xref: /sqlite-3.40.0/test/e_expr.test (revision c56fac74)
1# 2010 July 16
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file implements tests to verify that the "testable statements" in
13# the lang_expr.html document are correct.
14#
15
16set testdir [file dirname $argv0]
17source $testdir/tester.tcl
18source $testdir/malloc_common.tcl
19
20ifcapable !compound {
21  finish_test
22  return
23}
24
25proc do_expr_test {tn expr type value} {
26  uplevel do_execsql_test $tn [list "SELECT typeof($expr), $expr"] [
27    list [list $type $value]
28  ]
29}
30
31proc do_qexpr_test {tn expr value} {
32  uplevel do_execsql_test $tn [list "SELECT quote($expr)"] [list $value]
33}
34
35# Set up three global variables:
36#
37#   ::opname         An array mapping from SQL operator to an easy to parse
38#                    name. The names are used as part of test case names.
39#
40#   ::opprec         An array mapping from SQL operator to a numeric
41#                    precedence value. Operators that group more tightly
42#                    have lower numeric precedences.
43#
44#   ::oplist         A list of all SQL operators supported by SQLite.
45#
46foreach {op opn} {
47      ||   cat     *   mul       /  div       %     mod       +      add
48      -    sub     <<  lshift    >> rshift    &     bitand    |      bitor
49      <    less    <=  lesseq    >  more      >=    moreeq    =      eq1
50      ==   eq2     <>  ne1       != ne2       IS    is        LIKE   like
51      GLOB glob    AND and       OR or        MATCH match     REGEXP regexp
52      {IS NOT} isnt
53} {
54  set ::opname($op) $opn
55}
56set oplist [list]
57foreach {prec opl} {
58  1   ||
59  2   {* / %}
60  3   {+ -}
61  4   {<< >> & |}
62  5   {< <= > >=}
63  6   {= == != <> IS {IS NOT} LIKE GLOB MATCH REGEXP}
64  7   AND
65  8   OR
66} {
67  foreach op $opl {
68    set ::opprec($op) $prec
69    lappend oplist $op
70  }
71}
72
73
74# Hook in definitions of MATCH and REGEX. The following implementations
75# cause MATCH and REGEX to behave similarly to the == operator.
76#
77proc matchfunc {a b} { return [expr {$a==$b}] }
78proc regexfunc {a b} { return [expr {$a==$b}] }
79db func match  -argcount 2 matchfunc
80db func regexp -argcount 2 regexfunc
81
82#-------------------------------------------------------------------------
83# Test cases e_expr-1.* attempt to verify that all binary operators listed
84# in the documentation exist and that the relative precedences of the
85# operators are also as the documentation suggests.
86#
87# EVIDENCE-OF: R-15514-65163 SQLite understands the following binary
88# operators, in order from highest to lowest precedence: || * / % + -
89# << >> & | < <= > >= = == != <> IS IS
90# NOT IN LIKE GLOB MATCH REGEXP AND OR
91#
92# EVIDENCE-OF: R-38759-38789 Operators IS and IS NOT have the same
93# precedence as =.
94#
95
96unset -nocomplain untested
97foreach op1 $oplist {
98  foreach op2 $oplist {
99    set untested($op1,$op2) 1
100    foreach {tn A B C} {
101       1     22   45    66
102       2      0    0     0
103       3      0    0     1
104       4      0    1     0
105       5      0    1     1
106       6      1    0     0
107       7      1    0     1
108       8      1    1     0
109       9      1    1     1
110      10      5    6     1
111      11      1    5     6
112      12      1    5     5
113      13      5    5     1
114
115      14      5    2     1
116      15      1    4     1
117      16     -1    0     1
118      17      0    1    -1
119
120    } {
121      set testname "e_expr-1.$opname($op1).$opname($op2).$tn"
122
123      # If $op2 groups more tightly than $op1, then the result
124      # of executing $sql1 whould be the same as executing $sql3.
125      # If $op1 groups more tightly, or if $op1 and $op2 have
126      # the same precedence, then executing $sql1 should return
127      # the same value as $sql2.
128      #
129      set sql1 "SELECT $A $op1 $B $op2 $C"
130      set sql2 "SELECT ($A $op1 $B) $op2 $C"
131      set sql3 "SELECT $A $op1 ($B $op2 $C)"
132
133      set a2 [db one $sql2]
134      set a3 [db one $sql3]
135
136      do_execsql_test $testname $sql1 [list [
137        if {$opprec($op2) < $opprec($op1)} {set a3} {set a2}
138      ]]
139      if {$a2 != $a3} { unset -nocomplain untested($op1,$op2) }
140    }
141  }
142}
143
144foreach op {* AND OR + || & |} { unset untested($op,$op) }
145unset untested(+,-)  ;#       Since    (a+b)-c == a+(b-c)
146unset untested(*,<<) ;#       Since    (a*b)<<c == a*(b<<c)
147
148do_test e_expr-1.1 { array names untested } {}
149
150# At one point, test 1.2.2 was failing. Instead of the correct result, it
151# was returning {1 1 0}. This would seem to indicate that LIKE has the
152# same precedence as '<'. Which is incorrect. It has lower precedence.
153#
154do_execsql_test e_expr-1.2.1 {
155  SELECT 0 < 2 LIKE 1,   (0 < 2) LIKE 1,   0 < (2 LIKE 1)
156} {1 1 0}
157do_execsql_test e_expr-1.2.2 {
158  SELECT 0 LIKE 0 < 2,   (0 LIKE 0) < 2,   0 LIKE (0 < 2)
159} {0 1 0}
160
161# Showing that LIKE and == have the same precedence
162#
163do_execsql_test e_expr-1.2.3 {
164  SELECT 2 LIKE 2 == 1,   (2 LIKE 2) == 1,    2 LIKE (2 == 1)
165} {1 1 0}
166do_execsql_test e_expr-1.2.4 {
167  SELECT 2 == 2 LIKE 1,   (2 == 2) LIKE 1,    2 == (2 LIKE 1)
168} {1 1 0}
169
170# Showing that < groups more tightly than == (< has higher precedence).
171#
172do_execsql_test e_expr-1.2.5 {
173  SELECT 0 < 2 == 1,   (0 < 2) == 1,   0 < (2 == 1)
174} {1 1 0}
175do_execsql_test e_expr-1.6 {
176  SELECT 0 == 0 < 2,   (0 == 0) < 2,   0 == (0 < 2)
177} {0 1 0}
178
179#-------------------------------------------------------------------------
180# Check that the four unary prefix operators mentioned in the
181# documentation exist.
182#
183# EVIDENCE-OF: R-13958-53419 Supported unary prefix operators are these:
184# - + ~ NOT
185#
186do_execsql_test e_expr-2.1 { SELECT -   10   } {-10}
187do_execsql_test e_expr-2.2 { SELECT +   10   } {10}
188do_execsql_test e_expr-2.3 { SELECT ~   10   } {-11}
189do_execsql_test e_expr-2.4 { SELECT NOT 10   } {0}
190
191#-------------------------------------------------------------------------
192# Tests for the two statements made regarding the unary + operator.
193#
194# EVIDENCE-OF: R-53670-03373 The unary operator + is a no-op.
195#
196# EVIDENCE-OF: R-19480-30968 It can be applied to strings, numbers,
197# blobs or NULL and it always returns a result with the same value as
198# the operand.
199#
200foreach {tn literal type} {
201  1     'helloworld'   text
202  2     45             integer
203  3     45.2           real
204  4     45.0           real
205  5     X'ABCDEF'      blob
206  6     NULL           null
207} {
208  set sql " SELECT quote( + $literal ), typeof( + $literal) "
209  do_execsql_test e_expr-3.$tn $sql [list $literal $type]
210}
211
212#-------------------------------------------------------------------------
213# Check that both = and == are both acceptable as the "equals" operator.
214# Similarly, either != or <> work as the not-equals operator.
215#
216# EVIDENCE-OF: R-03679-60639 Equals can be either = or ==.
217#
218# EVIDENCE-OF: R-30082-38996 The non-equals operator can be either != or
219# <>.
220#
221foreach {tn literal different} {
222  1   'helloworld'  '12345'
223  2   22            23
224  3   'xyz'         X'78797A'
225  4   X'78797A00'   'xyz'
226} {
227  do_execsql_test e_expr-4.$tn "
228    SELECT $literal  = $literal,   $literal == $literal,
229           $literal  = $different, $literal == $different,
230           $literal  = NULL,       $literal == NULL,
231           $literal != $literal,   $literal <> $literal,
232           $literal != $different, $literal <> $different,
233           $literal != NULL,       $literal != NULL
234
235  " {1 1 0 0 {} {} 0 0 1 1 {} {}}
236}
237
238#-------------------------------------------------------------------------
239# Test the || operator.
240#
241# EVIDENCE-OF: R-44409-62641 The || operator is "concatenate" - it joins
242# together the two strings of its operands.
243#
244foreach {tn a b} {
245  1   'helloworld'  '12345'
246  2   22            23
247} {
248  set as [db one "SELECT $a"]
249  set bs [db one "SELECT $b"]
250
251  do_execsql_test e_expr-5.$tn "SELECT $a || $b" [list "${as}${bs}"]
252}
253
254#-------------------------------------------------------------------------
255# Test the % operator.
256#
257# EVIDENCE-OF: R-08914-63790 The operator % outputs the value of its
258# left operand modulo its right operand.
259#
260do_execsql_test e_expr-6.1 {SELECT  72%5}  {2}
261do_execsql_test e_expr-6.2 {SELECT  72%-5} {2}
262do_execsql_test e_expr-6.3 {SELECT -72%-5} {-2}
263do_execsql_test e_expr-6.4 {SELECT -72%5}  {-2}
264
265#-------------------------------------------------------------------------
266# Test that the results of all binary operators are either numeric or
267# NULL, except for the || operator, which may evaluate to either a text
268# value or NULL.
269#
270# EVIDENCE-OF: R-20665-17792 The result of any binary operator is either
271# a numeric value or NULL, except for the || concatenation operator
272# which always evaluates to either NULL or a text value.
273#
274set literals {
275  1 'abc'        2 'hexadecimal'       3 ''
276  4 123          5 -123                6 0
277  7 123.4        8 0.0                 9 -123.4
278 10 X'ABCDEF'   11 X''                12 X'0000'
279 13     NULL
280}
281foreach op $oplist {
282  foreach {n1 rhs} $literals {
283  foreach {n2 lhs} $literals {
284
285    set t [db one " SELECT typeof($lhs $op $rhs) "]
286    do_test e_expr-7.$opname($op).$n1.$n2 {
287      expr {
288           ($op=="||" && ($t == "text" || $t == "null"))
289        || ($op!="||" && ($t == "integer" || $t == "real" || $t == "null"))
290      }
291    } 1
292
293  }}
294}
295
296#-------------------------------------------------------------------------
297# Test the IS and IS NOT operators.
298#
299# EVIDENCE-OF: R-24731-45773 The IS and IS NOT operators work like = and
300# != except when one or both of the operands are NULL.
301#
302# EVIDENCE-OF: R-06325-15315 In this case, if both operands are NULL,
303# then the IS operator evaluates to 1 (true) and the IS NOT operator
304# evaluates to 0 (false).
305#
306# EVIDENCE-OF: R-19812-36779 If one operand is NULL and the other is
307# not, then the IS operator evaluates to 0 (false) and the IS NOT
308# operator is 1 (true).
309#
310# EVIDENCE-OF: R-61975-13410 It is not possible for an IS or IS NOT
311# expression to evaluate to NULL.
312#
313do_execsql_test e_expr-8.1.1  { SELECT NULL IS     NULL } {1}
314do_execsql_test e_expr-8.1.2  { SELECT 'ab' IS     NULL } {0}
315do_execsql_test e_expr-8.1.3  { SELECT NULL IS     'ab' } {0}
316do_execsql_test e_expr-8.1.4  { SELECT 'ab' IS     'ab' } {1}
317do_execsql_test e_expr-8.1.5  { SELECT NULL ==     NULL } {{}}
318do_execsql_test e_expr-8.1.6  { SELECT 'ab' ==     NULL } {{}}
319do_execsql_test e_expr-8.1.7  { SELECT NULL ==     'ab' } {{}}
320do_execsql_test e_expr-8.1.8  { SELECT 'ab' ==     'ab' } {1}
321do_execsql_test e_expr-8.1.9  { SELECT NULL IS NOT NULL } {0}
322do_execsql_test e_expr-8.1.10 { SELECT 'ab' IS NOT NULL } {1}
323do_execsql_test e_expr-8.1.11 { SELECT NULL IS NOT 'ab' } {1}
324do_execsql_test e_expr-8.1.12 { SELECT 'ab' IS NOT 'ab' } {0}
325do_execsql_test e_expr-8.1.13 { SELECT NULL !=     NULL } {{}}
326do_execsql_test e_expr-8.1.14 { SELECT 'ab' !=     NULL } {{}}
327do_execsql_test e_expr-8.1.15 { SELECT NULL !=     'ab' } {{}}
328do_execsql_test e_expr-8.1.16 { SELECT 'ab' !=     'ab' } {0}
329
330foreach {n1 rhs} $literals {
331  foreach {n2 lhs} $literals {
332    if {$rhs!="NULL" && $lhs!="NULL"} {
333      set eq [execsql "SELECT $lhs = $rhs, $lhs != $rhs"]
334    } else {
335      set eq [list [expr {$lhs=="NULL" && $rhs=="NULL"}] \
336                   [expr {$lhs!="NULL" || $rhs!="NULL"}]
337      ]
338    }
339    set test e_expr-8.2.$n1.$n2
340    do_execsql_test $test.1 "SELECT $lhs IS $rhs, $lhs IS NOT $rhs" $eq
341    do_execsql_test $test.2 "
342      SELECT ($lhs IS $rhs) IS NULL, ($lhs IS NOT $rhs) IS NULL
343    " {0 0}
344  }
345}
346
347#-------------------------------------------------------------------------
348# Run some tests on the COLLATE "unary postfix operator".
349#
350# This collation sequence reverses both arguments before using
351# [string compare] to compare them. For example, when comparing the
352# strings 'one' and 'four', return the result of:
353#
354#   string compare eno ruof
355#
356proc reverse_str {zStr} {
357  set out ""
358  foreach c [split $zStr {}] { set out "${c}${out}" }
359  set out
360}
361proc reverse_collate {zLeft zRight} {
362  string compare [reverse_str $zLeft] [reverse_str $zRight]
363}
364db collate reverse reverse_collate
365
366# EVIDENCE-OF: R-59577-33471 The COLLATE operator is a unary postfix
367# operator that assigns a collating sequence to an expression.
368#
369# EVIDENCE-OF: R-36231-30731 The COLLATE operator has a higher
370# precedence (binds more tightly) than any binary operator and any unary
371# prefix operator except "~".
372#
373do_execsql_test e_expr-9.1 { SELECT  'abcd' < 'bbbb'    COLLATE reverse } 0
374do_execsql_test e_expr-9.2 { SELECT ('abcd' < 'bbbb')   COLLATE reverse } 1
375do_execsql_test e_expr-9.3 { SELECT  'abcd' <= 'bbbb'   COLLATE reverse } 0
376do_execsql_test e_expr-9.4 { SELECT ('abcd' <= 'bbbb')  COLLATE reverse } 1
377
378do_execsql_test e_expr-9.5 { SELECT  'abcd' > 'bbbb'    COLLATE reverse } 1
379do_execsql_test e_expr-9.6 { SELECT ('abcd' > 'bbbb')   COLLATE reverse } 0
380do_execsql_test e_expr-9.7 { SELECT  'abcd' >= 'bbbb'   COLLATE reverse } 1
381do_execsql_test e_expr-9.8 { SELECT ('abcd' >= 'bbbb')  COLLATE reverse } 0
382
383do_execsql_test e_expr-9.10 { SELECT  'abcd' =  'ABCD'  COLLATE nocase } 1
384do_execsql_test e_expr-9.11 { SELECT ('abcd' =  'ABCD') COLLATE nocase } 0
385do_execsql_test e_expr-9.12 { SELECT  'abcd' == 'ABCD'  COLLATE nocase } 1
386do_execsql_test e_expr-9.13 { SELECT ('abcd' == 'ABCD') COLLATE nocase } 0
387do_execsql_test e_expr-9.14 { SELECT  'abcd' IS 'ABCD'  COLLATE nocase } 1
388do_execsql_test e_expr-9.15 { SELECT ('abcd' IS 'ABCD') COLLATE nocase } 0
389
390do_execsql_test e_expr-9.16 { SELECT  'abcd' != 'ABCD'      COLLATE nocase } 0
391do_execsql_test e_expr-9.17 { SELECT ('abcd' != 'ABCD')     COLLATE nocase } 1
392do_execsql_test e_expr-9.18 { SELECT  'abcd' <> 'ABCD'      COLLATE nocase } 0
393do_execsql_test e_expr-9.19 { SELECT ('abcd' <> 'ABCD')     COLLATE nocase } 1
394do_execsql_test e_expr-9.20 { SELECT  'abcd' IS NOT 'ABCD'  COLLATE nocase } 0
395do_execsql_test e_expr-9.21 { SELECT ('abcd' IS NOT 'ABCD') COLLATE nocase } 1
396
397do_execsql_test e_expr-9.22 {
398  SELECT 'bbb' BETWEEN 'AAA' AND 'CCC' COLLATE nocase
399} 1
400do_execsql_test e_expr-9.23 {
401  SELECT ('bbb' BETWEEN 'AAA' AND 'CCC') COLLATE nocase
402} 0
403
404# EVIDENCE-OF: R-58731-25439 The collating sequence set by the COLLATE
405# operator overrides the collating sequence determined by the COLLATE
406# clause in a table column definition.
407#
408do_execsql_test e_expr-9.24 {
409  CREATE TABLE t24(a COLLATE NOCASE, b);
410  INSERT INTO t24 VALUES('aaa', 1);
411  INSERT INTO t24 VALUES('bbb', 2);
412  INSERT INTO t24 VALUES('ccc', 3);
413} {}
414do_execsql_test e_expr-9.25 { SELECT 'BBB' = a FROM t24 } {0 1 0}
415do_execsql_test e_expr-9.25 { SELECT a = 'BBB' FROM t24 } {0 1 0}
416do_execsql_test e_expr-9.25 { SELECT 'BBB' = a COLLATE binary FROM t24 } {0 0 0}
417do_execsql_test e_expr-9.25 { SELECT a COLLATE binary = 'BBB' FROM t24 } {0 0 0}
418
419#-------------------------------------------------------------------------
420# Test statements related to literal values.
421#
422# EVIDENCE-OF: R-31536-32008 Literal values may be integers, floating
423# point numbers, strings, BLOBs, or NULLs.
424#
425do_execsql_test e_expr-10.1.1 { SELECT typeof(5)       } {integer}
426do_execsql_test e_expr-10.1.2 { SELECT typeof(5.1)     } {real}
427do_execsql_test e_expr-10.1.3 { SELECT typeof('5.1')   } {text}
428do_execsql_test e_expr-10.1.4 { SELECT typeof(X'ABCD') } {blob}
429do_execsql_test e_expr-10.1.5 { SELECT typeof(NULL)    } {null}
430
431# "Scientific notation is supported for point literal values."
432#
433do_execsql_test e_expr-10.2.1 { SELECT typeof(3.4e-02)    } {real}
434do_execsql_test e_expr-10.2.2 { SELECT typeof(3e+5)       } {real}
435do_execsql_test e_expr-10.2.3 { SELECT 3.4e-02            } {0.034}
436do_execsql_test e_expr-10.2.4 { SELECT 3e+4               } {30000.0}
437
438# EVIDENCE-OF: R-35229-17830 A string constant is formed by enclosing
439# the string in single quotes (').
440#
441# EVIDENCE-OF: R-07100-06606 A single quote within the string can be
442# encoded by putting two single quotes in a row - as in Pascal.
443#
444do_execsql_test e_expr-10.3.1 { SELECT 'is not' }         {{is not}}
445do_execsql_test e_expr-10.3.2 { SELECT typeof('is not') } {text}
446do_execsql_test e_expr-10.3.3 { SELECT 'isn''t' }         {isn't}
447do_execsql_test e_expr-10.3.4 { SELECT typeof('isn''t') } {text}
448
449# EVIDENCE-OF: R-09593-03321 BLOB literals are string literals
450# containing hexadecimal data and preceded by a single "x" or "X"
451# character.
452#
453# EVIDENCE-OF: R-19836-11244 Example: X'53514C697465'
454#
455do_execsql_test e_expr-10.4.1 { SELECT typeof(X'0123456789ABCDEF') } blob
456do_execsql_test e_expr-10.4.2 { SELECT typeof(x'0123456789ABCDEF') } blob
457do_execsql_test e_expr-10.4.3 { SELECT typeof(X'0123456789abcdef') } blob
458do_execsql_test e_expr-10.4.4 { SELECT typeof(x'0123456789abcdef') } blob
459do_execsql_test e_expr-10.4.5 { SELECT typeof(X'53514C697465')     } blob
460
461# EVIDENCE-OF: R-23914-51476 A literal value can also be the token
462# "NULL".
463#
464do_execsql_test e_expr-10.5.1 { SELECT NULL         } {{}}
465do_execsql_test e_expr-10.5.2 { SELECT typeof(NULL) } {null}
466
467#-------------------------------------------------------------------------
468# Test statements related to bound parameters
469#
470
471proc parameter_test {tn sql params result} {
472  set stmt [sqlite3_prepare_v2 db $sql -1]
473
474  foreach {number name} $params {
475    set nm [sqlite3_bind_parameter_name $stmt $number]
476    do_test $tn.name.$number [list set {} $nm] $name
477    sqlite3_bind_int $stmt $number [expr -1 * $number]
478  }
479
480  sqlite3_step $stmt
481
482  set res [list]
483  for {set i 0} {$i < [sqlite3_column_count $stmt]} {incr i} {
484    lappend res [sqlite3_column_text $stmt $i]
485  }
486
487  set rc [sqlite3_finalize $stmt]
488  do_test $tn.rc [list set {} $rc] SQLITE_OK
489  do_test $tn.res [list set {} $res] $result
490}
491
492# EVIDENCE-OF: R-33509-39458 A question mark followed by a number NNN
493# holds a spot for the NNN-th parameter. NNN must be between 1 and
494# SQLITE_MAX_VARIABLE_NUMBER.
495#
496set mvn $SQLITE_MAX_VARIABLE_NUMBER
497parameter_test e_expr-11.1 "
498  SELECT ?1, ?123, ?$SQLITE_MAX_VARIABLE_NUMBER, ?123, ?4
499"   "1 ?1  123 ?123 $mvn ?$mvn 4 ?4"   "-1 -123 -$mvn -123 -4"
500
501set errmsg "variable number must be between ?1 and ?$SQLITE_MAX_VARIABLE_NUMBER"
502foreach {tn param_number} [list \
503  2  0                                    \
504  3  [expr $SQLITE_MAX_VARIABLE_NUMBER+1] \
505  4  [expr $SQLITE_MAX_VARIABLE_NUMBER+2] \
506  5  12345678903456789034567890234567890  \
507  6  2147483648                           \
508  7  2147483649                           \
509  8  4294967296                           \
510  9  4294967297                           \
511  10 9223372036854775808                  \
512  11 9223372036854775809                  \
513  12 18446744073709551616                 \
514  13 18446744073709551617                 \
515] {
516  do_catchsql_test e_expr-11.1.$tn "SELECT ?$param_number" [list 1 $errmsg]
517}
518
519# EVIDENCE-OF: R-33670-36097 A question mark that is not followed by a
520# number creates a parameter with a number one greater than the largest
521# parameter number already assigned.
522#
523# EVIDENCE-OF: R-42938-07030 If this means the parameter number is
524# greater than SQLITE_MAX_VARIABLE_NUMBER, it is an error.
525#
526parameter_test e_expr-11.2.1 "SELECT ?"          {1 {}}       -1
527parameter_test e_expr-11.2.2 "SELECT ?, ?"       {1 {} 2 {}}  {-1 -2}
528parameter_test e_expr-11.2.3 "SELECT ?5, ?"      {5 ?5 6 {}}  {-5 -6}
529parameter_test e_expr-11.2.4 "SELECT ?, ?5"      {1 {} 5 ?5}  {-1 -5}
530parameter_test e_expr-11.2.5 "SELECT ?, ?456, ?" {
531  1 {} 456 ?456 457 {}
532}  {-1 -456 -457}
533parameter_test e_expr-11.2.5 "SELECT ?, ?456, ?4, ?" {
534  1 {} 456 ?456 4 ?4 457 {}
535}  {-1 -456 -4 -457}
536foreach {tn sql} [list                           \
537  1  "SELECT ?$mvn, ?"                           \
538  2  "SELECT ?[expr $mvn-5], ?, ?, ?, ?, ?, ?"   \
539  3  "SELECT ?[expr $mvn], ?5, ?6, ?"            \
540] {
541  do_catchsql_test e_expr-11.3.$tn $sql [list 1 {too many SQL variables}]
542}
543
544# EVIDENCE-OF: R-11620-22743 A colon followed by an identifier name
545# holds a spot for a named parameter with the name :AAAA.
546#
547# Identifiers in SQLite consist of alphanumeric, '_' and '$' characters,
548# and any UTF characters with codepoints larger than 127 (non-ASCII
549# characters).
550#
551parameter_test e_expr-11.2.1 {SELECT :AAAA}         {1 :AAAA}       -1
552parameter_test e_expr-11.2.2 {SELECT :123}          {1 :123}        -1
553parameter_test e_expr-11.2.3 {SELECT :__}           {1 :__}         -1
554parameter_test e_expr-11.2.4 {SELECT :_$_}          {1 :_$_}        -1
555parameter_test e_expr-11.2.5 "
556  SELECT :\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25
557" "1 :\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25" -1
558parameter_test e_expr-11.2.6 "SELECT :\u0080" "1 :\u0080" -1
559
560# EVIDENCE-OF: R-49783-61279 An "at" sign works exactly like a colon,
561# except that the name of the parameter created is @AAAA.
562#
563parameter_test e_expr-11.3.1 {SELECT @AAAA}         {1 @AAAA}       -1
564parameter_test e_expr-11.3.2 {SELECT @123}          {1 @123}        -1
565parameter_test e_expr-11.3.3 {SELECT @__}           {1 @__}         -1
566parameter_test e_expr-11.3.4 {SELECT @_$_}          {1 @_$_}        -1
567parameter_test e_expr-11.3.5 "
568  SELECT @\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25
569" "1 @\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25" -1
570parameter_test e_expr-11.3.6 "SELECT @\u0080" "1 @\u0080" -1
571
572# EVIDENCE-OF: R-62610-51329 A dollar-sign followed by an identifier
573# name also holds a spot for a named parameter with the name $AAAA.
574#
575# EVIDENCE-OF: R-55025-21042 The identifier name in this case can
576# include one or more occurrences of "::" and a suffix enclosed in
577# "(...)" containing any text at all.
578#
579# Note: Looks like an identifier cannot consist entirely of "::"
580# characters or just a suffix. Also, the other named variable characters
581# (: and @) work the same way internally. Why not just document it that way?
582#
583parameter_test e_expr-11.4.1 {SELECT $AAAA}         {1 $AAAA}       -1
584parameter_test e_expr-11.4.2 {SELECT $123}          {1 $123}        -1
585parameter_test e_expr-11.4.3 {SELECT $__}           {1 $__}         -1
586parameter_test e_expr-11.4.4 {SELECT $_$_}          {1 $_$_}        -1
587parameter_test e_expr-11.4.5 "
588  SELECT \$\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25
589" "1 \$\u0e40\u0e2d\u0e28\u0e02\u0e39\u0e40\u0e2d\u0e25" -1
590parameter_test e_expr-11.4.6 "SELECT \$\u0080" "1 \$\u0080" -1
591
592parameter_test e_expr-11.5.1 {SELECT $::::a(++--++)} {1 $::::a(++--++)} -1
593parameter_test e_expr-11.5.2 {SELECT $::a()} {1 $::a()} -1
594parameter_test e_expr-11.5.3 {SELECT $::1(::#$)} {1 $::1(::#$)} -1
595
596# EVIDENCE-OF: R-11370-04520 Named parameters are also numbered. The
597# number assigned is one greater than the largest parameter number
598# already assigned.
599#
600# EVIDENCE-OF: R-42620-22184 If this means the parameter would be
601# assigned a number greater than SQLITE_MAX_VARIABLE_NUMBER, it is an
602# error.
603#
604parameter_test e_expr-11.6.1 "SELECT ?, @abc"    {1 {} 2 @abc} {-1 -2}
605parameter_test e_expr-11.6.2 "SELECT ?123, :a1"  {123 ?123 124 :a1} {-123 -124}
606parameter_test e_expr-11.6.3 {SELECT $a, ?8, ?, $b, ?2, $c} {
607  1 $a 8 ?8 9 {} 10 $b 2 ?2 11 $c
608} {-1 -8 -9 -10 -2 -11}
609foreach {tn sql} [list                           \
610  1  "SELECT ?$mvn, \$::a"                       \
611  2  "SELECT ?$mvn, ?4, @a1"                     \
612  3  "SELECT ?[expr $mvn-2], :bag, @123, \$x"    \
613] {
614  do_catchsql_test e_expr-11.7.$tn $sql [list 1 {too many SQL variables}]
615}
616
617# EVIDENCE-OF: R-14068-49671 Parameters that are not assigned values
618# using sqlite3_bind() are treated as NULL.
619#
620do_test e_expr-11.7.1 {
621  set stmt [sqlite3_prepare_v2 db { SELECT ?, :a, @b, $d } -1]
622  sqlite3_step $stmt
623
624  list [sqlite3_column_type $stmt 0] \
625       [sqlite3_column_type $stmt 1] \
626       [sqlite3_column_type $stmt 2] \
627       [sqlite3_column_type $stmt 3]
628} {NULL NULL NULL NULL}
629do_test e_expr-11.7.1 { sqlite3_finalize $stmt } SQLITE_OK
630
631#-------------------------------------------------------------------------
632# "Test" the syntax diagrams in lang_expr.html.
633#
634# -- syntax diagram signed-number
635#
636do_execsql_test e_expr-12.1.1 { SELECT 0, +0, -0 } {0 0 0}
637do_execsql_test e_expr-12.1.2 { SELECT 1, +1, -1 } {1 1 -1}
638do_execsql_test e_expr-12.1.3 { SELECT 2, +2, -2 } {2 2 -2}
639do_execsql_test e_expr-12.1.4 {
640  SELECT 1.4, +1.4, -1.4
641} {1.4 1.4 -1.4}
642do_execsql_test e_expr-12.1.5 {
643  SELECT 1.5e+5, +1.5e+5, -1.5e+5
644} {150000.0 150000.0 -150000.0}
645do_execsql_test e_expr-12.1.6 {
646  SELECT 0.0001, +0.0001, -0.0001
647} {0.0001 0.0001 -0.0001}
648
649# -- syntax diagram literal-value
650#
651set sqlite_current_time 1
652do_execsql_test e_expr-12.2.1 {SELECT 123}               {123}
653do_execsql_test e_expr-12.2.2 {SELECT 123.4e05}          {12340000.0}
654do_execsql_test e_expr-12.2.3 {SELECT 'abcde'}           {abcde}
655do_execsql_test e_expr-12.2.4 {SELECT X'414243'}         {ABC}
656do_execsql_test e_expr-12.2.5 {SELECT NULL}              {{}}
657do_execsql_test e_expr-12.2.6 {SELECT CURRENT_TIME}      {00:00:01}
658do_execsql_test e_expr-12.2.7 {SELECT CURRENT_DATE}      {1970-01-01}
659do_execsql_test e_expr-12.2.8 {SELECT CURRENT_TIMESTAMP} {{1970-01-01 00:00:01}}
660set sqlite_current_time 0
661
662# -- syntax diagram expr
663#
664forcedelete test.db2
665execsql {
666  ATTACH 'test.db2' AS dbname;
667  CREATE TABLE dbname.tblname(cname);
668}
669
670proc glob {args} {return 1}
671db function glob glob
672db function match glob
673db function regexp glob
674
675foreach {tn expr} {
676  1 123
677  2 123.4e05
678  3 'abcde'
679  4 X'414243'
680  5 NULL
681  6 CURRENT_TIME
682  7 CURRENT_DATE
683  8 CURRENT_TIMESTAMP
684
685  9 ?
686 10 ?123
687 11 @hello
688 12 :world
689 13 $tcl
690 14 $tcl(array)
691
692  15 cname
693  16 tblname.cname
694  17 dbname.tblname.cname
695
696  18 "+ EXPR"
697  19 "- EXPR"
698  20 "NOT EXPR"
699  21 "~ EXPR"
700
701  22 "EXPR1 || EXPR2"
702  23 "EXPR1 * EXPR2"
703  24 "EXPR1 / EXPR2"
704  25 "EXPR1 % EXPR2"
705  26 "EXPR1 + EXPR2"
706  27 "EXPR1 - EXPR2"
707  28 "EXPR1 << EXPR2"
708  29 "EXPR1 >> EXPR2"
709  30 "EXPR1 & EXPR2"
710  31 "EXPR1 | EXPR2"
711  32 "EXPR1 < EXPR2"
712  33 "EXPR1 <= EXPR2"
713  34 "EXPR1 > EXPR2"
714  35 "EXPR1 >= EXPR2"
715  36 "EXPR1 = EXPR2"
716  37 "EXPR1 == EXPR2"
717  38 "EXPR1 != EXPR2"
718  39 "EXPR1 <> EXPR2"
719  40 "EXPR1 IS EXPR2"
720  41 "EXPR1 IS NOT EXPR2"
721  42 "EXPR1 AND EXPR2"
722  43 "EXPR1 OR EXPR2"
723
724  44 "count(*)"
725  45 "count(DISTINCT EXPR)"
726  46 "substr(EXPR, 10, 20)"
727  47 "changes()"
728
729  48 "( EXPR )"
730
731  49 "CAST ( EXPR AS integer )"
732  50 "CAST ( EXPR AS 'abcd' )"
733  51 "CAST ( EXPR AS 'ab$ $cd' )"
734
735  52 "EXPR COLLATE nocase"
736  53 "EXPR COLLATE binary"
737
738  54 "EXPR1 LIKE EXPR2"
739  55 "EXPR1 LIKE EXPR2 ESCAPE EXPR"
740  56 "EXPR1 GLOB EXPR2"
741  57 "EXPR1 GLOB EXPR2 ESCAPE EXPR"
742  58 "EXPR1 REGEXP EXPR2"
743  59 "EXPR1 REGEXP EXPR2 ESCAPE EXPR"
744  60 "EXPR1 MATCH EXPR2"
745  61 "EXPR1 MATCH EXPR2 ESCAPE EXPR"
746  62 "EXPR1 NOT LIKE EXPR2"
747  63 "EXPR1 NOT LIKE EXPR2 ESCAPE EXPR"
748  64 "EXPR1 NOT GLOB EXPR2"
749  65 "EXPR1 NOT GLOB EXPR2 ESCAPE EXPR"
750  66 "EXPR1 NOT REGEXP EXPR2"
751  67 "EXPR1 NOT REGEXP EXPR2 ESCAPE EXPR"
752  68 "EXPR1 NOT MATCH EXPR2"
753  69 "EXPR1 NOT MATCH EXPR2 ESCAPE EXPR"
754
755  70 "EXPR ISNULL"
756  71 "EXPR NOTNULL"
757  72 "EXPR NOT NULL"
758
759  73 "EXPR1 IS EXPR2"
760  74 "EXPR1 IS NOT EXPR2"
761
762  75 "EXPR NOT BETWEEN EXPR1 AND EXPR2"
763  76 "EXPR BETWEEN EXPR1 AND EXPR2"
764
765  77 "EXPR NOT IN (SELECT cname FROM tblname)"
766  78 "EXPR NOT IN (1)"
767  79 "EXPR NOT IN (1, 2, 3)"
768  80 "EXPR NOT IN tblname"
769  81 "EXPR NOT IN dbname.tblname"
770  82 "EXPR IN (SELECT cname FROM tblname)"
771  83 "EXPR IN (1)"
772  84 "EXPR IN (1, 2, 3)"
773  85 "EXPR IN tblname"
774  86 "EXPR IN dbname.tblname"
775
776  87 "EXISTS (SELECT cname FROM tblname)"
777  88 "NOT EXISTS (SELECT cname FROM tblname)"
778
779  89 "CASE EXPR WHEN EXPR1 THEN EXPR2 ELSE EXPR END"
780  90 "CASE EXPR WHEN EXPR1 THEN EXPR2 END"
781  91 "CASE EXPR WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 ELSE EXPR2 END"
782  92 "CASE EXPR WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 END"
783  93 "CASE WHEN EXPR1 THEN EXPR2 ELSE EXPR END"
784  94 "CASE WHEN EXPR1 THEN EXPR2 END"
785  95 "CASE WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 ELSE EXPR2 END"
786  96 "CASE WHEN EXPR1 THEN EXPR2 WHEN EXPR THEN EXPR1 END"
787} {
788
789  # If the expression string being parsed contains "EXPR2", then replace
790  # string "EXPR1" and "EXPR2" with arbitrary SQL expressions. If it
791  # contains "EXPR", then replace EXPR with an arbitrary SQL expression.
792  #
793  set elist [list $expr]
794  if {[string match *EXPR2* $expr]} {
795    set elist [list]
796    foreach {e1 e2} { cname "34+22" } {
797      lappend elist [string map [list EXPR1 $e1 EXPR2 $e2] $expr]
798    }
799  }
800  if {[string match *EXPR* $expr]} {
801    set elist2 [list]
802    foreach el $elist {
803      foreach e { cname "34+22" } {
804        lappend elist2 [string map [list EXPR $e] $el]
805      }
806    }
807    set elist $elist2
808  }
809
810  set x 0
811  foreach e $elist {
812    incr x
813    do_test e_expr-12.3.$tn.$x {
814      set rc [catch { execsql "SELECT $e FROM tblname" } msg]
815    } {0}
816  }
817}
818
819# -- syntax diagram raise-function
820#
821foreach {tn raiseexpr} {
822  1 "RAISE(IGNORE)"
823  2 "RAISE(ROLLBACK, 'error message')"
824  3 "RAISE(ABORT, 'error message')"
825  4 "RAISE(FAIL, 'error message')"
826} {
827  do_execsql_test e_expr-12.4.$tn "
828    CREATE TRIGGER dbname.tr$tn BEFORE DELETE ON tblname BEGIN
829      SELECT $raiseexpr ;
830    END;
831  " {}
832}
833
834#-------------------------------------------------------------------------
835# Test the statements related to the BETWEEN operator.
836#
837# EVIDENCE-OF: R-40079-54503 The BETWEEN operator is logically
838# equivalent to a pair of comparisons. "x BETWEEN y AND z" is equivalent
839# to "x>=y AND x<=z" except that with BETWEEN, the x expression is
840# only evaluated once.
841#
842db func x x
843proc x {} { incr ::xcount ; return [expr $::x] }
844foreach {tn x expr res nEval} {
845  1  10  "x() >= 5 AND x() <= 15"  1  2
846  2  10  "x() BETWEEN 5 AND 15"    1  1
847
848  3   5  "x() >= 5 AND x() <= 5"   1  2
849  4   5  "x() BETWEEN 5 AND 5"     1  1
850} {
851  do_test e_expr-13.1.$tn {
852    set ::xcount 0
853    set a [execsql "SELECT $expr"]
854    list $::xcount $a
855  } [list $nEval $res]
856}
857
858# EVIDENCE-OF: R-05155-34454 The precedence of the BETWEEN operator is
859# the same as the precedence as operators == and != and LIKE and groups
860# left to right.
861#
862# Therefore, BETWEEN groups more tightly than operator "AND", but less
863# so than "<".
864#
865do_execsql_test e_expr-13.2.1  { SELECT 1 == 10 BETWEEN 0 AND 2   }  1
866do_execsql_test e_expr-13.2.2  { SELECT (1 == 10) BETWEEN 0 AND 2 }  1
867do_execsql_test e_expr-13.2.3  { SELECT 1 == (10 BETWEEN 0 AND 2) }  0
868do_execsql_test e_expr-13.2.4  { SELECT  6 BETWEEN 4 AND 8 == 1 }    1
869do_execsql_test e_expr-13.2.5  { SELECT (6 BETWEEN 4 AND 8) == 1 }   1
870do_execsql_test e_expr-13.2.6  { SELECT  6 BETWEEN 4 AND (8 == 1) }  0
871
872do_execsql_test e_expr-13.2.7  { SELECT  5 BETWEEN 0 AND 0  != 1 }   1
873do_execsql_test e_expr-13.2.8  { SELECT (5 BETWEEN 0 AND 0) != 1 }   1
874do_execsql_test e_expr-13.2.9  { SELECT  5 BETWEEN 0 AND (0 != 1) }  0
875do_execsql_test e_expr-13.2.10 { SELECT  1 != 0  BETWEEN 0 AND 2  }  1
876do_execsql_test e_expr-13.2.11 { SELECT (1 != 0) BETWEEN 0 AND 2  }  1
877do_execsql_test e_expr-13.2.12 { SELECT  1 != (0 BETWEEN 0 AND 2) }  0
878
879do_execsql_test e_expr-13.2.13 { SELECT 1 LIKE 10 BETWEEN 0 AND 2   }  1
880do_execsql_test e_expr-13.2.14 { SELECT (1 LIKE 10) BETWEEN 0 AND 2 }  1
881do_execsql_test e_expr-13.2.15 { SELECT 1 LIKE (10 BETWEEN 0 AND 2) }  0
882do_execsql_test e_expr-13.2.16 { SELECT  6 BETWEEN 4 AND 8 LIKE 1   }  1
883do_execsql_test e_expr-13.2.17 { SELECT (6 BETWEEN 4 AND 8) LIKE 1  }  1
884do_execsql_test e_expr-13.2.18 { SELECT  6 BETWEEN 4 AND (8 LIKE 1) }  0
885
886do_execsql_test e_expr-13.2.19 { SELECT 0 AND 0 BETWEEN 0 AND 1   } 0
887do_execsql_test e_expr-13.2.20 { SELECT 0 AND (0 BETWEEN 0 AND 1) } 0
888do_execsql_test e_expr-13.2.21 { SELECT (0 AND 0) BETWEEN 0 AND 1 } 1
889do_execsql_test e_expr-13.2.22 { SELECT 0 BETWEEN -1 AND 1 AND 0   } 0
890do_execsql_test e_expr-13.2.23 { SELECT (0 BETWEEN -1 AND 1) AND 0 } 0
891do_execsql_test e_expr-13.2.24 { SELECT 0 BETWEEN -1 AND (1 AND 0) } 1
892
893do_execsql_test e_expr-13.2.25 { SELECT 2 < 3 BETWEEN 0 AND 1   } 1
894do_execsql_test e_expr-13.2.26 { SELECT (2 < 3) BETWEEN 0 AND 1 } 1
895do_execsql_test e_expr-13.2.27 { SELECT 2 < (3 BETWEEN 0 AND 1) } 0
896do_execsql_test e_expr-13.2.28 { SELECT 2 BETWEEN 1 AND 2 < 3    } 0
897do_execsql_test e_expr-13.2.29 { SELECT 2 BETWEEN 1 AND (2 < 3)  } 0
898do_execsql_test e_expr-13.2.30 { SELECT (2 BETWEEN 1 AND 2) < 3  } 1
899
900#-------------------------------------------------------------------------
901# Test the statements related to the LIKE and GLOB operators.
902#
903# EVIDENCE-OF: R-16584-60189 The LIKE operator does a pattern matching
904# comparison.
905#
906# EVIDENCE-OF: R-11295-04657 The operand to the right of the LIKE
907# operator contains the pattern and the left hand operand contains the
908# string to match against the pattern.
909#
910do_execsql_test e_expr-14.1.1 { SELECT 'abc%' LIKE 'abcde' } 0
911do_execsql_test e_expr-14.1.2 { SELECT 'abcde' LIKE 'abc%' } 1
912
913# EVIDENCE-OF: R-55406-38524 A percent symbol ("%") in the LIKE pattern
914# matches any sequence of zero or more characters in the string.
915#
916do_execsql_test e_expr-14.2.1 { SELECT 'abde'    LIKE 'ab%de' } 1
917do_execsql_test e_expr-14.2.2 { SELECT 'abXde'   LIKE 'ab%de' } 1
918do_execsql_test e_expr-14.2.3 { SELECT 'abABCde' LIKE 'ab%de' } 1
919
920# EVIDENCE-OF: R-30433-25443 An underscore ("_") in the LIKE pattern
921# matches any single character in the string.
922#
923do_execsql_test e_expr-14.3.1 { SELECT 'abde'    LIKE 'ab_de' } 0
924do_execsql_test e_expr-14.3.2 { SELECT 'abXde'   LIKE 'ab_de' } 1
925do_execsql_test e_expr-14.3.3 { SELECT 'abABCde' LIKE 'ab_de' } 0
926
927# EVIDENCE-OF: R-59007-20454 Any other character matches itself or its
928# lower/upper case equivalent (i.e. case-insensitive matching).
929#
930do_execsql_test e_expr-14.4.1 { SELECT 'abc' LIKE 'aBc' } 1
931do_execsql_test e_expr-14.4.2 { SELECT 'aBc' LIKE 'aBc' } 1
932do_execsql_test e_expr-14.4.3 { SELECT 'ac'  LIKE 'aBc' } 0
933
934# EVIDENCE-OF: R-23648-58527 SQLite only understands upper/lower case
935# for ASCII characters by default.
936#
937# EVIDENCE-OF: R-04532-11527 The LIKE operator is case sensitive by
938# default for unicode characters that are beyond the ASCII range.
939#
940# EVIDENCE-OF: R-44381-11669 the expression
941# 'a'&nbsp;LIKE&nbsp;'A' is TRUE but
942# '&aelig;'&nbsp;LIKE&nbsp;'&AElig;' is FALSE.
943#
944#   The restriction to ASCII characters does not apply if the ICU
945#   library is compiled in. When ICU is enabled SQLite does not act
946#   as it does "by default".
947#
948do_execsql_test e_expr-14.5.1 { SELECT 'A' LIKE 'a'         } 1
949ifcapable !icu {
950  do_execsql_test e_expr-14.5.2 "SELECT '\u00c6' LIKE '\u00e6'" 0
951}
952
953# EVIDENCE-OF: R-56683-13731 If the optional ESCAPE clause is present,
954# then the expression following the ESCAPE keyword must evaluate to a
955# string consisting of a single character.
956#
957do_catchsql_test e_expr-14.6.1 {
958  SELECT 'A' LIKE 'a' ESCAPE '12'
959} {1 {ESCAPE expression must be a single character}}
960do_catchsql_test e_expr-14.6.2 {
961  SELECT 'A' LIKE 'a' ESCAPE ''
962} {1 {ESCAPE expression must be a single character}}
963do_catchsql_test e_expr-14.6.3 { SELECT 'A' LIKE 'a' ESCAPE 'x' }    {0 1}
964do_catchsql_test e_expr-14.6.4 "SELECT 'A' LIKE 'a' ESCAPE '\u00e6'" {0 1}
965
966# EVIDENCE-OF: R-02045-23762 This character may be used in the LIKE
967# pattern to include literal percent or underscore characters.
968#
969# EVIDENCE-OF: R-13345-31830 The escape character followed by a percent
970# symbol (%), underscore (_), or a second instance of the escape
971# character itself matches a literal percent symbol, underscore, or a
972# single escape character, respectively.
973#
974do_execsql_test e_expr-14.7.1  { SELECT 'abc%'  LIKE 'abcX%' ESCAPE 'X' } 1
975do_execsql_test e_expr-14.7.2  { SELECT 'abc5'  LIKE 'abcX%' ESCAPE 'X' } 0
976do_execsql_test e_expr-14.7.3  { SELECT 'abc'   LIKE 'abcX%' ESCAPE 'X' } 0
977do_execsql_test e_expr-14.7.4  { SELECT 'abcX%' LIKE 'abcX%' ESCAPE 'X' } 0
978do_execsql_test e_expr-14.7.5  { SELECT 'abc%%' LIKE 'abcX%' ESCAPE 'X' } 0
979
980do_execsql_test e_expr-14.7.6  { SELECT 'abc_'  LIKE 'abcX_' ESCAPE 'X' } 1
981do_execsql_test e_expr-14.7.7  { SELECT 'abc5'  LIKE 'abcX_' ESCAPE 'X' } 0
982do_execsql_test e_expr-14.7.8  { SELECT 'abc'   LIKE 'abcX_' ESCAPE 'X' } 0
983do_execsql_test e_expr-14.7.9  { SELECT 'abcX_' LIKE 'abcX_' ESCAPE 'X' } 0
984do_execsql_test e_expr-14.7.10 { SELECT 'abc__' LIKE 'abcX_' ESCAPE 'X' } 0
985
986do_execsql_test e_expr-14.7.11 { SELECT 'abcX'  LIKE 'abcXX' ESCAPE 'X' } 1
987do_execsql_test e_expr-14.7.12 { SELECT 'abc5'  LIKE 'abcXX' ESCAPE 'X' } 0
988do_execsql_test e_expr-14.7.13 { SELECT 'abc'   LIKE 'abcXX' ESCAPE 'X' } 0
989do_execsql_test e_expr-14.7.14 { SELECT 'abcXX' LIKE 'abcXX' ESCAPE 'X' } 0
990
991# EVIDENCE-OF: R-51359-17496 The infix LIKE operator is implemented by
992# calling the application-defined SQL functions like(Y,X) or like(Y,X,Z).
993#
994proc likefunc {args} {
995  eval lappend ::likeargs $args
996  return 1
997}
998db func like -argcount 2 likefunc
999db func like -argcount 3 likefunc
1000set ::likeargs [list]
1001do_execsql_test e_expr-15.1.1 { SELECT 'abc' LIKE 'def' } 1
1002do_test         e_expr-15.1.2 { set likeargs } {def abc}
1003set ::likeargs [list]
1004do_execsql_test e_expr-15.1.3 { SELECT 'abc' LIKE 'def' ESCAPE 'X' } 1
1005do_test         e_expr-15.1.4 { set likeargs } {def abc X}
1006db close
1007sqlite3 db test.db
1008
1009# EVIDENCE-OF: R-22868-25880 The LIKE operator can be made case
1010# sensitive using the case_sensitive_like pragma.
1011#
1012do_execsql_test e_expr-16.1.1 { SELECT 'abcxyz' LIKE 'ABC%' } 1
1013do_execsql_test e_expr-16.1.2 { PRAGMA case_sensitive_like = 1 } {}
1014do_execsql_test e_expr-16.1.3 { SELECT 'abcxyz' LIKE 'ABC%' } 0
1015do_execsql_test e_expr-16.1.4 { SELECT 'ABCxyz' LIKE 'ABC%' } 1
1016do_execsql_test e_expr-16.1.5 { PRAGMA case_sensitive_like = 0 } {}
1017do_execsql_test e_expr-16.1.6 { SELECT 'abcxyz' LIKE 'ABC%' } 1
1018do_execsql_test e_expr-16.1.7 { SELECT 'ABCxyz' LIKE 'ABC%' } 1
1019
1020# EVIDENCE-OF: R-52087-12043 The GLOB operator is similar to LIKE but
1021# uses the Unix file globbing syntax for its wildcards.
1022#
1023# EVIDENCE-OF: R-09813-17279 Also, GLOB is case sensitive, unlike LIKE.
1024#
1025do_execsql_test e_expr-17.1.1 { SELECT 'abcxyz' GLOB 'abc%' } 0
1026do_execsql_test e_expr-17.1.2 { SELECT 'abcxyz' GLOB 'abc*' } 1
1027do_execsql_test e_expr-17.1.3 { SELECT 'abcxyz' GLOB 'abc___' } 0
1028do_execsql_test e_expr-17.1.4 { SELECT 'abcxyz' GLOB 'abc???' } 1
1029
1030do_execsql_test e_expr-17.1.5 { SELECT 'abcxyz' GLOB 'abc*' } 1
1031do_execsql_test e_expr-17.1.6 { SELECT 'ABCxyz' GLOB 'abc*' } 0
1032do_execsql_test e_expr-17.1.7 { SELECT 'abcxyz' GLOB 'ABC*' } 0
1033
1034# EVIDENCE-OF: R-39616-20555 Both GLOB and LIKE may be preceded by the
1035# NOT keyword to invert the sense of the test.
1036#
1037do_execsql_test e_expr-17.2.1 { SELECT 'abcxyz' NOT GLOB 'ABC*' } 1
1038do_execsql_test e_expr-17.2.2 { SELECT 'abcxyz' NOT GLOB 'abc*' } 0
1039do_execsql_test e_expr-17.2.3 { SELECT 'abcxyz' NOT LIKE 'ABC%' } 0
1040do_execsql_test e_expr-17.2.4 { SELECT 'abcxyz' NOT LIKE 'abc%' } 0
1041do_execsql_test e_expr-17.2.5 { SELECT 'abdxyz' NOT LIKE 'abc%' } 1
1042
1043db nullvalue null
1044do_execsql_test e_expr-17.2.6 { SELECT 'abcxyz' NOT GLOB NULL } null
1045do_execsql_test e_expr-17.2.7 { SELECT 'abcxyz' NOT LIKE NULL } null
1046do_execsql_test e_expr-17.2.8 { SELECT NULL NOT GLOB 'abc*' } null
1047do_execsql_test e_expr-17.2.9 { SELECT NULL NOT LIKE 'ABC%' } null
1048db nullvalue {}
1049
1050# EVIDENCE-OF: R-39414-35489 The infix GLOB operator is implemented by
1051# calling the function glob(Y,X) and can be modified by overriding that
1052# function.
1053proc globfunc {args} {
1054  eval lappend ::globargs $args
1055  return 1
1056}
1057db func glob -argcount 2 globfunc
1058set ::globargs [list]
1059do_execsql_test e_expr-17.3.1 { SELECT 'abc' GLOB 'def' } 1
1060do_test         e_expr-17.3.2 { set globargs } {def abc}
1061set ::globargs [list]
1062do_execsql_test e_expr-17.3.3 { SELECT 'X' NOT GLOB 'Y' } 0
1063do_test         e_expr-17.3.4 { set globargs } {Y X}
1064sqlite3 db test.db
1065
1066# EVIDENCE-OF: R-41650-20872 No regexp() user function is defined by
1067# default and so use of the REGEXP operator will normally result in an
1068# error message.
1069#
1070#   There is a regexp function if ICU is enabled though.
1071#
1072ifcapable !icu {
1073  do_catchsql_test e_expr-18.1.1 {
1074    SELECT regexp('abc', 'def')
1075  } {1 {no such function: regexp}}
1076  do_catchsql_test e_expr-18.1.2 {
1077    SELECT 'abc' REGEXP 'def'
1078  } {1 {no such function: REGEXP}}
1079}
1080
1081# EVIDENCE-OF: R-33693-50180 The REGEXP operator is a special syntax for
1082# the regexp() user function.
1083#
1084# EVIDENCE-OF: R-65524-61849 If an application-defined SQL function
1085# named "regexp" is added at run-time, then the "X REGEXP Y" operator
1086# will be implemented as a call to "regexp(Y,X)".
1087#
1088proc regexpfunc {args} {
1089  eval lappend ::regexpargs $args
1090  return 1
1091}
1092db func regexp -argcount 2 regexpfunc
1093set ::regexpargs [list]
1094do_execsql_test e_expr-18.2.1 { SELECT 'abc' REGEXP 'def' } 1
1095do_test         e_expr-18.2.2 { set regexpargs } {def abc}
1096set ::regexpargs [list]
1097do_execsql_test e_expr-18.2.3 { SELECT 'X' NOT REGEXP 'Y' } 0
1098do_test         e_expr-18.2.4 { set regexpargs } {Y X}
1099sqlite3 db test.db
1100
1101# EVIDENCE-OF: R-42037-37826 The default match() function implementation
1102# raises an exception and is not really useful for anything.
1103#
1104do_catchsql_test e_expr-19.1.1 {
1105  SELECT 'abc' MATCH 'def'
1106} {1 {unable to use function MATCH in the requested context}}
1107do_catchsql_test e_expr-19.1.2 {
1108  SELECT match('abc', 'def')
1109} {1 {unable to use function MATCH in the requested context}}
1110
1111# EVIDENCE-OF: R-37916-47407 The MATCH operator is a special syntax for
1112# the match() application-defined function.
1113#
1114# EVIDENCE-OF: R-06021-09373 But extensions can override the match()
1115# function with more helpful logic.
1116#
1117proc matchfunc {args} {
1118  eval lappend ::matchargs $args
1119  return 1
1120}
1121db func match -argcount 2 matchfunc
1122set ::matchargs [list]
1123do_execsql_test e_expr-19.2.1 { SELECT 'abc' MATCH 'def' } 1
1124do_test         e_expr-19.2.2 { set matchargs } {def abc}
1125set ::matchargs [list]
1126do_execsql_test e_expr-19.2.3 { SELECT 'X' NOT MATCH 'Y' } 0
1127do_test         e_expr-19.2.4 { set matchargs } {Y X}
1128sqlite3 db test.db
1129
1130#-------------------------------------------------------------------------
1131# Test cases for the testable statements related to the CASE expression.
1132#
1133# EVIDENCE-OF: R-15199-61389 There are two basic forms of the CASE
1134# expression: those with a base expression and those without.
1135#
1136do_execsql_test e_expr-20.1 {
1137  SELECT CASE WHEN 1 THEN 'true' WHEN 0 THEN 'false' ELSE 'else' END;
1138} {true}
1139do_execsql_test e_expr-20.2 {
1140  SELECT CASE 0 WHEN 1 THEN 'true' WHEN 0 THEN 'false' ELSE 'else' END;
1141} {false}
1142
1143proc var {nm} {
1144  lappend ::varlist $nm
1145  return [set "::$nm"]
1146}
1147db func var var
1148
1149# EVIDENCE-OF: R-30638-59954 In a CASE without a base expression, each
1150# WHEN expression is evaluated and the result treated as a boolean,
1151# starting with the leftmost and continuing to the right.
1152#
1153foreach {a b c} {0 0 0} break
1154set varlist [list]
1155do_execsql_test e_expr-21.1.1 {
1156  SELECT CASE WHEN var('a') THEN 'A'
1157              WHEN var('b') THEN 'B'
1158              WHEN var('c') THEN 'C' END
1159} {{}}
1160do_test e_expr-21.1.2 { set varlist } {a b c}
1161set varlist [list]
1162do_execsql_test e_expr-21.1.3 {
1163  SELECT CASE WHEN var('c') THEN 'C'
1164              WHEN var('b') THEN 'B'
1165              WHEN var('a') THEN 'A'
1166              ELSE 'no result'
1167  END
1168} {{no result}}
1169do_test e_expr-21.1.4 { set varlist } {c b a}
1170
1171# EVIDENCE-OF: R-39009-25596 The result of the CASE expression is the
1172# evaluation of the THEN expression that corresponds to the first WHEN
1173# expression that evaluates to true.
1174#
1175foreach {a b c} {0 1 0} break
1176do_execsql_test e_expr-21.2.1 {
1177  SELECT CASE WHEN var('a') THEN 'A'
1178              WHEN var('b') THEN 'B'
1179              WHEN var('c') THEN 'C'
1180              ELSE 'no result'
1181  END
1182} {B}
1183foreach {a b c} {0 1 1} break
1184do_execsql_test e_expr-21.2.2 {
1185  SELECT CASE WHEN var('a') THEN 'A'
1186              WHEN var('b') THEN 'B'
1187              WHEN var('c') THEN 'C'
1188              ELSE 'no result'
1189  END
1190} {B}
1191foreach {a b c} {0 0 1} break
1192do_execsql_test e_expr-21.2.3 {
1193  SELECT CASE WHEN var('a') THEN 'A'
1194              WHEN var('b') THEN 'B'
1195              WHEN var('c') THEN 'C'
1196              ELSE 'no result'
1197  END
1198} {C}
1199
1200# EVIDENCE-OF: R-24227-04807 Or, if none of the WHEN expressions
1201# evaluate to true, the result of evaluating the ELSE expression, if
1202# any.
1203#
1204foreach {a b c} {0 0 0} break
1205do_execsql_test e_expr-21.3.1 {
1206  SELECT CASE WHEN var('a') THEN 'A'
1207              WHEN var('b') THEN 'B'
1208              WHEN var('c') THEN 'C'
1209              ELSE 'no result'
1210  END
1211} {{no result}}
1212
1213# EVIDENCE-OF: R-14168-07579 If there is no ELSE expression and none of
1214# the WHEN expressions are true, then the overall result is NULL.
1215#
1216db nullvalue null
1217do_execsql_test e_expr-21.3.2 {
1218  SELECT CASE WHEN var('a') THEN 'A'
1219              WHEN var('b') THEN 'B'
1220              WHEN var('c') THEN 'C'
1221  END
1222} {null}
1223db nullvalue {}
1224
1225# EVIDENCE-OF: R-13943-13592 A NULL result is considered untrue when
1226# evaluating WHEN terms.
1227#
1228do_execsql_test e_expr-21.4.1 {
1229  SELECT CASE WHEN NULL THEN 'A' WHEN 1 THEN 'B' END
1230} {B}
1231do_execsql_test e_expr-21.4.2 {
1232  SELECT CASE WHEN 0 THEN 'A' WHEN NULL THEN 'B' ELSE 'C' END
1233} {C}
1234
1235# EVIDENCE-OF: R-38620-19499 In a CASE with a base expression, the base
1236# expression is evaluated just once and the result is compared against
1237# the evaluation of each WHEN expression from left to right.
1238#
1239# Note: This test case tests the "evaluated just once" part of the above
1240# statement. Tests associated with the next two statements test that the
1241# comparisons take place.
1242#
1243foreach {a b c} [list [expr 3] [expr 4] [expr 5]] break
1244set ::varlist [list]
1245do_execsql_test e_expr-22.1.1 {
1246  SELECT CASE var('a') WHEN 1 THEN 'A' WHEN 2 THEN 'B' WHEN 3 THEN 'C' END
1247} {C}
1248do_test e_expr-22.1.2 { set ::varlist } {a}
1249
1250# EVIDENCE-OF: R-07667-49537 The result of the CASE expression is the
1251# evaluation of the THEN expression that corresponds to the first WHEN
1252# expression for which the comparison is true.
1253#
1254do_execsql_test e_expr-22.2.1 {
1255  SELECT CASE 23 WHEN 1 THEN 'A' WHEN 23 THEN 'B' WHEN 23 THEN 'C' END
1256} {B}
1257do_execsql_test e_expr-22.2.2 {
1258  SELECT CASE 1 WHEN 1 THEN 'A' WHEN 23 THEN 'B' WHEN 23 THEN 'C' END
1259} {A}
1260
1261# EVIDENCE-OF: R-47543-32145 Or, if none of the WHEN expressions
1262# evaluate to a value equal to the base expression, the result of
1263# evaluating the ELSE expression, if any.
1264#
1265do_execsql_test e_expr-22.3.1 {
1266  SELECT CASE 24 WHEN 1 THEN 'A' WHEN 23 THEN 'B' WHEN 23 THEN 'C' ELSE 'D' END
1267} {D}
1268
1269# EVIDENCE-OF: R-54721-48557 If there is no ELSE expression and none of
1270# the WHEN expressions produce a result equal to the base expression,
1271# the overall result is NULL.
1272#
1273do_execsql_test e_expr-22.4.1 {
1274  SELECT CASE 24 WHEN 1 THEN 'A' WHEN 23 THEN 'B' WHEN 23 THEN 'C' END
1275} {{}}
1276db nullvalue null
1277do_execsql_test e_expr-22.4.2 {
1278  SELECT CASE 24 WHEN 1 THEN 'A' WHEN 23 THEN 'B' WHEN 23 THEN 'C' END
1279} {null}
1280db nullvalue {}
1281
1282# EVIDENCE-OF: R-11479-62774 When comparing a base expression against a
1283# WHEN expression, the same collating sequence, affinity, and
1284# NULL-handling rules apply as if the base expression and WHEN
1285# expression are respectively the left- and right-hand operands of an =
1286# operator.
1287#
1288proc rev {str} {
1289  set ret ""
1290  set chars [split $str]
1291  for {set i [expr [llength $chars]-1]} {$i>=0} {incr i -1} {
1292    append ret [lindex $chars $i]
1293  }
1294  set ret
1295}
1296proc reverse {lhs rhs} {
1297  string compare [rev $lhs] [rev $rhs]
1298}
1299db collate reverse reverse
1300do_execsql_test e_expr-23.1.1 {
1301  CREATE TABLE t1(
1302    a TEXT     COLLATE NOCASE,
1303    b          COLLATE REVERSE,
1304    c INTEGER,
1305    d BLOB
1306  );
1307  INSERT INTO t1 VALUES('abc', 'cba', 55, 34.5);
1308} {}
1309do_execsql_test e_expr-23.1.2 {
1310  SELECT CASE a WHEN 'xyz' THEN 'A' WHEN 'AbC' THEN 'B' END FROM t1
1311} {B}
1312do_execsql_test e_expr-23.1.3 {
1313  SELECT CASE 'AbC' WHEN 'abc' THEN 'A' WHEN a THEN 'B' END FROM t1
1314} {B}
1315do_execsql_test e_expr-23.1.4 {
1316  SELECT CASE a WHEN b THEN 'A' ELSE 'B' END FROM t1
1317} {B}
1318do_execsql_test e_expr-23.1.5 {
1319  SELECT CASE b WHEN a THEN 'A' ELSE 'B' END FROM t1
1320} {B}
1321do_execsql_test e_expr-23.1.6 {
1322  SELECT CASE 55 WHEN '55' THEN 'A' ELSE 'B' END
1323} {B}
1324do_execsql_test e_expr-23.1.7 {
1325  SELECT CASE c WHEN '55' THEN 'A' ELSE 'B' END FROM t1
1326} {A}
1327do_execsql_test e_expr-23.1.8 {
1328  SELECT CASE '34.5' WHEN d THEN 'A' ELSE 'B' END FROM t1
1329} {B}
1330do_execsql_test e_expr-23.1.9 {
1331  SELECT CASE NULL WHEN NULL THEN 'A' ELSE 'B' END
1332} {B}
1333
1334# EVIDENCE-OF: R-37304-39405 If the base expression is NULL then the
1335# result of the CASE is always the result of evaluating the ELSE
1336# expression if it exists, or NULL if it does not.
1337#
1338do_execsql_test e_expr-24.1.1 {
1339  SELECT CASE NULL WHEN 'abc' THEN 'A' WHEN 'def' THEN 'B' END;
1340} {{}}
1341do_execsql_test e_expr-24.1.2 {
1342  SELECT CASE NULL WHEN 'abc' THEN 'A' WHEN 'def' THEN 'B' ELSE 'C' END;
1343} {C}
1344
1345# EVIDENCE-OF: R-56280-17369 Both forms of the CASE expression use lazy,
1346# or short-circuit, evaluation.
1347#
1348set varlist [list]
1349foreach {a b c} {0 1 0} break
1350do_execsql_test e_expr-25.1.1 {
1351  SELECT CASE WHEN var('a') THEN 'A'
1352              WHEN var('b') THEN 'B'
1353              WHEN var('c') THEN 'C'
1354  END
1355} {B}
1356do_test e_expr-25.1.2 { set ::varlist } {a b}
1357set varlist [list]
1358do_execsql_test e_expr-25.1.3 {
1359  SELECT CASE '0' WHEN var('a') THEN 'A'
1360                  WHEN var('b') THEN 'B'
1361                  WHEN var('c') THEN 'C'
1362  END
1363} {A}
1364do_test e_expr-25.1.4 { set ::varlist } {a}
1365
1366# EVIDENCE-OF: R-34773-62253 The only difference between the following
1367# two CASE expressions is that the x expression is evaluated exactly
1368# once in the first example but might be evaluated multiple times in the
1369# second: CASE x WHEN w1 THEN r1 WHEN w2 THEN r2 ELSE r3 END CASE WHEN
1370# x=w1 THEN r1 WHEN x=w2 THEN r2 ELSE r3 END
1371#
1372proc ceval {x} {
1373  incr ::evalcount
1374  return $x
1375}
1376db func ceval ceval
1377set ::evalcount 0
1378
1379do_execsql_test e_expr-26.1.1 {
1380  CREATE TABLE t2(x, w1, r1, w2, r2, r3);
1381  INSERT INTO t2 VALUES(1, 1, 'R1', 2, 'R2', 'R3');
1382  INSERT INTO t2 VALUES(2, 1, 'R1', 2, 'R2', 'R3');
1383  INSERT INTO t2 VALUES(3, 1, 'R1', 2, 'R2', 'R3');
1384} {}
1385do_execsql_test e_expr-26.1.2 {
1386  SELECT CASE x WHEN w1 THEN r1 WHEN w2 THEN r2 ELSE r3 END FROM t2
1387} {R1 R2 R3}
1388do_execsql_test e_expr-26.1.3 {
1389  SELECT CASE WHEN x=w1 THEN r1 WHEN x=w2 THEN r2 ELSE r3 END FROM t2
1390} {R1 R2 R3}
1391
1392do_execsql_test e_expr-26.1.4 {
1393  SELECT CASE ceval(x) WHEN w1 THEN r1 WHEN w2 THEN r2 ELSE r3 END FROM t2
1394} {R1 R2 R3}
1395do_test e_expr-26.1.5 { set ::evalcount } {3}
1396set ::evalcount 0
1397do_execsql_test e_expr-26.1.6 {
1398  SELECT CASE
1399    WHEN ceval(x)=w1 THEN r1
1400    WHEN ceval(x)=w2 THEN r2
1401    ELSE r3 END
1402  FROM t2
1403} {R1 R2 R3}
1404do_test e_expr-26.1.6 { set ::evalcount } {5}
1405
1406
1407#-------------------------------------------------------------------------
1408# Test statements related to CAST expressions.
1409#
1410# EVIDENCE-OF: R-20854-17109 A CAST conversion is similar to the
1411# conversion that takes place when a column affinity is applied to a
1412# value except that with the CAST operator the conversion always takes
1413# place even if the conversion lossy and irreversible, whereas column
1414# affinity only changes the data type of a value if the change is
1415# lossless and reversible.
1416#
1417do_execsql_test e_expr-27.1.1 {
1418  CREATE TABLE t3(a TEXT, b REAL, c INTEGER);
1419  INSERT INTO t3 VALUES(X'555655', '1.23abc', 4.5);
1420  SELECT typeof(a), a, typeof(b), b, typeof(c), c FROM t3;
1421} {blob UVU text 1.23abc real 4.5}
1422do_execsql_test e_expr-27.1.2 {
1423  SELECT
1424    typeof(CAST(X'555655' as TEXT)), CAST(X'555655' as TEXT),
1425    typeof(CAST('1.23abc' as REAL)), CAST('1.23abc' as REAL),
1426    typeof(CAST(4.5 as INTEGER)), CAST(4.5 as INTEGER)
1427} {text UVU real 1.23 integer 4}
1428
1429# EVIDENCE-OF: R-32434-09092 If the value of expr is NULL, then the
1430# result of the CAST expression is also NULL.
1431#
1432do_expr_test e_expr-27.2.1 { CAST(NULL AS integer) } null {}
1433do_expr_test e_expr-27.2.2 { CAST(NULL AS text) }    null {}
1434do_expr_test e_expr-27.2.3 { CAST(NULL AS blob) }    null {}
1435do_expr_test e_expr-27.2.4 { CAST(NULL AS number) }  null {}
1436
1437# EVIDENCE-OF: R-43522-35548 Casting a value to a type-name with no
1438# affinity causes the value to be converted into a BLOB.
1439#
1440do_expr_test e_expr-27.3.1 { CAST('abc' AS blob)       } blob abc
1441do_expr_test e_expr-27.3.2 { CAST('def' AS shobblob_x) } blob def
1442do_expr_test e_expr-27.3.3 { CAST('ghi' AS abbLOb10)   } blob ghi
1443
1444# EVIDENCE-OF: R-22956-37754 Casting to a BLOB consists of first casting
1445# the value to TEXT in the encoding of the database connection, then
1446# interpreting the resulting byte sequence as a BLOB instead of as TEXT.
1447#
1448do_qexpr_test e_expr-27.4.1 { CAST('ghi' AS blob) } X'676869'
1449do_qexpr_test e_expr-27.4.2 { CAST(456 AS blob) }   X'343536'
1450do_qexpr_test e_expr-27.4.3 { CAST(1.78 AS blob) }  X'312E3738'
1451rename db db2
1452sqlite3 db :memory:
1453ifcapable {utf16} {
1454db eval { PRAGMA encoding = 'utf-16le' }
1455do_qexpr_test e_expr-27.4.4 { CAST('ghi' AS blob) } X'670068006900'
1456do_qexpr_test e_expr-27.4.5 { CAST(456 AS blob) }   X'340035003600'
1457do_qexpr_test e_expr-27.4.6 { CAST(1.78 AS blob) }  X'31002E0037003800'
1458}
1459db close
1460sqlite3 db :memory:
1461db eval { PRAGMA encoding = 'utf-16be' }
1462ifcapable {utf16} {
1463do_qexpr_test e_expr-27.4.7 { CAST('ghi' AS blob) } X'006700680069'
1464do_qexpr_test e_expr-27.4.8 { CAST(456 AS blob) }   X'003400350036'
1465do_qexpr_test e_expr-27.4.9 { CAST(1.78 AS blob) }  X'0031002E00370038'
1466}
1467db close
1468rename db2 db
1469
1470# EVIDENCE-OF: R-04207-37981 To cast a BLOB value to TEXT, the sequence
1471# of bytes that make up the BLOB is interpreted as text encoded using
1472# the database encoding.
1473#
1474do_expr_test e_expr-28.1.1 { CAST (X'676869' AS text) } text ghi
1475do_expr_test e_expr-28.1.2 { CAST (X'670068006900' AS text) } text g
1476rename db db2
1477sqlite3 db :memory:
1478db eval { PRAGMA encoding = 'utf-16le' }
1479ifcapable {utf16} {
1480do_expr_test e_expr-28.1.3 { CAST (X'676869' AS text) == 'ghi' } integer 0
1481do_expr_test e_expr-28.1.4 { CAST (X'670068006900' AS text) } text ghi
1482}
1483db close
1484rename db2 db
1485
1486# EVIDENCE-OF: R-22235-47006 Casting an INTEGER or REAL value into TEXT
1487# renders the value as if via sqlite3_snprintf() except that the
1488# resulting TEXT uses the encoding of the database connection.
1489#
1490do_expr_test e_expr-28.2.1 { CAST (1 AS text)   }     text 1
1491do_expr_test e_expr-28.2.2 { CAST (45 AS text)  }     text 45
1492do_expr_test e_expr-28.2.3 { CAST (-45 AS text) }     text -45
1493do_expr_test e_expr-28.2.4 { CAST (8.8 AS text)    }  text 8.8
1494do_expr_test e_expr-28.2.5 { CAST (2.3e+5 AS text) }  text 230000.0
1495do_expr_test e_expr-28.2.6 { CAST (-2.3e-5 AS text) } text -2.3e-05
1496do_expr_test e_expr-28.2.7 { CAST (0.0 AS text) }     text 0.0
1497do_expr_test e_expr-28.2.7 { CAST (0 AS text) }       text 0
1498
1499# EVIDENCE-OF: R-26346-36443 When casting a BLOB value to a REAL, the
1500# value is first converted to TEXT.
1501#
1502do_expr_test e_expr-29.1.1 { CAST (X'312E3233' AS REAL) } real 1.23
1503do_expr_test e_expr-29.1.2 { CAST (X'3233302E30' AS REAL) } real 230.0
1504do_expr_test e_expr-29.1.3 { CAST (X'2D392E3837' AS REAL) } real -9.87
1505do_expr_test e_expr-29.1.4 { CAST (X'302E30303031' AS REAL) } real 0.0001
1506rename db db2
1507sqlite3 db :memory:
1508ifcapable {utf16} {
1509db eval { PRAGMA encoding = 'utf-16le' }
1510do_expr_test e_expr-29.1.5 {
1511    CAST (X'31002E0032003300' AS REAL) } real 1.23
1512do_expr_test e_expr-29.1.6 {
1513    CAST (X'3200330030002E003000' AS REAL) } real 230.0
1514do_expr_test e_expr-29.1.7 {
1515    CAST (X'2D0039002E0038003700' AS REAL) } real -9.87
1516do_expr_test e_expr-29.1.8 {
1517    CAST (X'30002E003000300030003100' AS REAL) } real 0.0001
1518}
1519db close
1520rename db2 db
1521
1522# EVIDENCE-OF: R-54898-34554 When casting a TEXT value to REAL, the
1523# longest possible prefix of the value that can be interpreted as a real
1524# number is extracted from the TEXT value and the remainder ignored.
1525#
1526do_expr_test e_expr-29.2.1 { CAST('1.23abcd' AS REAL) } real 1.23
1527do_expr_test e_expr-29.2.2 { CAST('1.45.23abcd' AS REAL) } real 1.45
1528do_expr_test e_expr-29.2.3 { CAST('-2.12e-01ABC' AS REAL) } real -0.212
1529do_expr_test e_expr-29.2.4 { CAST('1 2 3 4' AS REAL) } real 1.0
1530
1531# EVIDENCE-OF: R-11321-47427 Any leading spaces in the TEXT value are
1532# ignored when converging from TEXT to REAL.
1533#
1534do_expr_test e_expr-29.3.1 { CAST(' 1.23abcd' AS REAL) } real 1.23
1535do_expr_test e_expr-29.3.2 { CAST('    1.45.23abcd' AS REAL) } real 1.45
1536do_expr_test e_expr-29.3.3 { CAST('   -2.12e-01ABC' AS REAL) } real -0.212
1537do_expr_test e_expr-29.3.4 { CAST(' 1 2 3 4' AS REAL) } real 1.0
1538
1539# EVIDENCE-OF: R-22662-28218 If there is no prefix that can be
1540# interpreted as a real number, the result of the conversion is 0.0.
1541#
1542do_expr_test e_expr-29.4.1 { CAST('' AS REAL) } real 0.0
1543do_expr_test e_expr-29.4.2 { CAST('not a number' AS REAL) } real 0.0
1544do_expr_test e_expr-29.4.3 { CAST('XXI' AS REAL) } real 0.0
1545
1546# EVIDENCE-OF: R-21829-14563 When casting a BLOB value to INTEGER, the
1547# value is first converted to TEXT.
1548#
1549do_expr_test e_expr-30.1.1 { CAST(X'313233' AS INTEGER) } integer 123
1550do_expr_test e_expr-30.1.2 { CAST(X'2D363738' AS INTEGER) } integer -678
1551do_expr_test e_expr-30.1.3 {
1552  CAST(X'31303030303030' AS INTEGER)
1553} integer 1000000
1554do_expr_test e_expr-30.1.4 {
1555  CAST(X'2D31313235383939393036383432363234' AS INTEGER)
1556} integer -1125899906842624
1557
1558rename db db2
1559sqlite3 db :memory:
1560ifcapable {utf16} {
1561execsql { PRAGMA encoding = 'utf-16be' }
1562do_expr_test e_expr-30.1.5 { CAST(X'003100320033' AS INTEGER) } integer 123
1563do_expr_test e_expr-30.1.6 { CAST(X'002D003600370038' AS INTEGER) } integer -678
1564do_expr_test e_expr-30.1.7 {
1565  CAST(X'0031003000300030003000300030' AS INTEGER)
1566} integer 1000000
1567do_expr_test e_expr-30.1.8 {
1568  CAST(X'002D0031003100320035003800390039003900300036003800340032003600320034' AS INTEGER)
1569} integer -1125899906842624
1570}
1571db close
1572rename db2 db
1573
1574# EVIDENCE-OF: R-47612-45842 When casting a TEXT value to INTEGER, the
1575# longest possible prefix of the value that can be interpreted as an
1576# integer number is extracted from the TEXT value and the remainder
1577# ignored.
1578#
1579do_expr_test e_expr-30.2.1 { CAST('123abcd' AS INT) } integer 123
1580do_expr_test e_expr-30.2.2 { CAST('14523abcd' AS INT) } integer 14523
1581do_expr_test e_expr-30.2.3 { CAST('-2.12e-01ABC' AS INT) } integer -2
1582do_expr_test e_expr-30.2.4 { CAST('1 2 3 4' AS INT) } integer 1
1583
1584# EVIDENCE-OF: R-34400-33772 Any leading spaces in the TEXT value when
1585# converting from TEXT to INTEGER are ignored.
1586#
1587do_expr_test e_expr-30.3.1 { CAST('   123abcd' AS INT) } integer 123
1588do_expr_test e_expr-30.3.2 { CAST('  14523abcd' AS INT) } integer 14523
1589do_expr_test e_expr-30.3.3 { CAST(' -2.12e-01ABC' AS INT) } integer -2
1590do_expr_test e_expr-30.3.4 { CAST('     1 2 3 4' AS INT) } integer 1
1591
1592# EVIDENCE-OF: R-43164-44276 If there is no prefix that can be
1593# interpreted as an integer number, the result of the conversion is 0.
1594#
1595do_expr_test e_expr-30.4.1 { CAST('' AS INTEGER) } integer 0
1596do_expr_test e_expr-30.4.2 { CAST('not a number' AS INTEGER) } integer 0
1597do_expr_test e_expr-30.4.3 { CAST('XXI' AS INTEGER) } integer 0
1598
1599# EVIDENCE-OF: R-08980-53124 The CAST operator understands decimal
1600# integers only &mdash; conversion of hexadecimal integers stops at
1601# the "x" in the "0x" prefix of the hexadecimal integer string and thus
1602# result of the CAST is always zero.
1603do_expr_test e_expr-30.5.1 { CAST('0x1234' AS INTEGER) } integer 0
1604do_expr_test e_expr-30.5.2 { CAST('0X1234' AS INTEGER) } integer 0
1605
1606# EVIDENCE-OF: R-02752-50091 A cast of a REAL value into an INTEGER
1607# results in the integer between the REAL value and zero that is closest
1608# to the REAL value.
1609#
1610do_expr_test e_expr-31.1.1 { CAST(3.14159 AS INTEGER) } integer 3
1611do_expr_test e_expr-31.1.2 { CAST(1.99999 AS INTEGER) } integer 1
1612do_expr_test e_expr-31.1.3 { CAST(-1.99999 AS INTEGER) } integer -1
1613do_expr_test e_expr-31.1.4 { CAST(-0.99999 AS INTEGER) } integer 0
1614
1615# EVIDENCE-OF: R-51517-40824 If a REAL is greater than the greatest
1616# possible signed integer (+9223372036854775807) then the result is the
1617# greatest possible signed integer and if the REAL is less than the
1618# least possible signed integer (-9223372036854775808) then the result
1619# is the least possible signed integer.
1620#
1621do_expr_test e_expr-31.2.1 { CAST(2e+50 AS INT) } integer 9223372036854775807
1622do_expr_test e_expr-31.2.2 { CAST(-2e+50 AS INT) } integer -9223372036854775808
1623do_expr_test e_expr-31.2.3 {
1624  CAST(-9223372036854775809.0 AS INT)
1625} integer -9223372036854775808
1626do_expr_test e_expr-31.2.4 {
1627  CAST(9223372036854775809.0 AS INT)
1628} integer 9223372036854775807
1629
1630
1631# EVIDENCE-OF: R-09295-61337 Casting a TEXT or BLOB value into NUMERIC
1632# first does a forced conversion into REAL but then further converts the
1633# result into INTEGER if and only if the conversion from REAL to INTEGER
1634# is lossless and reversible.
1635#
1636do_expr_test e_expr-32.1.1 { CAST('45'   AS NUMERIC)  } integer 45
1637do_expr_test e_expr-32.1.2 { CAST('45.0' AS NUMERIC)  } integer 45
1638do_expr_test e_expr-32.1.3 { CAST('45.2' AS NUMERIC)  } real 45.2
1639do_expr_test e_expr-32.1.4 { CAST('11abc' AS NUMERIC) } integer 11
1640do_expr_test e_expr-32.1.5 { CAST('11.1abc' AS NUMERIC) } real 11.1
1641
1642# EVIDENCE-OF: R-30347-18702 Casting a REAL or INTEGER value to NUMERIC
1643# is a no-op, even if a real value could be losslessly converted to an
1644# integer.
1645#
1646do_expr_test e_expr-32.2.1 { CAST(13.0 AS NUMERIC) } real 13.0
1647do_expr_test e_expr-32.2.2 { CAST(13.5 AS NUMERIC) } real 13.5
1648
1649do_expr_test e_expr-32.2.3 {
1650  CAST(-9223372036854775808 AS NUMERIC)
1651} integer -9223372036854775808
1652do_expr_test e_expr-32.2.4 {
1653  CAST(9223372036854775807 AS NUMERIC)
1654} integer 9223372036854775807
1655
1656# EVIDENCE-OF: R-64550-29191 Note that the result from casting any
1657# non-BLOB value into a BLOB and the result from casting any BLOB value
1658# into a non-BLOB value may be different depending on whether the
1659# database encoding is UTF-8, UTF-16be, or UTF-16le.
1660#
1661ifcapable {utf16} {
1662sqlite3 db1 :memory: ; db1 eval { PRAGMA encoding = 'utf-8' }
1663sqlite3 db2 :memory: ; db2 eval { PRAGMA encoding = 'utf-16le' }
1664sqlite3 db3 :memory: ; db3 eval { PRAGMA encoding = 'utf-16be' }
1665foreach {tn castexpr differs} {
1666  1 { CAST(123 AS BLOB)    } 1
1667  2 { CAST('' AS BLOB)     } 0
1668  3 { CAST('abcd' AS BLOB) } 1
1669
1670  4 { CAST(X'abcd' AS TEXT) } 1
1671  5 { CAST(X'' AS TEXT)     } 0
1672} {
1673  set r1 [db1 eval "SELECT typeof($castexpr), quote($castexpr)"]
1674  set r2 [db2 eval "SELECT typeof($castexpr), quote($castexpr)"]
1675  set r3 [db3 eval "SELECT typeof($castexpr), quote($castexpr)"]
1676
1677  if {$differs} {
1678    set res [expr {$r1!=$r2 && $r2!=$r3}]
1679  } else {
1680    set res [expr {$r1==$r2 && $r2==$r3}]
1681  }
1682
1683  do_test e_expr-33.1.$tn {set res} 1
1684}
1685db1 close
1686db2 close
1687db3 close
1688}
1689
1690#-------------------------------------------------------------------------
1691# Test statements related to the EXISTS and NOT EXISTS operators.
1692#
1693catch { db close }
1694forcedelete test.db
1695sqlite3 db test.db
1696
1697do_execsql_test e_expr-34.1 {
1698  CREATE TABLE t1(a, b);
1699  INSERT INTO t1 VALUES(1, 2);
1700  INSERT INTO t1 VALUES(NULL, 2);
1701  INSERT INTO t1 VALUES(1, NULL);
1702  INSERT INTO t1 VALUES(NULL, NULL);
1703} {}
1704
1705# EVIDENCE-OF: R-25588-27181 The EXISTS operator always evaluates to one
1706# of the integer values 0 and 1.
1707#
1708# This statement is not tested by itself. Instead, all e_expr-34.* tests
1709# following this point explicitly test that specific invocations of EXISTS
1710# return either integer 0 or integer 1.
1711#
1712
1713# EVIDENCE-OF: R-58553-63740 If executing the SELECT statement specified
1714# as the right-hand operand of the EXISTS operator would return one or
1715# more rows, then the EXISTS operator evaluates to 1.
1716#
1717foreach {tn expr} {
1718    1 { EXISTS ( SELECT a FROM t1 ) }
1719    2 { EXISTS ( SELECT b FROM t1 ) }
1720    3 { EXISTS ( SELECT 24 ) }
1721    4 { EXISTS ( SELECT NULL ) }
1722    5 { EXISTS ( SELECT a FROM t1 WHERE a IS NULL ) }
1723} {
1724  do_expr_test e_expr-34.2.$tn $expr integer 1
1725}
1726
1727# EVIDENCE-OF: R-19673-40972 If executing the SELECT would return no
1728# rows at all, then the EXISTS operator evaluates to 0.
1729#
1730foreach {tn expr} {
1731    1 { EXISTS ( SELECT a FROM t1 WHERE 0) }
1732    2 { EXISTS ( SELECT b FROM t1 WHERE a = 5) }
1733    3 { EXISTS ( SELECT 24 WHERE 0) }
1734    4 { EXISTS ( SELECT NULL WHERE 1=2) }
1735} {
1736  do_expr_test e_expr-34.3.$tn $expr integer 0
1737}
1738
1739# EVIDENCE-OF: R-35109-49139 The number of columns in each row returned
1740# by the SELECT statement (if any) and the specific values returned have
1741# no effect on the results of the EXISTS operator.
1742#
1743foreach {tn expr res} {
1744    1 { EXISTS ( SELECT * FROM t1 ) }                          1
1745    2 { EXISTS ( SELECT *, *, * FROM t1 ) }                    1
1746    3 { EXISTS ( SELECT 24, 25 ) }                             1
1747    4 { EXISTS ( SELECT NULL, NULL, NULL ) }                   1
1748    5 { EXISTS ( SELECT a,b,a||b FROM t1 WHERE a IS NULL ) }   1
1749
1750    6 { EXISTS ( SELECT a, a FROM t1 WHERE 0) }                0
1751    7 { EXISTS ( SELECT b, b, a FROM t1 WHERE a = 5) }         0
1752    8 { EXISTS ( SELECT 24, 46, 89 WHERE 0) }                  0
1753    9 { EXISTS ( SELECT NULL, NULL WHERE 1=2) }                0
1754} {
1755  do_expr_test e_expr-34.4.$tn $expr integer $res
1756}
1757
1758# EVIDENCE-OF: R-10645-12439 In particular, rows containing NULL values
1759# are not handled any differently from rows without NULL values.
1760#
1761foreach {tn e1 e2} {
1762  1 { EXISTS (SELECT 'not null') }    { EXISTS (SELECT NULL) }
1763  2 { EXISTS (SELECT NULL FROM t1) }  { EXISTS (SELECT 'bread' FROM t1) }
1764} {
1765  set res [db one "SELECT $e1"]
1766  do_expr_test e_expr-34.5.${tn}a $e1 integer $res
1767  do_expr_test e_expr-34.5.${tn}b $e2 integer $res
1768}
1769
1770#-------------------------------------------------------------------------
1771# Test statements related to scalar sub-queries.
1772#
1773
1774catch { db close }
1775forcedelete test.db
1776sqlite3 db test.db
1777do_test e_expr-35.0 {
1778  execsql {
1779    CREATE TABLE t2(a, b);
1780    INSERT INTO t2 VALUES('one', 'two');
1781    INSERT INTO t2 VALUES('three', NULL);
1782    INSERT INTO t2 VALUES(4, 5.0);
1783  }
1784} {}
1785
1786# EVIDENCE-OF: R-00980-39256 A SELECT statement enclosed in parentheses
1787# may appear as a scalar quantity.
1788#
1789# EVIDENCE-OF: R-56294-03966 All types of SELECT statement, including
1790# aggregate and compound SELECT queries (queries with keywords like
1791# UNION or EXCEPT) are allowed as scalar subqueries.
1792#
1793do_expr_test e_expr-35.1.1 { (SELECT 35)   } integer 35
1794do_expr_test e_expr-35.1.2 { (SELECT NULL) } null {}
1795
1796do_expr_test e_expr-35.1.3 { (SELECT count(*) FROM t2) } integer 3
1797do_expr_test e_expr-35.1.4 { (SELECT 4 FROM t2) } integer 4
1798
1799do_expr_test e_expr-35.1.5 {
1800  (SELECT b FROM t2 UNION SELECT a+1 FROM t2)
1801} null {}
1802do_expr_test e_expr-35.1.6 {
1803  (SELECT a FROM t2 UNION SELECT COALESCE(b, 55) FROM t2 ORDER BY 1)
1804} integer 4
1805
1806# EVIDENCE-OF: R-46899-53765 A SELECT used as a scalar quantity must
1807# return a result set with a single column.
1808#
1809# The following block tests that errors are returned in a bunch of cases
1810# where a subquery returns more than one column.
1811#
1812set M {only a single result allowed for a SELECT that is part of an expression}
1813foreach {tn sql} {
1814  1     { SELECT (SELECT * FROM t2 UNION SELECT a+1, b+1 FROM t2) }
1815  2     { SELECT (SELECT * FROM t2 UNION SELECT a+1, b+1 FROM t2 ORDER BY 1) }
1816  3     { SELECT (SELECT 1, 2) }
1817  4     { SELECT (SELECT NULL, NULL, NULL) }
1818  5     { SELECT (SELECT * FROM t2) }
1819  6     { SELECT (SELECT * FROM (SELECT 1, 2, 3)) }
1820} {
1821  do_catchsql_test e_expr-35.2.$tn $sql [list 1 $M]
1822}
1823
1824# EVIDENCE-OF: R-35764-28041 The result of the expression is the value
1825# of the only column in the first row returned by the SELECT statement.
1826#
1827# EVIDENCE-OF: R-41898-06686 If the SELECT yields more than one result
1828# row, all rows after the first are ignored.
1829#
1830do_execsql_test e_expr-36.3.1 {
1831  CREATE TABLE t4(x, y);
1832  INSERT INTO t4 VALUES(1, 'one');
1833  INSERT INTO t4 VALUES(2, 'two');
1834  INSERT INTO t4 VALUES(3, 'three');
1835} {}
1836
1837foreach {tn expr restype resval} {
1838    2  { ( SELECT x FROM t4 ORDER BY x )      }        integer 1
1839    3  { ( SELECT x FROM t4 ORDER BY y )      }        integer 1
1840    4  { ( SELECT x FROM t4 ORDER BY x DESC ) }        integer 3
1841    5  { ( SELECT x FROM t4 ORDER BY y DESC ) }        integer 2
1842    6  { ( SELECT y FROM t4 ORDER BY y DESC ) }        text    two
1843
1844    7  { ( SELECT sum(x) FROM t4 )           }         integer 6
1845    8  { ( SELECT group_concat(y,'') FROM t4 ) }       text    onetwothree
1846    9  { ( SELECT max(x) FROM t4 WHERE y LIKE '___') } integer 2
1847
1848} {
1849  do_expr_test e_expr-36.3.$tn $expr $restype $resval
1850}
1851
1852# EVIDENCE-OF: R-25492-41572 If the SELECT yields no rows, then the
1853# value of the expression is NULL.
1854#
1855foreach {tn expr} {
1856    1  { ( SELECT x FROM t4 WHERE x>3 ORDER BY x )      }
1857    2  { ( SELECT x FROM t4 WHERE y<'one' ORDER BY y )  }
1858} {
1859  do_expr_test e_expr-36.4.$tn $expr null {}
1860}
1861
1862# EVIDENCE-OF: R-62477-06476 For example, the values NULL, 0.0, 0,
1863# 'english' and '0' are all considered to be false.
1864#
1865do_execsql_test e_expr-37.1 {
1866   SELECT CASE WHEN NULL THEN 'true' ELSE 'false' END;
1867} {false}
1868do_execsql_test e_expr-37.2 {
1869   SELECT CASE WHEN 0.0 THEN 'true' ELSE 'false' END;
1870} {false}
1871do_execsql_test e_expr-37.3 {
1872   SELECT CASE WHEN 0 THEN 'true' ELSE 'false' END;
1873} {false}
1874do_execsql_test e_expr-37.4 {
1875   SELECT CASE WHEN 'engligh' THEN 'true' ELSE 'false' END;
1876} {false}
1877do_execsql_test e_expr-37.5 {
1878   SELECT CASE WHEN '0' THEN 'true' ELSE 'false' END;
1879} {false}
1880
1881# EVIDENCE-OF: R-55532-10108 Values 1, 1.0, 0.1, -0.1 and '1english' are
1882# considered to be true.
1883#
1884do_execsql_test e_expr-37.6 {
1885   SELECT CASE WHEN 1 THEN 'true' ELSE 'false' END;
1886} {true}
1887do_execsql_test e_expr-37.7 {
1888   SELECT CASE WHEN 1.0 THEN 'true' ELSE 'false' END;
1889} {true}
1890do_execsql_test e_expr-37.8 {
1891   SELECT CASE WHEN 0.1 THEN 'true' ELSE 'false' END;
1892} {true}
1893do_execsql_test e_expr-37.9 {
1894   SELECT CASE WHEN -0.1 THEN 'true' ELSE 'false' END;
1895} {true}
1896do_execsql_test e_expr-37.10 {
1897   SELECT CASE WHEN '1english' THEN 'true' ELSE 'false' END;
1898} {true}
1899
1900
1901finish_test
1902