xref: /sqlite-3.40.0/test/e_select.test (revision 4f3557e4)
1# 2010 July 16
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file implements tests to verify that the "testable statements" in
13# the lang_select.html document are correct.
14#
15
16set testdir [file dirname $argv0]
17source $testdir/tester.tcl
18
19ifcapable !compound {
20  finish_test
21  return
22}
23
24do_execsql_test e_select-1.0 {
25  CREATE TABLE t1(a, b);
26  INSERT INTO t1 VALUES('a', 'one');
27  INSERT INTO t1 VALUES('b', 'two');
28  INSERT INTO t1 VALUES('c', 'three');
29
30  CREATE TABLE t2(a, b);
31  INSERT INTO t2 VALUES('a', 'I');
32  INSERT INTO t2 VALUES('b', 'II');
33  INSERT INTO t2 VALUES('c', 'III');
34
35  CREATE TABLE t3(a, c);
36  INSERT INTO t3 VALUES('a', 1);
37  INSERT INTO t3 VALUES('b', 2);
38
39  CREATE TABLE t4(a, c);
40  INSERT INTO t4 VALUES('a', NULL);
41  INSERT INTO t4 VALUES('b', 2);
42} {}
43set t1_cross_t2 [list                \
44   a one   a I      a one   b II     \
45   a one   c III    b two   a I      \
46   b two   b II     b two   c III    \
47   c three a I      c three b II     \
48   c three c III                     \
49]
50set t1_cross_t1 [list                  \
51   a one   a one      a one   b two    \
52   a one   c three    b two   a one    \
53   b two   b two      b two   c three  \
54   c three a one      c three b two    \
55   c three c three                     \
56]
57
58
59# This proc is a specialized version of [do_execsql_test].
60#
61# The second argument to this proc must be a SELECT statement that
62# features a cross join of some time. Instead of the usual ",",
63# "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be
64# substituted.
65#
66# This test runs the SELECT three times - once with:
67#
68#   * s/%JOIN%/,/
69#   * s/%JOIN%/JOIN/
70#   * s/%JOIN%/INNER JOIN/
71#   * s/%JOIN%/CROSS JOIN/
72#
73# and checks that each time the results of the SELECT are $res.
74#
75proc do_join_test {tn select res} {
76  foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
77    set S [string map [list %JOIN% $joinop] $select]
78    uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
79  }
80}
81
82#-------------------------------------------------------------------------
83# The following tests check that all paths on the syntax diagrams on
84# the lang_select.html page may be taken.
85#
86# -- syntax diagram join-constraint
87#
88do_join_test e_select-0.1.1 {
89  SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
90} {3}
91do_join_test e_select-0.1.2 {
92  SELECT count(*) FROM t1 %JOIN% t2 USING (a)
93} {3}
94do_join_test e_select-0.1.3 {
95  SELECT count(*) FROM t1 %JOIN% t2
96} {9}
97do_catchsql_test e_select-0.1.4 {
98  SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
99} {1 {cannot have both ON and USING clauses in the same join}}
100do_catchsql_test e_select-0.1.5 {
101  SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
102} {1 {near "ON": syntax error}}
103
104# -- syntax diagram select-core
105#
106#   0: SELECT ...
107#   1: SELECT DISTINCT ...
108#   2: SELECT ALL ...
109#
110#   0: No FROM clause
111#   1: Has FROM clause
112#
113#   0: No WHERE clause
114#   1: Has WHERE clause
115#
116#   0: No GROUP BY clause
117#   1: Has GROUP BY clause
118#   2: Has GROUP BY and HAVING clauses
119#
120do_select_tests e_select-0.2 {
121  0000.1  "SELECT 1, 2, 3 " {1 2 3}
122  1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
123  2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
124
125  0100.1  "SELECT a, b, a||b FROM t1 " {
126    a one aone b two btwo c three cthree
127  }
128  1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
129    a one aone b two btwo c three cthree
130  }
131  1200.1  "SELECT ALL a, b, a||b FROM t1 " {
132    a one aone b two btwo c three cthree
133  }
134
135  0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
136  0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
137  0010.3  "SELECT 1, 2, 3 WHERE NULL " {}
138
139  1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
140
141  2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
142
143  0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
144    a one aone b two btwo c three cthree
145  }
146  0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
147
148  1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
149    a one aone b two btwo c three cthree
150  }
151
152  2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
153
154  0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
155  0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
156  0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
157
158  1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
159  1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
160  1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
161
162  2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
163  2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
164  2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
165
166  0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
167  0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
168    1 a 1 c 1 b
169  }
170  0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" {}
171
172  1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
173  1102.1  "SELECT DISTINCT count(*), max(a) FROM t1
174           GROUP BY b HAVING count(*)=1" {
175    1 a 1 c 1 b
176  }
177  1102.2  "SELECT DISTINCT count(*), max(a) FROM t1
178           GROUP BY b HAVING count(*)=2" {}
179
180  2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
181  2102.1  "SELECT ALL count(*), max(a) FROM t1
182           GROUP BY b HAVING count(*)=1" {
183    1 a 1 c 1 b
184  }
185  2102.2  "SELECT ALL count(*), max(a) FROM t1
186           GROUP BY b HAVING count(*)=2" {}
187
188  0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
189  0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
190  0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
191
192  1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
193  1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1"
194          {1 2 3}
195  1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
196
197  2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
198  2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
199  2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
200
201  0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
202  0112.1  "SELECT count(*), max(a) FROM t1
203           WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
204  0112.2  "SELECT count(*), max(a) FROM t1
205           WHERE 0 GROUP BY b HAVING count(*)=2" {}
206  1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b"
207          {1 a 1 b}
208  1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
209           GROUP BY b HAVING count(*)=1" {
210    1 c 1 b
211  }
212  1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
213           GROUP BY b HAVING count(*)=2" {}
214
215  2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b"
216          {1 c 1 b}
217  2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
218           GROUP BY b HAVING count(*)=1" {
219    1 a 1 c
220  }
221  2112.2  "SELECT ALL count(*), max(a) FROM t1
222           WHERE 0 GROUP BY b HAVING count(*)=2" {}
223}
224
225
226# -- syntax diagram result-column
227#
228do_select_tests e_select-0.3 {
229  1  "SELECT * FROM t1" {a one b two c three}
230  2  "SELECT t1.* FROM t1" {a one b two c three}
231  3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
232  4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
233  5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
234}
235
236# -- syntax diagram join-source
237#
238# -- syntax diagram join-op
239#
240do_select_tests e_select-0.4 {
241  1  "SELECT t1.rowid FROM t1" {1 2 3}
242  2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
243  3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
244
245  4  "SELECT t1.rowid FROM t1" {1 2 3}
246  5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
247  6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3"
248     {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
249
250  7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
251  8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
252  9  "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3}
253  10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
254  11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
255
256  12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
257  13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
258  14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
259  15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
260  16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
261}
262
263# -- syntax diagram compound-operator
264#
265do_select_tests e_select-0.5 {
266  1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
267  2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
268  3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
269  4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
270}
271
272# -- syntax diagram ordering-term
273#
274do_select_tests e_select-0.6 {
275  1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
276  2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
277  3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
278  4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
279}
280
281# -- syntax diagram select-stmt
282#
283do_select_tests e_select-0.7 {
284  1  "SELECT * FROM t1" {a one b two c three}
285  2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
286  3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
287
288  4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
289  5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
290  6  "SELECT * FROM t1 LIMIT 10, 5" {}
291
292  7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
293  8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
294  9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
295
296  10  "SELECT * FROM t1 UNION SELECT b, a FROM t1"
297     {a one b two c three one a three c two b}
298  11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b"
299     {one a two b three c a one c three b two}
300  12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a"
301     {one a two b three c a one c three b two}
302  13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10"
303     {a one b two c three one a three c two b}
304  14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5"
305     {two b}
306  15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5"
307     {}
308  16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10"
309     {a one b two c three one a three c two b}
310  17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5"
311     {b two}
312  18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5"
313     {}
314}
315
316#-------------------------------------------------------------------------
317# The following tests focus on FROM clause (join) processing.
318#
319
320# EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
321# SELECT statement, then the input data is implicitly a single row zero
322# columns wide
323#
324do_select_tests e_select-1.1 {
325  1 "SELECT 'abc'"            {abc}
326  2 "SELECT 'abc' WHERE NULL" {}
327  3 "SELECT NULL"             {{}}
328  4 "SELECT count(*)"         {1}
329  5 "SELECT count(*) WHERE 0" {0}
330  6 "SELECT count(*) WHERE 1" {1}
331}
332
333# EVIDENCE-OF: R-45424-07352 If there is only a single table or subquery
334# in the FROM clause, then the input data used by the SELECT statement
335# is the contents of the named table.
336#
337#   The results of the SELECT queries suggest that they are operating on the
338#   contents of the table 'xx'.
339#
340do_execsql_test e_select-1.2.0 {
341  CREATE TABLE xx(x, y);
342  INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
343  INSERT INTO xx VALUES(NULL, -16.87);
344  INSERT INTO xx VALUES(-17.89, 'linguistically');
345} {}
346do_select_tests e_select-1.2 {
347  1  "SELECT quote(x), quote(y) FROM xx" {
348     'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2'
349     NULL             -16.87
350     -17.89           'linguistically'
351  }
352
353  2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
354  3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
355}
356
357# EVIDENCE-OF: R-28355-09804 If there is more than one table or subquery
358# in FROM clause then the contents of all tables and/or subqueries are
359# joined into a single dataset for the simple SELECT statement to
360# operate on.
361#
362#   There are more detailed tests for subsequent requirements that add
363#   more detail to this idea. We just add a single test that shows that
364#   data is coming from each of the three tables following the FROM clause
365#   here to show that the statement, vague as it is, is not incorrect.
366#
367do_select_tests e_select-1.3 {
368  1 "SELECT * FROM t1, t2, t3" {
369      a one a I a 1 a one a I b 2 a one b II a 1
370      a one b II b 2 a one c III a 1 a one c III b 2
371      b two a I a 1 b two a I b 2 b two b II a 1
372      b two b II b 2 b two c III a 1 b two c III b 2
373      c three a I a 1 c three a I b 2 c three b II a 1
374      c three b II b 2 c three c III a 1 c three c III b 2
375  }
376}
377
378#
379# The following block of tests - e_select-1.4.* - test that the description
380# of cartesian joins in the SELECT documentation is consistent with SQLite.
381# In doing so, we test the following three requirements as a side-effect:
382#
383# EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN",
384# "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING
385# clause, then the result of the join is simply the cartesian product of
386# the left and right-hand datasets.
387#
388#    The tests are built on this assertion. Really, they test that the output
389#    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
390#    of calculating the cartesian product of the left and right-hand datasets.
391#
392# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
393# JOIN", "JOIN" and "," join operators.
394#
395# EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the
396# same result as the "INNER JOIN", "JOIN" and "," operators
397#
398#    All tests are run 4 times, with the only difference in each run being
399#    which of the 4 equivalent cartesian product join operators are used.
400#    Since the output data is the same in all cases, we consider that this
401#    qualifies as testing the two statements above.
402#
403do_execsql_test e_select-1.4.0 {
404  CREATE TABLE x1(a, b);
405  CREATE TABLE x2(c, d, e);
406  CREATE TABLE x3(f, g, h, i);
407
408  -- x1: 3 rows, 2 columns
409  INSERT INTO x1 VALUES(24, 'converging');
410  INSERT INTO x1 VALUES(NULL, X'CB71');
411  INSERT INTO x1 VALUES('blonds', 'proprietary');
412
413  -- x2: 2 rows, 3 columns
414  INSERT INTO x2 VALUES(-60.06, NULL, NULL);
415  INSERT INTO x2 VALUES(-58, NULL, 1.21);
416
417  -- x3: 5 rows, 4 columns
418  INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
419  INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
420  INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
421  INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
422  INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
423} {}
424
425# EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
426# dataset are, in order, all the columns of the left-hand dataset
427# followed by all the columns of the right-hand dataset.
428#
429do_join_test e_select-1.4.1.1 {
430  SELECT * FROM x1 %JOIN% x2 LIMIT 1
431} [concat {24 converging} {-60.06 {} {}}]
432
433do_join_test e_select-1.4.1.2 {
434  SELECT * FROM x2 %JOIN% x1 LIMIT 1
435} [concat {-60.06 {} {}} {24 converging}]
436
437do_join_test e_select-1.4.1.3 {
438  SELECT * FROM x3 %JOIN% x2 LIMIT 1
439} [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
440
441do_join_test e_select-1.4.1.4 {
442  SELECT * FROM x2 %JOIN% x3 LIMIT 1
443} [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
444
445# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
446# dataset formed by combining each unique combination of a row from the
447# left-hand and right-hand datasets.
448#
449do_join_test e_select-1.4.2.1 {
450  SELECT * FROM x2 %JOIN% x3 ORDER BY +c, +f
451} [list -60.06 {} {}      -39.24 {} encompass -1                 \
452        -60.06 {} {}      alerting {} -93.79 {}                  \
453        -60.06 {} {}      coldest -96 dramatists 82.3            \
454        -60.06 {} {}      conducting -87.24 37.56 {}             \
455        -60.06 {} {}      presenting 51 reformation dignified    \
456        -58 {} 1.21       -39.24 {} encompass -1                 \
457        -58 {} 1.21       alerting {} -93.79 {}                  \
458        -58 {} 1.21       coldest -96 dramatists 82.3            \
459        -58 {} 1.21       conducting -87.24 37.56 {}             \
460        -58 {} 1.21       presenting 51 reformation dignified    \
461]
462# TODO: Come back and add a few more like the above.
463
464# EVIDENCE-OF: R-18439-38548 In other words, if the left-hand dataset
465# consists of Nleft rows of Mleft columns, and the right-hand dataset of
466# Nright rows of Mright columns, then the cartesian product is a dataset
467# of Nleft&times;Nright rows, each containing Mleft+Mright columns.
468#
469# x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
470do_join_test e_select-1.4.3.1 {
471  SELECT count(*) FROM x1 %JOIN% x2
472} [expr 3*2]
473do_test e_select-1.4.3.2 {
474  expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
475} [expr 2+3]
476
477# x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
478do_join_test e_select-1.4.3.3 {
479  SELECT count(*) FROM x2 %JOIN% x3
480} [expr 2*5]
481do_test e_select-1.4.3.4 {
482  expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
483} [expr 3+4]
484
485# x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
486do_join_test e_select-1.4.3.5 {
487  SELECT count(*) FROM x3 %JOIN% x1
488} [expr 5*3]
489do_test e_select-1.4.3.6 {
490  expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
491} [expr 4+2]
492
493# x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
494do_join_test e_select-1.4.3.7 {
495  SELECT count(*) FROM x3 %JOIN% x3
496} [expr 5*5]
497do_test e_select-1.4.3.8 {
498  expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
499} [expr 4+4]
500
501# Some extra cartesian product tests using tables t1 and t2.
502#
503do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
504do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
505
506do_select_tests e_select-1.4.5 [list                                   \
507    1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
508    2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
509    3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
510    4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
511]
512
513# EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON
514# expression is evaluated for each row of the cartesian product as a
515# boolean expression. Only rows for which the expression evaluates to
516# true are included from the dataset.
517#
518foreach {tn select res} [list                                              \
519    1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
520    2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
521    3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
522    4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
523    5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
524    6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
525    7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
526    8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
527                                                                           \
528    9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
529      {one I two II three III}                                             \
530   10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
531      {one I one II one III}                                               \
532   11 { SELECT t1.b, t2.b
533        FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
534      {two I two II two III three I three II three III}                    \
535] {
536  do_join_test e_select-1.3.$tn $select $res
537}
538
539# EVIDENCE-OF: R-49933-05137 If there is a USING clause then each of the
540# column names specified must exist in the datasets to both the left and
541# right of the join-operator.
542#
543do_select_tests e_select-1.4 -error {
544  cannot join using column %s - column not present in both tables
545} {
546  1 { SELECT * FROM t1, t3 USING (b) }   "b"
547  2 { SELECT * FROM t3, t1 USING (c) }   "c"
548  3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
549}
550
551# EVIDENCE-OF: R-22776-52830 For each pair of named columns, the
552# expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
553# product as a boolean expression. Only rows for which all such
554# expressions evaluates to true are included from the result set.
555#
556do_select_tests e_select-1.5 {
557  1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
558  2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
559}
560
561# EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
562# USING clause, the normal rules for handling affinities, collation
563# sequences and NULL values in comparisons apply.
564#
565# EVIDENCE-OF: R-38422-04402 The column from the dataset on the
566# left-hand side of the join-operator is considered to be on the
567# left-hand side of the comparison operator (=) for the purposes of
568# collation sequence and affinity precedence.
569#
570do_execsql_test e_select-1.6.0 {
571  CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
572  INSERT INTO t5 VALUES('AA', 'cc');
573  INSERT INTO t5 VALUES('BB', 'dd');
574  INSERT INTO t5 VALUES(NULL, NULL);
575  CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
576  INSERT INTO t6 VALUES('aa', 'cc');
577  INSERT INTO t6 VALUES('bb', 'DD');
578  INSERT INTO t6 VALUES(NULL, NULL);
579} {}
580foreach {tn select res} {
581  1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
582  2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
583  3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) }
584    {aa cc cc bb DD dd}
585  4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
586  5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
587} {
588  do_join_test e_select-1.6.$tn $select $res
589}
590
591# EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
592# USING clause, the column from the right-hand dataset is omitted from
593# the joined dataset.
594#
595# EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
596# clause and its equivalent ON constraint.
597#
598foreach {tn select res} {
599  1a { SELECT * FROM t1 %JOIN% t2 USING (a)      }
600     {a one I b two II c three III}
601  1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
602     {a one a I b two b II c three c III}
603
604  2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }
605     {a 1 {} b 2 2}
606  2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) }
607     {a 1 a {} b 2 b 2}
608
609  3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
610  3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
611
612  4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
613       %JOIN% t5 USING (a) }
614     {aa cc cc bb DD dd}
615  4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
616       %JOIN% t5 ON (x.a=t5.a) }
617     {aa cc AA cc bb DD BB dd}
618} {
619  do_join_test e_select-1.7.$tn $select $res
620}
621# EVIDENCE-OF: R-42531-52874 If the join-operator is a "LEFT JOIN" or
622# "LEFT OUTER JOIN", then after the ON or USING filtering clauses have
623# been applied, an extra row is added to the output for each row in the
624# original left-hand input dataset that corresponds to no rows at all in
625# the composite dataset (if any).
626#
627do_execsql_test e_select-1.8.0 {
628  CREATE TABLE t7(a, b, c);
629  CREATE TABLE t8(a, d, e);
630
631  INSERT INTO t7 VALUES('x', 'ex',  24);
632  INSERT INTO t7 VALUES('y', 'why', 25);
633
634  INSERT INTO t8 VALUES('x', 'abc', 24);
635  INSERT INTO t8 VALUES('z', 'ghi', 26);
636} {}
637
638do_select_tests e_select-1.8 {
639  1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
640  1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
641  2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
642  2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
643}
644
645
646# EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
647# columns that would normally contain values copied from the right-hand
648# input dataset.
649#
650do_select_tests e_select-1.9 {
651  1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
652  1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)"
653     {x ex 24 x abc 24 y why 25 {} {} {}}
654  2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
655  2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
656}
657
658# EVIDENCE-OF: R-04932-55942 If the NATURAL keyword is in the
659# join-operator then an implicit USING clause is added to the
660# join-constraints. The implicit USING clause contains each of the
661# column names that appear in both the left and right-hand input
662# datasets.
663#
664do_select_tests e_select-1-10 {
665  1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
666  1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}
667
668  2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
669  2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}
670
671  3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
672  3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}
673
674  4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
675  4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}
676
677  5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
678  5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}
679
680  6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
681  6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
682}
683
684# EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
685# feature no common column names, then the NATURAL keyword has no effect
686# on the results of the join.
687#
688do_execsql_test e_select-1.11.0 {
689  CREATE TABLE t10(x, y);
690  INSERT INTO t10 VALUES(1, 'true');
691  INSERT INTO t10 VALUES(0, 'false');
692} {}
693do_select_tests e_select-1-11 {
694  1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
695  1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
696}
697
698# EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
699# join that specifies the NATURAL keyword.
700#
701foreach {tn sql} {
702  1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
703  2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
704  3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
705} {
706  do_catchsql_test e_select-1.12.$tn "
707    $sql
708  " {1 {a NATURAL join may not have an ON or USING clause}}
709}
710
711#-------------------------------------------------------------------------
712# The next block of tests - e_select-3.* - concentrate on verifying
713# statements made regarding WHERE clause processing.
714#
715drop_all_tables
716do_execsql_test e_select-3.0 {
717  CREATE TABLE x1(k, x, y, z);
718  INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
719  INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
720  INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
721  INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
722  INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
723  INSERT INTO x1 VALUES(6, 0,              1,         2);
724
725  CREATE TABLE x2(k, x, y2);
726  INSERT INTO x2 VALUES(1, 50, X'B82838');
727  INSERT INTO x2 VALUES(5, 84.79, 65.88);
728  INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
729  INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
730} {}
731
732# EVIDENCE-OF: R-60775-64916 If a WHERE clause is specified, the WHERE
733# expression is evaluated for each row in the input data as a boolean
734# expression. Only rows for which the WHERE clause expression evaluates
735# to true are included from the dataset before continuing.
736#
737do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
738do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
739do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
740do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
741do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
742do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
743
744do_execsql_test e_select-3.2.1a {
745  SELECT k FROM x1 LEFT JOIN x2 USING(k)
746} {1 2 3 4 5 6}
747do_execsql_test e_select-3.2.1b {
748  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k ORDER BY +k
749} {1 3 5}
750do_execsql_test e_select-3.2.2 {
751  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
752} {2 4 6}
753
754do_execsql_test e_select-3.2.3 {
755  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
756} {3}
757do_execsql_test e_select-3.2.4 {
758  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
759} {}
760
761#-------------------------------------------------------------------------
762# Tests below this point are focused on verifying the testable statements
763# related to caculating the result rows of a simple SELECT statement.
764#
765
766drop_all_tables
767do_execsql_test e_select-4.0 {
768  CREATE TABLE z1(a, b, c);
769  CREATE TABLE z2(d, e);
770  CREATE TABLE z3(a, b);
771
772  INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
773  INSERT INTO z1 VALUES(-5, NULL, 75);
774  INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
775  INSERT INTO z1 VALUES(NULL, 67, 'quartets');
776  INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
777  INSERT INTO z1 VALUES(63, 'born', -26);
778
779  INSERT INTO z2 VALUES(NULL, 21);
780  INSERT INTO z2 VALUES(36, 6);
781
782  INSERT INTO z3 VALUES('subsistence', 'gauze');
783  INSERT INTO z3 VALUES(49.17, -67);
784} {}
785
786# EVIDENCE-OF: R-36327-17224 If a result expression is the special
787# expression "*" then all columns in the input data are substituted for
788# that one expression.
789#
790# EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
791# or subquery in the FROM clause followed by ".*" then all columns from
792# the named table or subquery are substituted for the single expression.
793#
794do_select_tests e_select-4.1 {
795  1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
796  2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
797  3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
798  4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
799  5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
800
801  6  "SELECT count(*), * FROM z1"           {6 51.65 -59.58 belfries}
802  7  "SELECT max(a), * FROM z1"             {63 63 born -26}
803  8  "SELECT *, min(a) FROM z1"             {-5 {} 75 -5}
804
805  9  "SELECT *,* FROM z1,z2 LIMIT 1" {
806     51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
807  }
808  10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {
809     51.65 -59.58 belfries 51.65 -59.58 belfries
810  }
811}
812
813# EVIDENCE-OF: R-38023-18396 It is an error to use a "*" or "alias.*"
814# expression in any context other than a result expression list.
815#
816# EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
817# "alias.*" expression in a simple SELECT query that does not have a
818# FROM clause.
819#
820foreach {tn select err} {
821  1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
822  1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
823  1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
824  1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}
825
826  2.1 "SELECT *" {no tables specified}
827  2.2 "SELECT * WHERE 1" {no tables specified}
828  2.3 "SELECT * WHERE 0" {no tables specified}
829  2.4 "SELECT count(*), *" {no tables specified}
830} {
831  do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
832}
833
834# EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
835# by a simple SELECT statement is equal to the number of expressions in
836# the result expression list after substitution of * and alias.*
837# expressions.
838#
839foreach {tn select nCol} {
840  1   "SELECT * FROM z1"   3
841  2   "SELECT * FROM z1 NATURAL JOIN z3"            3
842  3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
843  4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
844  5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
845  6   "SELECT 1, 2, z1.* FROM z1"                   5
846  7   "SELECT a, *, b, c FROM z1"                   6
847} {
848  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
849  do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
850  sqlite3_finalize $::stmt
851}
852
853
854
855# In lang_select.html, a non-aggregate query is defined as any simple SELECT
856# that has no GROUP BY clause and no aggregate expressions in the result
857# expression list. Other queries are aggregate queries. Test cases
858# e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
859# simple SELECT that is different for aggregate and non-aggregate queries
860# verify (in a way) that these definitions are consistent:
861#
862# EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
863# query if it contains either a GROUP BY clause or one or more aggregate
864# functions in the result-set.
865#
866# EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
867# aggregate functions or a GROUP BY clause, it is a non-aggregate query.
868#
869
870# EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
871# query, then each expression in the result expression list is evaluated
872# for each row in the dataset filtered by the WHERE clause.
873#
874do_select_tests e_select-4.4 {
875  1 "SELECT a, b FROM z1"
876    {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
877
878  2 "SELECT a IS NULL, b+1, * FROM z1" {
879        0 -58.58   51.65 -59.58 belfries
880        0 {}       -5 {} 75
881        0 -22.18   -2.2 -23.18 suiters
882        1 68       {} 67 quartets
883        0 -31.3    -1.04 -32.3 aspen
884        0 1        63 born -26
885  }
886
887  3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
888}
889
890
891# Test cases e_select-4.5.* and e_select-4.6.* together show that:
892#
893# EVIDENCE-OF: R-51988-01124 The single row of result-set data created
894# by evaluating the aggregate and non-aggregate expressions in the
895# result-set forms the result of an aggregate query without a GROUP BY
896# clause.
897#
898
899# EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
900# query without a GROUP BY clause, then each aggregate expression in the
901# result-set is evaluated once across the entire dataset.
902#
903do_select_tests e_select-4.5 {
904  1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
905  2 "SELECT count(*), max(1)"                                {1 1}
906
907  3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
908  4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
909  5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
910}
911
912# EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
913# result-set is evaluated once for an arbitrarily selected row of the
914# dataset.
915#
916# EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
917# for each non-aggregate expression.
918#
919#   Note: The results of many of the queries in this block of tests are
920#   technically undefined, as the documentation does not specify which row
921#   SQLite will arbitrarily select to use for the evaluation of the
922#   non-aggregate expressions.
923#
924drop_all_tables
925do_execsql_test e_select-4.6.0 {
926  CREATE TABLE a1(one PRIMARY KEY, two);
927  INSERT INTO a1 VALUES(1, 1);
928  INSERT INTO a1 VALUES(2, 3);
929  INSERT INTO a1 VALUES(3, 6);
930  INSERT INTO a1 VALUES(4, 10);
931
932  CREATE TABLE a2(one PRIMARY KEY, three);
933  INSERT INTO a2 VALUES(1, 1);
934  INSERT INTO a2 VALUES(3, 2);
935  INSERT INTO a2 VALUES(6, 3);
936  INSERT INTO a2 VALUES(10, 4);
937} {}
938do_select_tests e_select-4.6 {
939  1 "SELECT one, two, count(*) FROM a1"                        {1 1 4}
940  2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {1 1 2}
941  3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1}
942  4 "SELECT *, count(*) FROM a1 JOIN a2"                       {1 1 1 1 16}
943  5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {1 1 1 3}
944  6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {1 1 1 3}
945  7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 1 1}
946}
947
948# EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
949# each non-aggregate expression is evaluated against a row consisting
950# entirely of NULL values.
951#
952do_select_tests e_select-4.7 {
953  1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
954  2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
955  3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
956    1 1 1
957  }
958}
959
960# EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
961# clause always returns exactly one row of data, even if there are zero
962# rows of input data.
963#
964foreach {tn select} {
965  8.1  "SELECT count(*) FROM a1"
966  8.2  "SELECT count(*) FROM a1 WHERE 0"
967  8.3  "SELECT count(*) FROM a1 WHERE 1"
968  8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
969  8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
970} {
971  # Set $nRow to the number of rows returned by $select:
972  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
973  set nRow 0
974  while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
975  set rc [sqlite3_finalize $::stmt]
976
977  # Test that $nRow==1 and that statement execution was successful
978  # (rc==SQLITE_OK).
979  do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
980}
981
982drop_all_tables
983do_execsql_test e_select-4.9.0 {
984  CREATE TABLE b1(one PRIMARY KEY, two);
985  INSERT INTO b1 VALUES(1, 'o');
986  INSERT INTO b1 VALUES(4, 'f');
987  INSERT INTO b1 VALUES(3, 't');
988  INSERT INTO b1 VALUES(2, 't');
989  INSERT INTO b1 VALUES(5, 'f');
990  INSERT INTO b1 VALUES(7, 's');
991  INSERT INTO b1 VALUES(6, 's');
992
993  CREATE TABLE b2(x, y);
994  INSERT INTO b2 VALUES(NULL, 0);
995  INSERT INTO b2 VALUES(NULL, 1);
996  INSERT INTO b2 VALUES('xyz', 2);
997  INSERT INTO b2 VALUES('abc', 3);
998  INSERT INTO b2 VALUES('xyz', 4);
999
1000  CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
1001  INSERT INTO b3 VALUES('abc', 'abc');
1002  INSERT INTO b3 VALUES('aBC', 'aBC');
1003  INSERT INTO b3 VALUES('Def', 'Def');
1004  INSERT INTO b3 VALUES('dEF', 'dEF');
1005} {}
1006
1007# EVIDENCE-OF: R-40855-36147 If the SELECT statement is an aggregate
1008# query with a GROUP BY clause, then each of the expressions specified
1009# as part of the GROUP BY clause is evaluated for each row of the
1010# dataset according to the processing rules stated below for ORDER BY
1011# expressions. Each row is then assigned to a "group" based on the
1012# results; rows for which the results of evaluating the GROUP BY
1013# expressions are the same get assigned to the same group.
1014#
1015#   These tests also show that the following is not untrue:
1016#
1017# EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
1018# not have to be expressions that appear in the result.
1019#
1020do_select_tests e_select-4.9 {
1021  1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
1022    /#,# f   1 o   #,#   s #,# t/
1023  }
1024  2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
1025    1,2,3,4 10    5,6,7 18
1026  }
1027  3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
1028    4  1,5    2,6   3,7
1029  }
1030  4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
1031    4,3,5,7,6    1,2
1032  }
1033}
1034
1035# EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
1036# values are considered equal.
1037#
1038do_select_tests e_select-4.10 {
1039  1  "SELECT group_concat(y) FROM b2 GROUP BY x" {/#,#   3   #,#/}
1040  2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
1041}
1042
1043# EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
1044# sequence with which to compare text values apply when evaluating
1045# expressions in a GROUP BY clause.
1046#
1047do_select_tests e_select-4.11 {
1048  1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
1049  2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
1050  3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
1051  4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
1052  5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
1053  6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
1054}
1055
1056# EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
1057# not be aggregate expressions.
1058#
1059foreach {tn select} {
1060  12.1  "SELECT * FROM b3 GROUP BY count(*)"
1061  12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
1062  12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
1063} {
1064  set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
1065  do_catchsql_test e_select-4.$tn $select $res
1066}
1067
1068# EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
1069# evaluated once for each group of rows as a boolean expression. If the
1070# result of evaluating the HAVING clause is false, the group is
1071# discarded.
1072#
1073#   This requirement is tested by all e_select-4.13.* tests.
1074#
1075# EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
1076# expression, it is evaluated across all rows in the group.
1077#
1078#   Tested by e_select-4.13.1.*
1079#
1080# EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
1081# expression, it is evaluated with respect to an arbitrarily selected
1082# row from the group.
1083#
1084#   Tested by e_select-4.13.2.*
1085#
1086#   Tests in this block also show that this is not untrue:
1087#
1088# EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
1089# even aggregate functions, that are not in the result.
1090#
1091do_execsql_test e_select-4.13.0 {
1092  CREATE TABLE c1(up, down);
1093  INSERT INTO c1 VALUES('x', 1);
1094  INSERT INTO c1 VALUES('x', 2);
1095  INSERT INTO c1 VALUES('x', 4);
1096  INSERT INTO c1 VALUES('x', 8);
1097  INSERT INTO c1 VALUES('y', 16);
1098  INSERT INTO c1 VALUES('y', 32);
1099
1100  CREATE TABLE c2(i, j);
1101  INSERT INTO c2 VALUES(1, 0);
1102  INSERT INTO c2 VALUES(2, 1);
1103  INSERT INTO c2 VALUES(3, 3);
1104  INSERT INTO c2 VALUES(4, 6);
1105  INSERT INTO c2 VALUES(5, 10);
1106  INSERT INTO c2 VALUES(6, 15);
1107  INSERT INTO c2 VALUES(7, 21);
1108  INSERT INTO c2 VALUES(8, 28);
1109  INSERT INTO c2 VALUES(9, 36);
1110
1111  CREATE TABLE c3(i PRIMARY KEY, k TEXT);
1112  INSERT INTO c3 VALUES(1,  'hydrogen');
1113  INSERT INTO c3 VALUES(2,  'helium');
1114  INSERT INTO c3 VALUES(3,  'lithium');
1115  INSERT INTO c3 VALUES(4,  'beryllium');
1116  INSERT INTO c3 VALUES(5,  'boron');
1117  INSERT INTO c3 VALUES(94, 'plutonium');
1118} {}
1119
1120do_select_tests e_select-4.13 {
1121  1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
1122  1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
1123  1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
1124  1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
1125
1126  2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
1127  2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}
1128
1129  2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING j>6"  {5 10}
1130}
1131
1132# EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
1133# evaluated once for each group of rows.
1134#
1135# EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
1136# expression, it is evaluated across all rows in the group.
1137#
1138do_select_tests e_select-4.15 {
1139  1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
1140  2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
1141  3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
1142  4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
1143  5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
1144        {3 4.33 1 2.0}
1145}
1146
1147# EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
1148# arbitrarily chosen row from within the group.
1149#
1150# EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
1151# expression in the result-set, then all such expressions are evaluated
1152# for the same row.
1153#
1154do_select_tests e_select-4.15 {
1155  1  "SELECT i, j FROM c2 GROUP BY i%2"             {2 1 1 0}
1156  2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {2 1 1 0}
1157  3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {}
1158  4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {}
1159  5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
1160        {2 4 beryllium 2 1 hydrogen 1 3 lithium}
1161}
1162
1163# EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
1164# contributes a single row to the set of result rows.
1165#
1166# EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
1167# DISTINCT keyword, the number of rows returned by an aggregate query
1168# with a GROUP BY clause is the same as the number of groups of rows
1169# produced by applying the GROUP BY and HAVING clauses to the filtered
1170# input dataset.
1171#
1172do_select_tests e_select.4.16 -count {
1173  1  "SELECT i, j FROM c2 GROUP BY i%2"          2
1174  2  "SELECT i, j FROM c2 GROUP BY i"            9
1175  3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
1176}
1177
1178#-------------------------------------------------------------------------
1179# The following tests attempt to verify statements made regarding the ALL
1180# and DISTINCT keywords.
1181#
1182drop_all_tables
1183do_execsql_test e_select-5.1.0 {
1184  CREATE TABLE h1(a, b);
1185  INSERT INTO h1 VALUES(1, 'one');
1186  INSERT INTO h1 VALUES(1, 'I');
1187  INSERT INTO h1 VALUES(1, 'i');
1188  INSERT INTO h1 VALUES(4, 'four');
1189  INSERT INTO h1 VALUES(4, 'IV');
1190  INSERT INTO h1 VALUES(4, 'iv');
1191
1192  CREATE TABLE h2(x COLLATE nocase);
1193  INSERT INTO h2 VALUES('One');
1194  INSERT INTO h2 VALUES('Two');
1195  INSERT INTO h2 VALUES('Three');
1196  INSERT INTO h2 VALUES('Four');
1197  INSERT INTO h2 VALUES('one');
1198  INSERT INTO h2 VALUES('two');
1199  INSERT INTO h2 VALUES('three');
1200  INSERT INTO h2 VALUES('four');
1201
1202  CREATE TABLE h3(c, d);
1203  INSERT INTO h3 VALUES(1, NULL);
1204  INSERT INTO h3 VALUES(2, NULL);
1205  INSERT INTO h3 VALUES(3, NULL);
1206  INSERT INTO h3 VALUES(4, '2');
1207  INSERT INTO h3 VALUES(5, NULL);
1208  INSERT INTO h3 VALUES(6, '2,3');
1209  INSERT INTO h3 VALUES(7, NULL);
1210  INSERT INTO h3 VALUES(8, '2,4');
1211  INSERT INTO h3 VALUES(9, '3');
1212} {}
1213
1214# EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
1215# follow the SELECT keyword in a simple SELECT statement.
1216#
1217do_select_tests e_select-5.1 {
1218  1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
1219  2   "SELECT DISTINCT a FROM h1" {1 4}
1220}
1221
1222# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
1223# the entire set of result rows are returned by the SELECT.
1224#
1225# EVIDENCE-OF: R-01256-01950 If neither ALL or DISTINCT are present,
1226# then the behavior is as if ALL were specified.
1227#
1228# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
1229# then duplicate rows are removed from the set of result rows before it
1230# is returned.
1231#
1232#   The three testable statements above are tested by e_select-5.2.*,
1233#   5.3.* and 5.4.* respectively.
1234#
1235do_select_tests e_select-5 {
1236  3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
1237  3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
1238
1239  3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
1240  3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
1241
1242  4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four}
1243  4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four}
1244}
1245
1246# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
1247# rows, two NULL values are considered to be equal.
1248#
1249do_select_tests e_select-5.5 {
1250  1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
1251}
1252
1253# EVIDENCE-OF: R-47709-27231 The usual rules apply for selecting a
1254# collation sequence to compare text values.
1255#
1256do_select_tests e_select-5.6 {
1257  1  "SELECT DISTINCT b FROM h1"                  {one I i four IV iv}
1258  2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {one I four IV}
1259  3  "SELECT DISTINCT x FROM h2"                  {One Two Three Four}
1260  4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
1261    One Two Three Four one two three four
1262  }
1263}
1264
1265#-------------------------------------------------------------------------
1266# The following tests - e_select-7.* - test that statements made to do
1267# with compound SELECT statements are correct.
1268#
1269
1270# EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
1271# SELECTs must return the same number of result columns.
1272#
1273#   All the other tests in this section use compound SELECTs created
1274#   using component SELECTs that do return the same number of columns.
1275#   So the tests here just show that it is an error to attempt otherwise.
1276#
1277drop_all_tables
1278do_execsql_test e_select-7.1.0 {
1279  CREATE TABLE j1(a, b, c);
1280  CREATE TABLE j2(e, f);
1281  CREATE TABLE j3(g);
1282} {}
1283do_select_tests e_select-7.1 -error {
1284  SELECTs to the left and right of %s do not have the same number of result columns
1285} {
1286  1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1287  2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
1288  3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
1289  4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
1290  5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
1291
1292  6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1293  7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
1294  8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
1295  9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
1296  10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}
1297
1298  11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1299  12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
1300  13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
1301  14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
1302  15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
1303
1304  16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1305  17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
1306  18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
1307  19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
1308  20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
1309}
1310
1311# EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
1312# be simple SELECT statements, they may not contain ORDER BY or LIMIT
1313# clauses.
1314#
1315foreach {tn select op1 op2} {
1316  1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3"
1317      {ORDER BY} {UNION ALL}
1318  2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
1319      {ORDER BY} {UNION ALL}
1320  3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
1321      {ORDER BY} {UNION ALL}
1322  4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3"
1323      LIMIT {UNION ALL}
1324  5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3"
1325      LIMIT {UNION ALL}
1326  6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3"
1327      LIMIT {UNION ALL}
1328
1329  7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3"
1330      {ORDER BY} {UNION}
1331  8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
1332      {ORDER BY} {UNION}
1333  9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
1334      {ORDER BY} {UNION}
1335  10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3"
1336      LIMIT {UNION}
1337  11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3"
1338      LIMIT {UNION}
1339  12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3"
1340      LIMIT {UNION}
1341
1342  13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3"
1343      {ORDER BY} {EXCEPT}
1344  14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
1345      {ORDER BY} {EXCEPT}
1346  15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
1347      {ORDER BY} {EXCEPT}
1348  16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3"
1349      LIMIT {EXCEPT}
1350  17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3"
1351      LIMIT {EXCEPT}
1352  18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3"
1353      LIMIT {EXCEPT}
1354
1355  19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3"
1356      {ORDER BY} {INTERSECT}
1357  20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
1358      {ORDER BY} {INTERSECT}
1359  21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
1360      {ORDER BY} {INTERSECT}
1361  22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3"
1362      LIMIT {INTERSECT}
1363  23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3"
1364      LIMIT {INTERSECT}
1365  24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3"
1366      LIMIT {INTERSECT}
1367} {
1368  set err "$op1 clause should come after $op2 not before"
1369  do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
1370}
1371
1372# EVIDENCE-OF: R-45440-25633 ORDER BY and LIMIT clauses may only occur
1373# at the end of the entire compound SELECT, and then only if the final
1374# element of the compound is not a VALUES clause.
1375#
1376foreach {tn select} {
1377  1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
1378  2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
1379  3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
1380  4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10"
1381  5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1382  6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1383
1384  7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
1385  8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
1386  8b  "VALUES('8b') UNION SELECT max(e) FROM j2 ORDER BY 1"
1387  9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
1388  10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10"
1389  11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1390  12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1391
1392  13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
1393  14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
1394  15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
1395  16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10"
1396  17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1397  18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1398
1399  19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
1400  20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
1401  21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
1402  22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10"
1403  23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1404  24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1405} {
1406  do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
1407}
1408foreach {tn select} {
1409  50   "SELECT * FROM j1 ORDER BY 1 UNION ALL SELECT * FROM j2,j3"
1410  51   "SELECT * FROM j1 LIMIT 1 UNION ALL SELECT * FROM j2,j3"
1411  52   "SELECT count(*) FROM j1 UNION ALL VALUES(11) ORDER BY 1"
1412  53   "SELECT count(*) FROM j1 UNION ALL VALUES(11) LIMIT 1"
1413} {
1414  do_test e_select-7.3.$tn { catch {execsql $select} msg } 1
1415}
1416
1417# EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
1418# operator returns all the rows from the SELECT to the left of the UNION
1419# ALL operator, and all the rows from the SELECT to the right of it.
1420#
1421drop_all_tables
1422do_execsql_test e_select-7.4.0 {
1423  CREATE TABLE q1(a TEXT, b INTEGER, c);
1424  CREATE TABLE q2(d NUMBER, e BLOB);
1425  CREATE TABLE q3(f REAL, g);
1426
1427  INSERT INTO q1 VALUES(16, -87.66, NULL);
1428  INSERT INTO q1 VALUES('legible', 94, -42.47);
1429  INSERT INTO q1 VALUES('beauty', 36, NULL);
1430
1431  INSERT INTO q2 VALUES('legible', 1);
1432  INSERT INTO q2 VALUES('beauty', 2);
1433  INSERT INTO q2 VALUES(-65.91, 4);
1434  INSERT INTO q2 VALUES('emanating', -16.56);
1435
1436  INSERT INTO q3 VALUES('beauty', 2);
1437  INSERT INTO q3 VALUES('beauty', 2);
1438} {}
1439do_select_tests e_select-7.4 {
1440  1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
1441      {16 legible beauty legible beauty -65.91 emanating}
1442
1443  2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
1444      {16 -87.66 {} x legible 1}
1445
1446  3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2}
1447      {3 -16.56}
1448
1449  4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3}
1450      {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
1451}
1452
1453# EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
1454# UNION ALL, except that duplicate rows are removed from the final
1455# result set.
1456#
1457do_select_tests e_select-7.5 {
1458  1   {SELECT a FROM q1 UNION SELECT d FROM q2}
1459      {-65.91 16 beauty emanating legible}
1460
1461  2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
1462      {16 -87.66 {} x legible 1}
1463
1464  3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2}
1465      {-16.56 3}
1466
1467  4   {SELECT * FROM q2 UNION SELECT * FROM q3}
1468      {-65.91 4 beauty 2 emanating -16.56 legible 1}
1469}
1470
1471# EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
1472# intersection of the results of the left and right SELECTs.
1473#
1474do_select_tests e_select-7.6 {
1475  1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
1476  2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
1477}
1478
1479# EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
1480# rows returned by the left SELECT that are not also returned by the
1481# right-hand SELECT.
1482#
1483do_select_tests e_select-7.7 {
1484  1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
1485
1486  2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3}
1487      {-65.91 4 emanating -16.56 legible 1}
1488}
1489
1490# EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
1491# of INTERSECT and EXCEPT operators before the result set is returned.
1492#
1493do_select_tests e_select-7.8 {
1494  0   {SELECT * FROM q3} {beauty 2 beauty 2}
1495
1496  1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
1497  2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
1498}
1499
1500# EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
1501# rows for the results of compound SELECT operators, NULL values are
1502# considered equal to other NULL values and distinct from all non-NULL
1503# values.
1504#
1505db nullvalue null
1506do_select_tests e_select-7.9 {
1507  1   {SELECT NULL UNION ALL SELECT NULL} {null null}
1508  2   {SELECT NULL UNION     SELECT NULL} {null}
1509  3   {SELECT NULL INTERSECT SELECT NULL} {null}
1510  4   {SELECT NULL EXCEPT    SELECT NULL} {}
1511
1512  5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
1513  6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
1514  7   {SELECT NULL INTERSECT SELECT 'ab'} {}
1515  8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}
1516
1517  9   {SELECT NULL UNION ALL SELECT 0} {null 0}
1518  10  {SELECT NULL UNION     SELECT 0} {null 0}
1519  11  {SELECT NULL INTERSECT SELECT 0} {}
1520  12  {SELECT NULL EXCEPT    SELECT 0} {null}
1521
1522  13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
1523  14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
1524  15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
1525  16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
1526}
1527db nullvalue {}
1528
1529# EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
1530# text values is determined as if the columns of the left and right-hand
1531# SELECT statements were the left and right-hand operands of the equals
1532# (=) operator, except that greater precedence is not assigned to a
1533# collation sequence specified with the postfix COLLATE operator.
1534#
1535drop_all_tables
1536do_execsql_test e_select-7.10.0 {
1537  CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
1538  INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
1539} {}
1540do_select_tests e_select-7.10 {
1541  1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
1542  2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
1543  3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
1544  4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
1545  5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
1546
1547  6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
1548  7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
1549  8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}
1550
1551  9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
1552}
1553
1554# EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
1555# any values when comparing rows as part of a compound SELECT.
1556#
1557drop_all_tables
1558do_execsql_test e_select-7.10.0 {
1559  CREATE TABLE w1(a TEXT, b NUMBER);
1560  CREATE TABLE w2(a, b TEXT);
1561
1562  INSERT INTO w1 VALUES('1', 4.1);
1563  INSERT INTO w2 VALUES(1, 4.1);
1564} {}
1565
1566do_select_tests e_select-7.11 {
1567  1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
1568  2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
1569  3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
1570  4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
1571
1572  5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
1573  6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
1574  7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
1575  8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
1576
1577  9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
1578  10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
1579  11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
1580  12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
1581}
1582
1583
1584# EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
1585# connected into a compound SELECT, they group from left to right. In
1586# other words, if "A", "B" and "C" are all simple SELECT statements, (A
1587# op B op C) is processed as ((A op B) op C).
1588#
1589#   e_select-7.12.1: Precedence of UNION vs. INTERSECT
1590#   e_select-7.12.2: Precedence of UNION vs. UNION ALL
1591#   e_select-7.12.3: Precedence of UNION vs. EXCEPT
1592#   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL
1593#   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
1594#   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
1595#   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as
1596#                   "(a EXCEPT b) EXCEPT c".
1597#
1598# The INTERSECT and EXCEPT operations are mutually commutative. So
1599# the e_select-7.12.5 test cases do not prove very much.
1600#
1601drop_all_tables
1602do_execsql_test e_select-7.12.0 {
1603  CREATE TABLE t1(x);
1604  INSERT INTO t1 VALUES(1);
1605  INSERT INTO t1 VALUES(2);
1606  INSERT INTO t1 VALUES(3);
1607} {}
1608foreach {tn select res} {
1609  1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
1610  1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1611
1612  2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
1613  2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}
1614
1615  3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
1616  3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}
1617
1618  4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
1619  4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
1620
1621  5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
1622  5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}
1623
1624  6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
1625  6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}
1626
1627  7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
1628} {
1629  set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
1630  do_execsql_test e_select-7.12.$tn $select [list {*}$res]
1631}
1632
1633
1634#-------------------------------------------------------------------------
1635# ORDER BY clauses
1636#
1637
1638drop_all_tables
1639do_execsql_test e_select-8.1.0 {
1640  CREATE TABLE d1(x, y, z);
1641
1642  INSERT INTO d1 VALUES(1, 2, 3);
1643  INSERT INTO d1 VALUES(2, 5, -1);
1644  INSERT INTO d1 VALUES(1, 2, 8);
1645  INSERT INTO d1 VALUES(1, 2, 7);
1646  INSERT INTO d1 VALUES(2, 4, 93);
1647  INSERT INTO d1 VALUES(1, 2, -20);
1648  INSERT INTO d1 VALUES(1, 4, 93);
1649  INSERT INTO d1 VALUES(1, 5, -1);
1650
1651  CREATE TABLE d2(a, b);
1652  INSERT INTO d2 VALUES('gently', 'failings');
1653  INSERT INTO d2 VALUES('commercials', 'bathrobe');
1654  INSERT INTO d2 VALUES('iterate', 'sexton');
1655  INSERT INTO d2 VALUES('babied', 'charitableness');
1656  INSERT INTO d2 VALUES('solemnness', 'annexed');
1657  INSERT INTO d2 VALUES('rejoicing', 'liabilities');
1658  INSERT INTO d2 VALUES('pragmatist', 'guarded');
1659  INSERT INTO d2 VALUES('barked', 'interrupted');
1660  INSERT INTO d2 VALUES('reemphasizes', 'reply');
1661  INSERT INTO d2 VALUES('lad', 'relenting');
1662} {}
1663
1664# EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
1665# of evaluating the left-most expression in the ORDER BY list, then ties
1666# are broken by evaluating the second left-most expression and so on.
1667#
1668do_select_tests e_select-8.1 {
1669  1  "SELECT * FROM d1 ORDER BY x, y, z" {
1670     1 2 -20    1 2 3    1 2 7    1 2 8
1671     1 4  93    1 5 -1   2 4 93   2 5 -1
1672  }
1673}
1674
1675# EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
1676# followed by one of the keywords ASC (smaller values are returned
1677# first) or DESC (larger values are returned first).
1678#
1679#   Test cases e_select-8.2.* test the above.
1680#
1681# EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
1682# are sorted in ascending (smaller values first) order by default.
1683#
1684#   Test cases e_select-8.3.* test the above. All 8.3 test cases are
1685#   copies of 8.2 test cases with the explicit "ASC" removed.
1686#
1687do_select_tests e_select-8 {
1688  2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
1689     1 2 -20    1 2 3    1 2 7    1 2 8
1690     1 4  93    1 5 -1   2 4 93   2 5 -1
1691  }
1692  2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
1693     2 5 -1     2 4 93   1 5 -1   1 4  93
1694     1 2 8      1 2 7    1 2 3    1 2 -20
1695  }
1696  2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
1697     2 4 93   2 5 -1     1 2 8      1 2 7
1698     1 2 3    1 2 -20    1 4  93    1 5 -1
1699  }
1700  2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
1701     2 4 93   2 5 -1     1 2 -20    1 2 3
1702     1 2 7    1 2 8      1 4  93    1 5 -1
1703  }
1704
1705  3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
1706     1 2 -20    1 2 3    1 2 7    1 2 8
1707     1 4  93    1 5 -1   2 4 93   2 5 -1
1708  }
1709  3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
1710     2 4 93   2 5 -1     1 2 8      1 2 7
1711     1 2 3    1 2 -20    1 4  93    1 5 -1
1712  }
1713  3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
1714     2 4 93   2 5 -1     1 2 -20    1 2 3
1715     1 2 7    1 2 8      1 4  93    1 5 -1
1716  }
1717}
1718
1719# EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
1720# integer K then the expression is considered an alias for the K-th
1721# column of the result set (columns are numbered from left to right
1722# starting with 1).
1723#
1724do_select_tests e_select-8.4 {
1725  1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
1726     1 2 -20    1 2 3    1 2 7    1 2 8
1727     1 4  93    1 5 -1   2 4 93   2 5 -1
1728  }
1729  2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
1730     2 5 -1     2 4 93   1 5 -1   1 4  93
1731     1 2 8      1 2 7    1 2 3    1 2 -20
1732  }
1733  3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
1734     2 4 93   2 5 -1     1 2 8      1 2 7
1735     1 2 3    1 2 -20    1 4  93    1 5 -1
1736  }
1737  4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
1738     2 4 93   2 5 -1     1 2 -20    1 2 3
1739     1 2 7    1 2 8      1 4  93    1 5 -1
1740  }
1741  5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
1742     1 2 -20    1 2 3    1 2 7    1 2 8
1743     1 4  93    1 5 -1   2 4 93   2 5 -1
1744  }
1745  6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
1746     2 4 93   2 5 -1     1 2 8      1 2 7
1747     1 2 3    1 2 -20    1 4  93    1 5 -1
1748  }
1749  7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
1750     2 4 93   2 5 -1     1 2 -20    1 2 3
1751     1 2 7    1 2 8      1 4  93    1 5 -1
1752  }
1753  8  "SELECT z, x FROM d1 ORDER BY 2" {
1754     /# 1    # 1    # 1   # 1
1755      # 1    # 1    # 2   # 2/
1756  }
1757  9  "SELECT z, x FROM d1 ORDER BY 1" {
1758     /-20 1  -1 #   -1 #   3 1
1759     7 1     8 1   93 #   93 #/
1760  }
1761}
1762
1763# EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
1764# that corresponds to the alias of one of the output columns, then the
1765# expression is considered an alias for that column.
1766#
1767do_select_tests e_select-8.5 {
1768  1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
1769    -19 0 0 4 8 9 94 94
1770  }
1771  2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
1772    94 94 9 8 4 0 0 -19
1773  }
1774  3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
1775    /# 1    # 1    # 1    # 1    # 1    # 1    # 2    # 2/
1776  }
1777  4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
1778    /-20 1    -1 #    -1 #    3 1    7 1    8 1    93 #    93 #/
1779  }
1780}
1781
1782# EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is
1783# any other expression, it is evaluated and the returned value used to
1784# order the output rows.
1785#
1786# EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
1787# then an ORDER BY may contain any arbitrary expressions.
1788#
1789do_select_tests e_select-8.6 {
1790  1   "SELECT * FROM d1 ORDER BY x+y+z" {
1791    1 2 -20    1 5 -1    1 2 3    2 5 -1
1792    1 2 7      1 2 8     1 4 93   2 4 93
1793  }
1794  2   "SELECT * FROM d1 ORDER BY x*z" {
1795    1 2 -20    2 5 -1    1 5 -1    1 2 3
1796    1 2 7      1 2 8     1 4 93    2 4 93
1797  }
1798  3   "SELECT * FROM d1 ORDER BY y*z" {
1799    1 2 -20    2 5 -1    1 5 -1    1 2 3
1800    1 2 7      1 2 8     2 4 93    1 4 93
1801  }
1802}
1803
1804# EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
1805# SELECT, then ORDER BY expressions that are not aliases to output
1806# columns must be exactly the same as an expression used as an output
1807# column.
1808#
1809do_select_tests e_select-8.7.1 -error {
1810  %s ORDER BY term does not match any column in the result set
1811} {
1812  1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
1813  2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
1814}
1815
1816do_select_tests e_select-8.7.2 {
1817  1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
1818    -20 -2 -1 3 7 8 93 186 babied barked commercials gently
1819    iterate lad pragmatist reemphasizes rejoicing solemnness
1820  }
1821  2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
1822    1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0
1823    babied charitableness barked interrupted commercials bathrobe gently
1824    failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
1825    rejoicing liabilities solemnness annexed
1826  }
1827}
1828
1829do_execsql_test e_select-8.8.0 {
1830  CREATE TABLE d3(a);
1831  INSERT INTO d3 VALUES('text');
1832  INSERT INTO d3 VALUES(14.1);
1833  INSERT INTO d3 VALUES(13);
1834  INSERT INTO d3 VALUES(X'78787878');
1835  INSERT INTO d3 VALUES(15);
1836  INSERT INTO d3 VALUES(12.9);
1837  INSERT INTO d3 VALUES(null);
1838
1839  CREATE TABLE d4(x COLLATE nocase);
1840  INSERT INTO d4 VALUES('abc');
1841  INSERT INTO d4 VALUES('ghi');
1842  INSERT INTO d4 VALUES('DEF');
1843  INSERT INTO d4 VALUES('JKL');
1844} {}
1845
1846# EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
1847# are compared in the same way as for comparison expressions.
1848#
1849#   The following tests verify that values of different types are sorted
1850#   correctly, and that mixed real and integer values are compared properly.
1851#
1852do_execsql_test e_select-8.8.1 {
1853  SELECT a FROM d3 ORDER BY a
1854} {{} 12.9 13 14.1 15 text xxxx}
1855do_execsql_test e_select-8.8.2 {
1856  SELECT a FROM d3 ORDER BY a DESC
1857} {xxxx text 15 14.1 13 12.9 {}}
1858
1859
1860# EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
1861# collation sequence using the postfix COLLATE operator, then the
1862# specified collation sequence is used.
1863#
1864do_execsql_test e_select-8.9.1 {
1865  SELECT x FROM d4 ORDER BY 1 COLLATE binary
1866} {DEF JKL abc ghi}
1867do_execsql_test e_select-8.9.2 {
1868  SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
1869} {abc DEF ghi JKL}
1870
1871# EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is
1872# an alias to an expression that has been assigned a collation sequence
1873# using the postfix COLLATE operator, then the collation sequence
1874# assigned to the aliased expression is used.
1875#
1876#   In the test 8.10.2, the only result-column expression has no alias. So the
1877#   ORDER BY expression is not a reference to it and therefore does not inherit
1878#   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
1879#   column name), so the ORDER BY expression is interpreted as an alias and the
1880#   collation sequence attached to the result column is used for sorting.
1881#
1882do_execsql_test e_select-8.10.1 {
1883  SELECT x COLLATE binary FROM d4 ORDER BY 1
1884} {DEF JKL abc ghi}
1885do_execsql_test e_select-8.10.2 {
1886  SELECT x COLLATE binary FROM d4 ORDER BY x
1887} {abc DEF ghi JKL}
1888do_execsql_test e_select-8.10.3 {
1889  SELECT x COLLATE binary AS x FROM d4 ORDER BY x
1890} {DEF JKL abc ghi}
1891
1892# EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
1893# column or an alias of an expression that is a column, then the default
1894# collation sequence for the column is used.
1895#
1896do_execsql_test e_select-8.11.1 {
1897  SELECT x AS y FROM d4 ORDER BY y
1898} {abc DEF ghi JKL}
1899do_execsql_test e_select-8.11.2 {
1900  SELECT x||'' FROM d4 ORDER BY x
1901} {abc DEF ghi JKL}
1902
1903# EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
1904# used.
1905#
1906do_execsql_test e_select-8.12.1 {
1907  SELECT x FROM d4 ORDER BY x||''
1908} {DEF JKL abc ghi}
1909
1910# EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
1911# alias, then SQLite searches the left-most SELECT in the compound for a
1912# result column that matches either the second or third rules above. If
1913# a match is found, the search stops and the expression is handled as an
1914# alias for the result column that it has been matched against.
1915# Otherwise, the next SELECT to the right is tried, and so on.
1916#
1917do_execsql_test e_select-8.13.0 {
1918  CREATE TABLE d5(a, b);
1919  CREATE TABLE d6(c, d);
1920  CREATE TABLE d7(e, f);
1921
1922  INSERT INTO d5 VALUES(1, 'f');
1923  INSERT INTO d6 VALUES(2, 'e');
1924  INSERT INTO d7 VALUES(3, 'd');
1925  INSERT INTO d5 VALUES(4, 'c');
1926  INSERT INTO d6 VALUES(5, 'b');
1927  INSERT INTO d7 VALUES(6, 'a');
1928
1929  CREATE TABLE d8(x COLLATE nocase);
1930  CREATE TABLE d9(y COLLATE nocase);
1931
1932  INSERT INTO d8 VALUES('a');
1933  INSERT INTO d9 VALUES('B');
1934  INSERT INTO d8 VALUES('c');
1935  INSERT INTO d9 VALUES('D');
1936} {}
1937do_select_tests e_select-8.13 {
1938  1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1939         ORDER BY a
1940      } {1 2 3 4 5 6}
1941  2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1942         ORDER BY c
1943      } {1 2 3 4 5 6}
1944  3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1945         ORDER BY e
1946      } {1 2 3 4 5 6}
1947  4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1948         ORDER BY 1
1949      } {1 2 3 4 5 6}
1950
1951  5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b }
1952      {f 1   c 4   4 c   1 f}
1953  6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 }
1954      {f 1   c 4   4 c   1 f}
1955
1956  7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a }
1957      {1 f   4 c   c 4   f 1}
1958  8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 }
1959      {1 f   4 c   c 4   f 1}
1960
1961  9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1962      {f 2   c 5   4 c   1 f}
1963  10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 }
1964      {f 2   c 5   4 c   1 f}
1965
1966  11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1967      {2 f   5 c   c 5   f 2}
1968  12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 }
1969      {2 f   5 c   c 5   f 2}
1970}
1971
1972# EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
1973# the result columns of any constituent SELECT, it is an error.
1974#
1975do_select_tests e_select-8.14 -error {
1976  %s ORDER BY term does not match any column in the result set
1977} {
1978  1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
1979  2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
1980  3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
1981  4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
1982  5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
1983  6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
1984}
1985
1986# EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
1987# processed separately and may be matched against result columns from
1988# different SELECT statements in the compound.
1989#
1990do_select_tests e_select-8.15 {
1991  1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
1992     {1 e   1 f   4 b   4 c}
1993  2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
1994     {1 e   1 f   4 b   4 c}
1995  3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
1996     {1 e   1 f   4 b   4 c}
1997}
1998
1999
2000#-------------------------------------------------------------------------
2001# Tests related to statements made about the LIMIT/OFFSET clause.
2002#
2003do_execsql_test e_select-9.0 {
2004  CREATE TABLE f1(a, b);
2005  INSERT INTO f1 VALUES(26, 'z');
2006  INSERT INTO f1 VALUES(25, 'y');
2007  INSERT INTO f1 VALUES(24, 'x');
2008  INSERT INTO f1 VALUES(23, 'w');
2009  INSERT INTO f1 VALUES(22, 'v');
2010  INSERT INTO f1 VALUES(21, 'u');
2011  INSERT INTO f1 VALUES(20, 't');
2012  INSERT INTO f1 VALUES(19, 's');
2013  INSERT INTO f1 VALUES(18, 'r');
2014  INSERT INTO f1 VALUES(17, 'q');
2015  INSERT INTO f1 VALUES(16, 'p');
2016  INSERT INTO f1 VALUES(15, 'o');
2017  INSERT INTO f1 VALUES(14, 'n');
2018  INSERT INTO f1 VALUES(13, 'm');
2019  INSERT INTO f1 VALUES(12, 'l');
2020  INSERT INTO f1 VALUES(11, 'k');
2021  INSERT INTO f1 VALUES(10, 'j');
2022  INSERT INTO f1 VALUES(9, 'i');
2023  INSERT INTO f1 VALUES(8, 'h');
2024  INSERT INTO f1 VALUES(7, 'g');
2025  INSERT INTO f1 VALUES(6, 'f');
2026  INSERT INTO f1 VALUES(5, 'e');
2027  INSERT INTO f1 VALUES(4, 'd');
2028  INSERT INTO f1 VALUES(3, 'c');
2029  INSERT INTO f1 VALUES(2, 'b');
2030  INSERT INTO f1 VALUES(1, 'a');
2031} {}
2032
2033# EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
2034# LIMIT clause, so long as it evaluates to an integer or a value that
2035# can be losslessly converted to an integer.
2036#
2037do_select_tests e_select-9.1 {
2038  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
2039  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
2040  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') }
2041     {a b c d e}
2042  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
2043  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
2044}
2045
2046# EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
2047# or any other value that cannot be losslessly converted to an integer,
2048# an error is returned.
2049#
2050
2051do_select_tests e_select-9.2 -error "datatype mismatch" {
2052  1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
2053  2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
2054  3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
2055  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
2056  5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
2057}
2058
2059# EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
2060# negative value, then there is no upper bound on the number of rows
2061# returned.
2062#
2063do_select_tests e_select-9.4 {
2064  1  { SELECT b FROM f1 ORDER BY a LIMIT -1 }
2065     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2066  2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 }
2067     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2068  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
2069     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2070}
2071
2072# EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
2073# rows of its result set only, where N is the value that the LIMIT
2074# expression evaluates to.
2075#
2076do_select_tests e_select-9.5 {
2077  1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
2078  2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
2079  3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
2080  4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
2081}
2082
2083# EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
2084# less than N rows without a LIMIT clause, then the entire result set is
2085# returned.
2086#
2087do_select_tests e_select-9.6 {
2088  1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
2089  2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
2090}
2091
2092
2093# EVIDENCE-OF: R-24188-24349 The expression attached to the optional
2094# OFFSET clause that may follow a LIMIT clause must also evaluate to an
2095# integer, or a value that can be losslessly converted to an integer.
2096#
2097foreach {tn select} {
2098  1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' }
2099  2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL }
2100  3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' }
2101  4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 }
2102  5  { SELECT b FROM f1 ORDER BY a
2103       LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1)
2104  }
2105} {
2106  do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
2107}
2108
2109# EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
2110# the first M rows are omitted from the result set returned by the
2111# SELECT statement and the next N rows are returned, where M and N are
2112# the values that the OFFSET and LIMIT clauses evaluate to,
2113# respectively.
2114#
2115do_select_tests e_select-9.8 {
2116  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
2117  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
2118  3  { SELECT b FROM f1 ORDER BY a
2119       LIMIT  (SELECT a FROM f1 WHERE b='j')
2120       OFFSET (SELECT a FROM f1 WHERE b='b')
2121     } {c d e f g h i j k l}
2122  4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
2123  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
2124  6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
2125  7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
2126}
2127
2128# EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
2129# M+N rows if it did not have a LIMIT clause, then the first M rows are
2130# skipped and the remaining rows (if any) are returned.
2131#
2132do_select_tests e_select-9.9 {
2133  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
2134  2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
2135}
2136
2137
2138# EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
2139# negative value, the results are the same as if it had evaluated to
2140# zero.
2141#
2142do_select_tests e_select-9.10 {
2143  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
2144  2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
2145  3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
2146}
2147
2148# EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
2149# LIMIT clause may specify two scalar expressions separated by a comma.
2150#
2151# EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
2152# as the OFFSET expression and the second as the LIMIT expression.
2153#
2154do_select_tests e_select-9.11 {
2155  1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
2156  2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
2157  3  { SELECT b FROM f1 ORDER BY a
2158       LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j')
2159     } {c d e f g h i j k l}
2160  4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
2161  5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
2162  6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
2163  7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
2164
2165  8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
2166  9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
2167
2168  10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
2169  11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
2170  12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
2171}
2172
2173finish_test
2174