xref: /sqlite-3.40.0/test/e_select.test (revision e4c2d054)
1# 2010 July 16
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file implements tests to verify that the "testable statements" in
13# the lang_select.html document are correct.
14#
15
16set testdir [file dirname $argv0]
17source $testdir/tester.tcl
18
19do_execsql_test e_select-1.0 {
20  CREATE TABLE t1(a, b);
21  INSERT INTO t1 VALUES('a', 'one');
22  INSERT INTO t1 VALUES('b', 'two');
23  INSERT INTO t1 VALUES('c', 'three');
24
25  CREATE TABLE t2(a, b);
26  INSERT INTO t2 VALUES('a', 'I');
27  INSERT INTO t2 VALUES('b', 'II');
28  INSERT INTO t2 VALUES('c', 'III');
29
30  CREATE TABLE t3(a, c);
31  INSERT INTO t3 VALUES('a', 1);
32  INSERT INTO t3 VALUES('b', 2);
33
34  CREATE TABLE t4(a, c);
35  INSERT INTO t4 VALUES('a', NULL);
36  INSERT INTO t4 VALUES('b', 2);
37} {}
38set t1_cross_t2 [list                \
39   a one   a I      a one   b II     \
40   a one   c III    b two   a I      \
41   b two   b II     b two   c III    \
42   c three a I      c three b II     \
43   c three c III                     \
44]
45set t1_cross_t1 [list                  \
46   a one   a one      a one   b two    \
47   a one   c three    b two   a one    \
48   b two   b two      b two   c three  \
49   c three a one      c three b two    \
50   c three c three                     \
51]
52
53
54# This proc is a specialized version of [do_execsql_test].
55#
56# The second argument to this proc must be a SELECT statement that
57# features a cross join of some time. Instead of the usual ",",
58# "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be
59# substituted.
60#
61# This test runs the SELECT three times - once with:
62#
63#   * s/%JOIN%/,/
64#   * s/%JOIN%/JOIN/
65#   * s/%JOIN%/INNER JOIN/
66#   * s/%JOIN%/CROSS JOIN/
67#
68# and checks that each time the results of the SELECT are $res.
69#
70proc do_join_test {tn select res} {
71  foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
72    set S [string map [list %JOIN% $joinop] $select]
73    uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
74  }
75}
76
77#-------------------------------------------------------------------------
78# The following tests check that all paths on the syntax diagrams on
79# the lang_select.html page may be taken.
80#
81# EVIDENCE-OF: R-18428-22111 -- syntax diagram join-constraint
82#
83do_join_test e_select-0.1.1 {
84  SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
85} {3}
86do_join_test e_select-0.1.2 {
87  SELECT count(*) FROM t1 %JOIN% t2 USING (a)
88} {3}
89do_join_test e_select-0.1.3 {
90  SELECT count(*) FROM t1 %JOIN% t2
91} {9}
92do_catchsql_test e_select-0.1.4 {
93  SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
94} {1 {cannot have both ON and USING clauses in the same join}}
95do_catchsql_test e_select-0.1.5 {
96  SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
97} {1 {near "ON": syntax error}}
98
99# EVIDENCE-OF: R-44854-11739 -- syntax diagram select-core
100#
101#   0: SELECT ...
102#   1: SELECT DISTINCT ...
103#   2: SELECT ALL ...
104#
105#   0: No FROM clause
106#   1: Has FROM clause
107#
108#   0: No WHERE clause
109#   1: Has WHERE clause
110#
111#   0: No GROUP BY clause
112#   1: Has GROUP BY clause
113#   2: Has GROUP BY and HAVING clauses
114#
115do_select_tests e_select-0.2 {
116  0000.1  "SELECT 1, 2, 3 " {1 2 3}
117  1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
118  2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
119
120  0100.1  "SELECT a, b, a||b FROM t1 " {
121    a one aone b two btwo c three cthree
122  }
123  1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
124    a one aone b two btwo c three cthree
125  }
126  1200.1  "SELECT ALL a, b, a||b FROM t1 " {
127    a one aone b two btwo c three cthree
128  }
129
130  0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
131  0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
132  0010.3  "SELECT 1, 2, 3 WHERE NULL " {}
133
134  1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
135
136  2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
137
138  0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
139    a one aone b two btwo c three cthree
140  }
141  0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
142
143  1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
144    a one aone b two btwo c three cthree
145  }
146
147  2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
148
149  0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
150  0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
151  0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
152
153  1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
154  1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
155  1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
156
157  2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
158  2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
159  2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
160
161  0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
162  0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
163    1 a 1 c 1 b
164  }
165  0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { }
166
167  1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
168  1102.1  "SELECT DISTINCT count(*), max(a) FROM t1
169           GROUP BY b HAVING count(*)=1" {
170    1 a 1 c 1 b
171  }
172  1102.2  "SELECT DISTINCT count(*), max(a) FROM t1
173           GROUP BY b HAVING count(*)=2" {
174  }
175
176  2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
177  2102.1  "SELECT ALL count(*), max(a) FROM t1
178           GROUP BY b HAVING count(*)=1" {
179    1 a 1 c 1 b
180  }
181  2102.2  "SELECT ALL count(*), max(a) FROM t1
182           GROUP BY b HAVING count(*)=2" {
183  }
184
185  0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
186  0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
187  0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
188
189  1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
190  1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1"
191          {1 2 3}
192  1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
193
194  2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
195  2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
196  2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
197
198  0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
199  0112.1  "SELECT count(*), max(a) FROM t1
200           WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
201  0112.2  "SELECT count(*), max(a) FROM t1
202           WHERE 0 GROUP BY b HAVING count(*)=2" { }
203  1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b"
204          {1 a 1 b}
205  1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
206           GROUP BY b HAVING count(*)=1" {
207    1 c 1 b
208  }
209  1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
210           GROUP BY b HAVING count(*)=2" {
211  }
212
213  2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b"
214          {1 c 1 b}
215  2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
216           GROUP BY b HAVING count(*)=1" {
217    1 a 1 c
218  }
219  2112.2  "SELECT ALL count(*), max(a) FROM t1
220           WHERE 0 GROUP BY b HAVING count(*)=2" { }
221}
222
223
224# EVIDENCE-OF: R-23316-20169 -- syntax diagram result-column
225#
226do_select_tests e_select-0.3 {
227  1  "SELECT * FROM t1" {a one b two c three}
228  2  "SELECT t1.* FROM t1" {a one b two c three}
229  3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
230  4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
231  5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
232}
233
234# EVIDENCE-OF: R-41233-21397 -- syntax diagram join-source
235#
236# EVIDENCE-OF: R-28036-03696 -- syntax diagram join-op
237#
238do_select_tests e_select-0.4 {
239  1  "SELECT t1.rowid FROM t1" {1 2 3}
240  2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
241  3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
242
243  4  "SELECT t1.rowid FROM t1" {1 2 3}
244  5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
245  6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3"
246     {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
247
248  7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
249  8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
250  9  "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
251  10 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
252
253  11 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
254  12 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
255  13 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
256  14 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
257}
258
259# EVIDENCE-OF: R-56911-63533 -- syntax diagram compound-operator
260#
261do_select_tests e_select-0.5 {
262  1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
263  2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
264  3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
265  4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
266}
267
268# EVIDENCE-OF: R-60388-27458 -- syntax diagram ordering-term
269#
270do_select_tests e_select-0.6 {
271  1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
272  2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
273  3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
274  4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
275}
276
277# EVIDENCE-OF: R-36494-33519 -- syntax diagram select-stmt
278#
279do_select_tests e_select-0.7 {
280  1  "SELECT * FROM t1" {a one b two c three}
281  2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
282  3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
283
284  4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
285  5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
286  6  "SELECT * FROM t1 LIMIT 10, 5" {}
287
288  7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
289  8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
290  9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
291
292  10  "SELECT * FROM t1 UNION SELECT b, a FROM t1"
293     {a one b two c three one a three c two b}
294  11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b"
295     {one a two b three c a one c three b two}
296  12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a"
297     {one a two b three c a one c three b two}
298  13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10"
299     {a one b two c three one a three c two b}
300  14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5"
301     {two b}
302  15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5"
303     {}
304  16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10"
305     {a one b two c three one a three c two b}
306  17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5"
307     {b two}
308  18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5"
309     {}
310}
311
312#-------------------------------------------------------------------------
313# The following tests focus on FROM clause (join) processing.
314#
315
316# EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
317# SELECT statement, then the input data is implicitly a single row zero
318# columns wide
319#
320do_select_tests e_select-1.1 {
321  1 "SELECT 'abc'"            {abc}
322  2 "SELECT 'abc' WHERE NULL" {}
323  3 "SELECT NULL"             {{}}
324  4 "SELECT count(*)"         {1}
325  5 "SELECT count(*) WHERE 0" {0}
326  6 "SELECT count(*) WHERE 1" {1}
327}
328
329# EVIDENCE-OF: R-48114-33255 If there is only a single table in the
330# join-source following the FROM clause, then the input data used by the
331# SELECT statement is the contents of the named table.
332#
333#   The results of the SELECT queries suggest that they are operating on the
334#   contents of the table 'xx'.
335#
336do_execsql_test e_select-1.2.0 {
337  CREATE TABLE xx(x, y);
338  INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
339  INSERT INTO xx VALUES(NULL, -16.87);
340  INSERT INTO xx VALUES(-17.89, 'linguistically');
341} {}
342do_select_tests e_select-1.2 {
343  1  "SELECT quote(x), quote(y) FROM xx" {
344     'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2'
345     NULL             -16.87
346     -17.89           'linguistically'
347  }
348
349  2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
350  3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
351}
352
353# EVIDENCE-OF: R-23593-12456 If there is more than one table specified
354# as part of the join-source following the FROM keyword, then the
355# contents of each named table are joined into a single dataset for the
356# simple SELECT statement to operate on.
357#
358#   There are more detailed tests for subsequent requirements that add
359#   more detail to this idea. We just add a single test that shows that
360#   data is coming from each of the three tables following the FROM clause
361#   here to show that the statement, vague as it is, is not incorrect.
362#
363do_select_tests e_select-1.3 {
364  1 "SELECT * FROM t1, t2, t3" {
365      a one a I a 1 a one a I b 2 a one b II a 1
366      a one b II b 2 a one c III a 1 a one c III b 2
367      b two a I a 1 b two a I b 2 b two b II a 1
368      b two b II b 2 b two c III a 1 b two c III b 2
369      c three a I a 1 c three a I b 2 c three b II a 1
370      c three b II b 2 c three c III a 1 c three c III b 2
371  }
372}
373
374#
375# The following block of tests - e_select-1.4.* - test that the description
376# of cartesian joins in the SELECT documentation is consistent with SQLite.
377# In doing so, we test the following three requirements as a side-effect:
378#
379# EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER
380# JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
381# then the result of the join is simply the cartesian product of the
382# left and right-hand datasets.
383#
384#    The tests are built on this assertion. Really, they test that the output
385#    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
386#    of calculating the cartesian product of the left and right-hand datasets.
387#
388# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
389# JOIN", "JOIN" and "," join operators.
390#
391# EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
392# same data as the "INNER JOIN", "JOIN" and "," operators
393#
394#    All tests are run 4 times, with the only difference in each run being
395#    which of the 4 equivalent cartesian product join operators are used.
396#    Since the output data is the same in all cases, we consider that this
397#    qualifies as testing the two statements above.
398#
399do_execsql_test e_select-1.4.0 {
400  CREATE TABLE x1(a, b);
401  CREATE TABLE x2(c, d, e);
402  CREATE TABLE x3(f, g, h, i);
403
404  -- x1: 3 rows, 2 columns
405  INSERT INTO x1 VALUES(24, 'converging');
406  INSERT INTO x1 VALUES(NULL, X'CB71');
407  INSERT INTO x1 VALUES('blonds', 'proprietary');
408
409  -- x2: 2 rows, 3 columns
410  INSERT INTO x2 VALUES(-60.06, NULL, NULL);
411  INSERT INTO x2 VALUES(-58, NULL, 1.21);
412
413  -- x3: 5 rows, 4 columns
414  INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
415  INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
416  INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
417  INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
418  INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
419} {}
420
421# EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
422# dataset are, in order, all the columns of the left-hand dataset
423# followed by all the columns of the right-hand dataset.
424#
425do_join_test e_select-1.4.1.1 {
426  SELECT * FROM x1 %JOIN% x2 LIMIT 1
427} [concat {24 converging} {-60.06 {} {}}]
428
429do_join_test e_select-1.4.1.2 {
430  SELECT * FROM x2 %JOIN% x1 LIMIT 1
431} [concat {-60.06 {} {}} {24 converging}]
432
433do_join_test e_select-1.4.1.3 {
434  SELECT * FROM x3 %JOIN% x2 LIMIT 1
435} [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
436
437do_join_test e_select-1.4.1.4 {
438  SELECT * FROM x2 %JOIN% x3 LIMIT 1
439} [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
440
441# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
442# dataset formed by combining each unique combination of a row from the
443# left-hand and right-hand datasets.
444#
445do_join_test e_select-1.4.2.1 {
446  SELECT * FROM x2 %JOIN% x3
447} [list -60.06 {} {}      -39.24 {} encompass -1                 \
448        -60.06 {} {}      presenting 51 reformation dignified    \
449        -60.06 {} {}      conducting -87.24 37.56 {}             \
450        -60.06 {} {}      coldest -96 dramatists 82.3            \
451        -60.06 {} {}      alerting {} -93.79 {}                  \
452        -58 {} 1.21       -39.24 {} encompass -1                 \
453        -58 {} 1.21       presenting 51 reformation dignified    \
454        -58 {} 1.21       conducting -87.24 37.56 {}             \
455        -58 {} 1.21       coldest -96 dramatists 82.3            \
456        -58 {} 1.21       alerting {} -93.79 {}                  \
457]
458# TODO: Come back and add a few more like the above.
459
460# EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset
461# consists of Nlhs rows of Mlhs columns, and the right-hand dataset of
462# Nrhs rows of Mrhs columns, then the cartesian product is a dataset of
463# Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns.
464#
465# x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
466do_join_test e_select-1.4.3.1 {
467  SELECT count(*) FROM x1 %JOIN% x2
468} [expr 3*2]
469do_test e_select-1.4.3.2 {
470  expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
471} [expr 2+3]
472
473# x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
474do_join_test e_select-1.4.3.3 {
475  SELECT count(*) FROM x2 %JOIN% x3
476} [expr 2*5]
477do_test e_select-1.4.3.4 {
478  expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
479} [expr 3+4]
480
481# x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
482do_join_test e_select-1.4.3.5 {
483  SELECT count(*) FROM x3 %JOIN% x1
484} [expr 5*3]
485do_test e_select-1.4.3.6 {
486  expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
487} [expr 4+2]
488
489# x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
490do_join_test e_select-1.4.3.7 {
491  SELECT count(*) FROM x3 %JOIN% x3
492} [expr 5*5]
493do_test e_select-1.4.3.8 {
494  expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
495} [expr 4+4]
496
497# Some extra cartesian product tests using tables t1 and t2.
498#
499do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
500do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
501
502do_select_tests e_select-1.4.5 [list                                   \
503    1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
504    2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
505    3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
506    4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
507]
508
509
510# EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then
511# the ON expression is evaluated for each row of the cartesian product
512# as a boolean expression. All rows for which the expression evaluates
513# to false are excluded from the dataset.
514#
515foreach {tn select res} [list                                              \
516    1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
517    2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
518    3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
519    4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
520    5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
521    6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
522    7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
523    8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
524                                                                           \
525    9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
526      {one I two II three III}                                             \
527   10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
528      {one I one II one III}                                               \
529   11 { SELECT t1.b, t2.b
530        FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
531      {two I two II two III three I three II three III}                    \
532] {
533  do_join_test e_select-1.3.$tn $select $res
534}
535
536# EVIDENCE-OF: R-63358-54862 If there is a USING clause specified as
537# part of the join-constraint, then each of the column names specified
538# must exist in the datasets to both the left and right of the join-op.
539#
540do_select_tests e_select-1.4 -error {
541  cannot join using column %s - column not present in both tables
542} {
543  1 { SELECT * FROM t1, t3 USING (b) }   "b"
544  2 { SELECT * FROM t3, t1 USING (c) }   "c"
545  3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
546}
547
548# EVIDENCE-OF: R-55987-04584 For each pair of namesake columns, the
549# expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
550# product as a boolean expression. All rows for which one or more of the
551# expressions evaluates to false are excluded from the result set.
552#
553do_select_tests e_select-1.5 {
554  1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
555  2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
556}
557
558# EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
559# USING clause, the normal rules for handling affinities, collation
560# sequences and NULL values in comparisons apply.
561#
562# EVIDENCE-OF: R-35466-18578 The column from the dataset on the
563# left-hand side of the join operator is considered to be on the
564# left-hand side of the comparison operator (=) for the purposes of
565# collation sequence and affinity precedence.
566#
567do_execsql_test e_select-1.6.0 {
568  CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
569  INSERT INTO t5 VALUES('AA', 'cc');
570  INSERT INTO t5 VALUES('BB', 'dd');
571  INSERT INTO t5 VALUES(NULL, NULL);
572  CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
573  INSERT INTO t6 VALUES('aa', 'cc');
574  INSERT INTO t6 VALUES('bb', 'DD');
575  INSERT INTO t6 VALUES(NULL, NULL);
576} {}
577foreach {tn select res} {
578  1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
579  2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
580  3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) }
581    {aa cc cc bb DD dd}
582  4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
583  5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
584} {
585  do_join_test e_select-1.6.$tn $select $res
586}
587
588# EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
589# USING clause, the column from the right-hand dataset is omitted from
590# the joined dataset.
591#
592# EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
593# clause and its equivalent ON constraint.
594#
595foreach {tn select res} {
596  1a { SELECT * FROM t1 %JOIN% t2 USING (a)      }
597     {a one I b two II c three III}
598  1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
599     {a one a I b two b II c three c III}
600
601  2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }
602     {a 1 {} b 2 2}
603  2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) }
604     {a 1 a {} b 2 b 2}
605
606  3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
607  3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
608
609  4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
610       %JOIN% t5 USING (a) }
611     {aa cc cc bb DD dd}
612  4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
613       %JOIN% t5 ON (x.a=t5.a) }
614     {aa cc AA cc bb DD BB dd}
615} {
616  do_join_test e_select-1.7.$tn $select $res
617}
618
619# EVIDENCE-OF: R-41434-12448 If the join-op is a "LEFT JOIN" or "LEFT
620# OUTER JOIN", then after the ON or USING filtering clauses have been
621# applied, an extra row is added to the output for each row in the
622# original left-hand input dataset that corresponds to no rows at all in
623# the composite dataset (if any).
624#
625do_execsql_test e_select-1.8.0 {
626  CREATE TABLE t7(a, b, c);
627  CREATE TABLE t8(a, d, e);
628
629  INSERT INTO t7 VALUES('x', 'ex',  24);
630  INSERT INTO t7 VALUES('y', 'why', 25);
631
632  INSERT INTO t8 VALUES('x', 'abc', 24);
633  INSERT INTO t8 VALUES('z', 'ghi', 26);
634} {}
635
636do_select_tests e_select-1.8 {
637  1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
638  1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
639  2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
640  2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
641}
642
643
644# EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
645# columns that would normally contain values copied from the right-hand
646# input dataset.
647#
648do_select_tests e_select-1.9 {
649  1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
650  1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)"
651     {x ex 24 x abc 24 y why 25 {} {} {}}
652  2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
653  2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
654}
655
656# EVIDENCE-OF: R-01809-52134 If the NATURAL keyword is added to any of
657# the join-ops, then an implicit USING clause is added to the
658# join-constraints. The implicit USING clause contains each of the
659# column names that appear in both the left and right-hand input
660# datasets.
661#
662do_select_tests e_select-1-10 {
663  1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
664  1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}
665
666  2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
667  2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}
668
669  3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
670  3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}
671
672  4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
673  4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}
674
675  5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
676  5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}
677
678  6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
679  6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
680}
681
682# EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
683# feature no common column names, then the NATURAL keyword has no effect
684# on the results of the join.
685#
686do_execsql_test e_select-1.11.0 {
687  CREATE TABLE t10(x, y);
688  INSERT INTO t10 VALUES(1, 'true');
689  INSERT INTO t10 VALUES(0, 'false');
690} {}
691do_select_tests e_select-1-11 {
692  1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
693  1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
694}
695
696# EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
697# join that specifies the NATURAL keyword.
698#
699foreach {tn sql} {
700  1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
701  2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
702  3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
703} {
704  do_catchsql_test e_select-1.12.$tn "
705    $sql
706  " {1 {a NATURAL join may not have an ON or USING clause}}
707}
708
709#-------------------------------------------------------------------------
710# The next block of tests - e_select-3.* - concentrate on verifying
711# statements made regarding WHERE clause processing.
712#
713drop_all_tables
714do_execsql_test e_select-3.0 {
715  CREATE TABLE x1(k, x, y, z);
716  INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
717  INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
718  INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
719  INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
720  INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
721  INSERT INTO x1 VALUES(6, 0,              1,         2);
722
723  CREATE TABLE x2(k, x, y2);
724  INSERT INTO x2 VALUES(1, 50, X'B82838');
725  INSERT INTO x2 VALUES(5, 84.79, 65.88);
726  INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
727  INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
728} {}
729
730# EVIDENCE-OF: R-06999-14330 If a WHERE clause is specified, the WHERE
731# expression is evaluated for each row in the input data as a boolean
732# expression. All rows for which the WHERE clause expression evaluates
733# to false are excluded from the dataset before continuing.
734#
735do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
736do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
737do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
738do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
739do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
740do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
741
742do_execsql_test e_select-3.2.1a {
743  SELECT k FROM x1 LEFT JOIN x2 USING(k)
744} {1 2 3 4 5 6}
745do_execsql_test e_select-3.2.1b {
746  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k
747} {1 3 5}
748do_execsql_test e_select-3.2.2 {
749  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
750} {2 4 6}
751
752do_execsql_test e_select-3.2.3 {
753  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
754} {3}
755do_execsql_test e_select-3.2.4 {
756  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
757} {}
758
759#-------------------------------------------------------------------------
760# Tests below this point are focused on verifying the testable statements
761# related to caculating the result rows of a simple SELECT statement.
762#
763
764drop_all_tables
765do_execsql_test e_select-4.0 {
766  CREATE TABLE z1(a, b, c);
767  CREATE TABLE z2(d, e);
768  CREATE TABLE z3(a, b);
769
770  INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
771  INSERT INTO z1 VALUES(-5, NULL, 75);
772  INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
773  INSERT INTO z1 VALUES(NULL, 67, 'quartets');
774  INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
775  INSERT INTO z1 VALUES(63, 'born', -26);
776
777  INSERT INTO z2 VALUES(NULL, 21);
778  INSERT INTO z2 VALUES(36, 6);
779
780  INSERT INTO z3 VALUES('subsistence', 'gauze');
781  INSERT INTO z3 VALUES(49.17, -67);
782} {}
783
784# EVIDENCE-OF: R-36327-17224 If a result expression is the special
785# expression "*" then all columns in the input data are substituted for
786# that one expression.
787#
788# EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
789# or subquery in the FROM clause followed by ".*" then all columns from
790# the named table or subquery are substituted for the single expression.
791#
792do_select_tests e_select-4.1 {
793  1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
794  2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
795  3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
796  4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
797  5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
798
799  6  "SELECT count(*), * FROM z1"           {6 63 born -26}
800  7  "SELECT max(a), * FROM z1"             {63 63 born -26}
801  8  "SELECT *, min(a) FROM z1"             {63 born -26 -5}
802
803  9  "SELECT *,* FROM z1,z2 LIMIT 1" {
804     51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
805  }
806  10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {
807     51.65 -59.58 belfries 51.65 -59.58 belfries
808  }
809}
810
811# EVIDENCE-OF: R-61869-22578 It is an error to use a "*" or "alias.*"
812# expression in any context other than than a result expression list.
813#
814# EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
815# "alias.*" expression in a simple SELECT query that does not have a
816# FROM clause.
817#
818foreach {tn select err} {
819  1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
820  1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
821  1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
822  1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}
823
824  2.1 "SELECT *" {no tables specified}
825  2.2 "SELECT * WHERE 1" {no tables specified}
826  2.3 "SELECT * WHERE 0" {no tables specified}
827  2.4 "SELECT count(*), *" {no tables specified}
828} {
829  do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
830}
831
832# EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
833# by a simple SELECT statement is equal to the number of expressions in
834# the result expression list after substitution of * and alias.*
835# expressions.
836#
837foreach {tn select nCol} {
838  1   "SELECT * FROM z1"   3
839  2   "SELECT * FROM z1 NATURAL JOIN z3"            3
840  3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
841  4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
842  5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
843  6   "SELECT 1, 2, z1.* FROM z1"                   5
844  7   "SELECT a, *, b, c FROM z1"                   6
845} {
846  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
847  do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
848  sqlite3_finalize $::stmt
849}
850
851
852
853# In lang_select.html, a non-aggregate query is defined as any simple SELECT
854# that has no GROUP BY clause and no aggregate expressions in the result
855# expression list. Other queries are aggregate queries. Test cases
856# e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
857# simple SELECT that is different for aggregate and non-aggregate queries
858# verify (in a way) that these definitions are consistent:
859#
860# EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
861# query if it contains either a GROUP BY clause or one or more aggregate
862# functions in the result-set.
863#
864# EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
865# aggregate functions or a GROUP BY clause, it is a non-aggregate query.
866#
867
868# EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
869# query, then each expression in the result expression list is evaluated
870# for each row in the dataset filtered by the WHERE clause.
871#
872do_select_tests e_select-4.4 {
873  1 "SELECT a, b FROM z1"
874    {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
875
876  2 "SELECT a IS NULL, b+1, * FROM z1" {
877        0 -58.58   51.65 -59.58 belfries
878        0 {}       -5 {} 75
879        0 -22.18   -2.2 -23.18 suiters
880        1 68       {} 67 quartets
881        0 -31.3    -1.04 -32.3 aspen
882        0 1        63 born -26
883  }
884
885  3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
886}
887
888
889# Test cases e_select-4.5.* and e_select-4.6.* together show that:
890#
891# EVIDENCE-OF: R-51988-01124 The single row of result-set data created
892# by evaluating the aggregate and non-aggregate expressions in the
893# result-set forms the result of an aggregate query without a GROUP BY
894# clause.
895#
896
897# EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
898# query without a GROUP BY clause, then each aggregate expression in the
899# result-set is evaluated once across the entire dataset.
900#
901do_select_tests e_select-4.5 {
902  1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
903  2 "SELECT count(*), max(1)"                                {1 1}
904
905  3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
906  4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
907  5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
908}
909
910# EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
911# result-set is evaluated once for an arbitrarily selected row of the
912# dataset.
913#
914# EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
915# for each non-aggregate expression.
916#
917#   Note: The results of many of the queries in this block of tests are
918#   technically undefined, as the documentation does not specify which row
919#   SQLite will arbitrarily select to use for the evaluation of the
920#   non-aggregate expressions.
921#
922drop_all_tables
923do_execsql_test e_select-4.6.0 {
924  CREATE TABLE a1(one PRIMARY KEY, two);
925  INSERT INTO a1 VALUES(1, 1);
926  INSERT INTO a1 VALUES(2, 3);
927  INSERT INTO a1 VALUES(3, 6);
928  INSERT INTO a1 VALUES(4, 10);
929
930  CREATE TABLE a2(one PRIMARY KEY, three);
931  INSERT INTO a2 VALUES(1, 1);
932  INSERT INTO a2 VALUES(3, 2);
933  INSERT INTO a2 VALUES(6, 3);
934  INSERT INTO a2 VALUES(10, 4);
935} {}
936do_select_tests e_select-4.6 {
937  1 "SELECT one, two, count(*) FROM a1"                        {4 10 4}
938  2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {2 3 2}
939  3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1}
940  4 "SELECT *, count(*) FROM a1 JOIN a2"                       {4 10 10 4 16}
941  5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
942  6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
943  7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6}
944}
945
946# EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
947# each non-aggregate expression is evaluated against a row consisting
948# entirely of NULL values.
949#
950do_select_tests e_select-4.7 {
951  1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
952  2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
953  3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
954    1 1 1
955  }
956}
957
958# EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
959# clause always returns exactly one row of data, even if there are zero
960# rows of input data.
961#
962foreach {tn select} {
963  8.1  "SELECT count(*) FROM a1"
964  8.2  "SELECT count(*) FROM a1 WHERE 0"
965  8.3  "SELECT count(*) FROM a1 WHERE 1"
966  8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
967  8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
968} {
969  # Set $nRow to the number of rows returned by $select:
970  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
971  set nRow 0
972  while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
973  set rc [sqlite3_finalize $::stmt]
974
975  # Test that $nRow==1 and that statement execution was successful
976  # (rc==SQLITE_OK).
977  do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
978}
979
980drop_all_tables
981do_execsql_test e_select-4.9.0 {
982  CREATE TABLE b1(one PRIMARY KEY, two);
983  INSERT INTO b1 VALUES(1, 'o');
984  INSERT INTO b1 VALUES(4, 'f');
985  INSERT INTO b1 VALUES(3, 't');
986  INSERT INTO b1 VALUES(2, 't');
987  INSERT INTO b1 VALUES(5, 'f');
988  INSERT INTO b1 VALUES(7, 's');
989  INSERT INTO b1 VALUES(6, 's');
990
991  CREATE TABLE b2(x, y);
992  INSERT INTO b2 VALUES(NULL, 0);
993  INSERT INTO b2 VALUES(NULL, 1);
994  INSERT INTO b2 VALUES('xyz', 2);
995  INSERT INTO b2 VALUES('abc', 3);
996  INSERT INTO b2 VALUES('xyz', 4);
997
998  CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
999  INSERT INTO b3 VALUES('abc', 'abc');
1000  INSERT INTO b3 VALUES('aBC', 'aBC');
1001  INSERT INTO b3 VALUES('Def', 'Def');
1002  INSERT INTO b3 VALUES('dEF', 'dEF');
1003} {}
1004
1005# EVIDENCE-OF: R-57754-57109 If the SELECT statement is an aggregate
1006# query with a GROUP BY clause, then each of the expressions specified
1007# as part of the GROUP BY clause is evaluated for each row of the
1008# dataset. Each row is then assigned to a "group" based on the results;
1009# rows for which the results of evaluating the GROUP BY expressions are
1010# the same are assigned to the same group.
1011#
1012#   These tests also show that the following is not untrue:
1013#
1014# EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
1015# not have to be expressions that appear in the result.
1016#
1017do_select_tests e_select-4.9 {
1018  1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
1019    4,5 f   1 o   7,6   s 3,2 t
1020  }
1021  2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
1022    1,4,3,2 10    5,7,6 18
1023  }
1024  3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
1025    4  1,5    2,6   3,7
1026  }
1027  4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
1028    4,3,5,7,6    1,2
1029  }
1030}
1031
1032# EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
1033# values are considered equal.
1034#
1035do_select_tests e_select-4.10 {
1036  1  "SELECT group_concat(y) FROM b2 GROUP BY x" {0,1   3   2,4}
1037  2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
1038}
1039
1040# EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
1041# sequence with which to compare text values apply when evaluating
1042# expressions in a GROUP BY clause.
1043#
1044do_select_tests e_select-4.11 {
1045  1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
1046  2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
1047  3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
1048  4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
1049  5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
1050  6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
1051}
1052
1053# EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
1054# not be aggregate expressions.
1055#
1056foreach {tn select} {
1057  12.1  "SELECT * FROM b3 GROUP BY count(*)"
1058  12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
1059  12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
1060} {
1061  set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
1062  do_catchsql_test e_select-4.$tn $select $res
1063}
1064
1065# EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
1066# evaluated once for each group of rows as a boolean expression. If the
1067# result of evaluating the HAVING clause is false, the group is
1068# discarded.
1069#
1070#   This requirement is tested by all e_select-4.13.* tests.
1071#
1072# EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
1073# expression, it is evaluated across all rows in the group.
1074#
1075#   Tested by e_select-4.13.1.*
1076#
1077# EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
1078# expression, it is evaluated with respect to an arbitrarily selected
1079# row from the group.
1080#
1081#   Tested by e_select-4.13.2.*
1082#
1083#   Tests in this block also show that this is not untrue:
1084#
1085# EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
1086# even aggregate functions, that are not in the result.
1087#
1088do_execsql_test e_select-4.13.0 {
1089  CREATE TABLE c1(up, down);
1090  INSERT INTO c1 VALUES('x', 1);
1091  INSERT INTO c1 VALUES('x', 2);
1092  INSERT INTO c1 VALUES('x', 4);
1093  INSERT INTO c1 VALUES('x', 8);
1094  INSERT INTO c1 VALUES('y', 16);
1095  INSERT INTO c1 VALUES('y', 32);
1096
1097  CREATE TABLE c2(i, j);
1098  INSERT INTO c2 VALUES(1, 0);
1099  INSERT INTO c2 VALUES(2, 1);
1100  INSERT INTO c2 VALUES(3, 3);
1101  INSERT INTO c2 VALUES(4, 6);
1102  INSERT INTO c2 VALUES(5, 10);
1103  INSERT INTO c2 VALUES(6, 15);
1104  INSERT INTO c2 VALUES(7, 21);
1105  INSERT INTO c2 VALUES(8, 28);
1106  INSERT INTO c2 VALUES(9, 36);
1107
1108  CREATE TABLE c3(i PRIMARY KEY, k TEXT);
1109  INSERT INTO c3 VALUES(1,  'hydrogen');
1110  INSERT INTO c3 VALUES(2,  'helium');
1111  INSERT INTO c3 VALUES(3,  'lithium');
1112  INSERT INTO c3 VALUES(4,  'beryllium');
1113  INSERT INTO c3 VALUES(5,  'boron');
1114  INSERT INTO c3 VALUES(94, 'plutonium');
1115} {}
1116
1117do_select_tests e_select-4.13 {
1118  1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
1119  1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
1120  1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
1121  1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
1122
1123  2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
1124  2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}
1125
1126  2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6"  {9 36}
1127}
1128
1129# EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
1130# evaluated once for each group of rows.
1131#
1132# EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
1133# expression, it is evaluated across all rows in the group.
1134#
1135do_select_tests e_select-4.15 {
1136  1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
1137  2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
1138  3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
1139  4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
1140  5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
1141        {3 4.33 1 2.0}
1142}
1143
1144# EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
1145# arbitrarily chosen row from within the group.
1146#
1147# EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
1148# expression in the result-set, then all such expressions are evaluated
1149# for the same row.
1150#
1151do_select_tests e_select-4.15 {
1152  1  "SELECT i, j FROM c2 GROUP BY i%2"             {8 28   9 36}
1153  2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28}
1154  3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1155  4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1156  5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
1157        {2 5 boron   2 2 helium   1 3 lithium}
1158}
1159
1160# EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
1161# contributes a single row to the set of result rows.
1162#
1163# EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
1164# DISTINCT keyword, the number of rows returned by an aggregate query
1165# with a GROUP BY clause is the same as the number of groups of rows
1166# produced by applying the GROUP BY and HAVING clauses to the filtered
1167# input dataset.
1168#
1169do_select_tests e_select.4.16 -count {
1170  1  "SELECT i, j FROM c2 GROUP BY i%2"          2
1171  2  "SELECT i, j FROM c2 GROUP BY i"            9
1172  3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
1173}
1174
1175#-------------------------------------------------------------------------
1176# The following tests attempt to verify statements made regarding the ALL
1177# and DISTINCT keywords.
1178#
1179drop_all_tables
1180do_execsql_test e_select-5.1.0 {
1181  CREATE TABLE h1(a, b);
1182  INSERT INTO h1 VALUES(1, 'one');
1183  INSERT INTO h1 VALUES(1, 'I');
1184  INSERT INTO h1 VALUES(1, 'i');
1185  INSERT INTO h1 VALUES(4, 'four');
1186  INSERT INTO h1 VALUES(4, 'IV');
1187  INSERT INTO h1 VALUES(4, 'iv');
1188
1189  CREATE TABLE h2(x COLLATE nocase);
1190  INSERT INTO h2 VALUES('One');
1191  INSERT INTO h2 VALUES('Two');
1192  INSERT INTO h2 VALUES('Three');
1193  INSERT INTO h2 VALUES('Four');
1194  INSERT INTO h2 VALUES('one');
1195  INSERT INTO h2 VALUES('two');
1196  INSERT INTO h2 VALUES('three');
1197  INSERT INTO h2 VALUES('four');
1198
1199  CREATE TABLE h3(c, d);
1200  INSERT INTO h3 VALUES(1, NULL);
1201  INSERT INTO h3 VALUES(2, NULL);
1202  INSERT INTO h3 VALUES(3, NULL);
1203  INSERT INTO h3 VALUES(4, '2');
1204  INSERT INTO h3 VALUES(5, NULL);
1205  INSERT INTO h3 VALUES(6, '2,3');
1206  INSERT INTO h3 VALUES(7, NULL);
1207  INSERT INTO h3 VALUES(8, '2,4');
1208  INSERT INTO h3 VALUES(9, '3');
1209} {}
1210
1211# EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
1212# follow the SELECT keyword in a simple SELECT statement.
1213#
1214do_select_tests e_select-5.1 {
1215  1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
1216  2   "SELECT DISTINCT a FROM h1" {1 4}
1217}
1218
1219# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
1220# the entire set of result rows are returned by the SELECT.
1221#
1222# EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present,
1223# then the behaviour is as if ALL were specified.
1224#
1225# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
1226# then duplicate rows are removed from the set of result rows before it
1227# is returned.
1228#
1229#   The three testable statements above are tested by e_select-5.2.*,
1230#   5.3.* and 5.4.* respectively.
1231#
1232do_select_tests e_select-5 {
1233  3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
1234  3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
1235
1236  3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
1237  3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
1238
1239  4.1 "SELECT DISTINCT x FROM h2" {four one three two}
1240  4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {four one}
1241}
1242
1243# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
1244# rows, two NULL values are considered to be equal.
1245#
1246do_select_tests e_select-5.5 {
1247  1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
1248}
1249
1250# EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation
1251# sequence to compare text values with apply.
1252#
1253do_select_tests e_select-5.6 {
1254  1  "SELECT DISTINCT b FROM h1"                  {I IV four i iv one}
1255  2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {four i iv one}
1256  3  "SELECT DISTINCT x FROM h2"                  {four one three two}
1257  4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
1258    Four One Three Two four one three two
1259  }
1260}
1261
1262#-------------------------------------------------------------------------
1263# The following tests - e_select-7.* - test that statements made to do
1264# with compound SELECT statements are correct.
1265#
1266
1267# EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
1268# SELECTs must return the same number of result columns.
1269#
1270#   All the other tests in this section use compound SELECTs created
1271#   using component SELECTs that do return the same number of columns.
1272#   So the tests here just show that it is an error to attempt otherwise.
1273#
1274drop_all_tables
1275do_execsql_test e_select-7.1.0 {
1276  CREATE TABLE j1(a, b, c);
1277  CREATE TABLE j2(e, f);
1278  CREATE TABLE j3(g);
1279} {}
1280do_select_tests e_select-7.1 -error {
1281  SELECTs to the left and right of %s do not have the same number of result columns
1282} {
1283  1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1284  2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
1285  3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1286  4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
1287  5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
1288
1289  6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1290  7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
1291  8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1292  9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
1293  10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}
1294
1295  11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1296  12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
1297  13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1298  14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
1299  15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
1300
1301  16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1302  17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
1303  18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1304  19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
1305  20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
1306}
1307
1308# EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
1309# be simple SELECT statements, they may not contain ORDER BY or LIMIT
1310# clauses.
1311#
1312foreach {tn select op1 op2} {
1313  1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3"
1314      {ORDER BY} {UNION ALL}
1315  2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
1316      {ORDER BY} {UNION ALL}
1317  3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
1318      {ORDER BY} {UNION ALL}
1319  4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3"
1320      LIMIT {UNION ALL}
1321  5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3"
1322      LIMIT {UNION ALL}
1323  6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3"
1324      LIMIT {UNION ALL}
1325
1326  7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3"
1327      {ORDER BY} {UNION}
1328  8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
1329      {ORDER BY} {UNION}
1330  9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
1331      {ORDER BY} {UNION}
1332  10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3"
1333      LIMIT {UNION}
1334  11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3"
1335      LIMIT {UNION}
1336  12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3"
1337      LIMIT {UNION}
1338
1339  13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3"
1340      {ORDER BY} {EXCEPT}
1341  14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
1342      {ORDER BY} {EXCEPT}
1343  15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
1344      {ORDER BY} {EXCEPT}
1345  16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3"
1346      LIMIT {EXCEPT}
1347  17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3"
1348      LIMIT {EXCEPT}
1349  18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3"
1350      LIMIT {EXCEPT}
1351
1352  19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3"
1353      {ORDER BY} {INTERSECT}
1354  20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
1355      {ORDER BY} {INTERSECT}
1356  21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
1357      {ORDER BY} {INTERSECT}
1358  22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3"
1359      LIMIT {INTERSECT}
1360  23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3"
1361      LIMIT {INTERSECT}
1362  24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3"
1363      LIMIT {INTERSECT}
1364} {
1365  set err "$op1 clause should come after $op2 not before"
1366  do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
1367}
1368
1369# EVIDENCE-OF: R-22874-32655 ORDER BY and LIMIT clauses may only occur
1370# at the end of the entire compound SELECT.
1371#
1372foreach {tn select} {
1373  1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
1374  2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
1375  3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
1376  4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10"
1377  5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1378  6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1379
1380  7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
1381  8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
1382  9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
1383  10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10"
1384  11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1385  12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1386
1387  13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
1388  14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
1389  15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
1390  16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10"
1391  17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1392  18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1393
1394  19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
1395  20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
1396  21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
1397  22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10"
1398  23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1399  24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1400} {
1401  do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
1402}
1403
1404# EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
1405# operator returns all the rows from the SELECT to the left of the UNION
1406# ALL operator, and all the rows from the SELECT to the right of it.
1407#
1408drop_all_tables
1409do_execsql_test e_select-7.4.0 {
1410  CREATE TABLE q1(a TEXT, b INTEGER, c);
1411  CREATE TABLE q2(d NUMBER, e BLOB);
1412  CREATE TABLE q3(f REAL, g);
1413
1414  INSERT INTO q1 VALUES(16, -87.66, NULL);
1415  INSERT INTO q1 VALUES('legible', 94, -42.47);
1416  INSERT INTO q1 VALUES('beauty', 36, NULL);
1417
1418  INSERT INTO q2 VALUES('legible', 1);
1419  INSERT INTO q2 VALUES('beauty', 2);
1420  INSERT INTO q2 VALUES(-65.91, 4);
1421  INSERT INTO q2 VALUES('emanating', -16.56);
1422
1423  INSERT INTO q3 VALUES('beauty', 2);
1424  INSERT INTO q3 VALUES('beauty', 2);
1425} {}
1426do_select_tests e_select-7.4 {
1427  1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
1428      {16 legible beauty legible beauty -65.91 emanating}
1429
1430  2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
1431      {16 -87.66 {} x legible 1}
1432
1433  3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2}
1434      {3 -16.56}
1435
1436  4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3}
1437      {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
1438}
1439
1440# EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
1441# UNION ALL, except that duplicate rows are removed from the final
1442# result set.
1443#
1444do_select_tests e_select-7.5 {
1445  1   {SELECT a FROM q1 UNION SELECT d FROM q2}
1446      {-65.91 16 beauty emanating legible}
1447
1448  2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
1449      {16 -87.66 {} x legible 1}
1450
1451  3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2}
1452      {-16.56 3}
1453
1454  4   {SELECT * FROM q2 UNION SELECT * FROM q3}
1455      {-65.91 4 beauty 2 emanating -16.56 legible 1}
1456}
1457
1458# EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
1459# intersection of the results of the left and right SELECTs.
1460#
1461do_select_tests e_select-7.6 {
1462  1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
1463  2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
1464}
1465
1466# EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
1467# rows returned by the left SELECT that are not also returned by the
1468# right-hand SELECT.
1469#
1470do_select_tests e_select-7.7 {
1471  1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
1472
1473  2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3}
1474      {-65.91 4 emanating -16.56 legible 1}
1475}
1476
1477# EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
1478# of INTERSECT and EXCEPT operators before the result set is returned.
1479#
1480do_select_tests e_select-7.8 {
1481  0   {SELECT * FROM q3} {beauty 2 beauty 2}
1482
1483  1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
1484  2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
1485}
1486
1487# EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
1488# rows for the results of compound SELECT operators, NULL values are
1489# considered equal to other NULL values and distinct from all non-NULL
1490# values.
1491#
1492db nullvalue null
1493do_select_tests e_select-7.9 {
1494  1   {SELECT NULL UNION ALL SELECT NULL} {null null}
1495  2   {SELECT NULL UNION     SELECT NULL} {null}
1496  3   {SELECT NULL INTERSECT SELECT NULL} {null}
1497  4   {SELECT NULL EXCEPT    SELECT NULL} {}
1498
1499  5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
1500  6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
1501  7   {SELECT NULL INTERSECT SELECT 'ab'} {}
1502  8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}
1503
1504  9   {SELECT NULL UNION ALL SELECT 0} {null 0}
1505  10  {SELECT NULL UNION     SELECT 0} {null 0}
1506  11  {SELECT NULL INTERSECT SELECT 0} {}
1507  12  {SELECT NULL EXCEPT    SELECT 0} {null}
1508
1509  13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
1510  14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
1511  15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
1512  16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
1513}
1514db nullvalue {}
1515
1516# EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
1517# text values is determined as if the columns of the left and right-hand
1518# SELECT statements were the left and right-hand operands of the equals
1519# (=) operator, except that greater precedence is not assigned to a
1520# collation sequence specified with the postfix COLLATE operator.
1521#
1522drop_all_tables
1523do_execsql_test e_select-7.10.0 {
1524  CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
1525  INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
1526} {}
1527do_select_tests e_select-7.10 {
1528  1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
1529  2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
1530  3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
1531  4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
1532  5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
1533
1534  6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
1535  7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
1536  8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}
1537
1538  9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
1539}
1540
1541# EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
1542# any values when comparing rows as part of a compound SELECT.
1543#
1544drop_all_tables
1545do_execsql_test e_select-7.10.0 {
1546  CREATE TABLE w1(a TEXT, b NUMBER);
1547  CREATE TABLE w2(a, b TEXT);
1548
1549  INSERT INTO w1 VALUES('1', 4.1);
1550  INSERT INTO w2 VALUES(1, 4.1);
1551} {}
1552
1553do_select_tests e_select-7.11 {
1554  1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
1555  2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
1556  3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
1557  4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
1558
1559  5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
1560  6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
1561  7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
1562  8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
1563
1564  9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
1565  10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
1566  11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
1567  12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
1568}
1569
1570
1571# EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
1572# connected into a compound SELECT, they group from left to right. In
1573# other words, if "A", "B" and "C" are all simple SELECT statements, (A
1574# op B op C) is processed as ((A op B) op C).
1575#
1576#   e_select-7.12.1: Precedence of UNION vs. INTERSECT
1577#   e_select-7.12.2: Precedence of UNION vs. UNION ALL
1578#   e_select-7.12.3: Precedence of UNION vs. EXCEPT
1579#   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL
1580#   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
1581#   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
1582#   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as
1583#                   "(a EXCEPT b) EXCEPT c".
1584#
1585# The INTERSECT and EXCEPT operations are mutually commutative. So
1586# the e_select-7.12.5 test cases do not prove very much.
1587#
1588drop_all_tables
1589do_execsql_test e_select-7.12.0 {
1590  CREATE TABLE t1(x);
1591  INSERT INTO t1 VALUES(1);
1592  INSERT INTO t1 VALUES(2);
1593  INSERT INTO t1 VALUES(3);
1594} {}
1595foreach {tn select res} {
1596  1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
1597  1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1598
1599  2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
1600  2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}
1601
1602  3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
1603  3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}
1604
1605  4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
1606  4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1607
1608  5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
1609  5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}
1610
1611  6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
1612  6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}
1613
1614  7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
1615} {
1616  set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
1617  do_execsql_test e_select-7.12.$tn $select [list {*}$res]
1618}
1619
1620
1621#-------------------------------------------------------------------------
1622# ORDER BY clauses
1623#
1624
1625drop_all_tables
1626do_execsql_test e_select-8.1.0 {
1627  CREATE TABLE d1(x, y, z);
1628
1629  INSERT INTO d1 VALUES(1, 2, 3);
1630  INSERT INTO d1 VALUES(2, 5, -1);
1631  INSERT INTO d1 VALUES(1, 2, 8);
1632  INSERT INTO d1 VALUES(1, 2, 7);
1633  INSERT INTO d1 VALUES(2, 4, 93);
1634  INSERT INTO d1 VALUES(1, 2, -20);
1635  INSERT INTO d1 VALUES(1, 4, 93);
1636  INSERT INTO d1 VALUES(1, 5, -1);
1637
1638  CREATE TABLE d2(a, b);
1639  INSERT INTO d2 VALUES('gently', 'failings');
1640  INSERT INTO d2 VALUES('commercials', 'bathrobe');
1641  INSERT INTO d2 VALUES('iterate', 'sexton');
1642  INSERT INTO d2 VALUES('babied', 'charitableness');
1643  INSERT INTO d2 VALUES('solemnness', 'annexed');
1644  INSERT INTO d2 VALUES('rejoicing', 'liabilities');
1645  INSERT INTO d2 VALUES('pragmatist', 'guarded');
1646  INSERT INTO d2 VALUES('barked', 'interrupted');
1647  INSERT INTO d2 VALUES('reemphasizes', 'reply');
1648  INSERT INTO d2 VALUES('lad', 'relenting');
1649} {}
1650
1651# EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
1652# of evaluating the left-most expression in the ORDER BY list, then ties
1653# are broken by evaluating the second left-most expression and so on.
1654#
1655do_select_tests e_select-8.1 {
1656  1  "SELECT * FROM d1 ORDER BY x, y, z" {
1657     1 2 -20    1 2 3    1 2 7    1 2 8
1658     1 4  93    1 5 -1   2 4 93   2 5 -1
1659  }
1660}
1661
1662# EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
1663# followed by one of the keywords ASC (smaller values are returned
1664# first) or DESC (larger values are returned first).
1665#
1666#   Test cases e_select-8.2.* test the above.
1667#
1668# EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
1669# are sorted in ascending (smaller values first) order by default.
1670#
1671#   Test cases e_select-8.3.* test the above. All 8.3 test cases are
1672#   copies of 8.2 test cases with the explicit "ASC" removed.
1673#
1674do_select_tests e_select-8 {
1675  2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
1676     1 2 -20    1 2 3    1 2 7    1 2 8
1677     1 4  93    1 5 -1   2 4 93   2 5 -1
1678  }
1679  2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
1680     2 5 -1     2 4 93   1 5 -1   1 4  93
1681     1 2 8      1 2 7    1 2 3    1 2 -20
1682  }
1683  2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
1684     2 4 93   2 5 -1     1 2 8      1 2 7
1685     1 2 3    1 2 -20    1 4  93    1 5 -1
1686  }
1687  2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
1688     2 4 93   2 5 -1     1 2 -20    1 2 3
1689     1 2 7    1 2 8      1 4  93    1 5 -1
1690  }
1691
1692  3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
1693     1 2 -20    1 2 3    1 2 7    1 2 8
1694     1 4  93    1 5 -1   2 4 93   2 5 -1
1695  }
1696  3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
1697     2 4 93   2 5 -1     1 2 8      1 2 7
1698     1 2 3    1 2 -20    1 4  93    1 5 -1
1699  }
1700  3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
1701     2 4 93   2 5 -1     1 2 -20    1 2 3
1702     1 2 7    1 2 8      1 4  93    1 5 -1
1703  }
1704}
1705
1706# EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
1707# integer K then the expression is considered an alias for the K-th
1708# column of the result set (columns are numbered from left to right
1709# starting with 1).
1710#
1711do_select_tests e_select-8.4 {
1712  1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
1713     1 2 -20    1 2 3    1 2 7    1 2 8
1714     1 4  93    1 5 -1   2 4 93   2 5 -1
1715  }
1716  2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
1717     2 5 -1     2 4 93   1 5 -1   1 4  93
1718     1 2 8      1 2 7    1 2 3    1 2 -20
1719  }
1720  3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
1721     2 4 93   2 5 -1     1 2 8      1 2 7
1722     1 2 3    1 2 -20    1 4  93    1 5 -1
1723  }
1724  4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
1725     2 4 93   2 5 -1     1 2 -20    1 2 3
1726     1 2 7    1 2 8      1 4  93    1 5 -1
1727  }
1728  5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
1729     1 2 -20    1 2 3    1 2 7    1 2 8
1730     1 4  93    1 5 -1   2 4 93   2 5 -1
1731  }
1732  6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
1733     2 4 93   2 5 -1     1 2 8      1 2 7
1734     1 2 3    1 2 -20    1 4  93    1 5 -1
1735  }
1736  7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
1737     2 4 93   2 5 -1     1 2 -20    1 2 3
1738     1 2 7    1 2 8      1 4  93    1 5 -1
1739  }
1740  8  "SELECT z, x FROM d1 ORDER BY 2" {
1741     3 1     8 1    7 1   -20 1
1742     93 1   -1 1   -1 2   93 2
1743  }
1744  9  "SELECT z, x FROM d1 ORDER BY 1" {
1745     -20 1  -1 2   -1 1   3 1
1746     7 1     8 1   93 2   93 1
1747  }
1748}
1749
1750# EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
1751# that corresponds to the alias of one of the output columns, then the
1752# expression is considered an alias for that column.
1753#
1754do_select_tests e_select-8.5 {
1755  1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
1756    -19 0 0 4 8 9 94 94
1757  }
1758  2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
1759    94 94 9 8 4 0 0 -19
1760  }
1761  3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
1762    3 1    8 1    7 1    -20 1    93 1    -1 1    -1 2    93 2
1763  }
1764  4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
1765    -20 1    -1 2    -1 1    3 1    7 1    8 1    93 2    93 1
1766  }
1767}
1768
1769# EVIDENCE-OF: R-27923-38747 Otherwise, if the ORDER BY expression is
1770# any other expression, it is evaluated and the the returned value used
1771# to order the output rows.
1772#
1773# EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
1774# then an ORDER BY may contain any arbitrary expressions.
1775#
1776do_select_tests e_select-8.6 {
1777  1   "SELECT * FROM d1 ORDER BY x+y+z" {
1778    1 2 -20    1 5 -1    1 2 3    2 5 -1
1779    1 2 7      1 2 8     1 4 93   2 4 93
1780  }
1781  2   "SELECT * FROM d1 ORDER BY x*z" {
1782    1 2 -20    2 5 -1    1 5 -1    1 2 3
1783    1 2 7      1 2 8     1 4 93    2 4 93
1784  }
1785  3   "SELECT * FROM d1 ORDER BY y*z" {
1786    1 2 -20    2 5 -1    1 5 -1    1 2 3
1787    1 2 7      1 2 8     2 4 93    1 4 93
1788  }
1789}
1790
1791# EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
1792# SELECT, then ORDER BY expressions that are not aliases to output
1793# columns must be exactly the same as an expression used as an output
1794# column.
1795#
1796do_select_tests e_select-8.7.1 -error {
1797  %s ORDER BY term does not match any column in the result set
1798} {
1799  1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
1800  2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
1801}
1802
1803do_select_tests e_select-8.7.2 {
1804  1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
1805    -20 -2 -1 3 7 8 93 186 babied barked commercials gently
1806    iterate lad pragmatist reemphasizes rejoicing solemnness
1807  }
1808  2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
1809    1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0
1810    babied charitableness barked interrupted commercials bathrobe gently
1811    failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
1812    rejoicing liabilities solemnness annexed
1813  }
1814}
1815
1816do_execsql_test e_select-8.8.0 {
1817  CREATE TABLE d3(a);
1818  INSERT INTO d3 VALUES('text');
1819  INSERT INTO d3 VALUES(14.1);
1820  INSERT INTO d3 VALUES(13);
1821  INSERT INTO d3 VALUES(X'78787878');
1822  INSERT INTO d3 VALUES(15);
1823  INSERT INTO d3 VALUES(12.9);
1824  INSERT INTO d3 VALUES(null);
1825
1826  CREATE TABLE d4(x COLLATE nocase);
1827  INSERT INTO d4 VALUES('abc');
1828  INSERT INTO d4 VALUES('ghi');
1829  INSERT INTO d4 VALUES('DEF');
1830  INSERT INTO d4 VALUES('JKL');
1831} {}
1832
1833# EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
1834# are compared in the same way as for comparison expressions.
1835#
1836#   The following tests verify that values of different types are sorted
1837#   correctly, and that mixed real and integer values are compared properly.
1838#
1839do_execsql_test e_select-8.8.1 {
1840  SELECT a FROM d3 ORDER BY a
1841} {{} 12.9 13 14.1 15 text xxxx}
1842do_execsql_test e_select-8.8.2 {
1843  SELECT a FROM d3 ORDER BY a DESC
1844} {xxxx text 15 14.1 13 12.9 {}}
1845
1846
1847# EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
1848# collation sequence using the postfix COLLATE operator, then the
1849# specified collation sequence is used.
1850#
1851do_execsql_test e_select-8.9.1 {
1852  SELECT x FROM d4 ORDER BY 1 COLLATE binary
1853} {DEF JKL abc ghi}
1854do_execsql_test e_select-8.9.2 {
1855  SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
1856} {abc DEF ghi JKL}
1857
1858# EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is
1859# an alias to an expression that has been assigned a collation sequence
1860# using the postfix COLLATE operator, then the collation sequence
1861# assigned to the aliased expression is used.
1862#
1863#   In the test 8.10.2, the only result-column expression has no alias. So the
1864#   ORDER BY expression is not a reference to it and therefore does not inherit
1865#   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
1866#   column name), so the ORDER BY expression is interpreted as an alias and the
1867#   collation sequence attached to the result column is used for sorting.
1868#
1869do_execsql_test e_select-8.10.1 {
1870  SELECT x COLLATE binary FROM d4 ORDER BY 1
1871} {DEF JKL abc ghi}
1872do_execsql_test e_select-8.10.2 {
1873  SELECT x COLLATE binary FROM d4 ORDER BY x
1874} {abc DEF ghi JKL}
1875do_execsql_test e_select-8.10.3 {
1876  SELECT x COLLATE binary AS x FROM d4 ORDER BY x
1877} {DEF JKL abc ghi}
1878
1879# EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
1880# column or an alias of an expression that is a column, then the default
1881# collation sequence for the column is used.
1882#
1883do_execsql_test e_select-8.11.1 {
1884  SELECT x AS y FROM d4 ORDER BY y
1885} {abc DEF ghi JKL}
1886do_execsql_test e_select-8.11.2 {
1887  SELECT x||'' FROM d4 ORDER BY x
1888} {abc DEF ghi JKL}
1889
1890# EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
1891# used.
1892#
1893do_execsql_test e_select-8.12.1 {
1894  SELECT x FROM d4 ORDER BY x||''
1895} {DEF JKL abc ghi}
1896
1897# EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
1898# alias, then SQLite searches the left-most SELECT in the compound for a
1899# result column that matches either the second or third rules above. If
1900# a match is found, the search stops and the expression is handled as an
1901# alias for the result column that it has been matched against.
1902# Otherwise, the next SELECT to the right is tried, and so on.
1903#
1904do_execsql_test e_select-8.13.0 {
1905  CREATE TABLE d5(a, b);
1906  CREATE TABLE d6(c, d);
1907  CREATE TABLE d7(e, f);
1908
1909  INSERT INTO d5 VALUES(1, 'f');
1910  INSERT INTO d6 VALUES(2, 'e');
1911  INSERT INTO d7 VALUES(3, 'd');
1912  INSERT INTO d5 VALUES(4, 'c');
1913  INSERT INTO d6 VALUES(5, 'b');
1914  INSERT INTO d7 VALUES(6, 'a');
1915
1916  CREATE TABLE d8(x COLLATE nocase);
1917  CREATE TABLE d9(y COLLATE nocase);
1918
1919  INSERT INTO d8 VALUES('a');
1920  INSERT INTO d9 VALUES('B');
1921  INSERT INTO d8 VALUES('c');
1922  INSERT INTO d9 VALUES('D');
1923} {}
1924do_select_tests e_select-8.13 {
1925  1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1926         ORDER BY a
1927      } {1 2 3 4 5 6}
1928  2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1929         ORDER BY c
1930      } {1 2 3 4 5 6}
1931  3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1932         ORDER BY e
1933      } {1 2 3 4 5 6}
1934  4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1935         ORDER BY 1
1936      } {1 2 3 4 5 6}
1937
1938  5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b }
1939      {f 1   c 4   4 c   1 f}
1940  6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 }
1941      {f 1   c 4   4 c   1 f}
1942
1943  7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a }
1944      {1 f   4 c   c 4   f 1}
1945  8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 }
1946      {1 f   4 c   c 4   f 1}
1947
1948  9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1949      {f 2   c 5   4 c   1 f}
1950  10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 }
1951      {f 2   c 5   4 c   1 f}
1952
1953  11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1954      {2 f   5 c   c 5   f 2}
1955  12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 }
1956      {2 f   5 c   c 5   f 2}
1957}
1958
1959# EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
1960# the result columns of any constituent SELECT, it is an error.
1961#
1962do_select_tests e_select-8.14 -error {
1963  %s ORDER BY term does not match any column in the result set
1964} {
1965  1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
1966  2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
1967  3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
1968  4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
1969  5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
1970  6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
1971}
1972
1973# EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
1974# processed separately and may be matched against result columns from
1975# different SELECT statements in the compound.
1976#
1977do_select_tests e_select-8.15 {
1978  1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
1979     {1 e   1 f   4 b   4 c}
1980  2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
1981     {1 e   1 f   4 b   4 c}
1982  3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
1983     {1 e   1 f   4 b   4 c}
1984}
1985
1986
1987#-------------------------------------------------------------------------
1988# Tests related to statements made about the LIMIT/OFFSET clause.
1989#
1990do_execsql_test e_select-9.0 {
1991  CREATE TABLE f1(a, b);
1992  INSERT INTO f1 VALUES(26, 'z');
1993  INSERT INTO f1 VALUES(25, 'y');
1994  INSERT INTO f1 VALUES(24, 'x');
1995  INSERT INTO f1 VALUES(23, 'w');
1996  INSERT INTO f1 VALUES(22, 'v');
1997  INSERT INTO f1 VALUES(21, 'u');
1998  INSERT INTO f1 VALUES(20, 't');
1999  INSERT INTO f1 VALUES(19, 's');
2000  INSERT INTO f1 VALUES(18, 'r');
2001  INSERT INTO f1 VALUES(17, 'q');
2002  INSERT INTO f1 VALUES(16, 'p');
2003  INSERT INTO f1 VALUES(15, 'o');
2004  INSERT INTO f1 VALUES(14, 'n');
2005  INSERT INTO f1 VALUES(13, 'm');
2006  INSERT INTO f1 VALUES(12, 'l');
2007  INSERT INTO f1 VALUES(11, 'k');
2008  INSERT INTO f1 VALUES(10, 'j');
2009  INSERT INTO f1 VALUES(9, 'i');
2010  INSERT INTO f1 VALUES(8, 'h');
2011  INSERT INTO f1 VALUES(7, 'g');
2012  INSERT INTO f1 VALUES(6, 'f');
2013  INSERT INTO f1 VALUES(5, 'e');
2014  INSERT INTO f1 VALUES(4, 'd');
2015  INSERT INTO f1 VALUES(3, 'c');
2016  INSERT INTO f1 VALUES(2, 'b');
2017  INSERT INTO f1 VALUES(1, 'a');
2018} {}
2019
2020# EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
2021# LIMIT clause, so long as it evaluates to an integer or a value that
2022# can be losslessly converted to an integer.
2023#
2024do_select_tests e_select-9.1 {
2025  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
2026  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
2027  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') }
2028     {a b c d e}
2029  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
2030  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
2031}
2032
2033# EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
2034# or any other value that cannot be losslessly converted to an integer,
2035# an error is returned.
2036#
2037
2038do_select_tests e_select-9.2 -error "datatype mismatch" {
2039  1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
2040  2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
2041  3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
2042  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
2043  5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
2044}
2045
2046# EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
2047# negative value, then there is no upper bound on the number of rows
2048# returned.
2049#
2050do_select_tests e_select-9.4 {
2051  1  { SELECT b FROM f1 ORDER BY a LIMIT -1 }
2052     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2053  2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 }
2054     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2055  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
2056     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2057}
2058
2059# EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
2060# rows of its result set only, where N is the value that the LIMIT
2061# expression evaluates to.
2062#
2063do_select_tests e_select-9.5 {
2064  1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
2065  2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
2066  3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
2067  4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
2068}
2069
2070# EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
2071# less than N rows without a LIMIT clause, then the entire result set is
2072# returned.
2073#
2074do_select_tests e_select-9.6 {
2075  1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
2076  2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
2077}
2078
2079
2080# EVIDENCE-OF: R-24188-24349 The expression attached to the optional
2081# OFFSET clause that may follow a LIMIT clause must also evaluate to an
2082# integer, or a value that can be losslessly converted to an integer.
2083#
2084foreach {tn select} {
2085  1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' }
2086  2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL }
2087  3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' }
2088  4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 }
2089  5  { SELECT b FROM f1 ORDER BY a
2090       LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1)
2091  }
2092} {
2093  do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
2094}
2095
2096# EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
2097# the first M rows are omitted from the result set returned by the
2098# SELECT statement and the next N rows are returned, where M and N are
2099# the values that the OFFSET and LIMIT clauses evaluate to,
2100# respectively.
2101#
2102do_select_tests e_select-9.8 {
2103  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
2104  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
2105  3  { SELECT b FROM f1 ORDER BY a
2106       LIMIT  (SELECT a FROM f1 WHERE b='j')
2107       OFFSET (SELECT a FROM f1 WHERE b='b')
2108     } {c d e f g h i j k l}
2109  4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
2110  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
2111  6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
2112  7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
2113}
2114
2115# EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
2116# M+N rows if it did not have a LIMIT clause, then the first M rows are
2117# skipped and the remaining rows (if any) are returned.
2118#
2119do_select_tests e_select-9.9 {
2120  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
2121  2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
2122}
2123
2124
2125# EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
2126# negative value, the results are the same as if it had evaluated to
2127# zero.
2128#
2129do_select_tests e_select-9.10 {
2130  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
2131  2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
2132  3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
2133}
2134
2135# EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
2136# LIMIT clause may specify two scalar expressions separated by a comma.
2137#
2138# EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
2139# as the OFFSET expression and the second as the LIMIT expression.
2140#
2141do_select_tests e_select-9.11 {
2142  1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
2143  2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
2144  3  { SELECT b FROM f1 ORDER BY a
2145       LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j')
2146     } {c d e f g h i j k l}
2147  4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
2148  5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
2149  6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
2150  7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
2151
2152  8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
2153  9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
2154
2155  10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
2156  11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
2157  12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
2158}
2159
2160finish_test
2161