 fprintf(out, "static const %s yy_shift_ofst[] = {\n", 4674 minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz)); 4675 lineno++; 4676 lemp->tablesize += n*sz; 4677 for(i=j=0; i<n; i++){ 4678 int ofst; 4679 stp = lemp->sorted[i]; 4680 ofst = stp->iTknOfst; 4681 if( ofst==NO_OFFSET ) ofst = lemp->nactiontab; 4682 if( j==0 ) fprintf(out," /* %5d */ ", i); 4683 fprintf(out, " %4d,", ofst); 4684 if( j==9 || i==n-1 ){ 4685 fprintf(out, "\n"); lineno++; 4686 j = 0; 4687 }else{ 4688 j++; 4689 } 4690 } 4691 fprintf(out, "};\n"); lineno++; 4692 4693 /* Output the yy_reduce_ofst[] table */ 4694 n = lemp->nxstate; 4695 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; 4696 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; 4697 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; 4698 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; 4699 fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 4700 minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++; 4701 lemp->tablesize += n*sz; 4702 for(i=j=0; i<n; i++){ 4703 int ofst; 4704 stp = lemp->sorted[i]; 4705 ofst = stp->iNtOfst; 4706 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; 4707 if( j==0 ) fprintf(out," /* %5d */ ", i); 4708 fprintf(out, " %4d,", ofst); 4709 if( j==9 || i==n-1 ){ 4710 fprintf(out, "\n"); lineno++; 4711 j = 0; 4712 }else{ 4713 j++; 4714 } 4715 } 4716 fprintf(out, "};\n"); lineno++; 4717 4718 /* Output the default action table */ 4719 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; 4720 n = lemp->nxstate; 4721 lemp->tablesize += n*szActionType; 4722 for(i=j=0; i<n; i++){ 4723 stp = lemp->sorted[i]; 4724 if( j==0 ) fprintf(out," /* %5d */ ", i); 4725 if( stp->iDfltReduce<0 ){ 4726 fprintf(out, " %4d,", lemp->errAction); 4727 }else{ 4728 fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce); 4729 } 4730 if( j==9 || i==n-1 ){ 4731 fprintf(out, "\n"); lineno++; 4732 j = 0; 4733 }else{ 4734 j++; 4735 } 4736 } 4737 fprintf(out, "};\n"); lineno++; 4738 tplt_xfer(lemp->name,in,out,&lineno); 4739 4740 /* Generate the table of fallback tokens. 4741 */ 4742 if( lemp->has_fallback ){ 4743 int mx = lemp->nterminal - 1; 4744 /* 2019-08-28: Generate fallback entries for every token to avoid 4745 ** having to do a range check on the index */ 4746 /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */ 4747 lemp->tablesize += (mx+1)*szCodeType; 4748 for(i=0; i<=mx; i++){ 4749 struct symbol *p = lemp->symbols[i]; 4750 if( p->fallback==0 ){ 4751 fprintf(out, " 0, /* %10s => nothing */\n", p->name); 4752 }else{ 4753 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, 4754 p->name, p->fallback->name); 4755 } 4756 lineno++; 4757 } 4758 } 4759 tplt_xfer(lemp->name, in, out, &lineno); 4760 4761 /* Generate a table containing the symbolic name of every symbol 4762 */ 4763 for(i=0; i<lemp->nsymbol; i++){ 4764 lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); 4765 fprintf(out," /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++; 4766 } 4767 tplt_xfer(lemp->name,in,out,&lineno); 4768 4769 /* Generate a table containing a text string that describes every 4770 ** rule in the rule set of the grammar. This information is used 4771 ** when tracing REDUCE actions. 4772 */ 4773 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ 4774 assert( rp->iRule==i ); 4775 fprintf(out," /* %3d */ \"", i); 4776 writeRuleText(out, rp); 4777 fprintf(out,"\",\n"); lineno++; 4778 } 4779 tplt_xfer(lemp->name,in,out,&lineno); 4780 4781 /* Generate code which executes every time a symbol is popped from 4782 ** the stack while processing errors or while destroying the parser. 4783 ** (In other words, generate the %destructor actions) 4784 */ 4785 if( lemp->tokendest ){ 4786 int once = 1; 4787 for(i=0; i<lemp->nsymbol; i++){ 4788 struct symbol *sp = lemp->symbols[i]; 4789 if( sp==0 || sp->type!=TERMINAL ) continue; 4790 if( once ){ 4791 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; 4792 once = 0; 4793 } 4794 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; 4795 } 4796 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); 4797 if( i<lemp->nsymbol ){ 4798 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); 4799 fprintf(out," break;\n"); lineno++; 4800 } 4801 } 4802 if( lemp->vardest ){ 4803 struct symbol *dflt_sp = 0; 4804 int once = 1; 4805 for(i=0; i<lemp->nsymbol; i++){ 4806 struct symbol *sp = lemp->symbols[i]; 4807 if( sp==0 || sp->type==TERMINAL || 4808 sp->index<=0 || sp->destructor!=0 ) continue; 4809 if( once ){ 4810 fprintf(out, " /* Default NON-TERMINAL Destructor */\n");lineno++; 4811 once = 0; 4812 } 4813 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; 4814 dflt_sp = sp; 4815 } 4816 if( dflt_sp!=0 ){ 4817 emit_destructor_code(out,dflt_sp,lemp,&lineno); 4818 } 4819 fprintf(out," break;\n"); lineno++; 4820 } 4821 for(i=0; i<lemp->nsymbol; i++){ 4822 struct symbol *sp = lemp->symbols[i]; 4823 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; 4824 if( sp->destLineno<0 ) continue; /* Already emitted */ 4825 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; 4826 4827 /* Combine duplicate destructors into a single case */ 4828 for(j=i+1; j<lemp->nsymbol; j++){ 4829 struct symbol *sp2 = lemp->symbols[j]; 4830 if( sp2 && sp2->type!=TERMINAL && sp2->destructor 4831 && sp2->dtnum==sp->dtnum 4832 && strcmp(sp->destructor,sp2->destructor)==0 ){ 4833 fprintf(out," case %d: /* %s */\n", 4834 sp2->index, sp2->name); lineno++; 4835 sp2->destLineno = -1; /* Avoid emitting this destructor again */ 4836 } 4837 } 4838 4839 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); 4840 fprintf(out," break;\n"); lineno++; 4841 } 4842 tplt_xfer(lemp->name,in,out,&lineno); 4843 4844 /* Generate code which executes whenever the parser stack overflows */ 4845 tplt_print(out,lemp,lemp->overflow,&lineno); 4846 tplt_xfer(lemp->name,in,out,&lineno); 4847 4848 /* Generate the tables of rule information. yyRuleInfoLhs[] and 4849 ** yyRuleInfoNRhs[]. 4850 ** 4851 ** Note: This code depends on the fact that rules are number 4852 ** sequentually beginning with 0. 4853 */ 4854 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ 4855 fprintf(out," %4d, /* (%d) ", rp->lhs->index, i); 4856 rule_print(out, rp); 4857 fprintf(out," */\n"); lineno++; 4858 } 4859 tplt_xfer(lemp->name,in,out,&lineno); 4860 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ 4861 fprintf(out," %3d, /* (%d) ", -rp->nrhs, i); 4862 rule_print(out, rp); 4863 fprintf(out," */\n"); lineno++; 4864 } 4865 tplt_xfer(lemp->name,in,out,&lineno); 4866 4867 /* Generate code which execution during each REDUCE action */ 4868 i = 0; 4869 for(rp=lemp->rule; rp; rp=rp->next){ 4870 i += translate_code(lemp, rp); 4871 } 4872 if( i ){ 4873 fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++; 4874 } 4875 /* First output rules other than the default: rule */ 4876 for(rp=lemp->rule; rp; rp=rp->next){ 4877 struct rule *rp2; /* Other rules with the same action */ 4878 if( rp->codeEmitted ) continue; 4879 if( rp->noCode ){ 4880 /* No C code actions, so this will be part of the "default:" rule */ 4881 continue; 4882 } 4883 fprintf(out," case %d: /* ", rp->iRule); 4884 writeRuleText(out, rp); 4885 fprintf(out, " */\n"); lineno++; 4886 for(rp2=rp->next; rp2; rp2=rp2->next){ 4887 if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix 4888 && rp2->codeSuffix==rp->codeSuffix ){ 4889 fprintf(out," case %d: /* ", rp2->iRule); 4890 writeRuleText(out, rp2); 4891 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++; 4892 rp2->codeEmitted = 1; 4893 } 4894 } 4895 emit_code(out,rp,lemp,&lineno); 4896 fprintf(out," break;\n"); lineno++; 4897 rp->codeEmitted = 1; 4898 } 4899 /* Finally, output the default: rule. We choose as the default: all 4900 ** empty actions. */ 4901 fprintf(out," default:\n"); lineno++; 4902 for(rp=lemp->rule; rp; rp=rp->next){ 4903 if( rp->codeEmitted ) continue; 4904 assert( rp->noCode ); 4905 fprintf(out," /* (%d) ", rp->iRule); 4906 writeRuleText(out, rp); 4907 if( rp->neverReduce ){ 4908 fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n", 4909 rp->iRule); lineno++; 4910 }else if( rp->doesReduce ){ 4911 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++; 4912 }else{ 4913 fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n", 4914 rp->iRule); lineno++; 4915 } 4916 } 4917 fprintf(out," break;\n"); lineno++; 4918 tplt_xfer(lemp->name,in,out,&lineno); 4919 4920 /* Generate code which executes if a parse fails */ 4921 tplt_print(out,lemp,lemp->failure,&lineno); 4922 tplt_xfer(lemp->name,in,out,&lineno); 4923 4924 /* Generate code which executes when a syntax error occurs */ 4925 tplt_print(out,lemp,lemp->error,&lineno); 4926 tplt_xfer(lemp->name,in,out,&lineno); 4927 4928 /* Generate code which executes when the parser accepts its input */ 4929 tplt_print(out,lemp,lemp->accept,&lineno); 4930 tplt_xfer(lemp->name,in,out,&lineno); 4931 4932 /* Append any addition code the user desires */ 4933 tplt_print(out,lemp,lemp->extracode,&lineno); 4934 4935 acttab_free(pActtab); 4936 fclose(in); 4937 fclose(out); 4938 if( sql ) fclose(sql); 4939 return; 4940 } 4941 4942 /* Generate a header file for the parser */ 4943 void ReportHeader(struct lemon *lemp) 4944 { 4945 FILE *out, *in; 4946 const char *prefix; 4947 char line[LINESIZE]; 4948 char pattern[LINESIZE]; 4949 int i; 4950 4951 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; 4952 else prefix = ""; 4953 in = file_open(lemp,".h","rb"); 4954 if( in ){ 4955 int nextChar; 4956 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ 4957 lemon_sprintf(pattern,"#define %s%-30s %3d\n", 4958 prefix,lemp->symbols[i]->name,i); 4959 if( strcmp(line,pattern) ) break; 4960 } 4961 nextChar = fgetc(in); 4962 fclose(in); 4963 if( i==lemp->nterminal && nextChar==EOF ){ 4964 /* No change in the file. Don't rewrite it. */ 4965 return; 4966 } 4967 } 4968 out = file_open(lemp,".h","wb"); 4969 if( out ){ 4970 for(i=1; i<lemp->nterminal; i++){ 4971 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); 4972 } 4973 fclose(out); 4974 } 4975 return; 4976 } 4977 4978 /* Reduce the size of the action tables, if possible, by making use 4979 ** of defaults. 4980 ** 4981 ** In this version, we take the most frequent REDUCE action and make 4982 ** it the default. Except, there is no default if the wildcard token 4983 ** is a possible look-ahead. 4984 */ 4985 void CompressTables(struct lemon *lemp) 4986 { 4987 struct state *stp; 4988 struct action *ap, *ap2, *nextap; 4989 struct rule *rp, *rp2, *rbest; 4990 int nbest, n; 4991 int i; 4992 int usesWildcard; 4993 4994 for(i=0; i<lemp->nstate; i++){ 4995 stp = lemp->sorted[i]; 4996 nbest = 0; 4997 rbest = 0; 4998 usesWildcard = 0; 4999 5000 for(ap=stp->ap; ap; ap=ap->next){ 5001 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ 5002 usesWildcard = 1; 5003 } 5004 if( ap->type!=REDUCE ) continue; 5005 rp = ap->x.rp; 5006 if( rp->lhsStart ) continue; 5007 if( rp==rbest ) continue; 5008 n = 1; 5009 for(ap2=ap->next; ap2; ap2=ap2->next){ 5010 if( ap2->type!=REDUCE ) continue; 5011 rp2 = ap2->x.rp; 5012 if( rp2==rbest ) continue; 5013 if( rp2==rp ) n++; 5014 } 5015 if( n>nbest ){ 5016 nbest = n; 5017 rbest = rp; 5018 } 5019 } 5020 5021 /* Do not make a default if the number of rules to default 5022 ** is not at least 1 or if the wildcard token is a possible 5023 ** lookahead. 5024 */ 5025 if( nbest<1 || usesWildcard ) continue; 5026 5027 5028 /* Combine matching REDUCE actions into a single default */ 5029 for(ap=stp->ap; ap; ap=ap->next){ 5030 if( ap->type==REDUCE && ap->x.rp==rbest ) break; 5031 } 5032 assert( ap ); 5033 ap->sp = Symbol_new("{default}"); 5034 for(ap=ap->next; ap; ap=ap->next){ 5035 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; 5036 } 5037 stp->ap = Action_sort(stp->ap); 5038 5039 for(ap=stp->ap; ap; ap=ap->next){ 5040 if( ap->type==SHIFT ) break; 5041 if( ap->type==REDUCE && ap->x.rp!=rbest ) break; 5042 } 5043 if( ap==0 ){ 5044 stp->autoReduce = 1; 5045 stp->pDfltReduce = rbest; 5046 } 5047 } 5048 5049 /* Make a second pass over all states and actions. Convert 5050 ** every action that is a SHIFT to an autoReduce state into 5051 ** a SHIFTREDUCE action. 5052 */ 5053 for(i=0; i<lemp->nstate; i++){ 5054 stp = lemp->sorted[i]; 5055 for(ap=stp->ap; ap; ap=ap->next){ 5056 struct state *pNextState; 5057 if( ap->type!=SHIFT ) continue; 5058 pNextState = ap->x.stp; 5059 if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){ 5060 ap->type = SHIFTREDUCE; 5061 ap->x.rp = pNextState->pDfltReduce; 5062 } 5063 } 5064 } 5065 5066 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term 5067 ** (meaning that the SHIFTREDUCE will land back in the state where it 5068 ** started) and if there is no C-code associated with the reduce action, 5069 ** then we can go ahead and convert the action to be the same as the 5070 ** action for the RHS of the rule. 5071 */ 5072 for(i=0; i<lemp->nstate; i++){ 5073 stp = lemp->sorted[i]; 5074 for(ap=stp->ap; ap; ap=nextap){ 5075 nextap = ap->next; 5076 if( ap->type!=SHIFTREDUCE ) continue; 5077 rp = ap->x.rp; 5078 if( rp->noCode==0 ) continue; 5079 if( rp->nrhs!=1 ) continue; 5080 #if 1 5081 /* Only apply this optimization to non-terminals. It would be OK to 5082 ** apply it to terminal symbols too, but that makes the parser tables 5083 ** larger. */ 5084 if( ap->sp->index<lemp->nterminal ) continue; 5085 #endif 5086 /* If we reach this point, it means the optimization can be applied */ 5087 nextap = ap; 5088 for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){} 5089 assert( ap2!=0 ); 5090 ap->spOpt = ap2->sp; 5091 ap->type = ap2->type; 5092 ap->x = ap2->x; 5093 } 5094 } 5095 } 5096 5097 5098 /* 5099 ** Compare two states for sorting purposes. The smaller state is the 5100 ** one with the most non-terminal actions. If they have the same number 5101 ** of non-terminal actions, then the smaller is the one with the most 5102 ** token actions. 5103 */ 5104 static int stateResortCompare(const void *a, const void *b){ 5105 const struct state *pA = *(const struct state**)a; 5106 const struct state *pB = *(const struct state**)b; 5107 int n; 5108 5109 n = pB->nNtAct - pA->nNtAct; 5110 if( n==0 ){ 5111 n = pB->nTknAct - pA->nTknAct; 5112 if( n==0 ){ 5113 n = pB->statenum - pA->statenum; 5114 } 5115 } 5116 assert( n!=0 ); 5117 return n; 5118 } 5119 5120 5121 /* 5122 ** Renumber and resort states so that states with fewer choices 5123 ** occur at the end. Except, keep state 0 as the first state. 5124 */ 5125 void ResortStates(struct lemon *lemp) 5126 { 5127 int i; 5128 struct state *stp; 5129 struct action *ap; 5130 5131 for(i=0; i<lemp->nstate; i++){ 5132 stp = lemp->sorted[i]; 5133 stp->nTknAct = stp->nNtAct = 0; 5134 stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */ 5135 stp->iTknOfst = NO_OFFSET; 5136 stp->iNtOfst = NO_OFFSET; 5137 for(ap=stp->ap; ap; ap=ap->next){ 5138 int iAction = compute_action(lemp,ap); 5139 if( iAction>=0 ){ 5140 if( ap->sp->index<lemp->nterminal ){ 5141 stp->nTknAct++; 5142 }else if( ap->sp->index<lemp->nsymbol ){ 5143 stp->nNtAct++; 5144 }else{ 5145 assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp ); 5146 stp->iDfltReduce = iAction; 5147 } 5148 } 5149 } 5150 } 5151 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), 5152 stateResortCompare); 5153 for(i=0; i<lemp->nstate; i++){ 5154 lemp->sorted[i]->statenum = i; 5155 } 5156 lemp->nxstate = lemp->nstate; 5157 while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){ 5158 lemp->nxstate--; 5159 } 5160 } 5161 5162 5163 /***************** From the file "set.c" ************************************/ 5164 /* 5165 ** Set manipulation routines for the LEMON parser generator. 5166 */ 5167 5168 static int size = 0; 5169 5170 /* Set the set size */ 5171 void SetSize(int n) 5172 { 5173 size = n+1; 5174 } 5175 5176 /* Allocate a new set */ 5177 char *SetNew(void){ 5178 char *s; 5179 s = (char*)calloc( size, 1); 5180 if( s==0 ){ 5181 memory_error(); 5182 } 5183 return s; 5184 } 5185 5186 /* Deallocate a set */ 5187 void SetFree(char *s) 5188 { 5189 free(s); 5190 } 5191 5192 /* Add a new element to the set. Return TRUE if the element was added 5193 ** and FALSE if it was already there. */ 5194 int SetAdd(char *s, int e) 5195 { 5196 int rv; 5197 assert( e>=0 && e<size ); 5198 rv = s[e]; 5199 s[e] = 1; 5200 return !rv; 5201 } 5202 5203 /* Add every element of s2 to s1. Return TRUE if s1 changes. */ 5204 int SetUnion(char *s1, char *s2) 5205 { 5206 int i, progress; 5207 progress = 0; 5208 for(i=0; i<size; i++){ 5209 if( s2[i]==0 ) continue; 5210 if( s1[i]==0 ){ 5211 progress = 1; 5212 s1[i] = 1; 5213 } 5214 } 5215 return progress; 5216 } 5217 /********************** From the file "table.c" ****************************/ 5218 /* 5219 ** All code in this file has been automatically generated 5220 ** from a specification in the file 5221 ** "table.q" 5222 ** by the associative array code building program "aagen". 5223 ** Do not edit this file! Instead, edit the specification 5224 ** file, then rerun aagen. 5225 */ 5226 /* 5227 ** Code for processing tables in the LEMON parser generator. 5228 */ 5229 5230 PRIVATE unsigned strhash(const char *x) 5231 { 5232 unsigned h = 0; 5233 while( *x ) h = h*13 + *(x++); 5234 return h; 5235 } 5236 5237 /* Works like strdup, sort of. Save a string in malloced memory, but 5238 ** keep strings in a table so that the same string is not in more 5239 ** than one place. 5240 */ 5241 const char *Strsafe(const char *y) 5242 { 5243 const char *z; 5244 char *cpy; 5245 5246 if( y==0 ) return 0; 5247 z = Strsafe_find(y); 5248 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ 5249 lemon_strcpy(cpy,y); 5250 z = cpy; 5251 Strsafe_insert(z); 5252 } 5253 MemoryCheck(z); 5254 return z; 5255 } 5256 5257 /* There is one instance of the following structure for each 5258 ** associative array of type "x1". 5259 */ 5260 struct s_x1 { 5261 int size; /* The number of available slots. */ 5262 /* Must be a power of 2 greater than or */ 5263 /* equal to 1 */ 5264 int count; /* Number of currently slots filled */ 5265 struct s_x1node *tbl; /* The data stored here */ 5266 struct s_x1node **ht; /* Hash table for lookups */ 5267 }; 5268 5269 /* There is one instance of this structure for every data element 5270 ** in an associative array of type "x1". 5271 */ 5272 typedef struct s_x1node { 5273 const char *data; /* The data */ 5274 struct s_x1node *next; /* Next entry with the same hash */ 5275 struct s_x1node **from; /* Previous link */ 5276 } x1node; 5277 5278 /* There is only one instance of the array, which is the following */ 5279 static struct s_x1 *x1a; 5280 5281 /* Allocate a new associative array */ 5282 void Strsafe_init(void){ 5283 if( x1a ) return; 5284 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); 5285 if( x1a ){ 5286 x1a->size = 1024; 5287 x1a->count = 0; 5288 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); 5289 if( x1a->tbl==0 ){ 5290 free(x1a); 5291 x1a = 0; 5292 }else{ 5293 int i; 5294 x1a->ht = (x1node**)&(x1a->tbl[1024]); 5295 for(i=0; i<1024; i++) x1a->ht[i] = 0; 5296 } 5297 } 5298 } 5299 /* Insert a new record into the array. Return TRUE if successful. 5300 ** Prior data with the same key is NOT overwritten */ 5301 int Strsafe_insert(const char *data) 5302 { 5303 x1node *np; 5304 unsigned h; 5305 unsigned ph; 5306 5307 if( x1a==0 ) return 0; 5308 ph = strhash(data); 5309 h = ph & (x1a->size-1); 5310 np = x1a->ht[h]; 5311 while( np ){ 5312 if( strcmp(np->data,data)==0 ){ 5313 /* An existing entry with the same key is found. */ 5314 /* Fail because overwrite is not allows. */ 5315 return 0; 5316 } 5317 np = np->next; 5318 } 5319 if( x1a->count>=x1a->size ){ 5320 /* Need to make the hash table bigger */ 5321 int i,arrSize; 5322 struct s_x1 array; 5323 array.size = arrSize = x1a->size*2; 5324 array.count = x1a->count; 5325 array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*)); 5326 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 5327 array.ht = (x1node**)&(array.tbl[arrSize]); 5328 for(i=0; i<arrSize; i++) array.ht[i] = 0; 5329 for(i=0; i<x1a->count; i++){ 5330 x1node *oldnp, *newnp; 5331 oldnp = &(x1a->tbl[i]); 5332 h = strhash(oldnp->data) & (arrSize-1); 5333 newnp = &(array.tbl[i]); 5334 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 5335 newnp->next = array.ht[h]; 5336 newnp->data = oldnp->data; 5337 newnp->from = &(array.ht[h]); 5338 array.ht[h] = newnp; 5339 } 5340 free(x1a->tbl); 5341 *x1a = array; 5342 } 5343 /* Insert the new data */ 5344 h = ph & (x1a->size-1); 5345 np = &(x1a->tbl[x1a->count++]); 5346 np->data = data; 5347 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); 5348 np->next = x1a->ht[h]; 5349 x1a->ht[h] = np; 5350 np->from = &(x1a->ht[h]); 5351 return 1; 5352 } 5353 5354 /* Return a pointer to data assigned to the given key. Return NULL 5355 ** if no such key. */ 5356 const char *Strsafe_find(const char *key) 5357 { 5358 unsigned h; 5359 x1node *np; 5360 5361 if( x1a==0 ) return 0; 5362 h = strhash(key) & (x1a->size-1); 5363 np = x1a->ht[h]; 5364 while( np ){ 5365 if( strcmp(np->data,key)==0 ) break; 5366 np = np->next; 5367 } 5368 return np ? np->data : 0; 5369 } 5370 5371 /* Return a pointer to the (terminal or nonterminal) symbol "x". 5372 ** Create a new symbol if this is the first time "x" has been seen. 5373 */ 5374 struct symbol *Symbol_new(const char *x) 5375 { 5376 struct symbol *sp; 5377 5378 sp = Symbol_find(x); 5379 if( sp==0 ){ 5380 sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); 5381 MemoryCheck(sp); 5382 sp->name = Strsafe(x); 5383 sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL; 5384 sp->rule = 0; 5385 sp->fallback = 0; 5386 sp->prec = -1; 5387 sp->assoc = UNK; 5388 sp->firstset = 0; 5389 sp->lambda = LEMON_FALSE; 5390 sp->destructor = 0; 5391 sp->destLineno = 0; 5392 sp->datatype = 0; 5393 sp->useCnt = 0; 5394 Symbol_insert(sp,sp->name); 5395 } 5396 sp->useCnt++; 5397 return sp; 5398 } 5399 5400 /* Compare two symbols for sorting purposes. Return negative, 5401 ** zero, or positive if a is less then, equal to, or greater 5402 ** than b. 5403 ** 5404 ** Symbols that begin with upper case letters (terminals or tokens) 5405 ** must sort before symbols that begin with lower case letters 5406 ** (non-terminals). And MULTITERMINAL symbols (created using the 5407 ** %token_class directive) must sort at the very end. Other than 5408 ** that, the order does not matter. 5409 ** 5410 ** We find experimentally that leaving the symbols in their original 5411 ** order (the order they appeared in the grammar file) gives the 5412 ** smallest parser tables in SQLite. 5413 */ 5414 int Symbolcmpp(const void *_a, const void *_b) 5415 { 5416 const struct symbol *a = *(const struct symbol **) _a; 5417 const struct symbol *b = *(const struct symbol **) _b; 5418 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; 5419 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; 5420 return i1==i2 ? a->index - b->index : i1 - i2; 5421 } 5422 5423 /* There is one instance of the following structure for each 5424 ** associative array of type "x2". 5425 */ 5426 struct s_x2 { 5427 int size; /* The number of available slots. */ 5428 /* Must be a power of 2 greater than or */ 5429 /* equal to 1 */ 5430 int count; /* Number of currently slots filled */ 5431 struct s_x2node *tbl; /* The data stored here */ 5432 struct s_x2node **ht; /* Hash table for lookups */ 5433 }; 5434 5435 /* There is one instance of this structure for every data element 5436 ** in an associative array of type "x2". 5437 */ 5438 typedef struct s_x2node { 5439 struct symbol *data; /* The data */ 5440 const char *key; /* The key */ 5441 struct s_x2node *next; /* Next entry with the same hash */ 5442 struct s_x2node **from; /* Previous link */ 5443 } x2node; 5444 5445 /* There is only one instance of the array, which is the following */ 5446 static struct s_x2 *x2a; 5447 5448 /* Allocate a new associative array */ 5449 void Symbol_init(void){ 5450 if( x2a ) return; 5451 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); 5452 if( x2a ){ 5453 x2a->size = 128; 5454 x2a->count = 0; 5455 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); 5456 if( x2a->tbl==0 ){ 5457 free(x2a); 5458 x2a = 0; 5459 }else{ 5460 int i; 5461 x2a->ht = (x2node**)&(x2a->tbl[128]); 5462 for(i=0; i<128; i++) x2a->ht[i] = 0; 5463 } 5464 } 5465 } 5466 /* Insert a new record into the array. Return TRUE if successful. 5467 ** Prior data with the same key is NOT overwritten */ 5468 int Symbol_insert(struct symbol *data, const char *key) 5469 { 5470 x2node *np; 5471 unsigned h; 5472 unsigned ph; 5473 5474 if( x2a==0 ) return 0; 5475 ph = strhash(key); 5476 h = ph & (x2a->size-1); 5477 np = x2a->ht[h]; 5478 while( np ){ 5479 if( strcmp(np->key,key)==0 ){ 5480 /* An existing entry with the same key is found. */ 5481 /* Fail because overwrite is not allows. */ 5482 return 0; 5483 } 5484 np = np->next; 5485 } 5486 if( x2a->count>=x2a->size ){ 5487 /* Need to make the hash table bigger */ 5488 int i,arrSize; 5489 struct s_x2 array; 5490 array.size = arrSize = x2a->size*2; 5491 array.count = x2a->count; 5492 array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*)); 5493 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 5494 array.ht = (x2node**)&(array.tbl[arrSize]); 5495 for(i=0; i<arrSize; i++) array.ht[i] = 0; 5496 for(i=0; i<x2a->count; i++){ 5497 x2node *oldnp, *newnp; 5498 oldnp = &(x2a->tbl[i]); 5499 h = strhash(oldnp->key) & (arrSize-1); 5500 newnp = &(array.tbl[i]); 5501 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 5502 newnp->next = array.ht[h]; 5503 newnp->key = oldnp->key; 5504 newnp->data = oldnp->data; 5505 newnp->from = &(array.ht[h]); 5506 array.ht[h] = newnp; 5507 } 5508 free(x2a->tbl); 5509 *x2a = array; 5510 } 5511 /* Insert the new data */ 5512 h = ph & (x2a->size-1); 5513 np = &(x2a->tbl[x2a->count++]); 5514 np->key = key; 5515 np->data = data; 5516 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); 5517 np->next = x2a->ht[h]; 5518 x2a->ht[h] = np; 5519 np->from = &(x2a->ht[h]); 5520 return 1; 5521 } 5522 5523 /* Return a pointer to data assigned to the given key. Return NULL 5524 ** if no such key. */ 5525 struct symbol *Symbol_find(const char *key) 5526 { 5527 unsigned h; 5528 x2node *np; 5529 5530 if( x2a==0 ) return 0; 5531 h = strhash(key) & (x2a->size-1); 5532 np = x2a->ht[h]; 5533 while( np ){ 5534 if( strcmp(np->key,key)==0 ) break; 5535 np = np->next; 5536 } 5537 return np ? np->data : 0; 5538 } 5539 5540 /* Return the n-th data. Return NULL if n is out of range. */ 5541 struct symbol *Symbol_Nth(int n) 5542 { 5543 struct symbol *data; 5544 if( x2a && n>0 && n<=x2a->count ){ 5545 data = x2a->tbl[n-1].data; 5546 }else{ 5547 data = 0; 5548 } 5549 return data; 5550 } 5551 5552 /* Return the size of the array */ 5553 int Symbol_count() 5554 { 5555 return x2a ? x2a->count : 0; 5556 } 5557 5558 /* Return an array of pointers to all data in the table. 5559 ** The array is obtained from malloc. Return NULL if memory allocation 5560 ** problems, or if the array is empty. */ 5561 struct symbol **Symbol_arrayof() 5562 { 5563 struct symbol **array; 5564 int i,arrSize; 5565 if( x2a==0 ) return 0; 5566 arrSize = x2a->count; 5567 array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *)); 5568 if( array ){ 5569 for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data; 5570 } 5571 return array; 5572 } 5573 5574 /* Compare two configurations */ 5575 int Configcmp(const char *_a,const char *_b) 5576 { 5577 const struct config *a = (struct config *) _a; 5578 const struct config *b = (struct config *) _b; 5579 int x; 5580 x = a->rp->index - b->rp->index; 5581 if( x==0 ) x = a->dot - b->dot; 5582 return x; 5583 } 5584 5585 /* Compare two states */ 5586 PRIVATE int statecmp(struct config *a, struct config *b) 5587 { 5588 int rc; 5589 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ 5590 rc = a->rp->index - b->rp->index; 5591 if( rc==0 ) rc = a->dot - b->dot; 5592 } 5593 if( rc==0 ){ 5594 if( a ) rc = 1; 5595 if( b ) rc = -1; 5596 } 5597 return rc; 5598 } 5599 5600 /* Hash a state */ 5601 PRIVATE unsigned statehash(struct config *a) 5602 { 5603 unsigned h=0; 5604 while( a ){ 5605 h = h*571 + a->rp->index*37 + a->dot; 5606 a = a->bp; 5607 } 5608 return h; 5609 } 5610 5611 /* Allocate a new state structure */ 5612 struct state *State_new() 5613 { 5614 struct state *newstate; 5615 newstate = (struct state *)calloc(1, sizeof(struct state) ); 5616 MemoryCheck(newstate); 5617 return newstate; 5618 } 5619 5620 /* There is one instance of the following structure for each 5621 ** associative array of type "x3". 5622 */ 5623 struct s_x3 { 5624 int size; /* The number of available slots. */ 5625 /* Must be a power of 2 greater than or */ 5626 /* equal to 1 */ 5627 int count; /* Number of currently slots filled */ 5628 struct s_x3node *tbl; /* The data stored here */ 5629 struct s_x3node **ht; /* Hash table for lookups */ 5630 }; 5631 5632 /* There is one instance of this structure for every data element 5633 ** in an associative array of type "x3". 5634 */ 5635 typedef struct s_x3node { 5636 struct state *data; /* The data */ 5637 struct config *key; /* The key */ 5638 struct s_x3node *next; /* Next entry with the same hash */ 5639 struct s_x3node **from; /* Previous link */ 5640 } x3node; 5641 5642 /* There is only one instance of the array, which is the following */ 5643 static struct s_x3 *x3a; 5644 5645 /* Allocate a new associative array */ 5646 void State_init(void){ 5647 if( x3a ) return; 5648 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); 5649 if( x3a ){ 5650 x3a->size = 128; 5651 x3a->count = 0; 5652 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); 5653 if( x3a->tbl==0 ){ 5654 free(x3a); 5655 x3a = 0; 5656 }else{ 5657 int i; 5658 x3a->ht = (x3node**)&(x3a->tbl[128]); 5659 for(i=0; i<128; i++) x3a->ht[i] = 0; 5660 } 5661 } 5662 } 5663 /* Insert a new record into the array. Return TRUE if successful. 5664 ** Prior data with the same key is NOT overwritten */ 5665 int State_insert(struct state *data, struct config *key) 5666 { 5667 x3node *np; 5668 unsigned h; 5669 unsigned ph; 5670 5671 if( x3a==0 ) return 0; 5672 ph = statehash(key); 5673 h = ph & (x3a->size-1); 5674 np = x3a->ht[h]; 5675 while( np ){ 5676 if( statecmp(np->key,key)==0 ){ 5677 /* An existing entry with the same key is found. */ 5678 /* Fail because overwrite is not allows. */ 5679 return 0; 5680 } 5681 np = np->next; 5682 } 5683 if( x3a->count>=x3a->size ){ 5684 /* Need to make the hash table bigger */ 5685 int i,arrSize; 5686 struct s_x3 array; 5687 array.size = arrSize = x3a->size*2; 5688 array.count = x3a->count; 5689 array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*)); 5690 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 5691 array.ht = (x3node**)&(array.tbl[arrSize]); 5692 for(i=0; i<arrSize; i++) array.ht[i] = 0; 5693 for(i=0; i<x3a->count; i++){ 5694 x3node *oldnp, *newnp; 5695 oldnp = &(x3a->tbl[i]); 5696 h = statehash(oldnp->key) & (arrSize-1); 5697 newnp = &(array.tbl[i]); 5698 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 5699 newnp->next = array.ht[h]; 5700 newnp->key = oldnp->key; 5701 newnp->data = oldnp->data; 5702 newnp->from = &(array.ht[h]); 5703 array.ht[h] = newnp; 5704 } 5705 free(x3a->tbl); 5706 *x3a = array; 5707 } 5708 /* Insert the new data */ 5709 h = ph & (x3a->size-1); 5710 np = &(x3a->tbl[x3a->count++]); 5711 np->key = key; 5712 np->data = data; 5713 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); 5714 np->next = x3a->ht[h]; 5715 x3a->ht[h] = np; 5716 np->from = &(x3a->ht[h]); 5717 return 1; 5718 } 5719 5720 /* Return a pointer to data assigned to the given key. Return NULL 5721 ** if no such key. */ 5722 struct state *State_find(struct config *key) 5723 { 5724 unsigned h; 5725 x3node *np; 5726 5727 if( x3a==0 ) return 0; 5728 h = statehash(key) & (x3a->size-1); 5729 np = x3a->ht[h]; 5730 while( np ){ 5731 if( statecmp(np->key,key)==0 ) break; 5732 np = np->next; 5733 } 5734 return np ? np->data : 0; 5735 } 5736 5737 /* Return an array of pointers to all data in the table. 5738 ** The array is obtained from malloc. Return NULL if memory allocation 5739 ** problems, or if the array is empty. */ 5740 struct state **State_arrayof(void) 5741 { 5742 struct state **array; 5743 int i,arrSize; 5744 if( x3a==0 ) return 0; 5745 arrSize = x3a->count; 5746 array = (struct state **)calloc(arrSize, sizeof(struct state *)); 5747 if( array ){ 5748 for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data; 5749 } 5750 return array; 5751 } 5752 5753 /* Hash a configuration */ 5754 PRIVATE unsigned confighash(struct config *a) 5755 { 5756 unsigned h=0; 5757 h = h*571 + a->rp->index*37 + a->dot; 5758 return h; 5759 } 5760 5761 /* There is one instance of the following structure for each 5762 ** associative array of type "x4". 5763 */ 5764 struct s_x4 { 5765 int size; /* The number of available slots. */ 5766 /* Must be a power of 2 greater than or */ 5767 /* equal to 1 */ 5768 int count; /* Number of currently slots filled */ 5769 struct s_x4node *tbl; /* The data stored here */ 5770 struct s_x4node **ht; /* Hash table for lookups */ 5771 }; 5772 5773 /* There is one instance of this structure for every data element 5774 ** in an associative array of type "x4". 5775 */ 5776 typedef struct s_x4node { 5777 struct config *data; /* The data */ 5778 struct s_x4node *next; /* Next entry with the same hash */ 5779 struct s_x4node **from; /* Previous link */ 5780 } x4node; 5781 5782 /* There is only one instance of the array, which is the following */ 5783 static struct s_x4 *x4a; 5784 5785 /* Allocate a new associative array */ 5786 void Configtable_init(void){ 5787 if( x4a ) return; 5788 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); 5789 if( x4a ){ 5790 x4a->size = 64; 5791 x4a->count = 0; 5792 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); 5793 if( x4a->tbl==0 ){ 5794 free(x4a); 5795 x4a = 0; 5796 }else{ 5797 int i; 5798 x4a->ht = (x4node**)&(x4a->tbl[64]); 5799 for(i=0; i<64; i++) x4a->ht[i] = 0; 5800 } 5801 } 5802 } 5803 /* Insert a new record into the array. Return TRUE if successful. 5804 ** Prior data with the same key is NOT overwritten */ 5805 int Configtable_insert(struct config *data) 5806 { 5807 x4node *np; 5808 unsigned h; 5809 unsigned ph; 5810 5811 if( x4a==0 ) return 0; 5812 ph = confighash(data); 5813 h = ph & (x4a->size-1); 5814 np = x4a->ht[h]; 5815 while( np ){ 5816 if( Configcmp((const char *) np->data,(const char *) data)==0 ){ 5817 /* An existing entry with the same key is found. */ 5818 /* Fail because overwrite is not allows. */ 5819 return 0; 5820 } 5821 np = np->next; 5822 } 5823 if( x4a->count>=x4a->size ){ 5824 /* Need to make the hash table bigger */ 5825 int i,arrSize; 5826 struct s_x4 array; 5827 array.size = arrSize = x4a->size*2; 5828 array.count = x4a->count; 5829 array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*)); 5830 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ 5831 array.ht = (x4node**)&(array.tbl[arrSize]); 5832 for(i=0; i<arrSize; i++) array.ht[i] = 0; 5833 for(i=0; i<x4a->count; i++){ 5834 x4node *oldnp, *newnp; 5835 oldnp = &(x4a->tbl[i]); 5836 h = confighash(oldnp->data) & (arrSize-1); 5837 newnp = &(array.tbl[i]); 5838 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); 5839 newnp->next = array.ht[h]; 5840 newnp->data = oldnp->data; 5841 newnp->from = &(array.ht[h]); 5842 array.ht[h] = newnp; 5843 } 5844 free(x4a->tbl); 5845 *x4a = array; 5846 } 5847 /* Insert the new data */ 5848 h = ph & (x4a->size-1); 5849 np = &(x4a->tbl[x4a->count++]); 5850 np->data = data; 5851 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); 5852 np->next = x4a->ht[h]; 5853 x4a->ht[h] = np; 5854 np->from = &(x4a->ht[h]); 5855 return 1; 5856 } 5857 5858 /* Return a pointer to data assigned to the given key. Return NULL 5859 ** if no such key. */ 5860 struct config *Configtable_find(struct config *key) 5861 { 5862 int h; 5863 x4node *np; 5864 5865 if( x4a==0 ) return 0; 5866 h = confighash(key) & (x4a->size-1); 5867 np = x4a->ht[h]; 5868 while( np ){ 5869 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; 5870 np = np->next; 5871 } 5872 return np ? np->data : 0; 5873 } 5874 5875 /* Remove all data from the table. Pass each data to the function "f" 5876 ** as it is removed. ("f" may be null to avoid this step.) */ 5877 void Configtable_clear(int(*f)(struct config *)) 5878 { 5879 int i; 5880 if( x4a==0 || x4a->count==0 ) return; 5881 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); 5882 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; 5883 x4a->count = 0; 5884 return; 5885 } 5886