xref: /sqlite-3.40.0/src/window.c (revision f9751074)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,  \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,  \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,  \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* no break */ deliberate_fall_through
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( pParse->db->mallocFailed ) return WRC_Abort;
792       if( p->pSub ){
793         int i;
794         for(i=0; i<p->pSub->nExpr; i++){
795           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
796             iCol = i;
797             break;
798           }
799         }
800       }
801       if( iCol<0 ){
802         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
803         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
804         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
805       }
806       if( p->pSub ){
807         int f = pExpr->flags & EP_Collate;
808         assert( ExprHasProperty(pExpr, EP_Static)==0 );
809         ExprSetProperty(pExpr, EP_Static);
810         sqlite3ExprDelete(pParse->db, pExpr);
811         ExprClearProperty(pExpr, EP_Static);
812         memset(pExpr, 0, sizeof(Expr));
813 
814         pExpr->op = TK_COLUMN;
815         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
816         pExpr->iTable = p->pWin->iEphCsr;
817         pExpr->y.pTab = p->pTab;
818         pExpr->flags = f;
819       }
820       if( pParse->db->mallocFailed ) return WRC_Abort;
821       break;
822     }
823 
824     default: /* no-op */
825       break;
826   }
827 
828   return WRC_Continue;
829 }
830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
831   struct WindowRewrite *p = pWalker->u.pRewrite;
832   Select *pSave = p->pSubSelect;
833   if( pSave==pSelect ){
834     return WRC_Continue;
835   }else{
836     p->pSubSelect = pSelect;
837     sqlite3WalkSelect(pWalker, pSelect);
838     p->pSubSelect = pSave;
839   }
840   return WRC_Prune;
841 }
842 
843 
844 /*
845 ** Iterate through each expression in expression-list pEList. For each:
846 **
847 **   * TK_COLUMN,
848 **   * aggregate function, or
849 **   * window function with a Window object that is not a member of the
850 **     Window list passed as the second argument (pWin).
851 **
852 ** Append the node to output expression-list (*ppSub). And replace it
853 ** with a TK_COLUMN that reads the (N-1)th element of table
854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
855 ** appending the new one.
856 */
857 static void selectWindowRewriteEList(
858   Parse *pParse,
859   Window *pWin,
860   SrcList *pSrc,
861   ExprList *pEList,               /* Rewrite expressions in this list */
862   Table *pTab,
863   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
864 ){
865   Walker sWalker;
866   WindowRewrite sRewrite;
867 
868   assert( pWin!=0 );
869   memset(&sWalker, 0, sizeof(Walker));
870   memset(&sRewrite, 0, sizeof(WindowRewrite));
871 
872   sRewrite.pSub = *ppSub;
873   sRewrite.pWin = pWin;
874   sRewrite.pSrc = pSrc;
875   sRewrite.pTab = pTab;
876 
877   sWalker.pParse = pParse;
878   sWalker.xExprCallback = selectWindowRewriteExprCb;
879   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
880   sWalker.u.pRewrite = &sRewrite;
881 
882   (void)sqlite3WalkExprList(&sWalker, pEList);
883 
884   *ppSub = sRewrite.pSub;
885 }
886 
887 /*
888 ** Append a copy of each expression in expression-list pAppend to
889 ** expression list pList. Return a pointer to the result list.
890 */
891 static ExprList *exprListAppendList(
892   Parse *pParse,          /* Parsing context */
893   ExprList *pList,        /* List to which to append. Might be NULL */
894   ExprList *pAppend,      /* List of values to append. Might be NULL */
895   int bIntToNull
896 ){
897   if( pAppend ){
898     int i;
899     int nInit = pList ? pList->nExpr : 0;
900     for(i=0; i<pAppend->nExpr; i++){
901       sqlite3 *db = pParse->db;
902       Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
903       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
904       if( db->mallocFailed ){
905         sqlite3ExprDelete(db, pDup);
906         break;
907       }
908       if( bIntToNull ){
909         int iDummy;
910         Expr *pSub;
911         pSub = sqlite3ExprSkipCollateAndLikely(pDup);
912         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
913           pSub->op = TK_NULL;
914           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
915           pSub->u.zToken = 0;
916         }
917       }
918       pList = sqlite3ExprListAppend(pParse, pList, pDup);
919       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
920     }
921   }
922   return pList;
923 }
924 
925 /*
926 ** When rewriting a query, if the new subquery in the FROM clause
927 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
928 ** then we have to increase the Expr->op2 values of those nodes
929 ** due to the extra subquery layer that was added.
930 **
931 ** See also the incrAggDepth() routine in resolve.c
932 */
933 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
934   if( pExpr->op==TK_AGG_FUNCTION
935    && pExpr->op2>=pWalker->walkerDepth
936   ){
937     pExpr->op2++;
938   }
939   return WRC_Continue;
940 }
941 
942 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){
943   if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){
944     assert( !ExprHasProperty(pExpr, EP_IntValue) );
945      sqlite3ErrorMsg(pWalker->pParse,
946          "misuse of aggregate: %s()", pExpr->u.zToken);
947   }
948   return WRC_Continue;
949 }
950 
951 /*
952 ** If the SELECT statement passed as the second argument does not invoke
953 ** any SQL window functions, this function is a no-op. Otherwise, it
954 ** rewrites the SELECT statement so that window function xStep functions
955 ** are invoked in the correct order as described under "SELECT REWRITING"
956 ** at the top of this file.
957 */
958 int sqlite3WindowRewrite(Parse *pParse, Select *p){
959   int rc = SQLITE_OK;
960   if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) ){
961     Vdbe *v = sqlite3GetVdbe(pParse);
962     sqlite3 *db = pParse->db;
963     Select *pSub = 0;             /* The subquery */
964     SrcList *pSrc = p->pSrc;
965     Expr *pWhere = p->pWhere;
966     ExprList *pGroupBy = p->pGroupBy;
967     Expr *pHaving = p->pHaving;
968     ExprList *pSort = 0;
969 
970     ExprList *pSublist = 0;       /* Expression list for sub-query */
971     Window *pMWin = p->pWin;      /* Main window object */
972     Window *pWin;                 /* Window object iterator */
973     Table *pTab;
974     Walker w;
975 
976     u32 selFlags = p->selFlags;
977 
978     pTab = sqlite3DbMallocZero(db, sizeof(Table));
979     if( pTab==0 ){
980       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
981     }
982     sqlite3AggInfoPersistWalkerInit(&w, pParse);
983     sqlite3WalkSelect(&w, p);
984     if( (p->selFlags & SF_Aggregate)==0 ){
985       w.xExprCallback = disallowAggregatesInOrderByCb;
986       w.xSelectCallback = 0;
987       sqlite3WalkExprList(&w, p->pOrderBy);
988     }
989 
990     p->pSrc = 0;
991     p->pWhere = 0;
992     p->pGroupBy = 0;
993     p->pHaving = 0;
994     p->selFlags &= ~SF_Aggregate;
995     p->selFlags |= SF_WinRewrite;
996 
997     /* Create the ORDER BY clause for the sub-select. This is the concatenation
998     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
999     ** redundant, remove the ORDER BY from the parent SELECT.  */
1000     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
1001     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
1002     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
1003       int nSave = pSort->nExpr;
1004       pSort->nExpr = p->pOrderBy->nExpr;
1005       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
1006         sqlite3ExprListDelete(db, p->pOrderBy);
1007         p->pOrderBy = 0;
1008       }
1009       pSort->nExpr = nSave;
1010     }
1011 
1012     /* Assign a cursor number for the ephemeral table used to buffer rows.
1013     ** The OpenEphemeral instruction is coded later, after it is known how
1014     ** many columns the table will have.  */
1015     pMWin->iEphCsr = pParse->nTab++;
1016     pParse->nTab += 3;
1017 
1018     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1019     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1020     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1021 
1022     /* Append the PARTITION BY and ORDER BY expressions to the to the
1023     ** sub-select expression list. They are required to figure out where
1024     ** boundaries for partitions and sets of peer rows lie.  */
1025     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1026     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1027 
1028     /* Append the arguments passed to each window function to the
1029     ** sub-select expression list. Also allocate two registers for each
1030     ** window function - one for the accumulator, another for interim
1031     ** results.  */
1032     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1033       ExprList *pArgs = pWin->pOwner->x.pList;
1034       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1035         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1036         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1037         pWin->bExprArgs = 1;
1038       }else{
1039         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1040         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1041       }
1042       if( pWin->pFilter ){
1043         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1044         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1045       }
1046       pWin->regAccum = ++pParse->nMem;
1047       pWin->regResult = ++pParse->nMem;
1048       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1049     }
1050 
1051     /* If there is no ORDER BY or PARTITION BY clause, and the window
1052     ** function accepts zero arguments, and there are no other columns
1053     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1054     ** that pSublist is still NULL here. Add a constant expression here to
1055     ** keep everything legal in this case.
1056     */
1057     if( pSublist==0 ){
1058       pSublist = sqlite3ExprListAppend(pParse, 0,
1059         sqlite3Expr(db, TK_INTEGER, "0")
1060       );
1061     }
1062 
1063     pSub = sqlite3SelectNew(
1064         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1065     );
1066     SELECTTRACE(1,pParse,pSub,
1067        ("New window-function subquery in FROM clause of (%u/%p)\n",
1068        p->selId, p));
1069     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1070     assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside
1071                                      ** of sqlite3DbMallocRawNN() called from
1072                                      ** sqlite3SrcListAppend() */
1073     if( p->pSrc ){
1074       Table *pTab2;
1075       p->pSrc->a[0].pSelect = pSub;
1076       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1077       pSub->selFlags |= SF_Expanded|SF_OrderByReqd;
1078       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1079       pSub->selFlags |= (selFlags & SF_Aggregate);
1080       if( pTab2==0 ){
1081         /* Might actually be some other kind of error, but in that case
1082         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1083         ** the correct error message regardless. */
1084         rc = SQLITE_NOMEM;
1085       }else{
1086         memcpy(pTab, pTab2, sizeof(Table));
1087         pTab->tabFlags |= TF_Ephemeral;
1088         p->pSrc->a[0].pTab = pTab;
1089         pTab = pTab2;
1090         memset(&w, 0, sizeof(w));
1091         w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1092         w.xSelectCallback = sqlite3WalkerDepthIncrease;
1093         w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1094         sqlite3WalkSelect(&w, pSub);
1095       }
1096     }else{
1097       sqlite3SelectDelete(db, pSub);
1098     }
1099     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1100     sqlite3DbFree(db, pTab);
1101   }
1102 
1103   if( rc ){
1104     if( pParse->nErr==0 ){
1105       assert( pParse->db->mallocFailed );
1106       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1107     }
1108   }
1109   return rc;
1110 }
1111 
1112 /*
1113 ** Unlink the Window object from the Select to which it is attached,
1114 ** if it is attached.
1115 */
1116 void sqlite3WindowUnlinkFromSelect(Window *p){
1117   if( p->ppThis ){
1118     *p->ppThis = p->pNextWin;
1119     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1120     p->ppThis = 0;
1121   }
1122 }
1123 
1124 /*
1125 ** Free the Window object passed as the second argument.
1126 */
1127 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1128   if( p ){
1129     sqlite3WindowUnlinkFromSelect(p);
1130     sqlite3ExprDelete(db, p->pFilter);
1131     sqlite3ExprListDelete(db, p->pPartition);
1132     sqlite3ExprListDelete(db, p->pOrderBy);
1133     sqlite3ExprDelete(db, p->pEnd);
1134     sqlite3ExprDelete(db, p->pStart);
1135     sqlite3DbFree(db, p->zName);
1136     sqlite3DbFree(db, p->zBase);
1137     sqlite3DbFree(db, p);
1138   }
1139 }
1140 
1141 /*
1142 ** Free the linked list of Window objects starting at the second argument.
1143 */
1144 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1145   while( p ){
1146     Window *pNext = p->pNextWin;
1147     sqlite3WindowDelete(db, p);
1148     p = pNext;
1149   }
1150 }
1151 
1152 /*
1153 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1154 ** value should be a non-negative integer.  If the value is not a
1155 ** constant, change it to NULL.  The fact that it is then a non-negative
1156 ** integer will be caught later.  But it is important not to leave
1157 ** variable values in the expression tree.
1158 */
1159 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1160   if( 0==sqlite3ExprIsConstant(pExpr) ){
1161     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1162     sqlite3ExprDelete(pParse->db, pExpr);
1163     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1164   }
1165   return pExpr;
1166 }
1167 
1168 /*
1169 ** Allocate and return a new Window object describing a Window Definition.
1170 */
1171 Window *sqlite3WindowAlloc(
1172   Parse *pParse,    /* Parsing context */
1173   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1174   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1175   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1176   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1177   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1178   u8 eExclude       /* EXCLUDE clause */
1179 ){
1180   Window *pWin = 0;
1181   int bImplicitFrame = 0;
1182 
1183   /* Parser assures the following: */
1184   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1185   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1186            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1187   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1188            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1189   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1190   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1191 
1192   if( eType==0 ){
1193     bImplicitFrame = 1;
1194     eType = TK_RANGE;
1195   }
1196 
1197   /* Additionally, the
1198   ** starting boundary type may not occur earlier in the following list than
1199   ** the ending boundary type:
1200   **
1201   **   UNBOUNDED PRECEDING
1202   **   <expr> PRECEDING
1203   **   CURRENT ROW
1204   **   <expr> FOLLOWING
1205   **   UNBOUNDED FOLLOWING
1206   **
1207   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1208   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1209   ** frame boundary.
1210   */
1211   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1212    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1213   ){
1214     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1215     goto windowAllocErr;
1216   }
1217 
1218   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1219   if( pWin==0 ) goto windowAllocErr;
1220   pWin->eFrmType = eType;
1221   pWin->eStart = eStart;
1222   pWin->eEnd = eEnd;
1223   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1224     eExclude = TK_NO;
1225   }
1226   pWin->eExclude = eExclude;
1227   pWin->bImplicitFrame = bImplicitFrame;
1228   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1229   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1230   return pWin;
1231 
1232 windowAllocErr:
1233   sqlite3ExprDelete(pParse->db, pEnd);
1234   sqlite3ExprDelete(pParse->db, pStart);
1235   return 0;
1236 }
1237 
1238 /*
1239 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1240 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1241 ** equivalent nul-terminated string.
1242 */
1243 Window *sqlite3WindowAssemble(
1244   Parse *pParse,
1245   Window *pWin,
1246   ExprList *pPartition,
1247   ExprList *pOrderBy,
1248   Token *pBase
1249 ){
1250   if( pWin ){
1251     pWin->pPartition = pPartition;
1252     pWin->pOrderBy = pOrderBy;
1253     if( pBase ){
1254       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1255     }
1256   }else{
1257     sqlite3ExprListDelete(pParse->db, pPartition);
1258     sqlite3ExprListDelete(pParse->db, pOrderBy);
1259   }
1260   return pWin;
1261 }
1262 
1263 /*
1264 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1265 ** is the base window. Earlier windows from the same WINDOW clause are
1266 ** stored in the linked list starting at pWin->pNextWin. This function
1267 ** either updates *pWin according to the base specification, or else
1268 ** leaves an error in pParse.
1269 */
1270 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1271   if( pWin->zBase ){
1272     sqlite3 *db = pParse->db;
1273     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1274     if( pExist ){
1275       const char *zErr = 0;
1276       /* Check for errors */
1277       if( pWin->pPartition ){
1278         zErr = "PARTITION clause";
1279       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1280         zErr = "ORDER BY clause";
1281       }else if( pExist->bImplicitFrame==0 ){
1282         zErr = "frame specification";
1283       }
1284       if( zErr ){
1285         sqlite3ErrorMsg(pParse,
1286             "cannot override %s of window: %s", zErr, pWin->zBase
1287         );
1288       }else{
1289         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1290         if( pExist->pOrderBy ){
1291           assert( pWin->pOrderBy==0 );
1292           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1293         }
1294         sqlite3DbFree(db, pWin->zBase);
1295         pWin->zBase = 0;
1296       }
1297     }
1298   }
1299 }
1300 
1301 /*
1302 ** Attach window object pWin to expression p.
1303 */
1304 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1305   if( p ){
1306     assert( p->op==TK_FUNCTION );
1307     assert( pWin );
1308     p->y.pWin = pWin;
1309     ExprSetProperty(p, EP_WinFunc);
1310     pWin->pOwner = p;
1311     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1312       sqlite3ErrorMsg(pParse,
1313           "DISTINCT is not supported for window functions"
1314       );
1315     }
1316   }else{
1317     sqlite3WindowDelete(pParse->db, pWin);
1318   }
1319 }
1320 
1321 /*
1322 ** Possibly link window pWin into the list at pSel->pWin (window functions
1323 ** to be processed as part of SELECT statement pSel). The window is linked
1324 ** in if either (a) there are no other windows already linked to this
1325 ** SELECT, or (b) the windows already linked use a compatible window frame.
1326 */
1327 void sqlite3WindowLink(Select *pSel, Window *pWin){
1328   if( pSel ){
1329     if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
1330       pWin->pNextWin = pSel->pWin;
1331       if( pSel->pWin ){
1332         pSel->pWin->ppThis = &pWin->pNextWin;
1333       }
1334       pSel->pWin = pWin;
1335       pWin->ppThis = &pSel->pWin;
1336     }else{
1337       if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
1338         pSel->selFlags |= SF_MultiPart;
1339       }
1340     }
1341   }
1342 }
1343 
1344 /*
1345 ** Return 0 if the two window objects are identical, 1 if they are
1346 ** different, or 2 if it cannot be determined if the objects are identical
1347 ** or not. Identical window objects can be processed in a single scan.
1348 */
1349 int sqlite3WindowCompare(
1350   const Parse *pParse,
1351   const Window *p1,
1352   const Window *p2,
1353   int bFilter
1354 ){
1355   int res;
1356   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1357   if( p1->eFrmType!=p2->eFrmType ) return 1;
1358   if( p1->eStart!=p2->eStart ) return 1;
1359   if( p1->eEnd!=p2->eEnd ) return 1;
1360   if( p1->eExclude!=p2->eExclude ) return 1;
1361   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1362   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1363   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1364     return res;
1365   }
1366   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1367     return res;
1368   }
1369   if( bFilter ){
1370     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1371       return res;
1372     }
1373   }
1374   return 0;
1375 }
1376 
1377 
1378 /*
1379 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1380 ** to begin iterating through the sub-query results. It is used to allocate
1381 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1382 */
1383 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1384   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1385   Window *pMWin = pSelect->pWin;
1386   Window *pWin;
1387   Vdbe *v = sqlite3GetVdbe(pParse);
1388 
1389   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1390   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1391   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1392   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1393 
1394   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1395   ** said registers to NULL.  */
1396   if( pMWin->pPartition ){
1397     int nExpr = pMWin->pPartition->nExpr;
1398     pMWin->regPart = pParse->nMem+1;
1399     pParse->nMem += nExpr;
1400     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1401   }
1402 
1403   pMWin->regOne = ++pParse->nMem;
1404   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1405 
1406   if( pMWin->eExclude ){
1407     pMWin->regStartRowid = ++pParse->nMem;
1408     pMWin->regEndRowid = ++pParse->nMem;
1409     pMWin->csrApp = pParse->nTab++;
1410     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1411     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1412     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1413     return;
1414   }
1415 
1416   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1417     FuncDef *p = pWin->pFunc;
1418     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1419       /* The inline versions of min() and max() require a single ephemeral
1420       ** table and 3 registers. The registers are used as follows:
1421       **
1422       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1423       **   regApp+1: integer value used to ensure keys are unique
1424       **   regApp+2: output of MakeRecord
1425       */
1426       ExprList *pList = pWin->pOwner->x.pList;
1427       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1428       pWin->csrApp = pParse->nTab++;
1429       pWin->regApp = pParse->nMem+1;
1430       pParse->nMem += 3;
1431       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1432         assert( pKeyInfo->aSortFlags[0]==0 );
1433         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1434       }
1435       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1436       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1437       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1438     }
1439     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1440       /* Allocate two registers at pWin->regApp. These will be used to
1441       ** store the start and end index of the current frame.  */
1442       pWin->regApp = pParse->nMem+1;
1443       pWin->csrApp = pParse->nTab++;
1444       pParse->nMem += 2;
1445       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1446     }
1447     else if( p->zName==leadName || p->zName==lagName ){
1448       pWin->csrApp = pParse->nTab++;
1449       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1450     }
1451   }
1452 }
1453 
1454 #define WINDOW_STARTING_INT  0
1455 #define WINDOW_ENDING_INT    1
1456 #define WINDOW_NTH_VALUE_INT 2
1457 #define WINDOW_STARTING_NUM  3
1458 #define WINDOW_ENDING_NUM    4
1459 
1460 /*
1461 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1462 ** value of the second argument to nth_value() (eCond==2) has just been
1463 ** evaluated and the result left in register reg. This function generates VM
1464 ** code to check that the value is a non-negative integer and throws an
1465 ** exception if it is not.
1466 */
1467 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1468   static const char *azErr[] = {
1469     "frame starting offset must be a non-negative integer",
1470     "frame ending offset must be a non-negative integer",
1471     "second argument to nth_value must be a positive integer",
1472     "frame starting offset must be a non-negative number",
1473     "frame ending offset must be a non-negative number",
1474   };
1475   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1476   Vdbe *v = sqlite3GetVdbe(pParse);
1477   int regZero = sqlite3GetTempReg(pParse);
1478   assert( eCond>=0 && eCond<ArraySize(azErr) );
1479   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1480   if( eCond>=WINDOW_STARTING_NUM ){
1481     int regString = sqlite3GetTempReg(pParse);
1482     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1483     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1484     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1485     VdbeCoverage(v);
1486     assert( eCond==3 || eCond==4 );
1487     VdbeCoverageIf(v, eCond==3);
1488     VdbeCoverageIf(v, eCond==4);
1489   }else{
1490     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1491     VdbeCoverage(v);
1492     assert( eCond==0 || eCond==1 || eCond==2 );
1493     VdbeCoverageIf(v, eCond==0);
1494     VdbeCoverageIf(v, eCond==1);
1495     VdbeCoverageIf(v, eCond==2);
1496   }
1497   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1498   sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
1499   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1500   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1501   VdbeCoverageNeverNullIf(v, eCond==2);
1502   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1503   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1504   sqlite3MayAbort(pParse);
1505   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1506   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1507   sqlite3ReleaseTempReg(pParse, regZero);
1508 }
1509 
1510 /*
1511 ** Return the number of arguments passed to the window-function associated
1512 ** with the object passed as the only argument to this function.
1513 */
1514 static int windowArgCount(Window *pWin){
1515   ExprList *pList = pWin->pOwner->x.pList;
1516   return (pList ? pList->nExpr : 0);
1517 }
1518 
1519 typedef struct WindowCodeArg WindowCodeArg;
1520 typedef struct WindowCsrAndReg WindowCsrAndReg;
1521 
1522 /*
1523 ** See comments above struct WindowCodeArg.
1524 */
1525 struct WindowCsrAndReg {
1526   int csr;                        /* Cursor number */
1527   int reg;                        /* First in array of peer values */
1528 };
1529 
1530 /*
1531 ** A single instance of this structure is allocated on the stack by
1532 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1533 ** routines. This is to reduce the number of arguments required by each
1534 ** helper function.
1535 **
1536 ** regArg:
1537 **   Each window function requires an accumulator register (just as an
1538 **   ordinary aggregate function does). This variable is set to the first
1539 **   in an array of accumulator registers - one for each window function
1540 **   in the WindowCodeArg.pMWin list.
1541 **
1542 ** eDelete:
1543 **   The window functions implementation sometimes caches the input rows
1544 **   that it processes in a temporary table. If it is not zero, this
1545 **   variable indicates when rows may be removed from the temp table (in
1546 **   order to reduce memory requirements - it would always be safe just
1547 **   to leave them there). Possible values for eDelete are:
1548 **
1549 **      WINDOW_RETURN_ROW:
1550 **        An input row can be discarded after it is returned to the caller.
1551 **
1552 **      WINDOW_AGGINVERSE:
1553 **        An input row can be discarded after the window functions xInverse()
1554 **        callbacks have been invoked in it.
1555 **
1556 **      WINDOW_AGGSTEP:
1557 **        An input row can be discarded after the window functions xStep()
1558 **        callbacks have been invoked in it.
1559 **
1560 ** start,current,end
1561 **   Consider a window-frame similar to the following:
1562 **
1563 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1564 **
1565 **   The windows functions implmentation caches the input rows in a temp
1566 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1567 **   aggressively removes rows once they are no longer required, but that's
1568 **   a mere detail). It keeps three cursors open on the temp table. One
1569 **   (current) that points to the next row to return to the query engine
1570 **   once its window function values have been calculated. Another (end)
1571 **   points to the next row to call the xStep() method of each window function
1572 **   on (so that it is 2 groups ahead of current). And a third (start) that
1573 **   points to the next row to call the xInverse() method of each window
1574 **   function on.
1575 **
1576 **   Each cursor (start, current and end) consists of a VDBE cursor
1577 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1578 **   WindowCodeArg.reg) that always contains a copy of the peer values
1579 **   read from the corresponding cursor.
1580 **
1581 **   Depending on the window-frame in question, all three cursors may not
1582 **   be required. In this case both WindowCodeArg.csr and reg are set to
1583 **   0.
1584 */
1585 struct WindowCodeArg {
1586   Parse *pParse;             /* Parse context */
1587   Window *pMWin;             /* First in list of functions being processed */
1588   Vdbe *pVdbe;               /* VDBE object */
1589   int addrGosub;             /* OP_Gosub to this address to return one row */
1590   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1591   int regArg;                /* First in array of accumulator registers */
1592   int eDelete;               /* See above */
1593   int regRowid;
1594 
1595   WindowCsrAndReg start;
1596   WindowCsrAndReg current;
1597   WindowCsrAndReg end;
1598 };
1599 
1600 /*
1601 ** Generate VM code to read the window frames peer values from cursor csr into
1602 ** an array of registers starting at reg.
1603 */
1604 static void windowReadPeerValues(
1605   WindowCodeArg *p,
1606   int csr,
1607   int reg
1608 ){
1609   Window *pMWin = p->pMWin;
1610   ExprList *pOrderBy = pMWin->pOrderBy;
1611   if( pOrderBy ){
1612     Vdbe *v = sqlite3GetVdbe(p->pParse);
1613     ExprList *pPart = pMWin->pPartition;
1614     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1615     int i;
1616     for(i=0; i<pOrderBy->nExpr; i++){
1617       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1618     }
1619   }
1620 }
1621 
1622 /*
1623 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1624 ** xInverse (if bInverse is non-zero) for each window function in the
1625 ** linked list starting at pMWin. Or, for built-in window functions
1626 ** that do not use the standard function API, generate the required
1627 ** inline VM code.
1628 **
1629 ** If argument csr is greater than or equal to 0, then argument reg is
1630 ** the first register in an array of registers guaranteed to be large
1631 ** enough to hold the array of arguments for each function. In this case
1632 ** the arguments are extracted from the current row of csr into the
1633 ** array of registers before invoking OP_AggStep or OP_AggInverse
1634 **
1635 ** Or, if csr is less than zero, then the array of registers at reg is
1636 ** already populated with all columns from the current row of the sub-query.
1637 **
1638 ** If argument regPartSize is non-zero, then it is a register containing the
1639 ** number of rows in the current partition.
1640 */
1641 static void windowAggStep(
1642   WindowCodeArg *p,
1643   Window *pMWin,                  /* Linked list of window functions */
1644   int csr,                        /* Read arguments from this cursor */
1645   int bInverse,                   /* True to invoke xInverse instead of xStep */
1646   int reg                         /* Array of registers */
1647 ){
1648   Parse *pParse = p->pParse;
1649   Vdbe *v = sqlite3GetVdbe(pParse);
1650   Window *pWin;
1651   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1652     FuncDef *pFunc = pWin->pFunc;
1653     int regArg;
1654     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1655     int i;
1656 
1657     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1658 
1659     /* All OVER clauses in the same window function aggregate step must
1660     ** be the same. */
1661     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1662 
1663     for(i=0; i<nArg; i++){
1664       if( i!=1 || pFunc->zName!=nth_valueName ){
1665         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1666       }else{
1667         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1668       }
1669     }
1670     regArg = reg;
1671 
1672     if( pMWin->regStartRowid==0
1673      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1674      && (pWin->eStart!=TK_UNBOUNDED)
1675     ){
1676       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1677       VdbeCoverage(v);
1678       if( bInverse==0 ){
1679         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1680         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1681         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1682         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1683       }else{
1684         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1685         VdbeCoverageNeverTaken(v);
1686         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1687         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1688       }
1689       sqlite3VdbeJumpHere(v, addrIsNull);
1690     }else if( pWin->regApp ){
1691       assert( pFunc->zName==nth_valueName
1692            || pFunc->zName==first_valueName
1693       );
1694       assert( bInverse==0 || bInverse==1 );
1695       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1696     }else if( pFunc->xSFunc!=noopStepFunc ){
1697       int addrIf = 0;
1698       if( pWin->pFilter ){
1699         int regTmp;
1700         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1701         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1702         regTmp = sqlite3GetTempReg(pParse);
1703         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1704         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1705         VdbeCoverage(v);
1706         sqlite3ReleaseTempReg(pParse, regTmp);
1707       }
1708 
1709       if( pWin->bExprArgs ){
1710         int iOp = sqlite3VdbeCurrentAddr(v);
1711         int iEnd;
1712 
1713         nArg = pWin->pOwner->x.pList->nExpr;
1714         regArg = sqlite3GetTempRange(pParse, nArg);
1715         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1716 
1717         for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){
1718           VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp);
1719           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1720             pOp->p1 = csr;
1721           }
1722         }
1723       }
1724       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1725         CollSeq *pColl;
1726         assert( nArg>0 );
1727         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1728         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1729       }
1730       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1731                         bInverse, regArg, pWin->regAccum);
1732       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1733       sqlite3VdbeChangeP5(v, (u8)nArg);
1734       if( pWin->bExprArgs ){
1735         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1736       }
1737       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1738     }
1739   }
1740 }
1741 
1742 /*
1743 ** Values that may be passed as the second argument to windowCodeOp().
1744 */
1745 #define WINDOW_RETURN_ROW 1
1746 #define WINDOW_AGGINVERSE 2
1747 #define WINDOW_AGGSTEP    3
1748 
1749 /*
1750 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1751 ** (bFin==1) for each window function in the linked list starting at
1752 ** pMWin. Or, for built-in window-functions that do not use the standard
1753 ** API, generate the equivalent VM code.
1754 */
1755 static void windowAggFinal(WindowCodeArg *p, int bFin){
1756   Parse *pParse = p->pParse;
1757   Window *pMWin = p->pMWin;
1758   Vdbe *v = sqlite3GetVdbe(pParse);
1759   Window *pWin;
1760 
1761   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1762     if( pMWin->regStartRowid==0
1763      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1764      && (pWin->eStart!=TK_UNBOUNDED)
1765     ){
1766       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1767       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1768       VdbeCoverage(v);
1769       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1770       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1771     }else if( pWin->regApp ){
1772       assert( pMWin->regStartRowid==0 );
1773     }else{
1774       int nArg = windowArgCount(pWin);
1775       if( bFin ){
1776         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1777         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1778         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1779         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1780       }else{
1781         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1782         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1783       }
1784     }
1785   }
1786 }
1787 
1788 /*
1789 ** Generate code to calculate the current values of all window functions in the
1790 ** p->pMWin list by doing a full scan of the current window frame. Store the
1791 ** results in the Window.regResult registers, ready to return the upper
1792 ** layer.
1793 */
1794 static void windowFullScan(WindowCodeArg *p){
1795   Window *pWin;
1796   Parse *pParse = p->pParse;
1797   Window *pMWin = p->pMWin;
1798   Vdbe *v = p->pVdbe;
1799 
1800   int regCRowid = 0;              /* Current rowid value */
1801   int regCPeer = 0;               /* Current peer values */
1802   int regRowid = 0;               /* AggStep rowid value */
1803   int regPeer = 0;                /* AggStep peer values */
1804 
1805   int nPeer;
1806   int lblNext;
1807   int lblBrk;
1808   int addrNext;
1809   int csr;
1810 
1811   VdbeModuleComment((v, "windowFullScan begin"));
1812 
1813   assert( pMWin!=0 );
1814   csr = pMWin->csrApp;
1815   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1816 
1817   lblNext = sqlite3VdbeMakeLabel(pParse);
1818   lblBrk = sqlite3VdbeMakeLabel(pParse);
1819 
1820   regCRowid = sqlite3GetTempReg(pParse);
1821   regRowid = sqlite3GetTempReg(pParse);
1822   if( nPeer ){
1823     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1824     regPeer = sqlite3GetTempRange(pParse, nPeer);
1825   }
1826 
1827   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1828   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1829 
1830   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1831     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1832   }
1833 
1834   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1835   VdbeCoverage(v);
1836   addrNext = sqlite3VdbeCurrentAddr(v);
1837   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1838   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1839   VdbeCoverageNeverNull(v);
1840 
1841   if( pMWin->eExclude==TK_CURRENT ){
1842     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1843     VdbeCoverageNeverNull(v);
1844   }else if( pMWin->eExclude!=TK_NO ){
1845     int addr;
1846     int addrEq = 0;
1847     KeyInfo *pKeyInfo = 0;
1848 
1849     if( pMWin->pOrderBy ){
1850       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1851     }
1852     if( pMWin->eExclude==TK_TIES ){
1853       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1854       VdbeCoverageNeverNull(v);
1855     }
1856     if( pKeyInfo ){
1857       windowReadPeerValues(p, csr, regPeer);
1858       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1859       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1860       addr = sqlite3VdbeCurrentAddr(v)+1;
1861       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1862       VdbeCoverageEqNe(v);
1863     }else{
1864       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1865     }
1866     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1867   }
1868 
1869   windowAggStep(p, pMWin, csr, 0, p->regArg);
1870 
1871   sqlite3VdbeResolveLabel(v, lblNext);
1872   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1873   VdbeCoverage(v);
1874   sqlite3VdbeJumpHere(v, addrNext-1);
1875   sqlite3VdbeJumpHere(v, addrNext+1);
1876   sqlite3ReleaseTempReg(pParse, regRowid);
1877   sqlite3ReleaseTempReg(pParse, regCRowid);
1878   if( nPeer ){
1879     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1880     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1881   }
1882 
1883   windowAggFinal(p, 1);
1884   VdbeModuleComment((v, "windowFullScan end"));
1885 }
1886 
1887 /*
1888 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1889 ** return the current row of Window.iEphCsr. If all window functions are
1890 ** aggregate window functions that use the standard API, a single
1891 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1892 ** for per-row processing is only generated for the following built-in window
1893 ** functions:
1894 **
1895 **   nth_value()
1896 **   first_value()
1897 **   lag()
1898 **   lead()
1899 */
1900 static void windowReturnOneRow(WindowCodeArg *p){
1901   Window *pMWin = p->pMWin;
1902   Vdbe *v = p->pVdbe;
1903 
1904   if( pMWin->regStartRowid ){
1905     windowFullScan(p);
1906   }else{
1907     Parse *pParse = p->pParse;
1908     Window *pWin;
1909 
1910     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1911       FuncDef *pFunc = pWin->pFunc;
1912       if( pFunc->zName==nth_valueName
1913        || pFunc->zName==first_valueName
1914       ){
1915         int csr = pWin->csrApp;
1916         int lbl = sqlite3VdbeMakeLabel(pParse);
1917         int tmpReg = sqlite3GetTempReg(pParse);
1918         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1919 
1920         if( pFunc->zName==nth_valueName ){
1921           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1922           windowCheckValue(pParse, tmpReg, 2);
1923         }else{
1924           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1925         }
1926         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1927         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1928         VdbeCoverageNeverNull(v);
1929         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1930         VdbeCoverageNeverTaken(v);
1931         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1932         sqlite3VdbeResolveLabel(v, lbl);
1933         sqlite3ReleaseTempReg(pParse, tmpReg);
1934       }
1935       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1936         int nArg = pWin->pOwner->x.pList->nExpr;
1937         int csr = pWin->csrApp;
1938         int lbl = sqlite3VdbeMakeLabel(pParse);
1939         int tmpReg = sqlite3GetTempReg(pParse);
1940         int iEph = pMWin->iEphCsr;
1941 
1942         if( nArg<3 ){
1943           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1944         }else{
1945           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1946         }
1947         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1948         if( nArg<2 ){
1949           int val = (pFunc->zName==leadName ? 1 : -1);
1950           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1951         }else{
1952           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1953           int tmpReg2 = sqlite3GetTempReg(pParse);
1954           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1955           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1956           sqlite3ReleaseTempReg(pParse, tmpReg2);
1957         }
1958 
1959         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1960         VdbeCoverage(v);
1961         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1962         sqlite3VdbeResolveLabel(v, lbl);
1963         sqlite3ReleaseTempReg(pParse, tmpReg);
1964       }
1965     }
1966   }
1967   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1968 }
1969 
1970 /*
1971 ** Generate code to set the accumulator register for each window function
1972 ** in the linked list passed as the second argument to NULL. And perform
1973 ** any equivalent initialization required by any built-in window functions
1974 ** in the list.
1975 */
1976 static int windowInitAccum(Parse *pParse, Window *pMWin){
1977   Vdbe *v = sqlite3GetVdbe(pParse);
1978   int regArg;
1979   int nArg = 0;
1980   Window *pWin;
1981   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1982     FuncDef *pFunc = pWin->pFunc;
1983     assert( pWin->regAccum );
1984     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1985     nArg = MAX(nArg, windowArgCount(pWin));
1986     if( pMWin->regStartRowid==0 ){
1987       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1988         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1989         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1990       }
1991 
1992       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1993         assert( pWin->eStart!=TK_UNBOUNDED );
1994         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1995         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1996       }
1997     }
1998   }
1999   regArg = pParse->nMem+1;
2000   pParse->nMem += nArg;
2001   return regArg;
2002 }
2003 
2004 /*
2005 ** Return true if the current frame should be cached in the ephemeral table,
2006 ** even if there are no xInverse() calls required.
2007 */
2008 static int windowCacheFrame(Window *pMWin){
2009   Window *pWin;
2010   if( pMWin->regStartRowid ) return 1;
2011   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
2012     FuncDef *pFunc = pWin->pFunc;
2013     if( (pFunc->zName==nth_valueName)
2014      || (pFunc->zName==first_valueName)
2015      || (pFunc->zName==leadName)
2016      || (pFunc->zName==lagName)
2017     ){
2018       return 1;
2019     }
2020   }
2021   return 0;
2022 }
2023 
2024 /*
2025 ** regOld and regNew are each the first register in an array of size
2026 ** pOrderBy->nExpr. This function generates code to compare the two
2027 ** arrays of registers using the collation sequences and other comparison
2028 ** parameters specified by pOrderBy.
2029 **
2030 ** If the two arrays are not equal, the contents of regNew is copied to
2031 ** regOld and control falls through. Otherwise, if the contents of the arrays
2032 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2033 */
2034 static void windowIfNewPeer(
2035   Parse *pParse,
2036   ExprList *pOrderBy,
2037   int regNew,                     /* First in array of new values */
2038   int regOld,                     /* First in array of old values */
2039   int addr                        /* Jump here */
2040 ){
2041   Vdbe *v = sqlite3GetVdbe(pParse);
2042   if( pOrderBy ){
2043     int nVal = pOrderBy->nExpr;
2044     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2045     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2046     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2047     sqlite3VdbeAddOp3(v, OP_Jump,
2048       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2049     );
2050     VdbeCoverageEqNe(v);
2051     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2052   }else{
2053     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2054   }
2055 }
2056 
2057 /*
2058 ** This function is called as part of generating VM programs for RANGE
2059 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2060 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2061 ** code equivalent to:
2062 **
2063 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2064 **
2065 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2066 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2067 **
2068 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2069 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2070 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2071 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2072 ** is OP_Ge, the generated code is equivalent to:
2073 **
2074 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2075 **
2076 ** A special type of arithmetic is used such that if csr1.peerVal is not
2077 ** a numeric type (real or integer), then the result of the addition
2078 ** or subtraction is a a copy of csr1.peerVal.
2079 */
2080 static void windowCodeRangeTest(
2081   WindowCodeArg *p,
2082   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2083   int csr1,                       /* Cursor number for cursor 1 */
2084   int regVal,                     /* Register containing non-negative number */
2085   int csr2,                       /* Cursor number for cursor 2 */
2086   int lbl                         /* Jump destination if condition is true */
2087 ){
2088   Parse *pParse = p->pParse;
2089   Vdbe *v = sqlite3GetVdbe(pParse);
2090   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2091   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2092   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2093   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2094   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2095   int addrGe;                               /* Jump destination */
2096   int addrDone = sqlite3VdbeMakeLabel(pParse);   /* Address past OP_Ge */
2097   CollSeq *pColl;
2098 
2099   /* Read the peer-value from each cursor into a register */
2100   windowReadPeerValues(p, csr1, reg1);
2101   windowReadPeerValues(p, csr2, reg2);
2102 
2103   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2104   assert( pOrderBy && pOrderBy->nExpr==1 );
2105   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2106     switch( op ){
2107       case OP_Ge: op = OP_Le; break;
2108       case OP_Gt: op = OP_Lt; break;
2109       default: assert( op==OP_Le ); op = OP_Ge; break;
2110     }
2111     arith = OP_Subtract;
2112   }
2113 
2114   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2115       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2116       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2117   ));
2118 
2119   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2120   ** consider NULL values to be larger than all other values, instead of
2121   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2122   ** (and adding that capability causes a performance regression), so
2123   ** instead if the BIGNULL flag is set then cases where either reg1 or
2124   ** reg2 are NULL are handled separately in the following block. The code
2125   ** generated is equivalent to:
2126   **
2127   **   if( reg1 IS NULL ){
2128   **     if( op==OP_Ge ) goto lbl;
2129   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2130   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2131   **   }else if( reg2 IS NULL ){
2132   **     if( op==OP_Le ) goto lbl;
2133   **   }
2134   **
2135   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2136   ** not taken, control jumps over the comparison operator coded below this
2137   ** block.  */
2138   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2139     /* This block runs if reg1 contains a NULL. */
2140     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2141     switch( op ){
2142       case OP_Ge:
2143         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2144         break;
2145       case OP_Gt:
2146         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2147         VdbeCoverage(v);
2148         break;
2149       case OP_Le:
2150         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2151         VdbeCoverage(v);
2152         break;
2153       default: assert( op==OP_Lt ); /* no-op */ break;
2154     }
2155     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
2156 
2157     /* This block runs if reg1 is not NULL, but reg2 is. */
2158     sqlite3VdbeJumpHere(v, addr);
2159     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2160     if( op==OP_Gt || op==OP_Ge ){
2161       sqlite3VdbeChangeP2(v, -1, addrDone);
2162     }
2163   }
2164 
2165   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2166   ** This block adds (or subtracts for DESC) the numeric value in regVal
2167   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2168   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2169   **
2170   **   if( reg1>='' ) goto addrGe;
2171   **   reg1 = reg1 +/- regVal
2172   **   addrGe:
2173   **
2174   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2175   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2176   ** then the arithmetic is performed, but since adding or subtracting from
2177   ** NULL is always NULL anyway, this case is handled as required too.  */
2178   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2179   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2180   VdbeCoverage(v);
2181   if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
2182     sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2183   }
2184   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2185   sqlite3VdbeJumpHere(v, addrGe);
2186 
2187   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2188   ** control skips over this test if the BIGNULL flag is set and either
2189   ** reg1 or reg2 contain a NULL value.  */
2190   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2191   pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
2192   sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
2193   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2194   sqlite3VdbeResolveLabel(v, addrDone);
2195 
2196   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2197   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2198   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2199   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2200   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2201   sqlite3ReleaseTempReg(pParse, reg1);
2202   sqlite3ReleaseTempReg(pParse, reg2);
2203 
2204   VdbeModuleComment((v, "CodeRangeTest: end"));
2205 }
2206 
2207 /*
2208 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2209 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2210 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2211 ** details.
2212 */
2213 static int windowCodeOp(
2214  WindowCodeArg *p,                /* Context object */
2215  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2216  int regCountdown,                /* Register for OP_IfPos countdown */
2217  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2218 ){
2219   int csr, reg;
2220   Parse *pParse = p->pParse;
2221   Window *pMWin = p->pMWin;
2222   int ret = 0;
2223   Vdbe *v = p->pVdbe;
2224   int addrContinue = 0;
2225   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2226 
2227   int lblDone = sqlite3VdbeMakeLabel(pParse);
2228   int addrNextRange = 0;
2229 
2230   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2231   ** starts with UNBOUNDED PRECEDING. */
2232   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2233     assert( regCountdown==0 && jumpOnEof==0 );
2234     return 0;
2235   }
2236 
2237   if( regCountdown>0 ){
2238     if( pMWin->eFrmType==TK_RANGE ){
2239       addrNextRange = sqlite3VdbeCurrentAddr(v);
2240       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2241       if( op==WINDOW_AGGINVERSE ){
2242         if( pMWin->eStart==TK_FOLLOWING ){
2243           windowCodeRangeTest(
2244               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2245           );
2246         }else{
2247           windowCodeRangeTest(
2248               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2249           );
2250         }
2251       }else{
2252         windowCodeRangeTest(
2253             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2254         );
2255       }
2256     }else{
2257       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2258       VdbeCoverage(v);
2259     }
2260   }
2261 
2262   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2263     windowAggFinal(p, 0);
2264   }
2265   addrContinue = sqlite3VdbeCurrentAddr(v);
2266 
2267   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2268   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2269   ** start cursor does not advance past the end cursor within the
2270   ** temporary table. It otherwise might, if (a>b). Also ensure that,
2271   ** if the input cursor is still finding new rows, that the end
2272   ** cursor does not go past it to EOF. */
2273   if( pMWin->eStart==pMWin->eEnd && regCountdown
2274    && pMWin->eFrmType==TK_RANGE
2275   ){
2276     int regRowid1 = sqlite3GetTempReg(pParse);
2277     int regRowid2 = sqlite3GetTempReg(pParse);
2278     if( op==WINDOW_AGGINVERSE ){
2279       sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2280       sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2281       sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2282       VdbeCoverage(v);
2283     }else if( p->regRowid ){
2284       sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1);
2285       sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1);
2286       VdbeCoverageNeverNull(v);
2287     }
2288     sqlite3ReleaseTempReg(pParse, regRowid1);
2289     sqlite3ReleaseTempReg(pParse, regRowid2);
2290     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2291   }
2292 
2293   switch( op ){
2294     case WINDOW_RETURN_ROW:
2295       csr = p->current.csr;
2296       reg = p->current.reg;
2297       windowReturnOneRow(p);
2298       break;
2299 
2300     case WINDOW_AGGINVERSE:
2301       csr = p->start.csr;
2302       reg = p->start.reg;
2303       if( pMWin->regStartRowid ){
2304         assert( pMWin->regEndRowid );
2305         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2306       }else{
2307         windowAggStep(p, pMWin, csr, 1, p->regArg);
2308       }
2309       break;
2310 
2311     default:
2312       assert( op==WINDOW_AGGSTEP );
2313       csr = p->end.csr;
2314       reg = p->end.reg;
2315       if( pMWin->regStartRowid ){
2316         assert( pMWin->regEndRowid );
2317         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2318       }else{
2319         windowAggStep(p, pMWin, csr, 0, p->regArg);
2320       }
2321       break;
2322   }
2323 
2324   if( op==p->eDelete ){
2325     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2326     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2327   }
2328 
2329   if( jumpOnEof ){
2330     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2331     VdbeCoverage(v);
2332     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2333   }else{
2334     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2335     VdbeCoverage(v);
2336     if( bPeer ){
2337       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2338     }
2339   }
2340 
2341   if( bPeer ){
2342     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2343     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2344     windowReadPeerValues(p, csr, regTmp);
2345     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2346     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2347   }
2348 
2349   if( addrNextRange ){
2350     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2351   }
2352   sqlite3VdbeResolveLabel(v, lblDone);
2353   return ret;
2354 }
2355 
2356 
2357 /*
2358 ** Allocate and return a duplicate of the Window object indicated by the
2359 ** third argument. Set the Window.pOwner field of the new object to
2360 ** pOwner.
2361 */
2362 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2363   Window *pNew = 0;
2364   if( ALWAYS(p) ){
2365     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2366     if( pNew ){
2367       pNew->zName = sqlite3DbStrDup(db, p->zName);
2368       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2369       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2370       pNew->pFunc = p->pFunc;
2371       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2372       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2373       pNew->eFrmType = p->eFrmType;
2374       pNew->eEnd = p->eEnd;
2375       pNew->eStart = p->eStart;
2376       pNew->eExclude = p->eExclude;
2377       pNew->regResult = p->regResult;
2378       pNew->regAccum = p->regAccum;
2379       pNew->iArgCol = p->iArgCol;
2380       pNew->iEphCsr = p->iEphCsr;
2381       pNew->bExprArgs = p->bExprArgs;
2382       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2383       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2384       pNew->pOwner = pOwner;
2385       pNew->bImplicitFrame = p->bImplicitFrame;
2386     }
2387   }
2388   return pNew;
2389 }
2390 
2391 /*
2392 ** Return a copy of the linked list of Window objects passed as the
2393 ** second argument.
2394 */
2395 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2396   Window *pWin;
2397   Window *pRet = 0;
2398   Window **pp = &pRet;
2399 
2400   for(pWin=p; pWin; pWin=pWin->pNextWin){
2401     *pp = sqlite3WindowDup(db, 0, pWin);
2402     if( *pp==0 ) break;
2403     pp = &((*pp)->pNextWin);
2404   }
2405 
2406   return pRet;
2407 }
2408 
2409 /*
2410 ** Return true if it can be determined at compile time that expression
2411 ** pExpr evaluates to a value that, when cast to an integer, is greater
2412 ** than zero. False otherwise.
2413 **
2414 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2415 ** flag and returns zero.
2416 */
2417 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2418   int ret = 0;
2419   sqlite3 *db = pParse->db;
2420   sqlite3_value *pVal = 0;
2421   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2422   if( pVal && sqlite3_value_int(pVal)>0 ){
2423     ret = 1;
2424   }
2425   sqlite3ValueFree(pVal);
2426   return ret;
2427 }
2428 
2429 /*
2430 ** sqlite3WhereBegin() has already been called for the SELECT statement
2431 ** passed as the second argument when this function is invoked. It generates
2432 ** code to populate the Window.regResult register for each window function
2433 ** and invoke the sub-routine at instruction addrGosub once for each row.
2434 ** sqlite3WhereEnd() is always called before returning.
2435 **
2436 ** This function handles several different types of window frames, which
2437 ** require slightly different processing. The following pseudo code is
2438 ** used to implement window frames of the form:
2439 **
2440 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2441 **
2442 ** Other window frame types use variants of the following:
2443 **
2444 **     ... loop started by sqlite3WhereBegin() ...
2445 **       if( new partition ){
2446 **         Gosub flush
2447 **       }
2448 **       Insert new row into eph table.
2449 **
2450 **       if( first row of partition ){
2451 **         // Rewind three cursors, all open on the eph table.
2452 **         Rewind(csrEnd);
2453 **         Rewind(csrStart);
2454 **         Rewind(csrCurrent);
2455 **
2456 **         regEnd = <expr2>          // FOLLOWING expression
2457 **         regStart = <expr1>        // PRECEDING expression
2458 **       }else{
2459 **         // First time this branch is taken, the eph table contains two
2460 **         // rows. The first row in the partition, which all three cursors
2461 **         // currently point to, and the following row.
2462 **         AGGSTEP
2463 **         if( (regEnd--)<=0 ){
2464 **           RETURN_ROW
2465 **           if( (regStart--)<=0 ){
2466 **             AGGINVERSE
2467 **           }
2468 **         }
2469 **       }
2470 **     }
2471 **     flush:
2472 **       AGGSTEP
2473 **       while( 1 ){
2474 **         RETURN ROW
2475 **         if( csrCurrent is EOF ) break;
2476 **         if( (regStart--)<=0 ){
2477 **           AggInverse(csrStart)
2478 **           Next(csrStart)
2479 **         }
2480 **       }
2481 **
2482 ** The pseudo-code above uses the following shorthand:
2483 **
2484 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2485 **               with arguments read from the current row of cursor csrEnd, then
2486 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2487 **
2488 **   RETURN_ROW: return a row to the caller based on the contents of the
2489 **               current row of csrCurrent and the current state of all
2490 **               aggregates. Then step cursor csrCurrent forward one row.
2491 **
2492 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2493 **               functions with arguments read from the current row of cursor
2494 **               csrStart. Then step csrStart forward one row.
2495 **
2496 ** There are two other ROWS window frames that are handled significantly
2497 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2498 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2499 ** cases because they change the order in which the three cursors (csrStart,
2500 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2501 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2502 ** three.
2503 **
2504 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2505 **
2506 **     ... loop started by sqlite3WhereBegin() ...
2507 **       if( new partition ){
2508 **         Gosub flush
2509 **       }
2510 **       Insert new row into eph table.
2511 **       if( first row of partition ){
2512 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2513 **         regEnd = <expr2>
2514 **         regStart = <expr1>
2515 **       }else{
2516 **         if( (regEnd--)<=0 ){
2517 **           AGGSTEP
2518 **         }
2519 **         RETURN_ROW
2520 **         if( (regStart--)<=0 ){
2521 **           AGGINVERSE
2522 **         }
2523 **       }
2524 **     }
2525 **     flush:
2526 **       if( (regEnd--)<=0 ){
2527 **         AGGSTEP
2528 **       }
2529 **       RETURN_ROW
2530 **
2531 **
2532 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2533 **
2534 **     ... loop started by sqlite3WhereBegin() ...
2535 **     if( new partition ){
2536 **       Gosub flush
2537 **     }
2538 **     Insert new row into eph table.
2539 **     if( first row of partition ){
2540 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2541 **       regEnd = <expr2>
2542 **       regStart = regEnd - <expr1>
2543 **     }else{
2544 **       AGGSTEP
2545 **       if( (regEnd--)<=0 ){
2546 **         RETURN_ROW
2547 **       }
2548 **       if( (regStart--)<=0 ){
2549 **         AGGINVERSE
2550 **       }
2551 **     }
2552 **   }
2553 **   flush:
2554 **     AGGSTEP
2555 **     while( 1 ){
2556 **       if( (regEnd--)<=0 ){
2557 **         RETURN_ROW
2558 **         if( eof ) break;
2559 **       }
2560 **       if( (regStart--)<=0 ){
2561 **         AGGINVERSE
2562 **         if( eof ) break
2563 **       }
2564 **     }
2565 **     while( !eof csrCurrent ){
2566 **       RETURN_ROW
2567 **     }
2568 **
2569 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2570 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2571 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2572 ** This is optimized of course - branches that will never be taken and
2573 ** conditions that are always true are omitted from the VM code. The only
2574 ** exceptional case is:
2575 **
2576 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2577 **
2578 **     ... loop started by sqlite3WhereBegin() ...
2579 **     if( new partition ){
2580 **       Gosub flush
2581 **     }
2582 **     Insert new row into eph table.
2583 **     if( first row of partition ){
2584 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2585 **       regStart = <expr1>
2586 **     }else{
2587 **       AGGSTEP
2588 **     }
2589 **   }
2590 **   flush:
2591 **     AGGSTEP
2592 **     while( 1 ){
2593 **       if( (regStart--)<=0 ){
2594 **         AGGINVERSE
2595 **         if( eof ) break
2596 **       }
2597 **       RETURN_ROW
2598 **     }
2599 **     while( !eof csrCurrent ){
2600 **       RETURN_ROW
2601 **     }
2602 **
2603 ** Also requiring special handling are the cases:
2604 **
2605 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2606 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2607 **
2608 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2609 ** To handle this case, the pseudo-code programs depicted above are modified
2610 ** slightly to be:
2611 **
2612 **     ... loop started by sqlite3WhereBegin() ...
2613 **     if( new partition ){
2614 **       Gosub flush
2615 **     }
2616 **     Insert new row into eph table.
2617 **     if( first row of partition ){
2618 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2619 **       regEnd = <expr2>
2620 **       regStart = <expr1>
2621 **       if( regEnd < regStart ){
2622 **         RETURN_ROW
2623 **         delete eph table contents
2624 **         continue
2625 **       }
2626 **     ...
2627 **
2628 ** The new "continue" statement in the above jumps to the next iteration
2629 ** of the outer loop - the one started by sqlite3WhereBegin().
2630 **
2631 ** The various GROUPS cases are implemented using the same patterns as
2632 ** ROWS. The VM code is modified slightly so that:
2633 **
2634 **   1. The else branch in the main loop is only taken if the row just
2635 **      added to the ephemeral table is the start of a new group. In
2636 **      other words, it becomes:
2637 **
2638 **         ... loop started by sqlite3WhereBegin() ...
2639 **         if( new partition ){
2640 **           Gosub flush
2641 **         }
2642 **         Insert new row into eph table.
2643 **         if( first row of partition ){
2644 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2645 **           regEnd = <expr2>
2646 **           regStart = <expr1>
2647 **         }else if( new group ){
2648 **           ...
2649 **         }
2650 **       }
2651 **
2652 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2653 **      AGGINVERSE step processes the current row of the relevant cursor and
2654 **      all subsequent rows belonging to the same group.
2655 **
2656 ** RANGE window frames are a little different again. As for GROUPS, the
2657 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2658 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2659 ** basic cases:
2660 **
2661 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2662 **
2663 **     ... loop started by sqlite3WhereBegin() ...
2664 **       if( new partition ){
2665 **         Gosub flush
2666 **       }
2667 **       Insert new row into eph table.
2668 **       if( first row of partition ){
2669 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2670 **         regEnd = <expr2>
2671 **         regStart = <expr1>
2672 **       }else{
2673 **         AGGSTEP
2674 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2675 **           RETURN_ROW
2676 **           while( csrStart.key + regStart) < csrCurrent.key ){
2677 **             AGGINVERSE
2678 **           }
2679 **         }
2680 **       }
2681 **     }
2682 **     flush:
2683 **       AGGSTEP
2684 **       while( 1 ){
2685 **         RETURN ROW
2686 **         if( csrCurrent is EOF ) break;
2687 **           while( csrStart.key + regStart) < csrCurrent.key ){
2688 **             AGGINVERSE
2689 **           }
2690 **         }
2691 **       }
2692 **
2693 ** In the above notation, "csr.key" means the current value of the ORDER BY
2694 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2695 ** or <expr PRECEDING) read from cursor csr.
2696 **
2697 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2698 **
2699 **     ... loop started by sqlite3WhereBegin() ...
2700 **       if( new partition ){
2701 **         Gosub flush
2702 **       }
2703 **       Insert new row into eph table.
2704 **       if( first row of partition ){
2705 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2706 **         regEnd = <expr2>
2707 **         regStart = <expr1>
2708 **       }else{
2709 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2710 **           AGGSTEP
2711 **         }
2712 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2713 **           AGGINVERSE
2714 **         }
2715 **         RETURN_ROW
2716 **       }
2717 **     }
2718 **     flush:
2719 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2720 **         AGGSTEP
2721 **       }
2722 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2723 **         AGGINVERSE
2724 **       }
2725 **       RETURN_ROW
2726 **
2727 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2728 **
2729 **     ... loop started by sqlite3WhereBegin() ...
2730 **       if( new partition ){
2731 **         Gosub flush
2732 **       }
2733 **       Insert new row into eph table.
2734 **       if( first row of partition ){
2735 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2736 **         regEnd = <expr2>
2737 **         regStart = <expr1>
2738 **       }else{
2739 **         AGGSTEP
2740 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2741 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2742 **             AGGINVERSE
2743 **           }
2744 **           RETURN_ROW
2745 **         }
2746 **       }
2747 **     }
2748 **     flush:
2749 **       AGGSTEP
2750 **       while( 1 ){
2751 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2752 **           AGGINVERSE
2753 **           if( eof ) break "while( 1 )" loop.
2754 **         }
2755 **         RETURN_ROW
2756 **       }
2757 **       while( !eof csrCurrent ){
2758 **         RETURN_ROW
2759 **       }
2760 **
2761 ** The text above leaves out many details. Refer to the code and comments
2762 ** below for a more complete picture.
2763 */
2764 void sqlite3WindowCodeStep(
2765   Parse *pParse,                  /* Parse context */
2766   Select *p,                      /* Rewritten SELECT statement */
2767   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2768   int regGosub,                   /* Register for OP_Gosub */
2769   int addrGosub                   /* OP_Gosub here to return each row */
2770 ){
2771   Window *pMWin = p->pWin;
2772   ExprList *pOrderBy = pMWin->pOrderBy;
2773   Vdbe *v = sqlite3GetVdbe(pParse);
2774   int csrWrite;                   /* Cursor used to write to eph. table */
2775   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2776   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2777   int iInput;                               /* To iterate through sub cols */
2778   int addrNe;                     /* Address of OP_Ne */
2779   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2780   int addrInteger = 0;            /* Address of OP_Integer */
2781   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2782   int regNew;                     /* Array of registers holding new input row */
2783   int regRecord;                  /* regNew array in record form */
2784   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2785   int regPeer = 0;                /* Peer values for current row */
2786   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2787   WindowCodeArg s;                /* Context object for sub-routines */
2788   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2789   int regStart = 0;               /* Value of <expr> PRECEDING */
2790   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2791 
2792   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2793        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2794   );
2795   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2796        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2797   );
2798   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2799        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2800        || pMWin->eExclude==TK_NO
2801   );
2802 
2803   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2804 
2805   /* Fill in the context object */
2806   memset(&s, 0, sizeof(WindowCodeArg));
2807   s.pParse = pParse;
2808   s.pMWin = pMWin;
2809   s.pVdbe = v;
2810   s.regGosub = regGosub;
2811   s.addrGosub = addrGosub;
2812   s.current.csr = pMWin->iEphCsr;
2813   csrWrite = s.current.csr+1;
2814   s.start.csr = s.current.csr+2;
2815   s.end.csr = s.current.csr+3;
2816 
2817   /* Figure out when rows may be deleted from the ephemeral table. There
2818   ** are four options - they may never be deleted (eDelete==0), they may
2819   ** be deleted as soon as they are no longer part of the window frame
2820   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2821   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2822   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2823   switch( pMWin->eStart ){
2824     case TK_FOLLOWING:
2825       if( pMWin->eFrmType!=TK_RANGE
2826        && windowExprGtZero(pParse, pMWin->pStart)
2827       ){
2828         s.eDelete = WINDOW_RETURN_ROW;
2829       }
2830       break;
2831     case TK_UNBOUNDED:
2832       if( windowCacheFrame(pMWin)==0 ){
2833         if( pMWin->eEnd==TK_PRECEDING ){
2834           if( pMWin->eFrmType!=TK_RANGE
2835            && windowExprGtZero(pParse, pMWin->pEnd)
2836           ){
2837             s.eDelete = WINDOW_AGGSTEP;
2838           }
2839         }else{
2840           s.eDelete = WINDOW_RETURN_ROW;
2841         }
2842       }
2843       break;
2844     default:
2845       s.eDelete = WINDOW_AGGINVERSE;
2846       break;
2847   }
2848 
2849   /* Allocate registers for the array of values from the sub-query, the
2850   ** samve values in record form, and the rowid used to insert said record
2851   ** into the ephemeral table.  */
2852   regNew = pParse->nMem+1;
2853   pParse->nMem += nInput;
2854   regRecord = ++pParse->nMem;
2855   s.regRowid = ++pParse->nMem;
2856 
2857   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2858   ** clause, allocate registers to store the results of evaluating each
2859   ** <expr>.  */
2860   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2861     regStart = ++pParse->nMem;
2862   }
2863   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2864     regEnd = ++pParse->nMem;
2865   }
2866 
2867   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2868   ** registers to store copies of the ORDER BY expressions (peer values)
2869   ** for the main loop, and for each cursor (start, current and end). */
2870   if( pMWin->eFrmType!=TK_ROWS ){
2871     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2872     regNewPeer = regNew + pMWin->nBufferCol;
2873     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2874     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2875     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2876     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2877     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2878   }
2879 
2880   /* Load the column values for the row returned by the sub-select
2881   ** into an array of registers starting at regNew. Assemble them into
2882   ** a record in register regRecord. */
2883   for(iInput=0; iInput<nInput; iInput++){
2884     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2885   }
2886   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2887 
2888   /* An input row has just been read into an array of registers starting
2889   ** at regNew. If the window has a PARTITION clause, this block generates
2890   ** VM code to check if the input row is the start of a new partition.
2891   ** If so, it does an OP_Gosub to an address to be filled in later. The
2892   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2893   if( pMWin->pPartition ){
2894     int addr;
2895     ExprList *pPart = pMWin->pPartition;
2896     int nPart = pPart->nExpr;
2897     int regNewPart = regNew + pMWin->nBufferCol;
2898     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2899 
2900     regFlushPart = ++pParse->nMem;
2901     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2902     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2903     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2904     VdbeCoverageEqNe(v);
2905     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2906     VdbeComment((v, "call flush_partition"));
2907     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2908   }
2909 
2910   /* Insert the new row into the ephemeral table */
2911   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid);
2912   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid);
2913   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid);
2914   VdbeCoverageNeverNull(v);
2915 
2916   /* This block is run for the first row of each partition */
2917   s.regArg = windowInitAccum(pParse, pMWin);
2918 
2919   if( regStart ){
2920     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2921     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2922   }
2923   if( regEnd ){
2924     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2925     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2926   }
2927 
2928   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2929     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2930     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2931     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2932     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2933     windowAggFinal(&s, 0);
2934     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2935     VdbeCoverageNeverTaken(v);
2936     windowReturnOneRow(&s);
2937     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2938     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2939     sqlite3VdbeJumpHere(v, addrGe);
2940   }
2941   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2942     assert( pMWin->eEnd==TK_FOLLOWING );
2943     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2944   }
2945 
2946   if( pMWin->eStart!=TK_UNBOUNDED ){
2947     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2948     VdbeCoverageNeverTaken(v);
2949   }
2950   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2951   VdbeCoverageNeverTaken(v);
2952   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2953   VdbeCoverageNeverTaken(v);
2954   if( regPeer && pOrderBy ){
2955     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2956     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2957     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2958     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2959   }
2960 
2961   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2962 
2963   sqlite3VdbeJumpHere(v, addrNe);
2964 
2965   /* Beginning of the block executed for the second and subsequent rows. */
2966   if( regPeer ){
2967     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2968   }
2969   if( pMWin->eStart==TK_FOLLOWING ){
2970     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2971     if( pMWin->eEnd!=TK_UNBOUNDED ){
2972       if( pMWin->eFrmType==TK_RANGE ){
2973         int lbl = sqlite3VdbeMakeLabel(pParse);
2974         int addrNext = sqlite3VdbeCurrentAddr(v);
2975         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2976         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2977         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2978         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2979         sqlite3VdbeResolveLabel(v, lbl);
2980       }else{
2981         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2982         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2983       }
2984     }
2985   }else
2986   if( pMWin->eEnd==TK_PRECEDING ){
2987     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2988     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2989     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2990     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2991     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2992   }else{
2993     int addr = 0;
2994     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2995     if( pMWin->eEnd!=TK_UNBOUNDED ){
2996       if( pMWin->eFrmType==TK_RANGE ){
2997         int lbl = 0;
2998         addr = sqlite3VdbeCurrentAddr(v);
2999         if( regEnd ){
3000           lbl = sqlite3VdbeMakeLabel(pParse);
3001           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
3002         }
3003         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3004         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3005         if( regEnd ){
3006           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
3007           sqlite3VdbeResolveLabel(v, lbl);
3008         }
3009       }else{
3010         if( regEnd ){
3011           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
3012           VdbeCoverage(v);
3013         }
3014         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3015         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3016         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
3017       }
3018     }
3019   }
3020 
3021   /* End of the main input loop */
3022   sqlite3VdbeResolveLabel(v, lblWhereEnd);
3023   sqlite3WhereEnd(pWInfo);
3024 
3025   /* Fall through */
3026   if( pMWin->pPartition ){
3027     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
3028     sqlite3VdbeJumpHere(v, addrGosubFlush);
3029   }
3030 
3031   s.regRowid = 0;
3032   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
3033   VdbeCoverage(v);
3034   if( pMWin->eEnd==TK_PRECEDING ){
3035     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
3036     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
3037     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3038     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3039   }else if( pMWin->eStart==TK_FOLLOWING ){
3040     int addrStart;
3041     int addrBreak1;
3042     int addrBreak2;
3043     int addrBreak3;
3044     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3045     if( pMWin->eFrmType==TK_RANGE ){
3046       addrStart = sqlite3VdbeCurrentAddr(v);
3047       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3048       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3049     }else
3050     if( pMWin->eEnd==TK_UNBOUNDED ){
3051       addrStart = sqlite3VdbeCurrentAddr(v);
3052       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3053       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3054     }else{
3055       assert( pMWin->eEnd==TK_FOLLOWING );
3056       addrStart = sqlite3VdbeCurrentAddr(v);
3057       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3058       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3059     }
3060     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3061     sqlite3VdbeJumpHere(v, addrBreak2);
3062     addrStart = sqlite3VdbeCurrentAddr(v);
3063     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3064     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3065     sqlite3VdbeJumpHere(v, addrBreak1);
3066     sqlite3VdbeJumpHere(v, addrBreak3);
3067   }else{
3068     int addrBreak;
3069     int addrStart;
3070     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3071     addrStart = sqlite3VdbeCurrentAddr(v);
3072     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3073     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3074     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3075     sqlite3VdbeJumpHere(v, addrBreak);
3076   }
3077   sqlite3VdbeJumpHere(v, addrEmpty);
3078 
3079   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3080   if( pMWin->pPartition ){
3081     if( pMWin->regStartRowid ){
3082       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3083       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3084     }
3085     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3086     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3087   }
3088 }
3089 
3090 #endif /* SQLITE_OMIT_WINDOWFUNC */
3091