xref: /sqlite-3.40.0/test/e_select.test (revision 50f79f56)
1# 2010 July 16
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file implements tests to verify that the "testable statements" in
13# the lang_select.html document are correct.
14#
15
16set testdir [file dirname $argv0]
17source $testdir/tester.tcl
18
19ifcapable !compound {
20  finish_test
21  return
22}
23
24do_execsql_test e_select-1.0 {
25  CREATE TABLE t1(a, b);
26  INSERT INTO t1 VALUES('a', 'one');
27  INSERT INTO t1 VALUES('b', 'two');
28  INSERT INTO t1 VALUES('c', 'three');
29
30  CREATE TABLE t2(a, b);
31  INSERT INTO t2 VALUES('a', 'I');
32  INSERT INTO t2 VALUES('b', 'II');
33  INSERT INTO t2 VALUES('c', 'III');
34
35  CREATE TABLE t3(a, c);
36  INSERT INTO t3 VALUES('a', 1);
37  INSERT INTO t3 VALUES('b', 2);
38
39  CREATE TABLE t4(a, c);
40  INSERT INTO t4 VALUES('a', NULL);
41  INSERT INTO t4 VALUES('b', 2);
42} {}
43set t1_cross_t2 [list                \
44   a one   a I      a one   b II     \
45   a one   c III    b two   a I      \
46   b two   b II     b two   c III    \
47   c three a I      c three b II     \
48   c three c III                     \
49]
50set t1_cross_t1 [list                  \
51   a one   a one      a one   b two    \
52   a one   c three    b two   a one    \
53   b two   b two      b two   c three  \
54   c three a one      c three b two    \
55   c three c three                     \
56]
57
58
59# This proc is a specialized version of [do_execsql_test].
60#
61# The second argument to this proc must be a SELECT statement that
62# features a cross join of some time. Instead of the usual ",",
63# "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be
64# substituted.
65#
66# This test runs the SELECT three times - once with:
67#
68#   * s/%JOIN%/,/
69#   * s/%JOIN%/JOIN/
70#   * s/%JOIN%/INNER JOIN/
71#   * s/%JOIN%/CROSS JOIN/
72#
73# and checks that each time the results of the SELECT are $res.
74#
75proc do_join_test {tn select res} {
76  foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
77    set S [string map [list %JOIN% $joinop] $select]
78    uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
79  }
80}
81
82#-------------------------------------------------------------------------
83# The following tests check that all paths on the syntax diagrams on
84# the lang_select.html page may be taken.
85#
86# EVIDENCE-OF: R-11353-33501 -- syntax diagram join-constraint
87#
88do_join_test e_select-0.1.1 {
89  SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
90} {3}
91do_join_test e_select-0.1.2 {
92  SELECT count(*) FROM t1 %JOIN% t2 USING (a)
93} {3}
94do_join_test e_select-0.1.3 {
95  SELECT count(*) FROM t1 %JOIN% t2
96} {9}
97do_catchsql_test e_select-0.1.4 {
98  SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
99} {1 {cannot have both ON and USING clauses in the same join}}
100do_catchsql_test e_select-0.1.5 {
101  SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
102} {1 {near "ON": syntax error}}
103
104# EVIDENCE-OF: R-40919-40941 -- syntax diagram select-core
105#
106#   0: SELECT ...
107#   1: SELECT DISTINCT ...
108#   2: SELECT ALL ...
109#
110#   0: No FROM clause
111#   1: Has FROM clause
112#
113#   0: No WHERE clause
114#   1: Has WHERE clause
115#
116#   0: No GROUP BY clause
117#   1: Has GROUP BY clause
118#   2: Has GROUP BY and HAVING clauses
119#
120do_select_tests e_select-0.2 {
121  0000.1  "SELECT 1, 2, 3 " {1 2 3}
122  1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
123  2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
124
125  0100.1  "SELECT a, b, a||b FROM t1 " {
126    a one aone b two btwo c three cthree
127  }
128  1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
129    a one aone b two btwo c three cthree
130  }
131  1200.1  "SELECT ALL a, b, a||b FROM t1 " {
132    a one aone b two btwo c three cthree
133  }
134
135  0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
136  0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
137  0010.3  "SELECT 1, 2, 3 WHERE NULL " {}
138
139  1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
140
141  2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
142
143  0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
144    a one aone b two btwo c three cthree
145  }
146  0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
147
148  1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
149    a one aone b two btwo c three cthree
150  }
151
152  2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
153
154  0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
155  0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
156  0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
157
158  1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
159  1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
160  1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
161
162  2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
163  2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
164  2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
165
166  0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
167  0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
168    1 a 1 c 1 b
169  }
170  0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { }
171
172  1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
173  1102.1  "SELECT DISTINCT count(*), max(a) FROM t1
174           GROUP BY b HAVING count(*)=1" {
175    1 a 1 c 1 b
176  }
177  1102.2  "SELECT DISTINCT count(*), max(a) FROM t1
178           GROUP BY b HAVING count(*)=2" {
179  }
180
181  2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
182  2102.1  "SELECT ALL count(*), max(a) FROM t1
183           GROUP BY b HAVING count(*)=1" {
184    1 a 1 c 1 b
185  }
186  2102.2  "SELECT ALL count(*), max(a) FROM t1
187           GROUP BY b HAVING count(*)=2" {
188  }
189
190  0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
191  0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
192  0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
193
194  1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
195  1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1"
196          {1 2 3}
197  1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
198
199  2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
200  2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
201  2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
202
203  0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
204  0112.1  "SELECT count(*), max(a) FROM t1
205           WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
206  0112.2  "SELECT count(*), max(a) FROM t1
207           WHERE 0 GROUP BY b HAVING count(*)=2" { }
208  1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b"
209          {1 a 1 b}
210  1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
211           GROUP BY b HAVING count(*)=1" {
212    1 c 1 b
213  }
214  1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
215           GROUP BY b HAVING count(*)=2" {
216  }
217
218  2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b"
219          {1 c 1 b}
220  2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
221           GROUP BY b HAVING count(*)=1" {
222    1 a 1 c
223  }
224  2112.2  "SELECT ALL count(*), max(a) FROM t1
225           WHERE 0 GROUP BY b HAVING count(*)=2" { }
226}
227
228
229# EVIDENCE-OF: R-41378-26734 -- syntax diagram result-column
230#
231do_select_tests e_select-0.3 {
232  1  "SELECT * FROM t1" {a one b two c three}
233  2  "SELECT t1.* FROM t1" {a one b two c three}
234  3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
235  4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
236  5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
237}
238
239# EVIDENCE-OF: R-43129-35648 -- syntax diagram join-source
240#
241# EVIDENCE-OF: R-36683-37460 -- syntax diagram join-op
242#
243do_select_tests e_select-0.4 {
244  1  "SELECT t1.rowid FROM t1" {1 2 3}
245  2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
246  3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
247
248  4  "SELECT t1.rowid FROM t1" {1 2 3}
249  5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
250  6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3"
251     {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
252
253  7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
254  8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
255  9  "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3}
256  10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
257  11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
258
259  12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
260  13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
261  14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
262  15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
263  16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
264}
265
266# EVIDENCE-OF: R-28308-37813 -- syntax diagram compound-operator
267#
268do_select_tests e_select-0.5 {
269  1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
270  2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
271  3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
272  4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
273}
274
275# EVIDENCE-OF: R-06480-34950 -- syntax diagram ordering-term
276#
277do_select_tests e_select-0.6 {
278  1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
279  2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
280  3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
281  4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
282}
283
284# EVIDENCE-OF: R-23926-36668 -- syntax diagram select-stmt
285#
286do_select_tests e_select-0.7 {
287  1  "SELECT * FROM t1" {a one b two c three}
288  2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
289  3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
290
291  4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
292  5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
293  6  "SELECT * FROM t1 LIMIT 10, 5" {}
294
295  7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
296  8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
297  9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
298
299  10  "SELECT * FROM t1 UNION SELECT b, a FROM t1"
300     {a one b two c three one a three c two b}
301  11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b"
302     {one a two b three c a one c three b two}
303  12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a"
304     {one a two b three c a one c three b two}
305  13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10"
306     {a one b two c three one a three c two b}
307  14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5"
308     {two b}
309  15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5"
310     {}
311  16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10"
312     {a one b two c three one a three c two b}
313  17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5"
314     {b two}
315  18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5"
316     {}
317}
318
319#-------------------------------------------------------------------------
320# The following tests focus on FROM clause (join) processing.
321#
322
323# EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
324# SELECT statement, then the input data is implicitly a single row zero
325# columns wide
326#
327do_select_tests e_select-1.1 {
328  1 "SELECT 'abc'"            {abc}
329  2 "SELECT 'abc' WHERE NULL" {}
330  3 "SELECT NULL"             {{}}
331  4 "SELECT count(*)"         {1}
332  5 "SELECT count(*) WHERE 0" {0}
333  6 "SELECT count(*) WHERE 1" {1}
334}
335
336# EVIDENCE-OF: R-48114-33255 If there is only a single table in the
337# join-source following the FROM clause, then the input data used by the
338# SELECT statement is the contents of the named table.
339#
340#   The results of the SELECT queries suggest that they are operating on the
341#   contents of the table 'xx'.
342#
343do_execsql_test e_select-1.2.0 {
344  CREATE TABLE xx(x, y);
345  INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
346  INSERT INTO xx VALUES(NULL, -16.87);
347  INSERT INTO xx VALUES(-17.89, 'linguistically');
348} {}
349do_select_tests e_select-1.2 {
350  1  "SELECT quote(x), quote(y) FROM xx" {
351     'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2'
352     NULL             -16.87
353     -17.89           'linguistically'
354  }
355
356  2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
357  3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
358}
359
360# EVIDENCE-OF: R-23593-12456 If there is more than one table specified
361# as part of the join-source following the FROM keyword, then the
362# contents of each named table are joined into a single dataset for the
363# simple SELECT statement to operate on.
364#
365#   There are more detailed tests for subsequent requirements that add
366#   more detail to this idea. We just add a single test that shows that
367#   data is coming from each of the three tables following the FROM clause
368#   here to show that the statement, vague as it is, is not incorrect.
369#
370do_select_tests e_select-1.3 {
371  1 "SELECT * FROM t1, t2, t3" {
372      a one a I a 1 a one a I b 2 a one b II a 1
373      a one b II b 2 a one c III a 1 a one c III b 2
374      b two a I a 1 b two a I b 2 b two b II a 1
375      b two b II b 2 b two c III a 1 b two c III b 2
376      c three a I a 1 c three a I b 2 c three b II a 1
377      c three b II b 2 c three c III a 1 c three c III b 2
378  }
379}
380
381#
382# The following block of tests - e_select-1.4.* - test that the description
383# of cartesian joins in the SELECT documentation is consistent with SQLite.
384# In doing so, we test the following three requirements as a side-effect:
385#
386# EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER
387# JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
388# then the result of the join is simply the cartesian product of the
389# left and right-hand datasets.
390#
391#    The tests are built on this assertion. Really, they test that the output
392#    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
393#    of calculating the cartesian product of the left and right-hand datasets.
394#
395# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
396# JOIN", "JOIN" and "," join operators.
397#
398# EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
399# same data as the "INNER JOIN", "JOIN" and "," operators
400#
401#    All tests are run 4 times, with the only difference in each run being
402#    which of the 4 equivalent cartesian product join operators are used.
403#    Since the output data is the same in all cases, we consider that this
404#    qualifies as testing the two statements above.
405#
406do_execsql_test e_select-1.4.0 {
407  CREATE TABLE x1(a, b);
408  CREATE TABLE x2(c, d, e);
409  CREATE TABLE x3(f, g, h, i);
410
411  -- x1: 3 rows, 2 columns
412  INSERT INTO x1 VALUES(24, 'converging');
413  INSERT INTO x1 VALUES(NULL, X'CB71');
414  INSERT INTO x1 VALUES('blonds', 'proprietary');
415
416  -- x2: 2 rows, 3 columns
417  INSERT INTO x2 VALUES(-60.06, NULL, NULL);
418  INSERT INTO x2 VALUES(-58, NULL, 1.21);
419
420  -- x3: 5 rows, 4 columns
421  INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
422  INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
423  INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
424  INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
425  INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
426} {}
427
428# EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
429# dataset are, in order, all the columns of the left-hand dataset
430# followed by all the columns of the right-hand dataset.
431#
432do_join_test e_select-1.4.1.1 {
433  SELECT * FROM x1 %JOIN% x2 LIMIT 1
434} [concat {24 converging} {-60.06 {} {}}]
435
436do_join_test e_select-1.4.1.2 {
437  SELECT * FROM x2 %JOIN% x1 LIMIT 1
438} [concat {-60.06 {} {}} {24 converging}]
439
440do_join_test e_select-1.4.1.3 {
441  SELECT * FROM x3 %JOIN% x2 LIMIT 1
442} [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
443
444do_join_test e_select-1.4.1.4 {
445  SELECT * FROM x2 %JOIN% x3 LIMIT 1
446} [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
447
448# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
449# dataset formed by combining each unique combination of a row from the
450# left-hand and right-hand datasets.
451#
452do_join_test e_select-1.4.2.1 {
453  SELECT * FROM x2 %JOIN% x3
454} [list -60.06 {} {}      -39.24 {} encompass -1                 \
455        -60.06 {} {}      presenting 51 reformation dignified    \
456        -60.06 {} {}      conducting -87.24 37.56 {}             \
457        -60.06 {} {}      coldest -96 dramatists 82.3            \
458        -60.06 {} {}      alerting {} -93.79 {}                  \
459        -58 {} 1.21       -39.24 {} encompass -1                 \
460        -58 {} 1.21       presenting 51 reformation dignified    \
461        -58 {} 1.21       conducting -87.24 37.56 {}             \
462        -58 {} 1.21       coldest -96 dramatists 82.3            \
463        -58 {} 1.21       alerting {} -93.79 {}                  \
464]
465# TODO: Come back and add a few more like the above.
466
467# EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset
468# consists of Nlhs rows of Mlhs columns, and the right-hand dataset of
469# Nrhs rows of Mrhs columns, then the cartesian product is a dataset of
470# Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns.
471#
472# x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
473do_join_test e_select-1.4.3.1 {
474  SELECT count(*) FROM x1 %JOIN% x2
475} [expr 3*2]
476do_test e_select-1.4.3.2 {
477  expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
478} [expr 2+3]
479
480# x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
481do_join_test e_select-1.4.3.3 {
482  SELECT count(*) FROM x2 %JOIN% x3
483} [expr 2*5]
484do_test e_select-1.4.3.4 {
485  expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
486} [expr 3+4]
487
488# x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
489do_join_test e_select-1.4.3.5 {
490  SELECT count(*) FROM x3 %JOIN% x1
491} [expr 5*3]
492do_test e_select-1.4.3.6 {
493  expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
494} [expr 4+2]
495
496# x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
497do_join_test e_select-1.4.3.7 {
498  SELECT count(*) FROM x3 %JOIN% x3
499} [expr 5*5]
500do_test e_select-1.4.3.8 {
501  expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
502} [expr 4+4]
503
504# Some extra cartesian product tests using tables t1 and t2.
505#
506do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
507do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
508
509do_select_tests e_select-1.4.5 [list                                   \
510    1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
511    2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
512    3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
513    4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
514]
515
516
517# EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then
518# the ON expression is evaluated for each row of the cartesian product
519# as a boolean expression. All rows for which the expression evaluates
520# to false are excluded from the dataset.
521#
522foreach {tn select res} [list                                              \
523    1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
524    2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
525    3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
526    4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
527    5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
528    6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
529    7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
530    8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
531                                                                           \
532    9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
533      {one I two II three III}                                             \
534   10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
535      {one I one II one III}                                               \
536   11 { SELECT t1.b, t2.b
537        FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
538      {two I two II two III three I three II three III}                    \
539] {
540  do_join_test e_select-1.3.$tn $select $res
541}
542
543# EVIDENCE-OF: R-63358-54862 If there is a USING clause specified as
544# part of the join-constraint, then each of the column names specified
545# must exist in the datasets to both the left and right of the join-op.
546#
547do_select_tests e_select-1.4 -error {
548  cannot join using column %s - column not present in both tables
549} {
550  1 { SELECT * FROM t1, t3 USING (b) }   "b"
551  2 { SELECT * FROM t3, t1 USING (c) }   "c"
552  3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
553}
554
555# EVIDENCE-OF: R-55987-04584 For each pair of namesake columns, the
556# expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
557# product as a boolean expression. All rows for which one or more of the
558# expressions evaluates to false are excluded from the result set.
559#
560do_select_tests e_select-1.5 {
561  1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
562  2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
563}
564
565# EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
566# USING clause, the normal rules for handling affinities, collation
567# sequences and NULL values in comparisons apply.
568#
569# EVIDENCE-OF: R-35466-18578 The column from the dataset on the
570# left-hand side of the join operator is considered to be on the
571# left-hand side of the comparison operator (=) for the purposes of
572# collation sequence and affinity precedence.
573#
574do_execsql_test e_select-1.6.0 {
575  CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
576  INSERT INTO t5 VALUES('AA', 'cc');
577  INSERT INTO t5 VALUES('BB', 'dd');
578  INSERT INTO t5 VALUES(NULL, NULL);
579  CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
580  INSERT INTO t6 VALUES('aa', 'cc');
581  INSERT INTO t6 VALUES('bb', 'DD');
582  INSERT INTO t6 VALUES(NULL, NULL);
583} {}
584foreach {tn select res} {
585  1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
586  2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
587  3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) }
588    {aa cc cc bb DD dd}
589  4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
590  5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
591} {
592  do_join_test e_select-1.6.$tn $select $res
593}
594
595# EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
596# USING clause, the column from the right-hand dataset is omitted from
597# the joined dataset.
598#
599# EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
600# clause and its equivalent ON constraint.
601#
602foreach {tn select res} {
603  1a { SELECT * FROM t1 %JOIN% t2 USING (a)      }
604     {a one I b two II c three III}
605  1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
606     {a one a I b two b II c three c III}
607
608  2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }
609     {a 1 {} b 2 2}
610  2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) }
611     {a 1 a {} b 2 b 2}
612
613  3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
614  3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
615
616  4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
617       %JOIN% t5 USING (a) }
618     {aa cc cc bb DD dd}
619  4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
620       %JOIN% t5 ON (x.a=t5.a) }
621     {aa cc AA cc bb DD BB dd}
622} {
623  do_join_test e_select-1.7.$tn $select $res
624}
625
626# EVIDENCE-OF: R-41434-12448 If the join-op is a "LEFT JOIN" or "LEFT
627# OUTER JOIN", then after the ON or USING filtering clauses have been
628# applied, an extra row is added to the output for each row in the
629# original left-hand input dataset that corresponds to no rows at all in
630# the composite dataset (if any).
631#
632do_execsql_test e_select-1.8.0 {
633  CREATE TABLE t7(a, b, c);
634  CREATE TABLE t8(a, d, e);
635
636  INSERT INTO t7 VALUES('x', 'ex',  24);
637  INSERT INTO t7 VALUES('y', 'why', 25);
638
639  INSERT INTO t8 VALUES('x', 'abc', 24);
640  INSERT INTO t8 VALUES('z', 'ghi', 26);
641} {}
642
643do_select_tests e_select-1.8 {
644  1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
645  1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
646  2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
647  2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
648}
649
650
651# EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
652# columns that would normally contain values copied from the right-hand
653# input dataset.
654#
655do_select_tests e_select-1.9 {
656  1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
657  1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)"
658     {x ex 24 x abc 24 y why 25 {} {} {}}
659  2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
660  2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
661}
662
663# EVIDENCE-OF: R-01809-52134 If the NATURAL keyword is added to any of
664# the join-ops, then an implicit USING clause is added to the
665# join-constraints. The implicit USING clause contains each of the
666# column names that appear in both the left and right-hand input
667# datasets.
668#
669do_select_tests e_select-1-10 {
670  1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
671  1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}
672
673  2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
674  2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}
675
676  3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
677  3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}
678
679  4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
680  4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}
681
682  5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
683  5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}
684
685  6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
686  6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
687}
688
689# EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
690# feature no common column names, then the NATURAL keyword has no effect
691# on the results of the join.
692#
693do_execsql_test e_select-1.11.0 {
694  CREATE TABLE t10(x, y);
695  INSERT INTO t10 VALUES(1, 'true');
696  INSERT INTO t10 VALUES(0, 'false');
697} {}
698do_select_tests e_select-1-11 {
699  1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
700  1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
701}
702
703# EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
704# join that specifies the NATURAL keyword.
705#
706foreach {tn sql} {
707  1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
708  2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
709  3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
710} {
711  do_catchsql_test e_select-1.12.$tn "
712    $sql
713  " {1 {a NATURAL join may not have an ON or USING clause}}
714}
715
716#-------------------------------------------------------------------------
717# The next block of tests - e_select-3.* - concentrate on verifying
718# statements made regarding WHERE clause processing.
719#
720drop_all_tables
721do_execsql_test e_select-3.0 {
722  CREATE TABLE x1(k, x, y, z);
723  INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
724  INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
725  INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
726  INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
727  INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
728  INSERT INTO x1 VALUES(6, 0,              1,         2);
729
730  CREATE TABLE x2(k, x, y2);
731  INSERT INTO x2 VALUES(1, 50, X'B82838');
732  INSERT INTO x2 VALUES(5, 84.79, 65.88);
733  INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
734  INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
735} {}
736
737# EVIDENCE-OF: R-06999-14330 If a WHERE clause is specified, the WHERE
738# expression is evaluated for each row in the input data as a boolean
739# expression. All rows for which the WHERE clause expression evaluates
740# to false are excluded from the dataset before continuing.
741#
742do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
743do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
744do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
745do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
746do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
747do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
748
749do_execsql_test e_select-3.2.1a {
750  SELECT k FROM x1 LEFT JOIN x2 USING(k)
751} {1 2 3 4 5 6}
752do_execsql_test e_select-3.2.1b {
753  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k
754} {1 3 5}
755do_execsql_test e_select-3.2.2 {
756  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
757} {2 4 6}
758
759do_execsql_test e_select-3.2.3 {
760  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
761} {3}
762do_execsql_test e_select-3.2.4 {
763  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
764} {}
765
766#-------------------------------------------------------------------------
767# Tests below this point are focused on verifying the testable statements
768# related to caculating the result rows of a simple SELECT statement.
769#
770
771drop_all_tables
772do_execsql_test e_select-4.0 {
773  CREATE TABLE z1(a, b, c);
774  CREATE TABLE z2(d, e);
775  CREATE TABLE z3(a, b);
776
777  INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
778  INSERT INTO z1 VALUES(-5, NULL, 75);
779  INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
780  INSERT INTO z1 VALUES(NULL, 67, 'quartets');
781  INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
782  INSERT INTO z1 VALUES(63, 'born', -26);
783
784  INSERT INTO z2 VALUES(NULL, 21);
785  INSERT INTO z2 VALUES(36, 6);
786
787  INSERT INTO z3 VALUES('subsistence', 'gauze');
788  INSERT INTO z3 VALUES(49.17, -67);
789} {}
790
791# EVIDENCE-OF: R-36327-17224 If a result expression is the special
792# expression "*" then all columns in the input data are substituted for
793# that one expression.
794#
795# EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
796# or subquery in the FROM clause followed by ".*" then all columns from
797# the named table or subquery are substituted for the single expression.
798#
799do_select_tests e_select-4.1 {
800  1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
801  2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
802  3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
803  4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
804  5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
805
806  6  "SELECT count(*), * FROM z1"           {6 63 born -26}
807  7  "SELECT max(a), * FROM z1"             {63 63 born -26}
808  8  "SELECT *, min(a) FROM z1"             {-5 {} 75 -5}
809
810  9  "SELECT *,* FROM z1,z2 LIMIT 1" {
811     51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
812  }
813  10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {
814     51.65 -59.58 belfries 51.65 -59.58 belfries
815  }
816}
817
818# EVIDENCE-OF: R-61869-22578 It is an error to use a "*" or "alias.*"
819# expression in any context other than than a result expression list.
820#
821# EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
822# "alias.*" expression in a simple SELECT query that does not have a
823# FROM clause.
824#
825foreach {tn select err} {
826  1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
827  1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
828  1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
829  1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}
830
831  2.1 "SELECT *" {no tables specified}
832  2.2 "SELECT * WHERE 1" {no tables specified}
833  2.3 "SELECT * WHERE 0" {no tables specified}
834  2.4 "SELECT count(*), *" {no tables specified}
835} {
836  do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
837}
838
839# EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
840# by a simple SELECT statement is equal to the number of expressions in
841# the result expression list after substitution of * and alias.*
842# expressions.
843#
844foreach {tn select nCol} {
845  1   "SELECT * FROM z1"   3
846  2   "SELECT * FROM z1 NATURAL JOIN z3"            3
847  3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
848  4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
849  5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
850  6   "SELECT 1, 2, z1.* FROM z1"                   5
851  7   "SELECT a, *, b, c FROM z1"                   6
852} {
853  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
854  do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
855  sqlite3_finalize $::stmt
856}
857
858
859
860# In lang_select.html, a non-aggregate query is defined as any simple SELECT
861# that has no GROUP BY clause and no aggregate expressions in the result
862# expression list. Other queries are aggregate queries. Test cases
863# e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
864# simple SELECT that is different for aggregate and non-aggregate queries
865# verify (in a way) that these definitions are consistent:
866#
867# EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
868# query if it contains either a GROUP BY clause or one or more aggregate
869# functions in the result-set.
870#
871# EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
872# aggregate functions or a GROUP BY clause, it is a non-aggregate query.
873#
874
875# EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
876# query, then each expression in the result expression list is evaluated
877# for each row in the dataset filtered by the WHERE clause.
878#
879do_select_tests e_select-4.4 {
880  1 "SELECT a, b FROM z1"
881    {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
882
883  2 "SELECT a IS NULL, b+1, * FROM z1" {
884        0 -58.58   51.65 -59.58 belfries
885        0 {}       -5 {} 75
886        0 -22.18   -2.2 -23.18 suiters
887        1 68       {} 67 quartets
888        0 -31.3    -1.04 -32.3 aspen
889        0 1        63 born -26
890  }
891
892  3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
893}
894
895
896# Test cases e_select-4.5.* and e_select-4.6.* together show that:
897#
898# EVIDENCE-OF: R-51988-01124 The single row of result-set data created
899# by evaluating the aggregate and non-aggregate expressions in the
900# result-set forms the result of an aggregate query without a GROUP BY
901# clause.
902#
903
904# EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
905# query without a GROUP BY clause, then each aggregate expression in the
906# result-set is evaluated once across the entire dataset.
907#
908do_select_tests e_select-4.5 {
909  1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
910  2 "SELECT count(*), max(1)"                                {1 1}
911
912  3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
913  4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
914  5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
915}
916
917# EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
918# result-set is evaluated once for an arbitrarily selected row of the
919# dataset.
920#
921# EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
922# for each non-aggregate expression.
923#
924#   Note: The results of many of the queries in this block of tests are
925#   technically undefined, as the documentation does not specify which row
926#   SQLite will arbitrarily select to use for the evaluation of the
927#   non-aggregate expressions.
928#
929drop_all_tables
930do_execsql_test e_select-4.6.0 {
931  CREATE TABLE a1(one PRIMARY KEY, two);
932  INSERT INTO a1 VALUES(1, 1);
933  INSERT INTO a1 VALUES(2, 3);
934  INSERT INTO a1 VALUES(3, 6);
935  INSERT INTO a1 VALUES(4, 10);
936
937  CREATE TABLE a2(one PRIMARY KEY, three);
938  INSERT INTO a2 VALUES(1, 1);
939  INSERT INTO a2 VALUES(3, 2);
940  INSERT INTO a2 VALUES(6, 3);
941  INSERT INTO a2 VALUES(10, 4);
942} {}
943do_select_tests e_select-4.6 {
944  1 "SELECT one, two, count(*) FROM a1"                        {4 10 4}
945  2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {2 3 2}
946  3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1}
947  4 "SELECT *, count(*) FROM a1 JOIN a2"                       {4 10 10 4 16}
948  5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
949  6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {3 6 2 3}
950  7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6}
951}
952
953# EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
954# each non-aggregate expression is evaluated against a row consisting
955# entirely of NULL values.
956#
957do_select_tests e_select-4.7 {
958  1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
959  2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
960  3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
961    1 1 1
962  }
963}
964
965# EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
966# clause always returns exactly one row of data, even if there are zero
967# rows of input data.
968#
969foreach {tn select} {
970  8.1  "SELECT count(*) FROM a1"
971  8.2  "SELECT count(*) FROM a1 WHERE 0"
972  8.3  "SELECT count(*) FROM a1 WHERE 1"
973  8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
974  8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
975} {
976  # Set $nRow to the number of rows returned by $select:
977  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
978  set nRow 0
979  while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
980  set rc [sqlite3_finalize $::stmt]
981
982  # Test that $nRow==1 and that statement execution was successful
983  # (rc==SQLITE_OK).
984  do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
985}
986
987drop_all_tables
988do_execsql_test e_select-4.9.0 {
989  CREATE TABLE b1(one PRIMARY KEY, two);
990  INSERT INTO b1 VALUES(1, 'o');
991  INSERT INTO b1 VALUES(4, 'f');
992  INSERT INTO b1 VALUES(3, 't');
993  INSERT INTO b1 VALUES(2, 't');
994  INSERT INTO b1 VALUES(5, 'f');
995  INSERT INTO b1 VALUES(7, 's');
996  INSERT INTO b1 VALUES(6, 's');
997
998  CREATE TABLE b2(x, y);
999  INSERT INTO b2 VALUES(NULL, 0);
1000  INSERT INTO b2 VALUES(NULL, 1);
1001  INSERT INTO b2 VALUES('xyz', 2);
1002  INSERT INTO b2 VALUES('abc', 3);
1003  INSERT INTO b2 VALUES('xyz', 4);
1004
1005  CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
1006  INSERT INTO b3 VALUES('abc', 'abc');
1007  INSERT INTO b3 VALUES('aBC', 'aBC');
1008  INSERT INTO b3 VALUES('Def', 'Def');
1009  INSERT INTO b3 VALUES('dEF', 'dEF');
1010} {}
1011
1012# EVIDENCE-OF: R-57754-57109 If the SELECT statement is an aggregate
1013# query with a GROUP BY clause, then each of the expressions specified
1014# as part of the GROUP BY clause is evaluated for each row of the
1015# dataset. Each row is then assigned to a "group" based on the results;
1016# rows for which the results of evaluating the GROUP BY expressions are
1017# the same are assigned to the same group.
1018#
1019#   These tests also show that the following is not untrue:
1020#
1021# EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
1022# not have to be expressions that appear in the result.
1023#
1024do_select_tests e_select-4.9 {
1025  1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
1026    4,5 f   1 o   7,6   s 3,2 t
1027  }
1028  2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
1029    1,4,3,2 10    5,7,6 18
1030  }
1031  3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
1032    4  1,5    2,6   3,7
1033  }
1034  4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
1035    4,3,5,7,6    1,2
1036  }
1037}
1038
1039# EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
1040# values are considered equal.
1041#
1042do_select_tests e_select-4.10 {
1043  1  "SELECT group_concat(y) FROM b2 GROUP BY x" {0,1   3   2,4}
1044  2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
1045}
1046
1047# EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
1048# sequence with which to compare text values apply when evaluating
1049# expressions in a GROUP BY clause.
1050#
1051do_select_tests e_select-4.11 {
1052  1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
1053  2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
1054  3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
1055  4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
1056  5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
1057  6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
1058}
1059
1060# EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
1061# not be aggregate expressions.
1062#
1063foreach {tn select} {
1064  12.1  "SELECT * FROM b3 GROUP BY count(*)"
1065  12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
1066  12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
1067} {
1068  set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
1069  do_catchsql_test e_select-4.$tn $select $res
1070}
1071
1072# EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
1073# evaluated once for each group of rows as a boolean expression. If the
1074# result of evaluating the HAVING clause is false, the group is
1075# discarded.
1076#
1077#   This requirement is tested by all e_select-4.13.* tests.
1078#
1079# EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
1080# expression, it is evaluated across all rows in the group.
1081#
1082#   Tested by e_select-4.13.1.*
1083#
1084# EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
1085# expression, it is evaluated with respect to an arbitrarily selected
1086# row from the group.
1087#
1088#   Tested by e_select-4.13.2.*
1089#
1090#   Tests in this block also show that this is not untrue:
1091#
1092# EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
1093# even aggregate functions, that are not in the result.
1094#
1095do_execsql_test e_select-4.13.0 {
1096  CREATE TABLE c1(up, down);
1097  INSERT INTO c1 VALUES('x', 1);
1098  INSERT INTO c1 VALUES('x', 2);
1099  INSERT INTO c1 VALUES('x', 4);
1100  INSERT INTO c1 VALUES('x', 8);
1101  INSERT INTO c1 VALUES('y', 16);
1102  INSERT INTO c1 VALUES('y', 32);
1103
1104  CREATE TABLE c2(i, j);
1105  INSERT INTO c2 VALUES(1, 0);
1106  INSERT INTO c2 VALUES(2, 1);
1107  INSERT INTO c2 VALUES(3, 3);
1108  INSERT INTO c2 VALUES(4, 6);
1109  INSERT INTO c2 VALUES(5, 10);
1110  INSERT INTO c2 VALUES(6, 15);
1111  INSERT INTO c2 VALUES(7, 21);
1112  INSERT INTO c2 VALUES(8, 28);
1113  INSERT INTO c2 VALUES(9, 36);
1114
1115  CREATE TABLE c3(i PRIMARY KEY, k TEXT);
1116  INSERT INTO c3 VALUES(1,  'hydrogen');
1117  INSERT INTO c3 VALUES(2,  'helium');
1118  INSERT INTO c3 VALUES(3,  'lithium');
1119  INSERT INTO c3 VALUES(4,  'beryllium');
1120  INSERT INTO c3 VALUES(5,  'boron');
1121  INSERT INTO c3 VALUES(94, 'plutonium');
1122} {}
1123
1124do_select_tests e_select-4.13 {
1125  1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
1126  1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
1127  1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
1128  1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
1129
1130  2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
1131  2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}
1132
1133  2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6"  {9 36}
1134}
1135
1136# EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
1137# evaluated once for each group of rows.
1138#
1139# EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
1140# expression, it is evaluated across all rows in the group.
1141#
1142do_select_tests e_select-4.15 {
1143  1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
1144  2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
1145  3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
1146  4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
1147  5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
1148        {3 4.33 1 2.0}
1149}
1150
1151# EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
1152# arbitrarily chosen row from within the group.
1153#
1154# EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
1155# expression in the result-set, then all such expressions are evaluated
1156# for the same row.
1157#
1158do_select_tests e_select-4.15 {
1159  1  "SELECT i, j FROM c2 GROUP BY i%2"             {8 28   9 36}
1160  2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28}
1161  3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1162  4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1163  5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
1164        {2 5 boron   2 2 helium   1 3 lithium}
1165}
1166
1167# EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
1168# contributes a single row to the set of result rows.
1169#
1170# EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
1171# DISTINCT keyword, the number of rows returned by an aggregate query
1172# with a GROUP BY clause is the same as the number of groups of rows
1173# produced by applying the GROUP BY and HAVING clauses to the filtered
1174# input dataset.
1175#
1176do_select_tests e_select.4.16 -count {
1177  1  "SELECT i, j FROM c2 GROUP BY i%2"          2
1178  2  "SELECT i, j FROM c2 GROUP BY i"            9
1179  3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
1180}
1181
1182#-------------------------------------------------------------------------
1183# The following tests attempt to verify statements made regarding the ALL
1184# and DISTINCT keywords.
1185#
1186drop_all_tables
1187do_execsql_test e_select-5.1.0 {
1188  CREATE TABLE h1(a, b);
1189  INSERT INTO h1 VALUES(1, 'one');
1190  INSERT INTO h1 VALUES(1, 'I');
1191  INSERT INTO h1 VALUES(1, 'i');
1192  INSERT INTO h1 VALUES(4, 'four');
1193  INSERT INTO h1 VALUES(4, 'IV');
1194  INSERT INTO h1 VALUES(4, 'iv');
1195
1196  CREATE TABLE h2(x COLLATE nocase);
1197  INSERT INTO h2 VALUES('One');
1198  INSERT INTO h2 VALUES('Two');
1199  INSERT INTO h2 VALUES('Three');
1200  INSERT INTO h2 VALUES('Four');
1201  INSERT INTO h2 VALUES('one');
1202  INSERT INTO h2 VALUES('two');
1203  INSERT INTO h2 VALUES('three');
1204  INSERT INTO h2 VALUES('four');
1205
1206  CREATE TABLE h3(c, d);
1207  INSERT INTO h3 VALUES(1, NULL);
1208  INSERT INTO h3 VALUES(2, NULL);
1209  INSERT INTO h3 VALUES(3, NULL);
1210  INSERT INTO h3 VALUES(4, '2');
1211  INSERT INTO h3 VALUES(5, NULL);
1212  INSERT INTO h3 VALUES(6, '2,3');
1213  INSERT INTO h3 VALUES(7, NULL);
1214  INSERT INTO h3 VALUES(8, '2,4');
1215  INSERT INTO h3 VALUES(9, '3');
1216} {}
1217
1218# EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
1219# follow the SELECT keyword in a simple SELECT statement.
1220#
1221do_select_tests e_select-5.1 {
1222  1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
1223  2   "SELECT DISTINCT a FROM h1" {1 4}
1224}
1225
1226# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
1227# the entire set of result rows are returned by the SELECT.
1228#
1229# EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present,
1230# then the behaviour is as if ALL were specified.
1231#
1232# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
1233# then duplicate rows are removed from the set of result rows before it
1234# is returned.
1235#
1236#   The three testable statements above are tested by e_select-5.2.*,
1237#   5.3.* and 5.4.* respectively.
1238#
1239do_select_tests e_select-5 {
1240  3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
1241  3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
1242
1243  3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
1244  3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
1245
1246  4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four}
1247  4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four}
1248}
1249
1250# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
1251# rows, two NULL values are considered to be equal.
1252#
1253do_select_tests e_select-5.5 {
1254  1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
1255}
1256
1257# EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation
1258# sequence to compare text values with apply.
1259#
1260do_select_tests e_select-5.6 {
1261  1  "SELECT DISTINCT b FROM h1"                  {one I i four IV iv}
1262  2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {one I four IV}
1263  3  "SELECT DISTINCT x FROM h2"                  {One Two Three Four}
1264  4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
1265    One Two Three Four one two three four
1266  }
1267}
1268
1269#-------------------------------------------------------------------------
1270# The following tests - e_select-7.* - test that statements made to do
1271# with compound SELECT statements are correct.
1272#
1273
1274# EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
1275# SELECTs must return the same number of result columns.
1276#
1277#   All the other tests in this section use compound SELECTs created
1278#   using component SELECTs that do return the same number of columns.
1279#   So the tests here just show that it is an error to attempt otherwise.
1280#
1281drop_all_tables
1282do_execsql_test e_select-7.1.0 {
1283  CREATE TABLE j1(a, b, c);
1284  CREATE TABLE j2(e, f);
1285  CREATE TABLE j3(g);
1286} {}
1287do_select_tests e_select-7.1 -error {
1288  SELECTs to the left and right of %s do not have the same number of result columns
1289} {
1290  1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1291  2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
1292  3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1293  4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
1294  5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
1295
1296  6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1297  7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
1298  8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1299  9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
1300  10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}
1301
1302  11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1303  12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
1304  13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1305  14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
1306  15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
1307
1308  16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1309  17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
1310  18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1311  19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
1312  20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
1313}
1314
1315# EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
1316# be simple SELECT statements, they may not contain ORDER BY or LIMIT
1317# clauses.
1318#
1319foreach {tn select op1 op2} {
1320  1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3"
1321      {ORDER BY} {UNION ALL}
1322  2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
1323      {ORDER BY} {UNION ALL}
1324  3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
1325      {ORDER BY} {UNION ALL}
1326  4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3"
1327      LIMIT {UNION ALL}
1328  5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3"
1329      LIMIT {UNION ALL}
1330  6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3"
1331      LIMIT {UNION ALL}
1332
1333  7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3"
1334      {ORDER BY} {UNION}
1335  8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
1336      {ORDER BY} {UNION}
1337  9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
1338      {ORDER BY} {UNION}
1339  10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3"
1340      LIMIT {UNION}
1341  11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3"
1342      LIMIT {UNION}
1343  12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3"
1344      LIMIT {UNION}
1345
1346  13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3"
1347      {ORDER BY} {EXCEPT}
1348  14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
1349      {ORDER BY} {EXCEPT}
1350  15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
1351      {ORDER BY} {EXCEPT}
1352  16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3"
1353      LIMIT {EXCEPT}
1354  17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3"
1355      LIMIT {EXCEPT}
1356  18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3"
1357      LIMIT {EXCEPT}
1358
1359  19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3"
1360      {ORDER BY} {INTERSECT}
1361  20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
1362      {ORDER BY} {INTERSECT}
1363  21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
1364      {ORDER BY} {INTERSECT}
1365  22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3"
1366      LIMIT {INTERSECT}
1367  23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3"
1368      LIMIT {INTERSECT}
1369  24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3"
1370      LIMIT {INTERSECT}
1371} {
1372  set err "$op1 clause should come after $op2 not before"
1373  do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
1374}
1375
1376# EVIDENCE-OF: R-22874-32655 ORDER BY and LIMIT clauses may only occur
1377# at the end of the entire compound SELECT.
1378#
1379foreach {tn select} {
1380  1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
1381  2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
1382  3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
1383  4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10"
1384  5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1385  6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1386
1387  7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
1388  8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
1389  9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
1390  10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10"
1391  11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1392  12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1393
1394  13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
1395  14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
1396  15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
1397  16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10"
1398  17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1399  18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1400
1401  19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
1402  20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
1403  21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
1404  22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10"
1405  23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1406  24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1407} {
1408  do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
1409}
1410
1411# EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
1412# operator returns all the rows from the SELECT to the left of the UNION
1413# ALL operator, and all the rows from the SELECT to the right of it.
1414#
1415drop_all_tables
1416do_execsql_test e_select-7.4.0 {
1417  CREATE TABLE q1(a TEXT, b INTEGER, c);
1418  CREATE TABLE q2(d NUMBER, e BLOB);
1419  CREATE TABLE q3(f REAL, g);
1420
1421  INSERT INTO q1 VALUES(16, -87.66, NULL);
1422  INSERT INTO q1 VALUES('legible', 94, -42.47);
1423  INSERT INTO q1 VALUES('beauty', 36, NULL);
1424
1425  INSERT INTO q2 VALUES('legible', 1);
1426  INSERT INTO q2 VALUES('beauty', 2);
1427  INSERT INTO q2 VALUES(-65.91, 4);
1428  INSERT INTO q2 VALUES('emanating', -16.56);
1429
1430  INSERT INTO q3 VALUES('beauty', 2);
1431  INSERT INTO q3 VALUES('beauty', 2);
1432} {}
1433do_select_tests e_select-7.4 {
1434  1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
1435      {16 legible beauty legible beauty -65.91 emanating}
1436
1437  2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
1438      {16 -87.66 {} x legible 1}
1439
1440  3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2}
1441      {3 -16.56}
1442
1443  4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3}
1444      {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
1445}
1446
1447# EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
1448# UNION ALL, except that duplicate rows are removed from the final
1449# result set.
1450#
1451do_select_tests e_select-7.5 {
1452  1   {SELECT a FROM q1 UNION SELECT d FROM q2}
1453      {-65.91 16 beauty emanating legible}
1454
1455  2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
1456      {16 -87.66 {} x legible 1}
1457
1458  3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2}
1459      {-16.56 3}
1460
1461  4   {SELECT * FROM q2 UNION SELECT * FROM q3}
1462      {-65.91 4 beauty 2 emanating -16.56 legible 1}
1463}
1464
1465# EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
1466# intersection of the results of the left and right SELECTs.
1467#
1468do_select_tests e_select-7.6 {
1469  1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
1470  2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
1471}
1472
1473# EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
1474# rows returned by the left SELECT that are not also returned by the
1475# right-hand SELECT.
1476#
1477do_select_tests e_select-7.7 {
1478  1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
1479
1480  2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3}
1481      {-65.91 4 emanating -16.56 legible 1}
1482}
1483
1484# EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
1485# of INTERSECT and EXCEPT operators before the result set is returned.
1486#
1487do_select_tests e_select-7.8 {
1488  0   {SELECT * FROM q3} {beauty 2 beauty 2}
1489
1490  1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
1491  2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
1492}
1493
1494# EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
1495# rows for the results of compound SELECT operators, NULL values are
1496# considered equal to other NULL values and distinct from all non-NULL
1497# values.
1498#
1499db nullvalue null
1500do_select_tests e_select-7.9 {
1501  1   {SELECT NULL UNION ALL SELECT NULL} {null null}
1502  2   {SELECT NULL UNION     SELECT NULL} {null}
1503  3   {SELECT NULL INTERSECT SELECT NULL} {null}
1504  4   {SELECT NULL EXCEPT    SELECT NULL} {}
1505
1506  5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
1507  6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
1508  7   {SELECT NULL INTERSECT SELECT 'ab'} {}
1509  8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}
1510
1511  9   {SELECT NULL UNION ALL SELECT 0} {null 0}
1512  10  {SELECT NULL UNION     SELECT 0} {null 0}
1513  11  {SELECT NULL INTERSECT SELECT 0} {}
1514  12  {SELECT NULL EXCEPT    SELECT 0} {null}
1515
1516  13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
1517  14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
1518  15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
1519  16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
1520}
1521db nullvalue {}
1522
1523# EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
1524# text values is determined as if the columns of the left and right-hand
1525# SELECT statements were the left and right-hand operands of the equals
1526# (=) operator, except that greater precedence is not assigned to a
1527# collation sequence specified with the postfix COLLATE operator.
1528#
1529drop_all_tables
1530do_execsql_test e_select-7.10.0 {
1531  CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
1532  INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
1533} {}
1534do_select_tests e_select-7.10 {
1535  1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
1536  2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
1537  3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
1538  4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
1539  5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
1540
1541  6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
1542  7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
1543  8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}
1544
1545  9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
1546}
1547
1548# EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
1549# any values when comparing rows as part of a compound SELECT.
1550#
1551drop_all_tables
1552do_execsql_test e_select-7.10.0 {
1553  CREATE TABLE w1(a TEXT, b NUMBER);
1554  CREATE TABLE w2(a, b TEXT);
1555
1556  INSERT INTO w1 VALUES('1', 4.1);
1557  INSERT INTO w2 VALUES(1, 4.1);
1558} {}
1559
1560do_select_tests e_select-7.11 {
1561  1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
1562  2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
1563  3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
1564  4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
1565
1566  5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
1567  6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
1568  7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
1569  8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
1570
1571  9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
1572  10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
1573  11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
1574  12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
1575}
1576
1577
1578# EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
1579# connected into a compound SELECT, they group from left to right. In
1580# other words, if "A", "B" and "C" are all simple SELECT statements, (A
1581# op B op C) is processed as ((A op B) op C).
1582#
1583#   e_select-7.12.1: Precedence of UNION vs. INTERSECT
1584#   e_select-7.12.2: Precedence of UNION vs. UNION ALL
1585#   e_select-7.12.3: Precedence of UNION vs. EXCEPT
1586#   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL
1587#   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
1588#   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
1589#   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as
1590#                   "(a EXCEPT b) EXCEPT c".
1591#
1592# The INTERSECT and EXCEPT operations are mutually commutative. So
1593# the e_select-7.12.5 test cases do not prove very much.
1594#
1595drop_all_tables
1596do_execsql_test e_select-7.12.0 {
1597  CREATE TABLE t1(x);
1598  INSERT INTO t1 VALUES(1);
1599  INSERT INTO t1 VALUES(2);
1600  INSERT INTO t1 VALUES(3);
1601} {}
1602foreach {tn select res} {
1603  1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
1604  1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1605
1606  2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
1607  2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}
1608
1609  3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
1610  3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}
1611
1612  4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
1613  4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1614
1615  5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
1616  5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}
1617
1618  6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
1619  6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}
1620
1621  7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
1622} {
1623  set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
1624  do_execsql_test e_select-7.12.$tn $select [list {*}$res]
1625}
1626
1627
1628#-------------------------------------------------------------------------
1629# ORDER BY clauses
1630#
1631
1632drop_all_tables
1633do_execsql_test e_select-8.1.0 {
1634  CREATE TABLE d1(x, y, z);
1635
1636  INSERT INTO d1 VALUES(1, 2, 3);
1637  INSERT INTO d1 VALUES(2, 5, -1);
1638  INSERT INTO d1 VALUES(1, 2, 8);
1639  INSERT INTO d1 VALUES(1, 2, 7);
1640  INSERT INTO d1 VALUES(2, 4, 93);
1641  INSERT INTO d1 VALUES(1, 2, -20);
1642  INSERT INTO d1 VALUES(1, 4, 93);
1643  INSERT INTO d1 VALUES(1, 5, -1);
1644
1645  CREATE TABLE d2(a, b);
1646  INSERT INTO d2 VALUES('gently', 'failings');
1647  INSERT INTO d2 VALUES('commercials', 'bathrobe');
1648  INSERT INTO d2 VALUES('iterate', 'sexton');
1649  INSERT INTO d2 VALUES('babied', 'charitableness');
1650  INSERT INTO d2 VALUES('solemnness', 'annexed');
1651  INSERT INTO d2 VALUES('rejoicing', 'liabilities');
1652  INSERT INTO d2 VALUES('pragmatist', 'guarded');
1653  INSERT INTO d2 VALUES('barked', 'interrupted');
1654  INSERT INTO d2 VALUES('reemphasizes', 'reply');
1655  INSERT INTO d2 VALUES('lad', 'relenting');
1656} {}
1657
1658# EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
1659# of evaluating the left-most expression in the ORDER BY list, then ties
1660# are broken by evaluating the second left-most expression and so on.
1661#
1662do_select_tests e_select-8.1 {
1663  1  "SELECT * FROM d1 ORDER BY x, y, z" {
1664     1 2 -20    1 2 3    1 2 7    1 2 8
1665     1 4  93    1 5 -1   2 4 93   2 5 -1
1666  }
1667}
1668
1669# EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
1670# followed by one of the keywords ASC (smaller values are returned
1671# first) or DESC (larger values are returned first).
1672#
1673#   Test cases e_select-8.2.* test the above.
1674#
1675# EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
1676# are sorted in ascending (smaller values first) order by default.
1677#
1678#   Test cases e_select-8.3.* test the above. All 8.3 test cases are
1679#   copies of 8.2 test cases with the explicit "ASC" removed.
1680#
1681do_select_tests e_select-8 {
1682  2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
1683     1 2 -20    1 2 3    1 2 7    1 2 8
1684     1 4  93    1 5 -1   2 4 93   2 5 -1
1685  }
1686  2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
1687     2 5 -1     2 4 93   1 5 -1   1 4  93
1688     1 2 8      1 2 7    1 2 3    1 2 -20
1689  }
1690  2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
1691     2 4 93   2 5 -1     1 2 8      1 2 7
1692     1 2 3    1 2 -20    1 4  93    1 5 -1
1693  }
1694  2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
1695     2 4 93   2 5 -1     1 2 -20    1 2 3
1696     1 2 7    1 2 8      1 4  93    1 5 -1
1697  }
1698
1699  3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
1700     1 2 -20    1 2 3    1 2 7    1 2 8
1701     1 4  93    1 5 -1   2 4 93   2 5 -1
1702  }
1703  3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
1704     2 4 93   2 5 -1     1 2 8      1 2 7
1705     1 2 3    1 2 -20    1 4  93    1 5 -1
1706  }
1707  3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
1708     2 4 93   2 5 -1     1 2 -20    1 2 3
1709     1 2 7    1 2 8      1 4  93    1 5 -1
1710  }
1711}
1712
1713# EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
1714# integer K then the expression is considered an alias for the K-th
1715# column of the result set (columns are numbered from left to right
1716# starting with 1).
1717#
1718do_select_tests e_select-8.4 {
1719  1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
1720     1 2 -20    1 2 3    1 2 7    1 2 8
1721     1 4  93    1 5 -1   2 4 93   2 5 -1
1722  }
1723  2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
1724     2 5 -1     2 4 93   1 5 -1   1 4  93
1725     1 2 8      1 2 7    1 2 3    1 2 -20
1726  }
1727  3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
1728     2 4 93   2 5 -1     1 2 8      1 2 7
1729     1 2 3    1 2 -20    1 4  93    1 5 -1
1730  }
1731  4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
1732     2 4 93   2 5 -1     1 2 -20    1 2 3
1733     1 2 7    1 2 8      1 4  93    1 5 -1
1734  }
1735  5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
1736     1 2 -20    1 2 3    1 2 7    1 2 8
1737     1 4  93    1 5 -1   2 4 93   2 5 -1
1738  }
1739  6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
1740     2 4 93   2 5 -1     1 2 8      1 2 7
1741     1 2 3    1 2 -20    1 4  93    1 5 -1
1742  }
1743  7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
1744     2 4 93   2 5 -1     1 2 -20    1 2 3
1745     1 2 7    1 2 8      1 4  93    1 5 -1
1746  }
1747  8  "SELECT z, x FROM d1 ORDER BY 2" {
1748     3 1     8 1    7 1   -20 1
1749     93 1   -1 1   -1 2   93 2
1750  }
1751  9  "SELECT z, x FROM d1 ORDER BY 1" {
1752     -20 1  -1 2   -1 1   3 1
1753     7 1     8 1   93 2   93 1
1754  }
1755}
1756
1757# EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
1758# that corresponds to the alias of one of the output columns, then the
1759# expression is considered an alias for that column.
1760#
1761do_select_tests e_select-8.5 {
1762  1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
1763    -19 0 0 4 8 9 94 94
1764  }
1765  2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
1766    94 94 9 8 4 0 0 -19
1767  }
1768  3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
1769    3 1    8 1    7 1    -20 1    93 1    -1 1    -1 2    93 2
1770  }
1771  4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
1772    -20 1    -1 2    -1 1    3 1    7 1    8 1    93 2    93 1
1773  }
1774}
1775
1776# EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is
1777# any other expression, it is evaluated and the returned value used to
1778# order the output rows.
1779#
1780# EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
1781# then an ORDER BY may contain any arbitrary expressions.
1782#
1783do_select_tests e_select-8.6 {
1784  1   "SELECT * FROM d1 ORDER BY x+y+z" {
1785    1 2 -20    1 5 -1    1 2 3    2 5 -1
1786    1 2 7      1 2 8     1 4 93   2 4 93
1787  }
1788  2   "SELECT * FROM d1 ORDER BY x*z" {
1789    1 2 -20    2 5 -1    1 5 -1    1 2 3
1790    1 2 7      1 2 8     1 4 93    2 4 93
1791  }
1792  3   "SELECT * FROM d1 ORDER BY y*z" {
1793    1 2 -20    2 5 -1    1 5 -1    1 2 3
1794    1 2 7      1 2 8     2 4 93    1 4 93
1795  }
1796}
1797
1798# EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
1799# SELECT, then ORDER BY expressions that are not aliases to output
1800# columns must be exactly the same as an expression used as an output
1801# column.
1802#
1803do_select_tests e_select-8.7.1 -error {
1804  %s ORDER BY term does not match any column in the result set
1805} {
1806  1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
1807  2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
1808}
1809
1810do_select_tests e_select-8.7.2 {
1811  1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
1812    -20 -2 -1 3 7 8 93 186 babied barked commercials gently
1813    iterate lad pragmatist reemphasizes rejoicing solemnness
1814  }
1815  2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
1816    1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0
1817    babied charitableness barked interrupted commercials bathrobe gently
1818    failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
1819    rejoicing liabilities solemnness annexed
1820  }
1821}
1822
1823do_execsql_test e_select-8.8.0 {
1824  CREATE TABLE d3(a);
1825  INSERT INTO d3 VALUES('text');
1826  INSERT INTO d3 VALUES(14.1);
1827  INSERT INTO d3 VALUES(13);
1828  INSERT INTO d3 VALUES(X'78787878');
1829  INSERT INTO d3 VALUES(15);
1830  INSERT INTO d3 VALUES(12.9);
1831  INSERT INTO d3 VALUES(null);
1832
1833  CREATE TABLE d4(x COLLATE nocase);
1834  INSERT INTO d4 VALUES('abc');
1835  INSERT INTO d4 VALUES('ghi');
1836  INSERT INTO d4 VALUES('DEF');
1837  INSERT INTO d4 VALUES('JKL');
1838} {}
1839
1840# EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
1841# are compared in the same way as for comparison expressions.
1842#
1843#   The following tests verify that values of different types are sorted
1844#   correctly, and that mixed real and integer values are compared properly.
1845#
1846do_execsql_test e_select-8.8.1 {
1847  SELECT a FROM d3 ORDER BY a
1848} {{} 12.9 13 14.1 15 text xxxx}
1849do_execsql_test e_select-8.8.2 {
1850  SELECT a FROM d3 ORDER BY a DESC
1851} {xxxx text 15 14.1 13 12.9 {}}
1852
1853
1854# EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
1855# collation sequence using the postfix COLLATE operator, then the
1856# specified collation sequence is used.
1857#
1858do_execsql_test e_select-8.9.1 {
1859  SELECT x FROM d4 ORDER BY 1 COLLATE binary
1860} {DEF JKL abc ghi}
1861do_execsql_test e_select-8.9.2 {
1862  SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
1863} {abc DEF ghi JKL}
1864
1865# EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is
1866# an alias to an expression that has been assigned a collation sequence
1867# using the postfix COLLATE operator, then the collation sequence
1868# assigned to the aliased expression is used.
1869#
1870#   In the test 8.10.2, the only result-column expression has no alias. So the
1871#   ORDER BY expression is not a reference to it and therefore does not inherit
1872#   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
1873#   column name), so the ORDER BY expression is interpreted as an alias and the
1874#   collation sequence attached to the result column is used for sorting.
1875#
1876do_execsql_test e_select-8.10.1 {
1877  SELECT x COLLATE binary FROM d4 ORDER BY 1
1878} {DEF JKL abc ghi}
1879do_execsql_test e_select-8.10.2 {
1880  SELECT x COLLATE binary FROM d4 ORDER BY x
1881} {abc DEF ghi JKL}
1882do_execsql_test e_select-8.10.3 {
1883  SELECT x COLLATE binary AS x FROM d4 ORDER BY x
1884} {DEF JKL abc ghi}
1885
1886# EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
1887# column or an alias of an expression that is a column, then the default
1888# collation sequence for the column is used.
1889#
1890do_execsql_test e_select-8.11.1 {
1891  SELECT x AS y FROM d4 ORDER BY y
1892} {abc DEF ghi JKL}
1893do_execsql_test e_select-8.11.2 {
1894  SELECT x||'' FROM d4 ORDER BY x
1895} {abc DEF ghi JKL}
1896
1897# EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
1898# used.
1899#
1900do_execsql_test e_select-8.12.1 {
1901  SELECT x FROM d4 ORDER BY x||''
1902} {DEF JKL abc ghi}
1903
1904# EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
1905# alias, then SQLite searches the left-most SELECT in the compound for a
1906# result column that matches either the second or third rules above. If
1907# a match is found, the search stops and the expression is handled as an
1908# alias for the result column that it has been matched against.
1909# Otherwise, the next SELECT to the right is tried, and so on.
1910#
1911do_execsql_test e_select-8.13.0 {
1912  CREATE TABLE d5(a, b);
1913  CREATE TABLE d6(c, d);
1914  CREATE TABLE d7(e, f);
1915
1916  INSERT INTO d5 VALUES(1, 'f');
1917  INSERT INTO d6 VALUES(2, 'e');
1918  INSERT INTO d7 VALUES(3, 'd');
1919  INSERT INTO d5 VALUES(4, 'c');
1920  INSERT INTO d6 VALUES(5, 'b');
1921  INSERT INTO d7 VALUES(6, 'a');
1922
1923  CREATE TABLE d8(x COLLATE nocase);
1924  CREATE TABLE d9(y COLLATE nocase);
1925
1926  INSERT INTO d8 VALUES('a');
1927  INSERT INTO d9 VALUES('B');
1928  INSERT INTO d8 VALUES('c');
1929  INSERT INTO d9 VALUES('D');
1930} {}
1931do_select_tests e_select-8.13 {
1932  1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1933         ORDER BY a
1934      } {1 2 3 4 5 6}
1935  2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1936         ORDER BY c
1937      } {1 2 3 4 5 6}
1938  3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1939         ORDER BY e
1940      } {1 2 3 4 5 6}
1941  4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1942         ORDER BY 1
1943      } {1 2 3 4 5 6}
1944
1945  5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b }
1946      {f 1   c 4   4 c   1 f}
1947  6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 }
1948      {f 1   c 4   4 c   1 f}
1949
1950  7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a }
1951      {1 f   4 c   c 4   f 1}
1952  8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 }
1953      {1 f   4 c   c 4   f 1}
1954
1955  9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1956      {f 2   c 5   4 c   1 f}
1957  10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 }
1958      {f 2   c 5   4 c   1 f}
1959
1960  11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1961      {2 f   5 c   c 5   f 2}
1962  12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 }
1963      {2 f   5 c   c 5   f 2}
1964}
1965
1966# EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
1967# the result columns of any constituent SELECT, it is an error.
1968#
1969do_select_tests e_select-8.14 -error {
1970  %s ORDER BY term does not match any column in the result set
1971} {
1972  1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
1973  2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
1974  3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
1975  4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
1976  5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
1977  6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
1978}
1979
1980# EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
1981# processed separately and may be matched against result columns from
1982# different SELECT statements in the compound.
1983#
1984do_select_tests e_select-8.15 {
1985  1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
1986     {1 e   1 f   4 b   4 c}
1987  2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
1988     {1 e   1 f   4 b   4 c}
1989  3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
1990     {1 e   1 f   4 b   4 c}
1991}
1992
1993
1994#-------------------------------------------------------------------------
1995# Tests related to statements made about the LIMIT/OFFSET clause.
1996#
1997do_execsql_test e_select-9.0 {
1998  CREATE TABLE f1(a, b);
1999  INSERT INTO f1 VALUES(26, 'z');
2000  INSERT INTO f1 VALUES(25, 'y');
2001  INSERT INTO f1 VALUES(24, 'x');
2002  INSERT INTO f1 VALUES(23, 'w');
2003  INSERT INTO f1 VALUES(22, 'v');
2004  INSERT INTO f1 VALUES(21, 'u');
2005  INSERT INTO f1 VALUES(20, 't');
2006  INSERT INTO f1 VALUES(19, 's');
2007  INSERT INTO f1 VALUES(18, 'r');
2008  INSERT INTO f1 VALUES(17, 'q');
2009  INSERT INTO f1 VALUES(16, 'p');
2010  INSERT INTO f1 VALUES(15, 'o');
2011  INSERT INTO f1 VALUES(14, 'n');
2012  INSERT INTO f1 VALUES(13, 'm');
2013  INSERT INTO f1 VALUES(12, 'l');
2014  INSERT INTO f1 VALUES(11, 'k');
2015  INSERT INTO f1 VALUES(10, 'j');
2016  INSERT INTO f1 VALUES(9, 'i');
2017  INSERT INTO f1 VALUES(8, 'h');
2018  INSERT INTO f1 VALUES(7, 'g');
2019  INSERT INTO f1 VALUES(6, 'f');
2020  INSERT INTO f1 VALUES(5, 'e');
2021  INSERT INTO f1 VALUES(4, 'd');
2022  INSERT INTO f1 VALUES(3, 'c');
2023  INSERT INTO f1 VALUES(2, 'b');
2024  INSERT INTO f1 VALUES(1, 'a');
2025} {}
2026
2027# EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
2028# LIMIT clause, so long as it evaluates to an integer or a value that
2029# can be losslessly converted to an integer.
2030#
2031do_select_tests e_select-9.1 {
2032  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
2033  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
2034  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') }
2035     {a b c d e}
2036  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
2037  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
2038}
2039
2040# EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
2041# or any other value that cannot be losslessly converted to an integer,
2042# an error is returned.
2043#
2044
2045do_select_tests e_select-9.2 -error "datatype mismatch" {
2046  1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
2047  2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
2048  3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
2049  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
2050  5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
2051}
2052
2053# EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
2054# negative value, then there is no upper bound on the number of rows
2055# returned.
2056#
2057do_select_tests e_select-9.4 {
2058  1  { SELECT b FROM f1 ORDER BY a LIMIT -1 }
2059     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2060  2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 }
2061     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2062  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
2063     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2064}
2065
2066# EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
2067# rows of its result set only, where N is the value that the LIMIT
2068# expression evaluates to.
2069#
2070do_select_tests e_select-9.5 {
2071  1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
2072  2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
2073  3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
2074  4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
2075}
2076
2077# EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
2078# less than N rows without a LIMIT clause, then the entire result set is
2079# returned.
2080#
2081do_select_tests e_select-9.6 {
2082  1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
2083  2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
2084}
2085
2086
2087# EVIDENCE-OF: R-24188-24349 The expression attached to the optional
2088# OFFSET clause that may follow a LIMIT clause must also evaluate to an
2089# integer, or a value that can be losslessly converted to an integer.
2090#
2091foreach {tn select} {
2092  1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' }
2093  2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL }
2094  3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' }
2095  4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 }
2096  5  { SELECT b FROM f1 ORDER BY a
2097       LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1)
2098  }
2099} {
2100  do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
2101}
2102
2103# EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
2104# the first M rows are omitted from the result set returned by the
2105# SELECT statement and the next N rows are returned, where M and N are
2106# the values that the OFFSET and LIMIT clauses evaluate to,
2107# respectively.
2108#
2109do_select_tests e_select-9.8 {
2110  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
2111  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
2112  3  { SELECT b FROM f1 ORDER BY a
2113       LIMIT  (SELECT a FROM f1 WHERE b='j')
2114       OFFSET (SELECT a FROM f1 WHERE b='b')
2115     } {c d e f g h i j k l}
2116  4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
2117  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
2118  6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
2119  7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
2120}
2121
2122# EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
2123# M+N rows if it did not have a LIMIT clause, then the first M rows are
2124# skipped and the remaining rows (if any) are returned.
2125#
2126do_select_tests e_select-9.9 {
2127  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
2128  2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
2129}
2130
2131
2132# EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
2133# negative value, the results are the same as if it had evaluated to
2134# zero.
2135#
2136do_select_tests e_select-9.10 {
2137  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
2138  2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
2139  3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
2140}
2141
2142# EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
2143# LIMIT clause may specify two scalar expressions separated by a comma.
2144#
2145# EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
2146# as the OFFSET expression and the second as the LIMIT expression.
2147#
2148do_select_tests e_select-9.11 {
2149  1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
2150  2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
2151  3  { SELECT b FROM f1 ORDER BY a
2152       LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j')
2153     } {c d e f g h i j k l}
2154  4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
2155  5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
2156  6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
2157  7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
2158
2159  8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
2160  9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
2161
2162  10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
2163  11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
2164  12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
2165}
2166
2167finish_test
2168