1# 2010 July 16 2# 3# The author disclaims copyright to this source code. In place of 4# a legal notice, here is a blessing: 5# 6# May you do good and not evil. 7# May you find forgiveness for yourself and forgive others. 8# May you share freely, never taking more than you give. 9# 10#*********************************************************************** 11# 12# This file implements tests to verify that the "testable statements" in 13# the lang_select.html document are correct. 14# 15 16set testdir [file dirname $argv0] 17source $testdir/tester.tcl 18 19ifcapable !compound { 20 finish_test 21 return 22} 23 24do_execsql_test e_select-1.0 { 25 CREATE TABLE t1(a, b); 26 INSERT INTO t1 VALUES('a', 'one'); 27 INSERT INTO t1 VALUES('b', 'two'); 28 INSERT INTO t1 VALUES('c', 'three'); 29 30 CREATE TABLE t2(a, b); 31 INSERT INTO t2 VALUES('a', 'I'); 32 INSERT INTO t2 VALUES('b', 'II'); 33 INSERT INTO t2 VALUES('c', 'III'); 34 35 CREATE TABLE t3(a, c); 36 INSERT INTO t3 VALUES('a', 1); 37 INSERT INTO t3 VALUES('b', 2); 38 39 CREATE TABLE t4(a, c); 40 INSERT INTO t4 VALUES('a', NULL); 41 INSERT INTO t4 VALUES('b', 2); 42} {} 43set t1_cross_t2 [list \ 44 a one a I a one b II \ 45 a one c III b two a I \ 46 b two b II b two c III \ 47 c three a I c three b II \ 48 c three c III \ 49] 50set t1_cross_t1 [list \ 51 a one a one a one b two \ 52 a one c three b two a one \ 53 b two b two b two c three \ 54 c three a one c three b two \ 55 c three c three \ 56] 57 58 59# This proc is a specialized version of [do_execsql_test]. 60# 61# The second argument to this proc must be a SELECT statement that 62# features a cross join of some time. Instead of the usual ",", 63# "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 64# substituted. 65# 66# This test runs the SELECT three times - once with: 67# 68# * s/%JOIN%/,/ 69# * s/%JOIN%/JOIN/ 70# * s/%JOIN%/INNER JOIN/ 71# * s/%JOIN%/CROSS JOIN/ 72# 73# and checks that each time the results of the SELECT are $res. 74# 75proc do_join_test {tn select res} { 76 foreach {tn2 joinop} [list 1 , 2 "CROSS JOIN" 3 "INNER JOIN"] { 77 set S [string map [list %JOIN% $joinop] $select] 78 uplevel do_execsql_test $tn.$tn2 [list $S] [list $res] 79 } 80} 81 82#------------------------------------------------------------------------- 83# The following tests check that all paths on the syntax diagrams on 84# the lang_select.html page may be taken. 85# 86# EVIDENCE-OF: R-11353-33501 -- syntax diagram join-constraint 87# 88do_join_test e_select-0.1.1 { 89 SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a) 90} {3} 91do_join_test e_select-0.1.2 { 92 SELECT count(*) FROM t1 %JOIN% t2 USING (a) 93} {3} 94do_join_test e_select-0.1.3 { 95 SELECT count(*) FROM t1 %JOIN% t2 96} {9} 97do_catchsql_test e_select-0.1.4 { 98 SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a) 99} {1 {cannot have both ON and USING clauses in the same join}} 100do_catchsql_test e_select-0.1.5 { 101 SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a) 102} {1 {near "ON": syntax error}} 103 104# EVIDENCE-OF: R-40919-40941 -- syntax diagram select-core 105# 106# 0: SELECT ... 107# 1: SELECT DISTINCT ... 108# 2: SELECT ALL ... 109# 110# 0: No FROM clause 111# 1: Has FROM clause 112# 113# 0: No WHERE clause 114# 1: Has WHERE clause 115# 116# 0: No GROUP BY clause 117# 1: Has GROUP BY clause 118# 2: Has GROUP BY and HAVING clauses 119# 120do_select_tests e_select-0.2 { 121 0000.1 "SELECT 1, 2, 3 " {1 2 3} 122 1000.1 "SELECT DISTINCT 1, 2, 3 " {1 2 3} 123 2000.1 "SELECT ALL 1, 2, 3 " {1 2 3} 124 125 0100.1 "SELECT a, b, a||b FROM t1 " { 126 a one aone b two btwo c three cthree 127 } 128 1100.1 "SELECT DISTINCT a, b, a||b FROM t1 " { 129 a one aone b two btwo c three cthree 130 } 131 1200.1 "SELECT ALL a, b, a||b FROM t1 " { 132 a one aone b two btwo c three cthree 133 } 134 135 0010.1 "SELECT 1, 2, 3 WHERE 1 " {1 2 3} 136 0010.2 "SELECT 1, 2, 3 WHERE 0 " {} 137 0010.3 "SELECT 1, 2, 3 WHERE NULL " {} 138 139 1010.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3} 140 141 2010.1 "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3} 142 143 0110.1 "SELECT a, b, a||b FROM t1 WHERE a!='x' " { 144 a one aone b two btwo c three cthree 145 } 146 0110.2 "SELECT a, b, a||b FROM t1 WHERE a=='x'" {} 147 148 1110.1 "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " { 149 a one aone b two btwo c three cthree 150 } 151 152 2110.0 "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {} 153 154 0001.1 "SELECT 1, 2, 3 GROUP BY 2" {1 2 3} 155 0002.1 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 156 0002.2 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 157 158 1001.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3} 159 1002.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 160 1002.2 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 161 162 2001.1 "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3} 163 2002.1 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 164 2002.2 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 165 166 0101.1 "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 167 0102.1 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" { 168 1 a 1 c 1 b 169 } 170 0102.2 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { } 171 172 1101.1 "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 173 1102.1 "SELECT DISTINCT count(*), max(a) FROM t1 174 GROUP BY b HAVING count(*)=1" { 175 1 a 1 c 1 b 176 } 177 1102.2 "SELECT DISTINCT count(*), max(a) FROM t1 178 GROUP BY b HAVING count(*)=2" { 179 } 180 181 2101.1 "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 182 2102.1 "SELECT ALL count(*), max(a) FROM t1 183 GROUP BY b HAVING count(*)=1" { 184 1 a 1 c 1 b 185 } 186 2102.2 "SELECT ALL count(*), max(a) FROM t1 187 GROUP BY b HAVING count(*)=2" { 188 } 189 190 0011.1 "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 191 0012.1 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 192 0012.2 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {} 193 194 1011.1 "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {} 195 1012.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 196 {1 2 3} 197 1012.2 "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {} 198 199 2011.1 "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 200 2012.1 "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 201 2012.2 "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {} 202 203 0111.1 "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a} 204 0112.1 "SELECT count(*), max(a) FROM t1 205 WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c} 206 0112.2 "SELECT count(*), max(a) FROM t1 207 WHERE 0 GROUP BY b HAVING count(*)=2" { } 208 1111.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 209 {1 a 1 b} 210 1112.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a' 211 GROUP BY b HAVING count(*)=1" { 212 1 c 1 b 213 } 214 1112.2 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0 215 GROUP BY b HAVING count(*)=2" { 216 } 217 218 2111.1 "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 219 {1 c 1 b} 220 2112.1 "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b' 221 GROUP BY b HAVING count(*)=1" { 222 1 a 1 c 223 } 224 2112.2 "SELECT ALL count(*), max(a) FROM t1 225 WHERE 0 GROUP BY b HAVING count(*)=2" { } 226} 227 228 229# EVIDENCE-OF: R-41378-26734 -- syntax diagram result-column 230# 231do_select_tests e_select-0.3 { 232 1 "SELECT * FROM t1" {a one b two c three} 233 2 "SELECT t1.* FROM t1" {a one b two c three} 234 3 "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx} 235 4 "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx} 236 5 "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx} 237} 238 239# EVIDENCE-OF: R-43129-35648 -- syntax diagram join-source 240# 241# EVIDENCE-OF: R-36683-37460 -- syntax diagram join-op 242# 243do_select_tests e_select-0.4 { 244 1 "SELECT t1.rowid FROM t1" {1 2 3} 245 2 "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3} 246 3 "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 247 248 4 "SELECT t1.rowid FROM t1" {1 2 3} 249 5 "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3} 250 6 "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 251 {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 252 253 7 "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2} 254 8 "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3} 255 9 "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3} 256 10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2} 257 11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2} 258 259 12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3} 260 13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3} 261 14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3} 262 15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3} 263 16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3} 264} 265 266# EVIDENCE-OF: R-28308-37813 -- syntax diagram compound-operator 267# 268do_select_tests e_select-0.5 { 269 1 "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4} 270 2 "SELECT rowid FROM t1 UNION SELECT rowid+2 FROM t4" {1 2 3 4} 271 3 "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3} 272 4 "SELECT rowid FROM t1 EXCEPT SELECT rowid+2 FROM t4" {1 2} 273} 274 275# EVIDENCE-OF: R-06480-34950 -- syntax diagram ordering-term 276# 277do_select_tests e_select-0.6 { 278 1 "SELECT b||a FROM t1 ORDER BY b||a" {onea threec twob} 279 2 "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob} 280 3 "SELECT b||a FROM t1 ORDER BY (b||a) ASC" {onea threec twob} 281 4 "SELECT b||a FROM t1 ORDER BY (b||a) DESC" {twob threec onea} 282} 283 284# EVIDENCE-OF: R-23926-36668 -- syntax diagram select-stmt 285# 286do_select_tests e_select-0.7 { 287 1 "SELECT * FROM t1" {a one b two c three} 288 2 "SELECT * FROM t1 ORDER BY b" {a one c three b two} 289 3 "SELECT * FROM t1 ORDER BY b, a" {a one c three b two} 290 291 4 "SELECT * FROM t1 LIMIT 10" {a one b two c three} 292 5 "SELECT * FROM t1 LIMIT 10 OFFSET 5" {} 293 6 "SELECT * FROM t1 LIMIT 10, 5" {} 294 295 7 "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three} 296 8 "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {} 297 9 "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {} 298 299 10 "SELECT * FROM t1 UNION SELECT b, a FROM t1" 300 {a one b two c three one a three c two b} 301 11 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 302 {one a two b three c a one c three b two} 303 12 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 304 {one a two b three c a one c three b two} 305 13 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 306 {a one b two c three one a three c two b} 307 14 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 308 {two b} 309 15 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 310 {} 311 16 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 312 {a one b two c three one a three c two b} 313 17 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 314 {b two} 315 18 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 316 {} 317} 318 319#------------------------------------------------------------------------- 320# The following tests focus on FROM clause (join) processing. 321# 322 323# EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple 324# SELECT statement, then the input data is implicitly a single row zero 325# columns wide 326# 327do_select_tests e_select-1.1 { 328 1 "SELECT 'abc'" {abc} 329 2 "SELECT 'abc' WHERE NULL" {} 330 3 "SELECT NULL" {{}} 331 4 "SELECT count(*)" {1} 332 5 "SELECT count(*) WHERE 0" {0} 333 6 "SELECT count(*) WHERE 1" {1} 334} 335 336# EVIDENCE-OF: R-48114-33255 If there is only a single table in the 337# join-source following the FROM clause, then the input data used by the 338# SELECT statement is the contents of the named table. 339# 340# The results of the SELECT queries suggest that they are operating on the 341# contents of the table 'xx'. 342# 343do_execsql_test e_select-1.2.0 { 344 CREATE TABLE xx(x, y); 345 INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2'); 346 INSERT INTO xx VALUES(NULL, -16.87); 347 INSERT INTO xx VALUES(-17.89, 'linguistically'); 348} {} 349do_select_tests e_select-1.2 { 350 1 "SELECT quote(x), quote(y) FROM xx" { 351 'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 352 NULL -16.87 353 -17.89 'linguistically' 354 } 355 356 2 "SELECT count(*), count(x), count(y) FROM xx" {3 2 3} 357 3 "SELECT sum(x), sum(y) FROM xx" {-17.89 -16.87} 358} 359 360# EVIDENCE-OF: R-23593-12456 If there is more than one table specified 361# as part of the join-source following the FROM keyword, then the 362# contents of each named table are joined into a single dataset for the 363# simple SELECT statement to operate on. 364# 365# There are more detailed tests for subsequent requirements that add 366# more detail to this idea. We just add a single test that shows that 367# data is coming from each of the three tables following the FROM clause 368# here to show that the statement, vague as it is, is not incorrect. 369# 370do_select_tests e_select-1.3 { 371 1 "SELECT * FROM t1, t2, t3" { 372 a one a I a 1 a one a I b 2 a one b II a 1 373 a one b II b 2 a one c III a 1 a one c III b 2 374 b two a I a 1 b two a I b 2 b two b II a 1 375 b two b II b 2 b two c III a 1 b two c III b 2 376 c three a I a 1 c three a I b 2 c three b II a 1 377 c three b II b 2 c three c III a 1 c three c III b 2 378 } 379} 380 381# 382# The following block of tests - e_select-1.4.* - test that the description 383# of cartesian joins in the SELECT documentation is consistent with SQLite. 384# In doing so, we test the following three requirements as a side-effect: 385# 386# EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER 387# JOIN", "JOIN" or a comma (",") and there is no ON or USING clause, 388# then the result of the join is simply the cartesian product of the 389# left and right-hand datasets. 390# 391# The tests are built on this assertion. Really, they test that the output 392# of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result 393# of calculating the cartesian product of the left and right-hand datasets. 394# 395# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER 396# JOIN", "JOIN" and "," join operators. 397# 398# EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the 399# same data as the "INNER JOIN", "JOIN" and "," operators 400# 401# All tests are run 4 times, with the only difference in each run being 402# which of the 4 equivalent cartesian product join operators are used. 403# Since the output data is the same in all cases, we consider that this 404# qualifies as testing the two statements above. 405# 406do_execsql_test e_select-1.4.0 { 407 CREATE TABLE x1(a, b); 408 CREATE TABLE x2(c, d, e); 409 CREATE TABLE x3(f, g, h, i); 410 411 -- x1: 3 rows, 2 columns 412 INSERT INTO x1 VALUES(24, 'converging'); 413 INSERT INTO x1 VALUES(NULL, X'CB71'); 414 INSERT INTO x1 VALUES('blonds', 'proprietary'); 415 416 -- x2: 2 rows, 3 columns 417 INSERT INTO x2 VALUES(-60.06, NULL, NULL); 418 INSERT INTO x2 VALUES(-58, NULL, 1.21); 419 420 -- x3: 5 rows, 4 columns 421 INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1); 422 INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified'); 423 INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL); 424 INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3); 425 INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL); 426} {} 427 428# EVIDENCE-OF: R-59089-25828 The columns of the cartesian product 429# dataset are, in order, all the columns of the left-hand dataset 430# followed by all the columns of the right-hand dataset. 431# 432do_join_test e_select-1.4.1.1 { 433 SELECT * FROM x1 %JOIN% x2 LIMIT 1 434} [concat {24 converging} {-60.06 {} {}}] 435 436do_join_test e_select-1.4.1.2 { 437 SELECT * FROM x2 %JOIN% x1 LIMIT 1 438} [concat {-60.06 {} {}} {24 converging}] 439 440do_join_test e_select-1.4.1.3 { 441 SELECT * FROM x3 %JOIN% x2 LIMIT 1 442} [concat {-39.24 {} encompass -1} {-60.06 {} {}}] 443 444do_join_test e_select-1.4.1.4 { 445 SELECT * FROM x2 %JOIN% x3 LIMIT 1 446} [concat {-60.06 {} {}} {-39.24 {} encompass -1}] 447 448# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product 449# dataset formed by combining each unique combination of a row from the 450# left-hand and right-hand datasets. 451# 452do_join_test e_select-1.4.2.1 { 453 SELECT * FROM x2 %JOIN% x3 454} [list -60.06 {} {} -39.24 {} encompass -1 \ 455 -60.06 {} {} presenting 51 reformation dignified \ 456 -60.06 {} {} conducting -87.24 37.56 {} \ 457 -60.06 {} {} coldest -96 dramatists 82.3 \ 458 -60.06 {} {} alerting {} -93.79 {} \ 459 -58 {} 1.21 -39.24 {} encompass -1 \ 460 -58 {} 1.21 presenting 51 reformation dignified \ 461 -58 {} 1.21 conducting -87.24 37.56 {} \ 462 -58 {} 1.21 coldest -96 dramatists 82.3 \ 463 -58 {} 1.21 alerting {} -93.79 {} \ 464] 465# TODO: Come back and add a few more like the above. 466 467# EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset 468# consists of Nlhs rows of Mlhs columns, and the right-hand dataset of 469# Nrhs rows of Mrhs columns, then the cartesian product is a dataset of 470# Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns. 471# 472# x1, x2 (Nlhs=3, Nrhs=2) (Mlhs=2, Mrhs=3) 473do_join_test e_select-1.4.3.1 { 474 SELECT count(*) FROM x1 %JOIN% x2 475} [expr 3*2] 476do_test e_select-1.4.3.2 { 477 expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6} 478} [expr 2+3] 479 480# x2, x3 (Nlhs=2, Nrhs=5) (Mlhs=3, Mrhs=4) 481do_join_test e_select-1.4.3.3 { 482 SELECT count(*) FROM x2 %JOIN% x3 483} [expr 2*5] 484do_test e_select-1.4.3.4 { 485 expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10} 486} [expr 3+4] 487 488# x3, x1 (Nlhs=5, Nrhs=3) (Mlhs=4, Mrhs=2) 489do_join_test e_select-1.4.3.5 { 490 SELECT count(*) FROM x3 %JOIN% x1 491} [expr 5*3] 492do_test e_select-1.4.3.6 { 493 expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15} 494} [expr 4+2] 495 496# x3, x3 (Nlhs=5, Nrhs=5) (Mlhs=4, Mrhs=4) 497do_join_test e_select-1.4.3.7 { 498 SELECT count(*) FROM x3 %JOIN% x3 499} [expr 5*5] 500do_test e_select-1.4.3.8 { 501 expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25} 502} [expr 4+4] 503 504# Some extra cartesian product tests using tables t1 and t2. 505# 506do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2 507do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1 508 509do_select_tests e_select-1.4.5 [list \ 510 1 { SELECT * FROM t1 CROSS JOIN t2 } $t1_cross_t2 \ 511 2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1 \ 512 3 { SELECT * FROM t1 INNER JOIN t2 } $t1_cross_t2 \ 513 4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1 \ 514] 515 516 517# EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then 518# the ON expression is evaluated for each row of the cartesian product 519# as a boolean expression. All rows for which the expression evaluates 520# to false are excluded from the dataset. 521# 522foreach {tn select res} [list \ 523 1 { SELECT * FROM t1 %JOIN% t2 ON (1) } $t1_cross_t2 \ 524 2 { SELECT * FROM t1 %JOIN% t2 ON (0) } [list] \ 525 3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) } [list] \ 526 4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') } [list] \ 527 5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') } $t1_cross_t2 \ 528 6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) } $t1_cross_t2 \ 529 7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') } $t1_cross_t2 \ 530 8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) } [list] \ 531 \ 532 9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) } \ 533 {one I two II three III} \ 534 10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') } \ 535 {one I one II one III} \ 536 11 { SELECT t1.b, t2.b 537 FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \ 538 {two I two II two III three I three II three III} \ 539] { 540 do_join_test e_select-1.3.$tn $select $res 541} 542 543# EVIDENCE-OF: R-63358-54862 If there is a USING clause specified as 544# part of the join-constraint, then each of the column names specified 545# must exist in the datasets to both the left and right of the join-op. 546# 547do_select_tests e_select-1.4 -error { 548 cannot join using column %s - column not present in both tables 549} { 550 1 { SELECT * FROM t1, t3 USING (b) } "b" 551 2 { SELECT * FROM t3, t1 USING (c) } "c" 552 3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) } "a" 553} 554 555# EVIDENCE-OF: R-55987-04584 For each pair of namesake columns, the 556# expression "lhs.X = rhs.X" is evaluated for each row of the cartesian 557# product as a boolean expression. All rows for which one or more of the 558# expressions evaluates to false are excluded from the result set. 559# 560do_select_tests e_select-1.5 { 561 1 { SELECT * FROM t1, t3 USING (a) } {a one 1 b two 2} 562 2 { SELECT * FROM t3, t4 USING (a,c) } {b 2} 563} 564 565# EVIDENCE-OF: R-54046-48600 When comparing values as a result of a 566# USING clause, the normal rules for handling affinities, collation 567# sequences and NULL values in comparisons apply. 568# 569# EVIDENCE-OF: R-35466-18578 The column from the dataset on the 570# left-hand side of the join operator is considered to be on the 571# left-hand side of the comparison operator (=) for the purposes of 572# collation sequence and affinity precedence. 573# 574do_execsql_test e_select-1.6.0 { 575 CREATE TABLE t5(a COLLATE nocase, b COLLATE binary); 576 INSERT INTO t5 VALUES('AA', 'cc'); 577 INSERT INTO t5 VALUES('BB', 'dd'); 578 INSERT INTO t5 VALUES(NULL, NULL); 579 CREATE TABLE t6(a COLLATE binary, b COLLATE nocase); 580 INSERT INTO t6 VALUES('aa', 'cc'); 581 INSERT INTO t6 VALUES('bb', 'DD'); 582 INSERT INTO t6 VALUES(NULL, NULL); 583} {} 584foreach {tn select res} { 585 1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD} 586 2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {} 587 3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 588 {aa cc cc bb DD dd} 589 4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc} 590 5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {} 591} { 592 do_join_test e_select-1.6.$tn $select $res 593} 594 595# EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a 596# USING clause, the column from the right-hand dataset is omitted from 597# the joined dataset. 598# 599# EVIDENCE-OF: R-56132-15700 This is the only difference between a USING 600# clause and its equivalent ON constraint. 601# 602foreach {tn select res} { 603 1a { SELECT * FROM t1 %JOIN% t2 USING (a) } 604 {a one I b two II c three III} 605 1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) } 606 {a one a I b two b II c three c III} 607 608 2a { SELECT * FROM t3 %JOIN% t4 USING (a) } 609 {a 1 {} b 2 2} 610 2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 611 {a 1 a {} b 2 b 2} 612 613 3a { SELECT * FROM t3 %JOIN% t4 USING (a,c) } {b 2} 614 3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2} 615 616 4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 617 %JOIN% t5 USING (a) } 618 {aa cc cc bb DD dd} 619 4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 620 %JOIN% t5 ON (x.a=t5.a) } 621 {aa cc AA cc bb DD BB dd} 622} { 623 do_join_test e_select-1.7.$tn $select $res 624} 625 626# EVIDENCE-OF: R-41434-12448 If the join-op is a "LEFT JOIN" or "LEFT 627# OUTER JOIN", then after the ON or USING filtering clauses have been 628# applied, an extra row is added to the output for each row in the 629# original left-hand input dataset that corresponds to no rows at all in 630# the composite dataset (if any). 631# 632do_execsql_test e_select-1.8.0 { 633 CREATE TABLE t7(a, b, c); 634 CREATE TABLE t8(a, d, e); 635 636 INSERT INTO t7 VALUES('x', 'ex', 24); 637 INSERT INTO t7 VALUES('y', 'why', 25); 638 639 INSERT INTO t8 VALUES('x', 'abc', 24); 640 INSERT INTO t8 VALUES('z', 'ghi', 26); 641} {} 642 643do_select_tests e_select-1.8 { 644 1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1} 645 1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2} 646 2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1} 647 2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2} 648} 649 650 651# EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the 652# columns that would normally contain values copied from the right-hand 653# input dataset. 654# 655do_select_tests e_select-1.9 { 656 1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24} 657 1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 658 {x ex 24 x abc 24 y why 25 {} {} {}} 659 2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 660 2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 661} 662 663# EVIDENCE-OF: R-01809-52134 If the NATURAL keyword is added to any of 664# the join-ops, then an implicit USING clause is added to the 665# join-constraints. The implicit USING clause contains each of the 666# column names that appear in both the left and right-hand input 667# datasets. 668# 669do_select_tests e_select-1-10 { 670 1a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 671 1b "SELECT * FROM t7 NATURAL JOIN t8" {x ex 24 abc 24} 672 673 2a "SELECT * FROM t8 JOIN t7 USING (a)" {x abc 24 ex 24} 674 2b "SELECT * FROM t8 NATURAL JOIN t7" {x abc 24 ex 24} 675 676 3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 677 3b "SELECT * FROM t7 NATURAL LEFT JOIN t8" {x ex 24 abc 24 y why 25 {} {}} 678 679 4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)" {x abc 24 ex 24 z ghi 26 {} {}} 680 4b "SELECT * FROM t8 NATURAL LEFT JOIN t7" {x abc 24 ex 24 z ghi 26 {} {}} 681 682 5a "SELECT * FROM t3 JOIN t4 USING (a,c)" {b 2} 683 5b "SELECT * FROM t3 NATURAL JOIN t4" {b 2} 684 685 6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2} 686 6b "SELECT * FROM t3 NATURAL LEFT JOIN t4" {a 1 b 2} 687} 688 689# EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets 690# feature no common column names, then the NATURAL keyword has no effect 691# on the results of the join. 692# 693do_execsql_test e_select-1.11.0 { 694 CREATE TABLE t10(x, y); 695 INSERT INTO t10 VALUES(1, 'true'); 696 INSERT INTO t10 VALUES(0, 'false'); 697} {} 698do_select_tests e_select-1-11 { 699 1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 700 1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 701} 702 703# EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a 704# join that specifies the NATURAL keyword. 705# 706foreach {tn sql} { 707 1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)} 708 2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)} 709 3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)} 710} { 711 do_catchsql_test e_select-1.12.$tn " 712 $sql 713 " {1 {a NATURAL join may not have an ON or USING clause}} 714} 715 716#------------------------------------------------------------------------- 717# The next block of tests - e_select-3.* - concentrate on verifying 718# statements made regarding WHERE clause processing. 719# 720drop_all_tables 721do_execsql_test e_select-3.0 { 722 CREATE TABLE x1(k, x, y, z); 723 INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43); 724 INSERT INTO x1 VALUES(2, X'A8E8D66F', X'07CF', -81); 725 INSERT INTO x1 VALUES(3, -22, -27.57, NULL); 726 INSERT INTO x1 VALUES(4, NULL, 'bygone', 'picky'); 727 INSERT INTO x1 VALUES(5, NULL, 96.28, NULL); 728 INSERT INTO x1 VALUES(6, 0, 1, 2); 729 730 CREATE TABLE x2(k, x, y2); 731 INSERT INTO x2 VALUES(1, 50, X'B82838'); 732 INSERT INTO x2 VALUES(5, 84.79, 65.88); 733 INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393'); 734 INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized'); 735} {} 736 737# EVIDENCE-OF: R-06999-14330 If a WHERE clause is specified, the WHERE 738# expression is evaluated for each row in the input data as a boolean 739# expression. All rows for which the WHERE clause expression evaluates 740# to false are excluded from the dataset before continuing. 741# 742do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x } {3} 743do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y } {3 5 6} 744do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z } {1 2 6} 745do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z } {1 2 4 6} 746do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5} 747do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6} 748 749do_execsql_test e_select-3.2.1a { 750 SELECT k FROM x1 LEFT JOIN x2 USING(k) 751} {1 2 3 4 5 6} 752do_execsql_test e_select-3.2.1b { 753 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k 754} {1 3 5} 755do_execsql_test e_select-3.2.2 { 756 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL 757} {2 4 6} 758 759do_execsql_test e_select-3.2.3 { 760 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k 761} {3} 762do_execsql_test e_select-3.2.4 { 763 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3 764} {} 765 766#------------------------------------------------------------------------- 767# Tests below this point are focused on verifying the testable statements 768# related to caculating the result rows of a simple SELECT statement. 769# 770 771drop_all_tables 772do_execsql_test e_select-4.0 { 773 CREATE TABLE z1(a, b, c); 774 CREATE TABLE z2(d, e); 775 CREATE TABLE z3(a, b); 776 777 INSERT INTO z1 VALUES(51.65, -59.58, 'belfries'); 778 INSERT INTO z1 VALUES(-5, NULL, 75); 779 INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters'); 780 INSERT INTO z1 VALUES(NULL, 67, 'quartets'); 781 INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen'); 782 INSERT INTO z1 VALUES(63, 'born', -26); 783 784 INSERT INTO z2 VALUES(NULL, 21); 785 INSERT INTO z2 VALUES(36, 6); 786 787 INSERT INTO z3 VALUES('subsistence', 'gauze'); 788 INSERT INTO z3 VALUES(49.17, -67); 789} {} 790 791# EVIDENCE-OF: R-36327-17224 If a result expression is the special 792# expression "*" then all columns in the input data are substituted for 793# that one expression. 794# 795# EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table 796# or subquery in the FROM clause followed by ".*" then all columns from 797# the named table or subquery are substituted for the single expression. 798# 799do_select_tests e_select-4.1 { 800 1 "SELECT * FROM z1 LIMIT 1" {51.65 -59.58 belfries} 801 2 "SELECT * FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries {} 21} 802 3 "SELECT z1.* FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries} 803 4 "SELECT z2.* FROM z1,z2 LIMIT 1" {{} 21} 804 5 "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries} 805 806 6 "SELECT count(*), * FROM z1" {6 63 born -26} 807 7 "SELECT max(a), * FROM z1" {63 63 born -26} 808 8 "SELECT *, min(a) FROM z1" {-5 {} 75 -5} 809 810 9 "SELECT *,* FROM z1,z2 LIMIT 1" { 811 51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21 812 } 813 10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" { 814 51.65 -59.58 belfries 51.65 -59.58 belfries 815 } 816} 817 818# EVIDENCE-OF: R-61869-22578 It is an error to use a "*" or "alias.*" 819# expression in any context other than than a result expression list. 820# 821# EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or 822# "alias.*" expression in a simple SELECT query that does not have a 823# FROM clause. 824# 825foreach {tn select err} { 826 1.1 "SELECT a, b, c FROM z1 WHERE *" {near "*": syntax error} 827 1.2 "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error} 828 1.3 "SELECT 1 + * FROM z1" {near "*": syntax error} 829 1.4 "SELECT * + 1 FROM z1" {near "+": syntax error} 830 831 2.1 "SELECT *" {no tables specified} 832 2.2 "SELECT * WHERE 1" {no tables specified} 833 2.3 "SELECT * WHERE 0" {no tables specified} 834 2.4 "SELECT count(*), *" {no tables specified} 835} { 836 do_catchsql_test e_select-4.2.$tn $select [list 1 $err] 837} 838 839# EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned 840# by a simple SELECT statement is equal to the number of expressions in 841# the result expression list after substitution of * and alias.* 842# expressions. 843# 844foreach {tn select nCol} { 845 1 "SELECT * FROM z1" 3 846 2 "SELECT * FROM z1 NATURAL JOIN z3" 3 847 3 "SELECT z1.* FROM z1 NATURAL JOIN z3" 3 848 4 "SELECT z3.* FROM z1 NATURAL JOIN z3" 2 849 5 "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3" 5 850 6 "SELECT 1, 2, z1.* FROM z1" 5 851 7 "SELECT a, *, b, c FROM z1" 6 852} { 853 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 854 do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol 855 sqlite3_finalize $::stmt 856} 857 858 859 860# In lang_select.html, a non-aggregate query is defined as any simple SELECT 861# that has no GROUP BY clause and no aggregate expressions in the result 862# expression list. Other queries are aggregate queries. Test cases 863# e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of 864# simple SELECT that is different for aggregate and non-aggregate queries 865# verify (in a way) that these definitions are consistent: 866# 867# EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate 868# query if it contains either a GROUP BY clause or one or more aggregate 869# functions in the result-set. 870# 871# EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no 872# aggregate functions or a GROUP BY clause, it is a non-aggregate query. 873# 874 875# EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate 876# query, then each expression in the result expression list is evaluated 877# for each row in the dataset filtered by the WHERE clause. 878# 879do_select_tests e_select-4.4 { 880 1 "SELECT a, b FROM z1" 881 {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born} 882 883 2 "SELECT a IS NULL, b+1, * FROM z1" { 884 0 -58.58 51.65 -59.58 belfries 885 0 {} -5 {} 75 886 0 -22.18 -2.2 -23.18 suiters 887 1 68 {} 67 quartets 888 0 -31.3 -1.04 -32.3 aspen 889 0 1 63 born -26 890 } 891 892 3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366} 893} 894 895 896# Test cases e_select-4.5.* and e_select-4.6.* together show that: 897# 898# EVIDENCE-OF: R-51988-01124 The single row of result-set data created 899# by evaluating the aggregate and non-aggregate expressions in the 900# result-set forms the result of an aggregate query without a GROUP BY 901# clause. 902# 903 904# EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate 905# query without a GROUP BY clause, then each aggregate expression in the 906# result-set is evaluated once across the entire dataset. 907# 908do_select_tests e_select-4.5 { 909 1 "SELECT count(a), max(a), count(b), max(b) FROM z1" {5 63 5 born} 910 2 "SELECT count(*), max(1)" {1 1} 911 912 3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3" {-43.06} 913 4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3" {-38.06} 914 5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5} 915} 916 917# EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the 918# result-set is evaluated once for an arbitrarily selected row of the 919# dataset. 920# 921# EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used 922# for each non-aggregate expression. 923# 924# Note: The results of many of the queries in this block of tests are 925# technically undefined, as the documentation does not specify which row 926# SQLite will arbitrarily select to use for the evaluation of the 927# non-aggregate expressions. 928# 929drop_all_tables 930do_execsql_test e_select-4.6.0 { 931 CREATE TABLE a1(one PRIMARY KEY, two); 932 INSERT INTO a1 VALUES(1, 1); 933 INSERT INTO a1 VALUES(2, 3); 934 INSERT INTO a1 VALUES(3, 6); 935 INSERT INTO a1 VALUES(4, 10); 936 937 CREATE TABLE a2(one PRIMARY KEY, three); 938 INSERT INTO a2 VALUES(1, 1); 939 INSERT INTO a2 VALUES(3, 2); 940 INSERT INTO a2 VALUES(6, 3); 941 INSERT INTO a2 VALUES(10, 4); 942} {} 943do_select_tests e_select-4.6 { 944 1 "SELECT one, two, count(*) FROM a1" {4 10 4} 945 2 "SELECT one, two, count(*) FROM a1 WHERE one<3" {2 3 2} 946 3 "SELECT one, two, count(*) FROM a1 WHERE one>3" {4 10 1} 947 4 "SELECT *, count(*) FROM a1 JOIN a2" {4 10 10 4 16} 948 5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3} 949 6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3} 950 7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6} 951} 952 953# EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then 954# each non-aggregate expression is evaluated against a row consisting 955# entirely of NULL values. 956# 957do_select_tests e_select-4.7 { 958 1 "SELECT one, two, count(*) FROM a1 WHERE 0" {{} {} 0} 959 2 "SELECT sum(two), * FROM a1, a2 WHERE three>5" {{} {} {} {} {}} 960 3 "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" { 961 1 1 1 962 } 963} 964 965# EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY 966# clause always returns exactly one row of data, even if there are zero 967# rows of input data. 968# 969foreach {tn select} { 970 8.1 "SELECT count(*) FROM a1" 971 8.2 "SELECT count(*) FROM a1 WHERE 0" 972 8.3 "SELECT count(*) FROM a1 WHERE 1" 973 8.4 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1" 974 8.5 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0" 975} { 976 # Set $nRow to the number of rows returned by $select: 977 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 978 set nRow 0 979 while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow } 980 set rc [sqlite3_finalize $::stmt] 981 982 # Test that $nRow==1 and that statement execution was successful 983 # (rc==SQLITE_OK). 984 do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1} 985} 986 987drop_all_tables 988do_execsql_test e_select-4.9.0 { 989 CREATE TABLE b1(one PRIMARY KEY, two); 990 INSERT INTO b1 VALUES(1, 'o'); 991 INSERT INTO b1 VALUES(4, 'f'); 992 INSERT INTO b1 VALUES(3, 't'); 993 INSERT INTO b1 VALUES(2, 't'); 994 INSERT INTO b1 VALUES(5, 'f'); 995 INSERT INTO b1 VALUES(7, 's'); 996 INSERT INTO b1 VALUES(6, 's'); 997 998 CREATE TABLE b2(x, y); 999 INSERT INTO b2 VALUES(NULL, 0); 1000 INSERT INTO b2 VALUES(NULL, 1); 1001 INSERT INTO b2 VALUES('xyz', 2); 1002 INSERT INTO b2 VALUES('abc', 3); 1003 INSERT INTO b2 VALUES('xyz', 4); 1004 1005 CREATE TABLE b3(a COLLATE nocase, b COLLATE binary); 1006 INSERT INTO b3 VALUES('abc', 'abc'); 1007 INSERT INTO b3 VALUES('aBC', 'aBC'); 1008 INSERT INTO b3 VALUES('Def', 'Def'); 1009 INSERT INTO b3 VALUES('dEF', 'dEF'); 1010} {} 1011 1012# EVIDENCE-OF: R-57754-57109 If the SELECT statement is an aggregate 1013# query with a GROUP BY clause, then each of the expressions specified 1014# as part of the GROUP BY clause is evaluated for each row of the 1015# dataset. Each row is then assigned to a "group" based on the results; 1016# rows for which the results of evaluating the GROUP BY expressions are 1017# the same are assigned to the same group. 1018# 1019# These tests also show that the following is not untrue: 1020# 1021# EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do 1022# not have to be expressions that appear in the result. 1023# 1024do_select_tests e_select-4.9 { 1025 1 "SELECT group_concat(one), two FROM b1 GROUP BY two" { 1026 4,5 f 1 o 7,6 s 3,2 t 1027 } 1028 2 "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" { 1029 1,4,3,2 10 5,7,6 18 1030 } 1031 3 "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" { 1032 4 1,5 2,6 3,7 1033 } 1034 4 "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" { 1035 4,3,5,7,6 1,2 1036 } 1037} 1038 1039# EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL 1040# values are considered equal. 1041# 1042do_select_tests e_select-4.10 { 1043 1 "SELECT group_concat(y) FROM b2 GROUP BY x" {0,1 3 2,4} 1044 2 "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1} 1045} 1046 1047# EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation 1048# sequence with which to compare text values apply when evaluating 1049# expressions in a GROUP BY clause. 1050# 1051do_select_tests e_select-4.11 { 1052 1 "SELECT count(*) FROM b3 GROUP BY b" {1 1 1 1} 1053 2 "SELECT count(*) FROM b3 GROUP BY a" {2 2} 1054 3 "SELECT count(*) FROM b3 GROUP BY +b" {1 1 1 1} 1055 4 "SELECT count(*) FROM b3 GROUP BY +a" {2 2} 1056 5 "SELECT count(*) FROM b3 GROUP BY b||''" {1 1 1 1} 1057 6 "SELECT count(*) FROM b3 GROUP BY a||''" {1 1 1 1} 1058} 1059 1060# EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may 1061# not be aggregate expressions. 1062# 1063foreach {tn select} { 1064 12.1 "SELECT * FROM b3 GROUP BY count(*)" 1065 12.2 "SELECT max(a) FROM b3 GROUP BY max(b)" 1066 12.3 "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)" 1067} { 1068 set res {1 {aggregate functions are not allowed in the GROUP BY clause}} 1069 do_catchsql_test e_select-4.$tn $select $res 1070} 1071 1072# EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is 1073# evaluated once for each group of rows as a boolean expression. If the 1074# result of evaluating the HAVING clause is false, the group is 1075# discarded. 1076# 1077# This requirement is tested by all e_select-4.13.* tests. 1078# 1079# EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate 1080# expression, it is evaluated across all rows in the group. 1081# 1082# Tested by e_select-4.13.1.* 1083# 1084# EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate 1085# expression, it is evaluated with respect to an arbitrarily selected 1086# row from the group. 1087# 1088# Tested by e_select-4.13.2.* 1089# 1090# Tests in this block also show that this is not untrue: 1091# 1092# EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values, 1093# even aggregate functions, that are not in the result. 1094# 1095do_execsql_test e_select-4.13.0 { 1096 CREATE TABLE c1(up, down); 1097 INSERT INTO c1 VALUES('x', 1); 1098 INSERT INTO c1 VALUES('x', 2); 1099 INSERT INTO c1 VALUES('x', 4); 1100 INSERT INTO c1 VALUES('x', 8); 1101 INSERT INTO c1 VALUES('y', 16); 1102 INSERT INTO c1 VALUES('y', 32); 1103 1104 CREATE TABLE c2(i, j); 1105 INSERT INTO c2 VALUES(1, 0); 1106 INSERT INTO c2 VALUES(2, 1); 1107 INSERT INTO c2 VALUES(3, 3); 1108 INSERT INTO c2 VALUES(4, 6); 1109 INSERT INTO c2 VALUES(5, 10); 1110 INSERT INTO c2 VALUES(6, 15); 1111 INSERT INTO c2 VALUES(7, 21); 1112 INSERT INTO c2 VALUES(8, 28); 1113 INSERT INTO c2 VALUES(9, 36); 1114 1115 CREATE TABLE c3(i PRIMARY KEY, k TEXT); 1116 INSERT INTO c3 VALUES(1, 'hydrogen'); 1117 INSERT INTO c3 VALUES(2, 'helium'); 1118 INSERT INTO c3 VALUES(3, 'lithium'); 1119 INSERT INTO c3 VALUES(4, 'beryllium'); 1120 INSERT INTO c3 VALUES(5, 'boron'); 1121 INSERT INTO c3 VALUES(94, 'plutonium'); 1122} {} 1123 1124do_select_tests e_select-4.13 { 1125 1.1 "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x} 1126 1.2 "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y} 1127 1.3 "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x} 1128 1.4 "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4} 1129 1130 2.1 "SELECT up FROM c1 GROUP BY up HAVING down>10" {y} 1131 2.2 "SELECT up FROM c1 GROUP BY up HAVING up='y'" {y} 1132 1133 2.3 "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6" {9 36} 1134} 1135 1136# EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then 1137# evaluated once for each group of rows. 1138# 1139# EVIDENCE-OF: R-53735-47017 If the expression is an aggregate 1140# expression, it is evaluated across all rows in the group. 1141# 1142do_select_tests e_select-4.15 { 1143 1 "SELECT sum(down) FROM c1 GROUP BY up" {15 48} 1144 2 "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)" {54 36 27 21 39 28} 1145 3 "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)" {80 36 40 21} 1146 4 "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22} 1147 5 "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2" 1148 {3 4.33 1 2.0} 1149} 1150 1151# EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single 1152# arbitrarily chosen row from within the group. 1153# 1154# EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate 1155# expression in the result-set, then all such expressions are evaluated 1156# for the same row. 1157# 1158do_select_tests e_select-4.15 { 1159 1 "SELECT i, j FROM c2 GROUP BY i%2" {8 28 9 36} 1160 2 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28} 1161 3 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36} 1162 4 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36} 1163 5 "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)" 1164 {2 5 boron 2 2 helium 1 3 lithium} 1165} 1166 1167# EVIDENCE-OF: R-19334-12811 Each group of input dataset rows 1168# contributes a single row to the set of result rows. 1169# 1170# EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the 1171# DISTINCT keyword, the number of rows returned by an aggregate query 1172# with a GROUP BY clause is the same as the number of groups of rows 1173# produced by applying the GROUP BY and HAVING clauses to the filtered 1174# input dataset. 1175# 1176do_select_tests e_select.4.16 -count { 1177 1 "SELECT i, j FROM c2 GROUP BY i%2" 2 1178 2 "SELECT i, j FROM c2 GROUP BY i" 9 1179 3 "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4 1180} 1181 1182#------------------------------------------------------------------------- 1183# The following tests attempt to verify statements made regarding the ALL 1184# and DISTINCT keywords. 1185# 1186drop_all_tables 1187do_execsql_test e_select-5.1.0 { 1188 CREATE TABLE h1(a, b); 1189 INSERT INTO h1 VALUES(1, 'one'); 1190 INSERT INTO h1 VALUES(1, 'I'); 1191 INSERT INTO h1 VALUES(1, 'i'); 1192 INSERT INTO h1 VALUES(4, 'four'); 1193 INSERT INTO h1 VALUES(4, 'IV'); 1194 INSERT INTO h1 VALUES(4, 'iv'); 1195 1196 CREATE TABLE h2(x COLLATE nocase); 1197 INSERT INTO h2 VALUES('One'); 1198 INSERT INTO h2 VALUES('Two'); 1199 INSERT INTO h2 VALUES('Three'); 1200 INSERT INTO h2 VALUES('Four'); 1201 INSERT INTO h2 VALUES('one'); 1202 INSERT INTO h2 VALUES('two'); 1203 INSERT INTO h2 VALUES('three'); 1204 INSERT INTO h2 VALUES('four'); 1205 1206 CREATE TABLE h3(c, d); 1207 INSERT INTO h3 VALUES(1, NULL); 1208 INSERT INTO h3 VALUES(2, NULL); 1209 INSERT INTO h3 VALUES(3, NULL); 1210 INSERT INTO h3 VALUES(4, '2'); 1211 INSERT INTO h3 VALUES(5, NULL); 1212 INSERT INTO h3 VALUES(6, '2,3'); 1213 INSERT INTO h3 VALUES(7, NULL); 1214 INSERT INTO h3 VALUES(8, '2,4'); 1215 INSERT INTO h3 VALUES(9, '3'); 1216} {} 1217 1218# EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may 1219# follow the SELECT keyword in a simple SELECT statement. 1220# 1221do_select_tests e_select-5.1 { 1222 1 "SELECT ALL a FROM h1" {1 1 1 4 4 4} 1223 2 "SELECT DISTINCT a FROM h1" {1 4} 1224} 1225 1226# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then 1227# the entire set of result rows are returned by the SELECT. 1228# 1229# EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present, 1230# then the behaviour is as if ALL were specified. 1231# 1232# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT, 1233# then duplicate rows are removed from the set of result rows before it 1234# is returned. 1235# 1236# The three testable statements above are tested by e_select-5.2.*, 1237# 5.3.* and 5.4.* respectively. 1238# 1239do_select_tests e_select-5 { 1240 3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four} 1241 3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four} 1242 1243 3.1 "SELECT x FROM h2" {One Two Three Four one two three four} 1244 3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four} 1245 1246 4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four} 1247 4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four} 1248} 1249 1250# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate 1251# rows, two NULL values are considered to be equal. 1252# 1253do_select_tests e_select-5.5 { 1254 1 "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3} 1255} 1256 1257# EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation 1258# sequence to compare text values with apply. 1259# 1260do_select_tests e_select-5.6 { 1261 1 "SELECT DISTINCT b FROM h1" {one I i four IV iv} 1262 2 "SELECT DISTINCT b COLLATE nocase FROM h1" {one I four IV} 1263 3 "SELECT DISTINCT x FROM h2" {One Two Three Four} 1264 4 "SELECT DISTINCT x COLLATE binary FROM h2" { 1265 One Two Three Four one two three four 1266 } 1267} 1268 1269#------------------------------------------------------------------------- 1270# The following tests - e_select-7.* - test that statements made to do 1271# with compound SELECT statements are correct. 1272# 1273 1274# EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent 1275# SELECTs must return the same number of result columns. 1276# 1277# All the other tests in this section use compound SELECTs created 1278# using component SELECTs that do return the same number of columns. 1279# So the tests here just show that it is an error to attempt otherwise. 1280# 1281drop_all_tables 1282do_execsql_test e_select-7.1.0 { 1283 CREATE TABLE j1(a, b, c); 1284 CREATE TABLE j2(e, f); 1285 CREATE TABLE j3(g); 1286} {} 1287do_select_tests e_select-7.1 -error { 1288 SELECTs to the left and right of %s do not have the same number of result columns 1289} { 1290 1 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 1291 2 "SELECT * FROM j1 UNION ALL SELECT * FROM j3" {{UNION ALL}} 1292 3 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 1293 4 "SELECT a, b FROM j1 UNION ALL SELECT * FROM j3,j2" {{UNION ALL}} 1294 5 "SELECT * FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}} 1295 1296 6 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 1297 7 "SELECT * FROM j1 UNION SELECT * FROM j3" {UNION} 1298 8 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 1299 9 "SELECT a, b FROM j1 UNION SELECT * FROM j3,j2" {UNION} 1300 10 "SELECT * FROM j3,j2 UNION SELECT a, b FROM j1" {UNION} 1301 1302 11 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 1303 12 "SELECT * FROM j1 INTERSECT SELECT * FROM j3" {INTERSECT} 1304 13 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 1305 14 "SELECT a, b FROM j1 INTERSECT SELECT * FROM j3,j2" {INTERSECT} 1306 15 "SELECT * FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT} 1307 1308 16 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 1309 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j3" {EXCEPT} 1310 18 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 1311 19 "SELECT a, b FROM j1 EXCEPT SELECT * FROM j3,j2" {EXCEPT} 1312 20 "SELECT * FROM j3,j2 EXCEPT SELECT a, b FROM j1" {EXCEPT} 1313} 1314 1315# EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must 1316# be simple SELECT statements, they may not contain ORDER BY or LIMIT 1317# clauses. 1318# 1319foreach {tn select op1 op2} { 1320 1 "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 1321 {ORDER BY} {UNION ALL} 1322 2 "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2" 1323 {ORDER BY} {UNION ALL} 1324 3 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2" 1325 {ORDER BY} {UNION ALL} 1326 4 "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 1327 LIMIT {UNION ALL} 1328 5 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 1329 LIMIT {UNION ALL} 1330 6 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 1331 LIMIT {UNION ALL} 1332 1333 7 "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 1334 {ORDER BY} {UNION} 1335 8 "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2" 1336 {ORDER BY} {UNION} 1337 9 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2" 1338 {ORDER BY} {UNION} 1339 10 "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 1340 LIMIT {UNION} 1341 11 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 1342 LIMIT {UNION} 1343 12 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 1344 LIMIT {UNION} 1345 1346 13 "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 1347 {ORDER BY} {EXCEPT} 1348 14 "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2" 1349 {ORDER BY} {EXCEPT} 1350 15 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2" 1351 {ORDER BY} {EXCEPT} 1352 16 "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 1353 LIMIT {EXCEPT} 1354 17 "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 1355 LIMIT {EXCEPT} 1356 18 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 1357 LIMIT {EXCEPT} 1358 1359 19 "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 1360 {ORDER BY} {INTERSECT} 1361 20 "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2" 1362 {ORDER BY} {INTERSECT} 1363 21 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2" 1364 {ORDER BY} {INTERSECT} 1365 22 "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 1366 LIMIT {INTERSECT} 1367 23 "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 1368 LIMIT {INTERSECT} 1369 24 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 1370 LIMIT {INTERSECT} 1371} { 1372 set err "$op1 clause should come after $op2 not before" 1373 do_catchsql_test e_select-7.2.$tn $select [list 1 $err] 1374} 1375 1376# EVIDENCE-OF: R-22874-32655 ORDER BY and LIMIT clauses may only occur 1377# at the end of the entire compound SELECT. 1378# 1379foreach {tn select} { 1380 1 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a" 1381 2 "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1" 1382 3 "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3" 1383 4 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 1384 5 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1385 6 "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1386 1387 7 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a" 1388 8 "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1" 1389 9 "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3" 1390 10 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 1391 11 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1392 12 "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1393 1394 13 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a" 1395 14 "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1" 1396 15 "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3" 1397 16 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 1398 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1399 18 "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1400 1401 19 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a" 1402 20 "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1" 1403 21 "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3" 1404 22 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 1405 23 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1406 24 "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1407} { 1408 do_test e_select-7.3.$tn { catch {execsql $select} msg } 0 1409} 1410 1411# EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL 1412# operator returns all the rows from the SELECT to the left of the UNION 1413# ALL operator, and all the rows from the SELECT to the right of it. 1414# 1415drop_all_tables 1416do_execsql_test e_select-7.4.0 { 1417 CREATE TABLE q1(a TEXT, b INTEGER, c); 1418 CREATE TABLE q2(d NUMBER, e BLOB); 1419 CREATE TABLE q3(f REAL, g); 1420 1421 INSERT INTO q1 VALUES(16, -87.66, NULL); 1422 INSERT INTO q1 VALUES('legible', 94, -42.47); 1423 INSERT INTO q1 VALUES('beauty', 36, NULL); 1424 1425 INSERT INTO q2 VALUES('legible', 1); 1426 INSERT INTO q2 VALUES('beauty', 2); 1427 INSERT INTO q2 VALUES(-65.91, 4); 1428 INSERT INTO q2 VALUES('emanating', -16.56); 1429 1430 INSERT INTO q3 VALUES('beauty', 2); 1431 INSERT INTO q3 VALUES('beauty', 2); 1432} {} 1433do_select_tests e_select-7.4 { 1434 1 {SELECT a FROM q1 UNION ALL SELECT d FROM q2} 1435 {16 legible beauty legible beauty -65.91 emanating} 1436 1437 2 {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1} 1438 {16 -87.66 {} x legible 1} 1439 1440 3 {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 1441 {3 -16.56} 1442 1443 4 {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 1444 {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2} 1445} 1446 1447# EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as 1448# UNION ALL, except that duplicate rows are removed from the final 1449# result set. 1450# 1451do_select_tests e_select-7.5 { 1452 1 {SELECT a FROM q1 UNION SELECT d FROM q2} 1453 {-65.91 16 beauty emanating legible} 1454 1455 2 {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1} 1456 {16 -87.66 {} x legible 1} 1457 1458 3 {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 1459 {-16.56 3} 1460 1461 4 {SELECT * FROM q2 UNION SELECT * FROM q3} 1462 {-65.91 4 beauty 2 emanating -16.56 legible 1} 1463} 1464 1465# EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the 1466# intersection of the results of the left and right SELECTs. 1467# 1468do_select_tests e_select-7.6 { 1469 1 {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible} 1470 2 {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2} 1471} 1472 1473# EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of 1474# rows returned by the left SELECT that are not also returned by the 1475# right-hand SELECT. 1476# 1477do_select_tests e_select-7.7 { 1478 1 {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16} 1479 1480 2 {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 1481 {-65.91 4 emanating -16.56 legible 1} 1482} 1483 1484# EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results 1485# of INTERSECT and EXCEPT operators before the result set is returned. 1486# 1487do_select_tests e_select-7.8 { 1488 0 {SELECT * FROM q3} {beauty 2 beauty 2} 1489 1490 1 {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2} 1491 2 {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1} {beauty 2} 1492} 1493 1494# EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate 1495# rows for the results of compound SELECT operators, NULL values are 1496# considered equal to other NULL values and distinct from all non-NULL 1497# values. 1498# 1499db nullvalue null 1500do_select_tests e_select-7.9 { 1501 1 {SELECT NULL UNION ALL SELECT NULL} {null null} 1502 2 {SELECT NULL UNION SELECT NULL} {null} 1503 3 {SELECT NULL INTERSECT SELECT NULL} {null} 1504 4 {SELECT NULL EXCEPT SELECT NULL} {} 1505 1506 5 {SELECT NULL UNION ALL SELECT 'ab'} {null ab} 1507 6 {SELECT NULL UNION SELECT 'ab'} {null ab} 1508 7 {SELECT NULL INTERSECT SELECT 'ab'} {} 1509 8 {SELECT NULL EXCEPT SELECT 'ab'} {null} 1510 1511 9 {SELECT NULL UNION ALL SELECT 0} {null 0} 1512 10 {SELECT NULL UNION SELECT 0} {null 0} 1513 11 {SELECT NULL INTERSECT SELECT 0} {} 1514 12 {SELECT NULL EXCEPT SELECT 0} {null} 1515 1516 13 {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2} 1517 14 {SELECT c FROM q1 UNION SELECT g FROM q3} {null -42.47 2} 1518 15 {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {} 1519 16 {SELECT c FROM q1 EXCEPT SELECT g FROM q3} {null -42.47} 1520} 1521db nullvalue {} 1522 1523# EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two 1524# text values is determined as if the columns of the left and right-hand 1525# SELECT statements were the left and right-hand operands of the equals 1526# (=) operator, except that greater precedence is not assigned to a 1527# collation sequence specified with the postfix COLLATE operator. 1528# 1529drop_all_tables 1530do_execsql_test e_select-7.10.0 { 1531 CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c); 1532 INSERT INTO y1 VALUES('Abc', 'abc', 'aBC'); 1533} {} 1534do_select_tests e_select-7.10 { 1535 1 {SELECT 'abc' UNION SELECT 'ABC'} {ABC abc} 1536 2 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC} 1537 3 {SELECT 'abc' UNION SELECT 'ABC' COLLATE nocase} {ABC} 1538 4 {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc} 1539 5 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC} 1540 1541 6 {SELECT a FROM y1 UNION SELECT b FROM y1} {abc} 1542 7 {SELECT b FROM y1 UNION SELECT a FROM y1} {Abc abc} 1543 8 {SELECT a FROM y1 UNION SELECT c FROM y1} {aBC} 1544 1545 9 {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC} 1546} 1547 1548# EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to 1549# any values when comparing rows as part of a compound SELECT. 1550# 1551drop_all_tables 1552do_execsql_test e_select-7.10.0 { 1553 CREATE TABLE w1(a TEXT, b NUMBER); 1554 CREATE TABLE w2(a, b TEXT); 1555 1556 INSERT INTO w1 VALUES('1', 4.1); 1557 INSERT INTO w2 VALUES(1, 4.1); 1558} {} 1559 1560do_select_tests e_select-7.11 { 1561 1 { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1} 1562 2 { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1} 1563 3 { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1} 1564 4 { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1} 1565 1566 5 { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {} 1567 6 { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {} 1568 7 { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {} 1569 8 { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {} 1570 1571 9 { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1} 1572 10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1} 1573 11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1} 1574 12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1} 1575} 1576 1577 1578# EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are 1579# connected into a compound SELECT, they group from left to right. In 1580# other words, if "A", "B" and "C" are all simple SELECT statements, (A 1581# op B op C) is processed as ((A op B) op C). 1582# 1583# e_select-7.12.1: Precedence of UNION vs. INTERSECT 1584# e_select-7.12.2: Precedence of UNION vs. UNION ALL 1585# e_select-7.12.3: Precedence of UNION vs. EXCEPT 1586# e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 1587# e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT 1588# e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT 1589# e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 1590# "(a EXCEPT b) EXCEPT c". 1591# 1592# The INTERSECT and EXCEPT operations are mutually commutative. So 1593# the e_select-7.12.5 test cases do not prove very much. 1594# 1595drop_all_tables 1596do_execsql_test e_select-7.12.0 { 1597 CREATE TABLE t1(x); 1598 INSERT INTO t1 VALUES(1); 1599 INSERT INTO t1 VALUES(2); 1600 INSERT INTO t1 VALUES(3); 1601} {} 1602foreach {tn select res} { 1603 1a "(1,2) INTERSECT (1) UNION (3)" {1 3} 1604 1b "(3) UNION (1,2) INTERSECT (1)" {1} 1605 1606 2a "(1,2) UNION (3) UNION ALL (1)" {1 2 3 1} 1607 2b "(1) UNION ALL (3) UNION (1,2)" {1 2 3} 1608 1609 3a "(1,2) UNION (3) EXCEPT (1)" {2 3} 1610 3b "(1,2) EXCEPT (3) UNION (1)" {1 2} 1611 1612 4a "(1,2) INTERSECT (1) UNION ALL (3)" {1 3} 1613 4b "(3) UNION (1,2) INTERSECT (1)" {1} 1614 1615 5a "(1,2) INTERSECT (2) EXCEPT (2)" {} 1616 5b "(2,3) EXCEPT (2) INTERSECT (2)" {} 1617 1618 6a "(2) UNION ALL (2) EXCEPT (2)" {} 1619 6b "(2) EXCEPT (2) UNION ALL (2)" {2} 1620 1621 7 "(2,3) EXCEPT (2) EXCEPT (3)" {} 1622} { 1623 set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select] 1624 do_execsql_test e_select-7.12.$tn $select [list {*}$res] 1625} 1626 1627 1628#------------------------------------------------------------------------- 1629# ORDER BY clauses 1630# 1631 1632drop_all_tables 1633do_execsql_test e_select-8.1.0 { 1634 CREATE TABLE d1(x, y, z); 1635 1636 INSERT INTO d1 VALUES(1, 2, 3); 1637 INSERT INTO d1 VALUES(2, 5, -1); 1638 INSERT INTO d1 VALUES(1, 2, 8); 1639 INSERT INTO d1 VALUES(1, 2, 7); 1640 INSERT INTO d1 VALUES(2, 4, 93); 1641 INSERT INTO d1 VALUES(1, 2, -20); 1642 INSERT INTO d1 VALUES(1, 4, 93); 1643 INSERT INTO d1 VALUES(1, 5, -1); 1644 1645 CREATE TABLE d2(a, b); 1646 INSERT INTO d2 VALUES('gently', 'failings'); 1647 INSERT INTO d2 VALUES('commercials', 'bathrobe'); 1648 INSERT INTO d2 VALUES('iterate', 'sexton'); 1649 INSERT INTO d2 VALUES('babied', 'charitableness'); 1650 INSERT INTO d2 VALUES('solemnness', 'annexed'); 1651 INSERT INTO d2 VALUES('rejoicing', 'liabilities'); 1652 INSERT INTO d2 VALUES('pragmatist', 'guarded'); 1653 INSERT INTO d2 VALUES('barked', 'interrupted'); 1654 INSERT INTO d2 VALUES('reemphasizes', 'reply'); 1655 INSERT INTO d2 VALUES('lad', 'relenting'); 1656} {} 1657 1658# EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results 1659# of evaluating the left-most expression in the ORDER BY list, then ties 1660# are broken by evaluating the second left-most expression and so on. 1661# 1662do_select_tests e_select-8.1 { 1663 1 "SELECT * FROM d1 ORDER BY x, y, z" { 1664 1 2 -20 1 2 3 1 2 7 1 2 8 1665 1 4 93 1 5 -1 2 4 93 2 5 -1 1666 } 1667} 1668 1669# EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally 1670# followed by one of the keywords ASC (smaller values are returned 1671# first) or DESC (larger values are returned first). 1672# 1673# Test cases e_select-8.2.* test the above. 1674# 1675# EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows 1676# are sorted in ascending (smaller values first) order by default. 1677# 1678# Test cases e_select-8.3.* test the above. All 8.3 test cases are 1679# copies of 8.2 test cases with the explicit "ASC" removed. 1680# 1681do_select_tests e_select-8 { 1682 2.1 "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" { 1683 1 2 -20 1 2 3 1 2 7 1 2 8 1684 1 4 93 1 5 -1 2 4 93 2 5 -1 1685 } 1686 2.2 "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" { 1687 2 5 -1 2 4 93 1 5 -1 1 4 93 1688 1 2 8 1 2 7 1 2 3 1 2 -20 1689 } 1690 2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" { 1691 2 4 93 2 5 -1 1 2 8 1 2 7 1692 1 2 3 1 2 -20 1 4 93 1 5 -1 1693 } 1694 2.4 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" { 1695 2 4 93 2 5 -1 1 2 -20 1 2 3 1696 1 2 7 1 2 8 1 4 93 1 5 -1 1697 } 1698 1699 3.1 "SELECT * FROM d1 ORDER BY x, y, z" { 1700 1 2 -20 1 2 3 1 2 7 1 2 8 1701 1 4 93 1 5 -1 2 4 93 2 5 -1 1702 } 1703 3.3 "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" { 1704 2 4 93 2 5 -1 1 2 8 1 2 7 1705 1 2 3 1 2 -20 1 4 93 1 5 -1 1706 } 1707 3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" { 1708 2 4 93 2 5 -1 1 2 -20 1 2 3 1709 1 2 7 1 2 8 1 4 93 1 5 -1 1710 } 1711} 1712 1713# EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant 1714# integer K then the expression is considered an alias for the K-th 1715# column of the result set (columns are numbered from left to right 1716# starting with 1). 1717# 1718do_select_tests e_select-8.4 { 1719 1 "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" { 1720 1 2 -20 1 2 3 1 2 7 1 2 8 1721 1 4 93 1 5 -1 2 4 93 2 5 -1 1722 } 1723 2 "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" { 1724 2 5 -1 2 4 93 1 5 -1 1 4 93 1725 1 2 8 1 2 7 1 2 3 1 2 -20 1726 } 1727 3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" { 1728 2 4 93 2 5 -1 1 2 8 1 2 7 1729 1 2 3 1 2 -20 1 4 93 1 5 -1 1730 } 1731 4 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" { 1732 2 4 93 2 5 -1 1 2 -20 1 2 3 1733 1 2 7 1 2 8 1 4 93 1 5 -1 1734 } 1735 5 "SELECT * FROM d1 ORDER BY 1, 2, 3" { 1736 1 2 -20 1 2 3 1 2 7 1 2 8 1737 1 4 93 1 5 -1 2 4 93 2 5 -1 1738 } 1739 6 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" { 1740 2 4 93 2 5 -1 1 2 8 1 2 7 1741 1 2 3 1 2 -20 1 4 93 1 5 -1 1742 } 1743 7 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" { 1744 2 4 93 2 5 -1 1 2 -20 1 2 3 1745 1 2 7 1 2 8 1 4 93 1 5 -1 1746 } 1747 8 "SELECT z, x FROM d1 ORDER BY 2" { 1748 3 1 8 1 7 1 -20 1 1749 93 1 -1 1 -1 2 93 2 1750 } 1751 9 "SELECT z, x FROM d1 ORDER BY 1" { 1752 -20 1 -1 2 -1 1 3 1 1753 7 1 8 1 93 2 93 1 1754 } 1755} 1756 1757# EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier 1758# that corresponds to the alias of one of the output columns, then the 1759# expression is considered an alias for that column. 1760# 1761do_select_tests e_select-8.5 { 1762 1 "SELECT z+1 AS abc FROM d1 ORDER BY abc" { 1763 -19 0 0 4 8 9 94 94 1764 } 1765 2 "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" { 1766 94 94 9 8 4 0 0 -19 1767 } 1768 3 "SELECT z AS x, x AS z FROM d1 ORDER BY z" { 1769 3 1 8 1 7 1 -20 1 93 1 -1 1 -1 2 93 2 1770 } 1771 4 "SELECT z AS x, x AS z FROM d1 ORDER BY x" { 1772 -20 1 -1 2 -1 1 3 1 7 1 8 1 93 2 93 1 1773 } 1774} 1775 1776# EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is 1777# any other expression, it is evaluated and the returned value used to 1778# order the output rows. 1779# 1780# EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT, 1781# then an ORDER BY may contain any arbitrary expressions. 1782# 1783do_select_tests e_select-8.6 { 1784 1 "SELECT * FROM d1 ORDER BY x+y+z" { 1785 1 2 -20 1 5 -1 1 2 3 2 5 -1 1786 1 2 7 1 2 8 1 4 93 2 4 93 1787 } 1788 2 "SELECT * FROM d1 ORDER BY x*z" { 1789 1 2 -20 2 5 -1 1 5 -1 1 2 3 1790 1 2 7 1 2 8 1 4 93 2 4 93 1791 } 1792 3 "SELECT * FROM d1 ORDER BY y*z" { 1793 1 2 -20 2 5 -1 1 5 -1 1 2 3 1794 1 2 7 1 2 8 2 4 93 1 4 93 1795 } 1796} 1797 1798# EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound 1799# SELECT, then ORDER BY expressions that are not aliases to output 1800# columns must be exactly the same as an expression used as an output 1801# column. 1802# 1803do_select_tests e_select-8.7.1 -error { 1804 %s ORDER BY term does not match any column in the result set 1805} { 1806 1 "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" 1st 1807 2 "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd 1808} 1809 1810do_select_tests e_select-8.7.2 { 1811 1 "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" { 1812 -20 -2 -1 3 7 8 93 186 babied barked commercials gently 1813 iterate lad pragmatist reemphasizes rejoicing solemnness 1814 } 1815 2 "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" { 1816 1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 1817 babied charitableness barked interrupted commercials bathrobe gently 1818 failings iterate sexton lad relenting pragmatist guarded reemphasizes reply 1819 rejoicing liabilities solemnness annexed 1820 } 1821} 1822 1823do_execsql_test e_select-8.8.0 { 1824 CREATE TABLE d3(a); 1825 INSERT INTO d3 VALUES('text'); 1826 INSERT INTO d3 VALUES(14.1); 1827 INSERT INTO d3 VALUES(13); 1828 INSERT INTO d3 VALUES(X'78787878'); 1829 INSERT INTO d3 VALUES(15); 1830 INSERT INTO d3 VALUES(12.9); 1831 INSERT INTO d3 VALUES(null); 1832 1833 CREATE TABLE d4(x COLLATE nocase); 1834 INSERT INTO d4 VALUES('abc'); 1835 INSERT INTO d4 VALUES('ghi'); 1836 INSERT INTO d4 VALUES('DEF'); 1837 INSERT INTO d4 VALUES('JKL'); 1838} {} 1839 1840# EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values 1841# are compared in the same way as for comparison expressions. 1842# 1843# The following tests verify that values of different types are sorted 1844# correctly, and that mixed real and integer values are compared properly. 1845# 1846do_execsql_test e_select-8.8.1 { 1847 SELECT a FROM d3 ORDER BY a 1848} {{} 12.9 13 14.1 15 text xxxx} 1849do_execsql_test e_select-8.8.2 { 1850 SELECT a FROM d3 ORDER BY a DESC 1851} {xxxx text 15 14.1 13 12.9 {}} 1852 1853 1854# EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a 1855# collation sequence using the postfix COLLATE operator, then the 1856# specified collation sequence is used. 1857# 1858do_execsql_test e_select-8.9.1 { 1859 SELECT x FROM d4 ORDER BY 1 COLLATE binary 1860} {DEF JKL abc ghi} 1861do_execsql_test e_select-8.9.2 { 1862 SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase 1863} {abc DEF ghi JKL} 1864 1865# EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 1866# an alias to an expression that has been assigned a collation sequence 1867# using the postfix COLLATE operator, then the collation sequence 1868# assigned to the aliased expression is used. 1869# 1870# In the test 8.10.2, the only result-column expression has no alias. So the 1871# ORDER BY expression is not a reference to it and therefore does not inherit 1872# the collation sequence. In test 8.10.3, "x" is the alias (as well as the 1873# column name), so the ORDER BY expression is interpreted as an alias and the 1874# collation sequence attached to the result column is used for sorting. 1875# 1876do_execsql_test e_select-8.10.1 { 1877 SELECT x COLLATE binary FROM d4 ORDER BY 1 1878} {DEF JKL abc ghi} 1879do_execsql_test e_select-8.10.2 { 1880 SELECT x COLLATE binary FROM d4 ORDER BY x 1881} {abc DEF ghi JKL} 1882do_execsql_test e_select-8.10.3 { 1883 SELECT x COLLATE binary AS x FROM d4 ORDER BY x 1884} {DEF JKL abc ghi} 1885 1886# EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a 1887# column or an alias of an expression that is a column, then the default 1888# collation sequence for the column is used. 1889# 1890do_execsql_test e_select-8.11.1 { 1891 SELECT x AS y FROM d4 ORDER BY y 1892} {abc DEF ghi JKL} 1893do_execsql_test e_select-8.11.2 { 1894 SELECT x||'' FROM d4 ORDER BY x 1895} {abc DEF ghi JKL} 1896 1897# EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is 1898# used. 1899# 1900do_execsql_test e_select-8.12.1 { 1901 SELECT x FROM d4 ORDER BY x||'' 1902} {DEF JKL abc ghi} 1903 1904# EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer 1905# alias, then SQLite searches the left-most SELECT in the compound for a 1906# result column that matches either the second or third rules above. If 1907# a match is found, the search stops and the expression is handled as an 1908# alias for the result column that it has been matched against. 1909# Otherwise, the next SELECT to the right is tried, and so on. 1910# 1911do_execsql_test e_select-8.13.0 { 1912 CREATE TABLE d5(a, b); 1913 CREATE TABLE d6(c, d); 1914 CREATE TABLE d7(e, f); 1915 1916 INSERT INTO d5 VALUES(1, 'f'); 1917 INSERT INTO d6 VALUES(2, 'e'); 1918 INSERT INTO d7 VALUES(3, 'd'); 1919 INSERT INTO d5 VALUES(4, 'c'); 1920 INSERT INTO d6 VALUES(5, 'b'); 1921 INSERT INTO d7 VALUES(6, 'a'); 1922 1923 CREATE TABLE d8(x COLLATE nocase); 1924 CREATE TABLE d9(y COLLATE nocase); 1925 1926 INSERT INTO d8 VALUES('a'); 1927 INSERT INTO d9 VALUES('B'); 1928 INSERT INTO d8 VALUES('c'); 1929 INSERT INTO d9 VALUES('D'); 1930} {} 1931do_select_tests e_select-8.13 { 1932 1 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1933 ORDER BY a 1934 } {1 2 3 4 5 6} 1935 2 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1936 ORDER BY c 1937 } {1 2 3 4 5 6} 1938 3 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1939 ORDER BY e 1940 } {1 2 3 4 5 6} 1941 4 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1942 ORDER BY 1 1943 } {1 2 3 4 5 6} 1944 1945 5 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 1946 {f 1 c 4 4 c 1 f} 1947 6 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 1948 {f 1 c 4 4 c 1 f} 1949 1950 7 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 1951 {1 f 4 c c 4 f 1} 1952 8 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 1953 {1 f 4 c c 4 f 1} 1954 1955 9 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 1956 {f 2 c 5 4 c 1 f} 1957 10 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 1958 {f 2 c 5 4 c 1 f} 1959 1960 11 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 1961 {2 f 5 c c 5 f 2} 1962 12 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 1963 {2 f 5 c c 5 f 2} 1964} 1965 1966# EVIDENCE-OF: R-39265-04070 If no matching expression can be found in 1967# the result columns of any constituent SELECT, it is an error. 1968# 1969do_select_tests e_select-8.14 -error { 1970 %s ORDER BY term does not match any column in the result set 1971} { 1972 1 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 } 1st 1973 2 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 } 2nd 1974 3 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' } 1st 1975 4 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah } 1st 1976 5 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d } 3rd 1977 6 { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b } 4th 1978} 1979 1980# EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is 1981# processed separately and may be matched against result columns from 1982# different SELECT statements in the compound. 1983# 1984do_select_tests e_select-8.15 { 1985 1 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d } 1986 {1 e 1 f 4 b 4 c} 1987 2 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b } 1988 {1 e 1 f 4 b 4 c} 1989 3 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 } 1990 {1 e 1 f 4 b 4 c} 1991} 1992 1993 1994#------------------------------------------------------------------------- 1995# Tests related to statements made about the LIMIT/OFFSET clause. 1996# 1997do_execsql_test e_select-9.0 { 1998 CREATE TABLE f1(a, b); 1999 INSERT INTO f1 VALUES(26, 'z'); 2000 INSERT INTO f1 VALUES(25, 'y'); 2001 INSERT INTO f1 VALUES(24, 'x'); 2002 INSERT INTO f1 VALUES(23, 'w'); 2003 INSERT INTO f1 VALUES(22, 'v'); 2004 INSERT INTO f1 VALUES(21, 'u'); 2005 INSERT INTO f1 VALUES(20, 't'); 2006 INSERT INTO f1 VALUES(19, 's'); 2007 INSERT INTO f1 VALUES(18, 'r'); 2008 INSERT INTO f1 VALUES(17, 'q'); 2009 INSERT INTO f1 VALUES(16, 'p'); 2010 INSERT INTO f1 VALUES(15, 'o'); 2011 INSERT INTO f1 VALUES(14, 'n'); 2012 INSERT INTO f1 VALUES(13, 'm'); 2013 INSERT INTO f1 VALUES(12, 'l'); 2014 INSERT INTO f1 VALUES(11, 'k'); 2015 INSERT INTO f1 VALUES(10, 'j'); 2016 INSERT INTO f1 VALUES(9, 'i'); 2017 INSERT INTO f1 VALUES(8, 'h'); 2018 INSERT INTO f1 VALUES(7, 'g'); 2019 INSERT INTO f1 VALUES(6, 'f'); 2020 INSERT INTO f1 VALUES(5, 'e'); 2021 INSERT INTO f1 VALUES(4, 'd'); 2022 INSERT INTO f1 VALUES(3, 'c'); 2023 INSERT INTO f1 VALUES(2, 'b'); 2024 INSERT INTO f1 VALUES(1, 'a'); 2025} {} 2026 2027# EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the 2028# LIMIT clause, so long as it evaluates to an integer or a value that 2029# can be losslessly converted to an integer. 2030# 2031do_select_tests e_select-9.1 { 2032 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e} 2033 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e} 2034 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 2035 {a b c d e} 2036 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e} 2037 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e} 2038} 2039 2040# EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value 2041# or any other value that cannot be losslessly converted to an integer, 2042# an error is returned. 2043# 2044 2045do_select_tests e_select-9.2 -error "datatype mismatch" { 2046 1 { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {} 2047 2 { SELECT b FROM f1 ORDER BY a LIMIT NULL } {} 2048 3 { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {} 2049 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {} 2050 5 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {} 2051} 2052 2053# EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a 2054# negative value, then there is no upper bound on the number of rows 2055# returned. 2056# 2057do_select_tests e_select-9.4 { 2058 1 { SELECT b FROM f1 ORDER BY a LIMIT -1 } 2059 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2060 2 { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 2061 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2062 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 } 2063 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2064} 2065 2066# EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N 2067# rows of its result set only, where N is the value that the LIMIT 2068# expression evaluates to. 2069# 2070do_select_tests e_select-9.5 { 2071 1 { SELECT b FROM f1 ORDER BY a LIMIT 0 } {} 2072 2 { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w} 2073 3 { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s} 2074 4 { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o} 2075} 2076 2077# EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return 2078# less than N rows without a LIMIT clause, then the entire result set is 2079# returned. 2080# 2081do_select_tests e_select-9.6 { 2082 1 { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z} 2083 2 { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5} 2084} 2085 2086 2087# EVIDENCE-OF: R-24188-24349 The expression attached to the optional 2088# OFFSET clause that may follow a LIMIT clause must also evaluate to an 2089# integer, or a value that can be losslessly converted to an integer. 2090# 2091foreach {tn select} { 2092 1 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 2093 2 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 2094 3 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 2095 4 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 2096 5 { SELECT b FROM f1 ORDER BY a 2097 LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 2098 } 2099} { 2100 do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}} 2101} 2102 2103# EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then 2104# the first M rows are omitted from the result set returned by the 2105# SELECT statement and the next N rows are returned, where M and N are 2106# the values that the OFFSET and LIMIT clauses evaluate to, 2107# respectively. 2108# 2109do_select_tests e_select-9.8 { 2110 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o} 2111 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o} 2112 3 { SELECT b FROM f1 ORDER BY a 2113 LIMIT (SELECT a FROM f1 WHERE b='j') 2114 OFFSET (SELECT a FROM f1 WHERE b='b') 2115 } {c d e f g h i j k l} 2116 4 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h} 2117 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e} 2118 6 { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {} 2119 7 { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r} 2120} 2121 2122# EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than 2123# M+N rows if it did not have a LIMIT clause, then the first M rows are 2124# skipped and the remaining rows (if any) are returned. 2125# 2126do_select_tests e_select-9.9 { 2127 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z} 2128 2 { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1} 2129} 2130 2131 2132# EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a 2133# negative value, the results are the same as if it had evaluated to 2134# zero. 2135# 2136do_select_tests e_select-9.10 { 2137 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e} 2138 2 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e} 2139 3 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0 } {a b c d e} 2140} 2141 2142# EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the 2143# LIMIT clause may specify two scalar expressions separated by a comma. 2144# 2145# EVIDENCE-OF: R-33788-46243 In this case, the first expression is used 2146# as the OFFSET expression and the second as the LIMIT expression. 2147# 2148do_select_tests e_select-9.11 { 2149 1 { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o} 2150 2 { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o} 2151 3 { SELECT b FROM f1 ORDER BY a 2152 LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 2153 } {c d e f g h i j k l} 2154 4 { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h} 2155 5 { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e} 2156 6 { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {} 2157 7 { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r} 2158 2159 8 { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z} 2160 9 { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1} 2161 2162 10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e} 2163 11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e} 2164 12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e} 2165} 2166 2167finish_test 2168