1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* Fall through. */ 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 791 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 792 if( p->pSub ){ 793 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 794 ExprSetProperty(pExpr, EP_Static); 795 sqlite3ExprDelete(pParse->db, pExpr); 796 ExprClearProperty(pExpr, EP_Static); 797 memset(pExpr, 0, sizeof(Expr)); 798 799 pExpr->op = TK_COLUMN; 800 pExpr->iColumn = p->pSub->nExpr-1; 801 pExpr->iTable = p->pWin->iEphCsr; 802 pExpr->y.pTab = p->pTab; 803 } 804 805 break; 806 } 807 808 default: /* no-op */ 809 break; 810 } 811 812 return WRC_Continue; 813 } 814 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 815 struct WindowRewrite *p = pWalker->u.pRewrite; 816 Select *pSave = p->pSubSelect; 817 if( pSave==pSelect ){ 818 return WRC_Continue; 819 }else{ 820 p->pSubSelect = pSelect; 821 sqlite3WalkSelect(pWalker, pSelect); 822 p->pSubSelect = pSave; 823 } 824 return WRC_Prune; 825 } 826 827 828 /* 829 ** Iterate through each expression in expression-list pEList. For each: 830 ** 831 ** * TK_COLUMN, 832 ** * aggregate function, or 833 ** * window function with a Window object that is not a member of the 834 ** Window list passed as the second argument (pWin). 835 ** 836 ** Append the node to output expression-list (*ppSub). And replace it 837 ** with a TK_COLUMN that reads the (N-1)th element of table 838 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 839 ** appending the new one. 840 */ 841 static void selectWindowRewriteEList( 842 Parse *pParse, 843 Window *pWin, 844 SrcList *pSrc, 845 ExprList *pEList, /* Rewrite expressions in this list */ 846 Table *pTab, 847 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 848 ){ 849 Walker sWalker; 850 WindowRewrite sRewrite; 851 852 assert( pWin!=0 ); 853 memset(&sWalker, 0, sizeof(Walker)); 854 memset(&sRewrite, 0, sizeof(WindowRewrite)); 855 856 sRewrite.pSub = *ppSub; 857 sRewrite.pWin = pWin; 858 sRewrite.pSrc = pSrc; 859 sRewrite.pTab = pTab; 860 861 sWalker.pParse = pParse; 862 sWalker.xExprCallback = selectWindowRewriteExprCb; 863 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 864 sWalker.u.pRewrite = &sRewrite; 865 866 (void)sqlite3WalkExprList(&sWalker, pEList); 867 868 *ppSub = sRewrite.pSub; 869 } 870 871 /* 872 ** Append a copy of each expression in expression-list pAppend to 873 ** expression list pList. Return a pointer to the result list. 874 */ 875 static ExprList *exprListAppendList( 876 Parse *pParse, /* Parsing context */ 877 ExprList *pList, /* List to which to append. Might be NULL */ 878 ExprList *pAppend, /* List of values to append. Might be NULL */ 879 int bIntToNull 880 ){ 881 if( pAppend ){ 882 int i; 883 int nInit = pList ? pList->nExpr : 0; 884 for(i=0; i<pAppend->nExpr; i++){ 885 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); 886 if( bIntToNull && pDup && pDup->op==TK_INTEGER ){ 887 pDup->op = TK_NULL; 888 pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 889 } 890 pList = sqlite3ExprListAppend(pParse, pList, pDup); 891 if( pList ) pList->a[nInit+i].sortOrder = pAppend->a[i].sortOrder; 892 } 893 } 894 return pList; 895 } 896 897 /* 898 ** If the SELECT statement passed as the second argument does not invoke 899 ** any SQL window functions, this function is a no-op. Otherwise, it 900 ** rewrites the SELECT statement so that window function xStep functions 901 ** are invoked in the correct order as described under "SELECT REWRITING" 902 ** at the top of this file. 903 */ 904 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 905 int rc = SQLITE_OK; 906 if( p->pWin && p->pPrior==0 ){ 907 Vdbe *v = sqlite3GetVdbe(pParse); 908 sqlite3 *db = pParse->db; 909 Select *pSub = 0; /* The subquery */ 910 SrcList *pSrc = p->pSrc; 911 Expr *pWhere = p->pWhere; 912 ExprList *pGroupBy = p->pGroupBy; 913 Expr *pHaving = p->pHaving; 914 ExprList *pSort = 0; 915 916 ExprList *pSublist = 0; /* Expression list for sub-query */ 917 Window *pMWin = p->pWin; /* Master window object */ 918 Window *pWin; /* Window object iterator */ 919 Table *pTab; 920 921 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 922 if( pTab==0 ){ 923 return SQLITE_NOMEM; 924 } 925 926 p->pSrc = 0; 927 p->pWhere = 0; 928 p->pGroupBy = 0; 929 p->pHaving = 0; 930 p->selFlags &= ~SF_Aggregate; 931 932 /* Create the ORDER BY clause for the sub-select. This is the concatenation 933 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 934 ** redundant, remove the ORDER BY from the parent SELECT. */ 935 pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0); 936 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 937 if( pSort && p->pOrderBy ){ 938 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 939 sqlite3ExprListDelete(db, p->pOrderBy); 940 p->pOrderBy = 0; 941 } 942 } 943 944 /* Assign a cursor number for the ephemeral table used to buffer rows. 945 ** The OpenEphemeral instruction is coded later, after it is known how 946 ** many columns the table will have. */ 947 pMWin->iEphCsr = pParse->nTab++; 948 pParse->nTab += 3; 949 950 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 951 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 952 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 953 954 /* Append the PARTITION BY and ORDER BY expressions to the to the 955 ** sub-select expression list. They are required to figure out where 956 ** boundaries for partitions and sets of peer rows lie. */ 957 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 958 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 959 960 /* Append the arguments passed to each window function to the 961 ** sub-select expression list. Also allocate two registers for each 962 ** window function - one for the accumulator, another for interim 963 ** results. */ 964 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 965 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 966 pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList, 0); 967 if( pWin->pFilter ){ 968 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 969 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 970 } 971 pWin->regAccum = ++pParse->nMem; 972 pWin->regResult = ++pParse->nMem; 973 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 974 } 975 976 /* If there is no ORDER BY or PARTITION BY clause, and the window 977 ** function accepts zero arguments, and there are no other columns 978 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 979 ** that pSublist is still NULL here. Add a constant expression here to 980 ** keep everything legal in this case. 981 */ 982 if( pSublist==0 ){ 983 pSublist = sqlite3ExprListAppend(pParse, 0, 984 sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0) 985 ); 986 } 987 988 pSub = sqlite3SelectNew( 989 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 990 ); 991 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 992 if( p->pSrc ){ 993 Table *pTab2; 994 p->pSrc->a[0].pSelect = pSub; 995 sqlite3SrcListAssignCursors(pParse, p->pSrc); 996 pSub->selFlags |= SF_Expanded; 997 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub); 998 if( pTab2==0 ){ 999 rc = SQLITE_NOMEM; 1000 }else{ 1001 memcpy(pTab, pTab2, sizeof(Table)); 1002 pTab->tabFlags |= TF_Ephemeral; 1003 p->pSrc->a[0].pTab = pTab; 1004 pTab = pTab2; 1005 } 1006 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr); 1007 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1008 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1009 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1010 }else{ 1011 sqlite3SelectDelete(db, pSub); 1012 } 1013 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1014 sqlite3DbFree(db, pTab); 1015 } 1016 1017 return rc; 1018 } 1019 1020 /* 1021 ** Unlink the Window object from the Select to which it is attached, 1022 ** if it is attached. 1023 */ 1024 void sqlite3WindowUnlinkFromSelect(Window *p){ 1025 if( p->ppThis ){ 1026 *p->ppThis = p->pNextWin; 1027 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1028 p->ppThis = 0; 1029 } 1030 } 1031 1032 /* 1033 ** Free the Window object passed as the second argument. 1034 */ 1035 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1036 if( p ){ 1037 sqlite3WindowUnlinkFromSelect(p); 1038 sqlite3ExprDelete(db, p->pFilter); 1039 sqlite3ExprListDelete(db, p->pPartition); 1040 sqlite3ExprListDelete(db, p->pOrderBy); 1041 sqlite3ExprDelete(db, p->pEnd); 1042 sqlite3ExprDelete(db, p->pStart); 1043 sqlite3DbFree(db, p->zName); 1044 sqlite3DbFree(db, p->zBase); 1045 sqlite3DbFree(db, p); 1046 } 1047 } 1048 1049 /* 1050 ** Free the linked list of Window objects starting at the second argument. 1051 */ 1052 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1053 while( p ){ 1054 Window *pNext = p->pNextWin; 1055 sqlite3WindowDelete(db, p); 1056 p = pNext; 1057 } 1058 } 1059 1060 /* 1061 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1062 ** value should be a non-negative integer. If the value is not a 1063 ** constant, change it to NULL. The fact that it is then a non-negative 1064 ** integer will be caught later. But it is important not to leave 1065 ** variable values in the expression tree. 1066 */ 1067 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1068 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1069 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1070 sqlite3ExprDelete(pParse->db, pExpr); 1071 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1072 } 1073 return pExpr; 1074 } 1075 1076 /* 1077 ** Allocate and return a new Window object describing a Window Definition. 1078 */ 1079 Window *sqlite3WindowAlloc( 1080 Parse *pParse, /* Parsing context */ 1081 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1082 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1083 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1084 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1085 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1086 u8 eExclude /* EXCLUDE clause */ 1087 ){ 1088 Window *pWin = 0; 1089 int bImplicitFrame = 0; 1090 1091 /* Parser assures the following: */ 1092 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1093 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1094 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1095 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1096 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1097 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1098 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1099 1100 if( eType==0 ){ 1101 bImplicitFrame = 1; 1102 eType = TK_RANGE; 1103 } 1104 1105 /* Additionally, the 1106 ** starting boundary type may not occur earlier in the following list than 1107 ** the ending boundary type: 1108 ** 1109 ** UNBOUNDED PRECEDING 1110 ** <expr> PRECEDING 1111 ** CURRENT ROW 1112 ** <expr> FOLLOWING 1113 ** UNBOUNDED FOLLOWING 1114 ** 1115 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1116 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1117 ** frame boundary. 1118 */ 1119 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1120 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1121 ){ 1122 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1123 goto windowAllocErr; 1124 } 1125 1126 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1127 if( pWin==0 ) goto windowAllocErr; 1128 pWin->eFrmType = eType; 1129 pWin->eStart = eStart; 1130 pWin->eEnd = eEnd; 1131 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1132 eExclude = TK_NO; 1133 } 1134 pWin->eExclude = eExclude; 1135 pWin->bImplicitFrame = bImplicitFrame; 1136 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1137 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1138 return pWin; 1139 1140 windowAllocErr: 1141 sqlite3ExprDelete(pParse->db, pEnd); 1142 sqlite3ExprDelete(pParse->db, pStart); 1143 return 0; 1144 } 1145 1146 /* 1147 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1148 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1149 ** equivalent nul-terminated string. 1150 */ 1151 Window *sqlite3WindowAssemble( 1152 Parse *pParse, 1153 Window *pWin, 1154 ExprList *pPartition, 1155 ExprList *pOrderBy, 1156 Token *pBase 1157 ){ 1158 if( pWin ){ 1159 pWin->pPartition = pPartition; 1160 pWin->pOrderBy = pOrderBy; 1161 if( pBase ){ 1162 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1163 } 1164 }else{ 1165 sqlite3ExprListDelete(pParse->db, pPartition); 1166 sqlite3ExprListDelete(pParse->db, pOrderBy); 1167 } 1168 return pWin; 1169 } 1170 1171 /* 1172 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1173 ** is the base window. Earlier windows from the same WINDOW clause are 1174 ** stored in the linked list starting at pWin->pNextWin. This function 1175 ** either updates *pWin according to the base specification, or else 1176 ** leaves an error in pParse. 1177 */ 1178 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1179 if( pWin->zBase ){ 1180 sqlite3 *db = pParse->db; 1181 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1182 if( pExist ){ 1183 const char *zErr = 0; 1184 /* Check for errors */ 1185 if( pWin->pPartition ){ 1186 zErr = "PARTITION clause"; 1187 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1188 zErr = "ORDER BY clause"; 1189 }else if( pExist->bImplicitFrame==0 ){ 1190 zErr = "frame specification"; 1191 } 1192 if( zErr ){ 1193 sqlite3ErrorMsg(pParse, 1194 "cannot override %s of window: %s", zErr, pWin->zBase 1195 ); 1196 }else{ 1197 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1198 if( pExist->pOrderBy ){ 1199 assert( pWin->pOrderBy==0 ); 1200 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1201 } 1202 sqlite3DbFree(db, pWin->zBase); 1203 pWin->zBase = 0; 1204 } 1205 } 1206 } 1207 } 1208 1209 /* 1210 ** Attach window object pWin to expression p. 1211 */ 1212 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1213 if( p ){ 1214 assert( p->op==TK_FUNCTION ); 1215 assert( pWin ); 1216 p->y.pWin = pWin; 1217 ExprSetProperty(p, EP_WinFunc); 1218 pWin->pOwner = p; 1219 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1220 sqlite3ErrorMsg(pParse, 1221 "DISTINCT is not supported for window functions" 1222 ); 1223 } 1224 }else{ 1225 sqlite3WindowDelete(pParse->db, pWin); 1226 } 1227 } 1228 1229 /* 1230 ** Return 0 if the two window objects are identical, or non-zero otherwise. 1231 ** Identical window objects can be processed in a single scan. 1232 */ 1233 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1234 if( p1->eFrmType!=p2->eFrmType ) return 1; 1235 if( p1->eStart!=p2->eStart ) return 1; 1236 if( p1->eEnd!=p2->eEnd ) return 1; 1237 if( p1->eExclude!=p2->eExclude ) return 1; 1238 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1239 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1240 if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1; 1241 if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1; 1242 if( bFilter ){ 1243 if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1; 1244 } 1245 return 0; 1246 } 1247 1248 1249 /* 1250 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1251 ** to begin iterating through the sub-query results. It is used to allocate 1252 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1253 */ 1254 void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){ 1255 Window *pWin; 1256 Vdbe *v = sqlite3GetVdbe(pParse); 1257 1258 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1259 ** said registers to NULL. */ 1260 if( pMWin->pPartition ){ 1261 int nExpr = pMWin->pPartition->nExpr; 1262 pMWin->regPart = pParse->nMem+1; 1263 pParse->nMem += nExpr; 1264 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1265 } 1266 1267 pMWin->regOne = ++pParse->nMem; 1268 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1269 1270 if( pMWin->eExclude ){ 1271 pMWin->regStartRowid = ++pParse->nMem; 1272 pMWin->regEndRowid = ++pParse->nMem; 1273 pMWin->csrApp = pParse->nTab++; 1274 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1275 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1276 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1277 return; 1278 } 1279 1280 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1281 FuncDef *p = pWin->pFunc; 1282 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1283 /* The inline versions of min() and max() require a single ephemeral 1284 ** table and 3 registers. The registers are used as follows: 1285 ** 1286 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1287 ** regApp+1: integer value used to ensure keys are unique 1288 ** regApp+2: output of MakeRecord 1289 */ 1290 ExprList *pList = pWin->pOwner->x.pList; 1291 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1292 pWin->csrApp = pParse->nTab++; 1293 pWin->regApp = pParse->nMem+1; 1294 pParse->nMem += 3; 1295 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1296 assert( pKeyInfo->aSortOrder[0]==0 ); 1297 pKeyInfo->aSortOrder[0] = 1; 1298 } 1299 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1300 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1301 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1302 } 1303 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1304 /* Allocate two registers at pWin->regApp. These will be used to 1305 ** store the start and end index of the current frame. */ 1306 pWin->regApp = pParse->nMem+1; 1307 pWin->csrApp = pParse->nTab++; 1308 pParse->nMem += 2; 1309 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1310 } 1311 else if( p->zName==leadName || p->zName==lagName ){ 1312 pWin->csrApp = pParse->nTab++; 1313 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1314 } 1315 } 1316 } 1317 1318 #define WINDOW_STARTING_INT 0 1319 #define WINDOW_ENDING_INT 1 1320 #define WINDOW_NTH_VALUE_INT 2 1321 #define WINDOW_STARTING_NUM 3 1322 #define WINDOW_ENDING_NUM 4 1323 1324 /* 1325 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1326 ** value of the second argument to nth_value() (eCond==2) has just been 1327 ** evaluated and the result left in register reg. This function generates VM 1328 ** code to check that the value is a non-negative integer and throws an 1329 ** exception if it is not. 1330 */ 1331 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1332 static const char *azErr[] = { 1333 "frame starting offset must be a non-negative integer", 1334 "frame ending offset must be a non-negative integer", 1335 "second argument to nth_value must be a positive integer", 1336 "frame starting offset must be a non-negative number", 1337 "frame ending offset must be a non-negative number", 1338 }; 1339 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1340 Vdbe *v = sqlite3GetVdbe(pParse); 1341 int regZero = sqlite3GetTempReg(pParse); 1342 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1343 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1344 if( eCond>=WINDOW_STARTING_NUM ){ 1345 int regString = sqlite3GetTempReg(pParse); 1346 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1347 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1348 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1349 VdbeCoverage(v); 1350 assert( eCond==3 || eCond==4 ); 1351 VdbeCoverageIf(v, eCond==3); 1352 VdbeCoverageIf(v, eCond==4); 1353 }else{ 1354 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1355 VdbeCoverage(v); 1356 assert( eCond==0 || eCond==1 || eCond==2 ); 1357 VdbeCoverageIf(v, eCond==0); 1358 VdbeCoverageIf(v, eCond==1); 1359 VdbeCoverageIf(v, eCond==2); 1360 } 1361 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1362 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1363 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1364 VdbeCoverageNeverNullIf(v, eCond==2); 1365 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1366 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1367 sqlite3MayAbort(pParse); 1368 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1369 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1370 sqlite3ReleaseTempReg(pParse, regZero); 1371 } 1372 1373 /* 1374 ** Return the number of arguments passed to the window-function associated 1375 ** with the object passed as the only argument to this function. 1376 */ 1377 static int windowArgCount(Window *pWin){ 1378 ExprList *pList = pWin->pOwner->x.pList; 1379 return (pList ? pList->nExpr : 0); 1380 } 1381 1382 /* 1383 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1384 ** xInverse (if bInverse is non-zero) for each window function in the 1385 ** linked list starting at pMWin. Or, for built-in window functions 1386 ** that do not use the standard function API, generate the required 1387 ** inline VM code. 1388 ** 1389 ** If argument csr is greater than or equal to 0, then argument reg is 1390 ** the first register in an array of registers guaranteed to be large 1391 ** enough to hold the array of arguments for each function. In this case 1392 ** the arguments are extracted from the current row of csr into the 1393 ** array of registers before invoking OP_AggStep or OP_AggInverse 1394 ** 1395 ** Or, if csr is less than zero, then the array of registers at reg is 1396 ** already populated with all columns from the current row of the sub-query. 1397 ** 1398 ** If argument regPartSize is non-zero, then it is a register containing the 1399 ** number of rows in the current partition. 1400 */ 1401 static void windowAggStep( 1402 Parse *pParse, 1403 Window *pMWin, /* Linked list of window functions */ 1404 int csr, /* Read arguments from this cursor */ 1405 int bInverse, /* True to invoke xInverse instead of xStep */ 1406 int reg /* Array of registers */ 1407 ){ 1408 Vdbe *v = sqlite3GetVdbe(pParse); 1409 Window *pWin; 1410 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1411 FuncDef *pFunc = pWin->pFunc; 1412 int regArg; 1413 int nArg = windowArgCount(pWin); 1414 int i; 1415 1416 for(i=0; i<nArg; i++){ 1417 if( i!=1 || pFunc->zName!=nth_valueName ){ 1418 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1419 }else{ 1420 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1421 } 1422 } 1423 regArg = reg; 1424 1425 if( pMWin->regStartRowid==0 1426 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1427 && (pWin->eStart!=TK_UNBOUNDED) 1428 ){ 1429 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1430 VdbeCoverage(v); 1431 if( bInverse==0 ){ 1432 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1433 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1434 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1435 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1436 }else{ 1437 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1438 VdbeCoverageNeverTaken(v); 1439 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1440 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1441 } 1442 sqlite3VdbeJumpHere(v, addrIsNull); 1443 }else if( pWin->regApp ){ 1444 assert( pFunc->zName==nth_valueName 1445 || pFunc->zName==first_valueName 1446 ); 1447 assert( bInverse==0 || bInverse==1 ); 1448 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1449 }else if( pFunc->xSFunc!=noopStepFunc ){ 1450 int addrIf = 0; 1451 if( pWin->pFilter ){ 1452 int regTmp; 1453 assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr ); 1454 assert( nArg || pWin->pOwner->x.pList==0 ); 1455 regTmp = sqlite3GetTempReg(pParse); 1456 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1457 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1458 VdbeCoverage(v); 1459 sqlite3ReleaseTempReg(pParse, regTmp); 1460 } 1461 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1462 CollSeq *pColl; 1463 assert( nArg>0 ); 1464 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1465 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1466 } 1467 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1468 bInverse, regArg, pWin->regAccum); 1469 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1470 sqlite3VdbeChangeP5(v, (u8)nArg); 1471 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1472 } 1473 } 1474 } 1475 1476 typedef struct WindowCodeArg WindowCodeArg; 1477 typedef struct WindowCsrAndReg WindowCsrAndReg; 1478 struct WindowCsrAndReg { 1479 int csr; 1480 int reg; 1481 }; 1482 1483 struct WindowCodeArg { 1484 Parse *pParse; 1485 Window *pMWin; 1486 Vdbe *pVdbe; 1487 int regGosub; 1488 int addrGosub; 1489 int regArg; 1490 int eDelete; 1491 1492 WindowCsrAndReg start; 1493 WindowCsrAndReg current; 1494 WindowCsrAndReg end; 1495 }; 1496 1497 /* 1498 ** Values that may be passed as the second argument to windowCodeOp(). 1499 */ 1500 #define WINDOW_RETURN_ROW 1 1501 #define WINDOW_AGGINVERSE 2 1502 #define WINDOW_AGGSTEP 3 1503 1504 /* 1505 ** Generate VM code to read the window frames peer values from cursor csr into 1506 ** an array of registers starting at reg. 1507 */ 1508 static void windowReadPeerValues( 1509 WindowCodeArg *p, 1510 int csr, 1511 int reg 1512 ){ 1513 Window *pMWin = p->pMWin; 1514 ExprList *pOrderBy = pMWin->pOrderBy; 1515 if( pOrderBy ){ 1516 Vdbe *v = sqlite3GetVdbe(p->pParse); 1517 ExprList *pPart = pMWin->pPartition; 1518 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1519 int i; 1520 for(i=0; i<pOrderBy->nExpr; i++){ 1521 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1522 } 1523 } 1524 } 1525 1526 /* 1527 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1528 ** (bFin==1) for each window function in the linked list starting at 1529 ** pMWin. Or, for built-in window-functions that do not use the standard 1530 ** API, generate the equivalent VM code. 1531 */ 1532 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1533 Parse *pParse = p->pParse; 1534 Window *pMWin = p->pMWin; 1535 Vdbe *v = sqlite3GetVdbe(pParse); 1536 Window *pWin; 1537 1538 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1539 if( pMWin->regStartRowid==0 1540 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1541 && (pWin->eStart!=TK_UNBOUNDED) 1542 ){ 1543 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1544 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1545 VdbeCoverage(v); 1546 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1547 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1548 }else if( pWin->regApp ){ 1549 assert( pMWin->regStartRowid==0 ); 1550 }else{ 1551 int nArg = windowArgCount(pWin); 1552 if( bFin ){ 1553 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1554 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1555 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1556 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1557 }else{ 1558 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1559 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1560 } 1561 } 1562 } 1563 } 1564 1565 /* 1566 ** Generate code to calculate the current values of all window functions in the 1567 ** p->pMWin list by doing a full scan of the current window frame. Store the 1568 ** results in the Window.regResult registers, ready to return the upper 1569 ** layer. 1570 */ 1571 static void windowFullScan(WindowCodeArg *p){ 1572 Window *pWin; 1573 Parse *pParse = p->pParse; 1574 Window *pMWin = p->pMWin; 1575 Vdbe *v = p->pVdbe; 1576 1577 int regCRowid = 0; /* Current rowid value */ 1578 int regCPeer = 0; /* Current peer values */ 1579 int regRowid = 0; /* AggStep rowid value */ 1580 int regPeer = 0; /* AggStep peer values */ 1581 1582 int nPeer; 1583 int lblNext; 1584 int lblBrk; 1585 int addrNext; 1586 int csr; 1587 1588 assert( pMWin!=0 ); 1589 csr = pMWin->csrApp; 1590 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1591 1592 lblNext = sqlite3VdbeMakeLabel(pParse); 1593 lblBrk = sqlite3VdbeMakeLabel(pParse); 1594 1595 regCRowid = sqlite3GetTempReg(pParse); 1596 regRowid = sqlite3GetTempReg(pParse); 1597 if( nPeer ){ 1598 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1599 regPeer = sqlite3GetTempRange(pParse, nPeer); 1600 } 1601 1602 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1603 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1604 1605 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1606 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1607 } 1608 1609 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1610 VdbeCoverage(v); 1611 addrNext = sqlite3VdbeCurrentAddr(v); 1612 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1613 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1614 VdbeCoverageNeverNull(v); 1615 1616 if( pMWin->eExclude==TK_CURRENT ){ 1617 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1618 VdbeCoverageNeverNull(v); 1619 }else if( pMWin->eExclude!=TK_NO ){ 1620 int addr; 1621 int addrEq = 0; 1622 KeyInfo *pKeyInfo = 0; 1623 1624 if( pMWin->pOrderBy ){ 1625 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1626 } 1627 if( pMWin->eExclude==TK_TIES ){ 1628 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1629 VdbeCoverageNeverNull(v); 1630 } 1631 if( pKeyInfo ){ 1632 windowReadPeerValues(p, csr, regPeer); 1633 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1634 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1635 addr = sqlite3VdbeCurrentAddr(v)+1; 1636 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1637 VdbeCoverageEqNe(v); 1638 }else{ 1639 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1640 } 1641 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1642 } 1643 1644 windowAggStep(pParse, pMWin, csr, 0, p->regArg); 1645 1646 sqlite3VdbeResolveLabel(v, lblNext); 1647 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1648 VdbeCoverage(v); 1649 sqlite3VdbeJumpHere(v, addrNext-1); 1650 sqlite3VdbeJumpHere(v, addrNext+1); 1651 sqlite3ReleaseTempReg(pParse, regRowid); 1652 sqlite3ReleaseTempReg(pParse, regCRowid); 1653 if( nPeer ){ 1654 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1655 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1656 } 1657 1658 windowAggFinal(p, 1); 1659 } 1660 1661 /* 1662 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1663 ** return the current row of Window.iEphCsr. If all window functions are 1664 ** aggregate window functions that use the standard API, a single 1665 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1666 ** for per-row processing is only generated for the following built-in window 1667 ** functions: 1668 ** 1669 ** nth_value() 1670 ** first_value() 1671 ** lag() 1672 ** lead() 1673 */ 1674 static void windowReturnOneRow(WindowCodeArg *p){ 1675 Window *pMWin = p->pMWin; 1676 Vdbe *v = p->pVdbe; 1677 1678 if( pMWin->regStartRowid ){ 1679 windowFullScan(p); 1680 }else{ 1681 Parse *pParse = p->pParse; 1682 Window *pWin; 1683 1684 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1685 FuncDef *pFunc = pWin->pFunc; 1686 if( pFunc->zName==nth_valueName 1687 || pFunc->zName==first_valueName 1688 ){ 1689 int csr = pWin->csrApp; 1690 int lbl = sqlite3VdbeMakeLabel(pParse); 1691 int tmpReg = sqlite3GetTempReg(pParse); 1692 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1693 1694 if( pFunc->zName==nth_valueName ){ 1695 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1696 windowCheckValue(pParse, tmpReg, 2); 1697 }else{ 1698 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1699 } 1700 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1701 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1702 VdbeCoverageNeverNull(v); 1703 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1704 VdbeCoverageNeverTaken(v); 1705 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1706 sqlite3VdbeResolveLabel(v, lbl); 1707 sqlite3ReleaseTempReg(pParse, tmpReg); 1708 } 1709 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1710 int nArg = pWin->pOwner->x.pList->nExpr; 1711 int csr = pWin->csrApp; 1712 int lbl = sqlite3VdbeMakeLabel(pParse); 1713 int tmpReg = sqlite3GetTempReg(pParse); 1714 int iEph = pMWin->iEphCsr; 1715 1716 if( nArg<3 ){ 1717 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1718 }else{ 1719 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1720 } 1721 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1722 if( nArg<2 ){ 1723 int val = (pFunc->zName==leadName ? 1 : -1); 1724 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1725 }else{ 1726 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1727 int tmpReg2 = sqlite3GetTempReg(pParse); 1728 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1729 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1730 sqlite3ReleaseTempReg(pParse, tmpReg2); 1731 } 1732 1733 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1734 VdbeCoverage(v); 1735 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1736 sqlite3VdbeResolveLabel(v, lbl); 1737 sqlite3ReleaseTempReg(pParse, tmpReg); 1738 } 1739 } 1740 } 1741 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1742 } 1743 1744 /* 1745 ** Generate code to set the accumulator register for each window function 1746 ** in the linked list passed as the second argument to NULL. And perform 1747 ** any equivalent initialization required by any built-in window functions 1748 ** in the list. 1749 */ 1750 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1751 Vdbe *v = sqlite3GetVdbe(pParse); 1752 int regArg; 1753 int nArg = 0; 1754 Window *pWin; 1755 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1756 FuncDef *pFunc = pWin->pFunc; 1757 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1758 nArg = MAX(nArg, windowArgCount(pWin)); 1759 if( pMWin->regStartRowid==0 ){ 1760 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1761 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1762 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1763 } 1764 1765 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1766 assert( pWin->eStart!=TK_UNBOUNDED ); 1767 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1768 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1769 } 1770 } 1771 } 1772 regArg = pParse->nMem+1; 1773 pParse->nMem += nArg; 1774 return regArg; 1775 } 1776 1777 /* 1778 ** Return true if the current frame should be cached in the ephemeral table, 1779 ** even if there are no xInverse() calls required. 1780 */ 1781 static int windowCacheFrame(Window *pMWin){ 1782 Window *pWin; 1783 if( pMWin->regStartRowid ) return 1; 1784 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1785 FuncDef *pFunc = pWin->pFunc; 1786 if( (pFunc->zName==nth_valueName) 1787 || (pFunc->zName==first_valueName) 1788 || (pFunc->zName==leadName) 1789 || (pFunc->zName==lagName) 1790 ){ 1791 return 1; 1792 } 1793 } 1794 return 0; 1795 } 1796 1797 /* 1798 ** regOld and regNew are each the first register in an array of size 1799 ** pOrderBy->nExpr. This function generates code to compare the two 1800 ** arrays of registers using the collation sequences and other comparison 1801 ** parameters specified by pOrderBy. 1802 ** 1803 ** If the two arrays are not equal, the contents of regNew is copied to 1804 ** regOld and control falls through. Otherwise, if the contents of the arrays 1805 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 1806 */ 1807 static void windowIfNewPeer( 1808 Parse *pParse, 1809 ExprList *pOrderBy, 1810 int regNew, /* First in array of new values */ 1811 int regOld, /* First in array of old values */ 1812 int addr /* Jump here */ 1813 ){ 1814 Vdbe *v = sqlite3GetVdbe(pParse); 1815 if( pOrderBy ){ 1816 int nVal = pOrderBy->nExpr; 1817 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 1818 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 1819 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1820 sqlite3VdbeAddOp3(v, OP_Jump, 1821 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 1822 ); 1823 VdbeCoverageEqNe(v); 1824 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 1825 }else{ 1826 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 1827 } 1828 } 1829 1830 /* 1831 ** This function is called as part of generating VM programs for RANGE 1832 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 1833 ** the ORDER BY term in the window, it generates code equivalent to: 1834 ** 1835 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 1836 ** 1837 ** A special type of arithmetic is used such that if csr.peerVal is not 1838 ** a numeric type (real or integer), then the result of the addition is 1839 ** a copy of csr1.peerVal. 1840 */ 1841 static void windowCodeRangeTest( 1842 WindowCodeArg *p, 1843 int op, /* OP_Ge or OP_Gt */ 1844 int csr1, 1845 int regVal, 1846 int csr2, 1847 int lbl 1848 ){ 1849 Parse *pParse = p->pParse; 1850 Vdbe *v = sqlite3GetVdbe(pParse); 1851 int reg1 = sqlite3GetTempReg(pParse); 1852 int reg2 = sqlite3GetTempReg(pParse); 1853 int arith = OP_Add; 1854 int addrGe; 1855 1856 int regString = ++pParse->nMem; 1857 1858 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 1859 assert( p->pMWin->pOrderBy && p->pMWin->pOrderBy->nExpr==1 ); 1860 if( p->pMWin->pOrderBy->a[0].sortOrder ){ 1861 switch( op ){ 1862 case OP_Ge: op = OP_Le; break; 1863 case OP_Gt: op = OP_Lt; break; 1864 default: assert( op==OP_Le ); op = OP_Ge; break; 1865 } 1866 arith = OP_Subtract; 1867 } 1868 1869 windowReadPeerValues(p, csr1, reg1); 1870 windowReadPeerValues(p, csr2, reg2); 1871 1872 /* Check if the peer value for csr1 value is a text or blob by comparing 1873 ** it to the smallest possible string - ''. If it is, jump over the 1874 ** OP_Add or OP_Subtract operation and proceed directly to the comparison. */ 1875 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1876 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 1877 VdbeCoverage(v); 1878 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 1879 sqlite3VdbeJumpHere(v, addrGe); 1880 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 1881 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1882 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 1883 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 1884 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 1885 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 1886 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 1887 1888 sqlite3ReleaseTempReg(pParse, reg1); 1889 sqlite3ReleaseTempReg(pParse, reg2); 1890 } 1891 1892 /* 1893 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 1894 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 1895 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 1896 ** details. 1897 */ 1898 static int windowCodeOp( 1899 WindowCodeArg *p, /* Context object */ 1900 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 1901 int regCountdown, /* Register for OP_IfPos countdown */ 1902 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 1903 ){ 1904 int csr, reg; 1905 Parse *pParse = p->pParse; 1906 Window *pMWin = p->pMWin; 1907 int ret = 0; 1908 Vdbe *v = p->pVdbe; 1909 int addrIf = 0; 1910 int addrContinue = 0; 1911 int addrGoto = 0; 1912 int bPeer = (pMWin->eFrmType!=TK_ROWS); 1913 1914 int lblDone = sqlite3VdbeMakeLabel(pParse); 1915 int addrNextRange = 0; 1916 1917 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 1918 ** starts with UNBOUNDED PRECEDING. */ 1919 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 1920 assert( regCountdown==0 && jumpOnEof==0 ); 1921 return 0; 1922 } 1923 1924 if( regCountdown>0 ){ 1925 if( pMWin->eFrmType==TK_RANGE ){ 1926 addrNextRange = sqlite3VdbeCurrentAddr(v); 1927 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 1928 if( op==WINDOW_AGGINVERSE ){ 1929 if( pMWin->eStart==TK_FOLLOWING ){ 1930 windowCodeRangeTest( 1931 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 1932 ); 1933 }else{ 1934 windowCodeRangeTest( 1935 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 1936 ); 1937 } 1938 }else{ 1939 windowCodeRangeTest( 1940 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 1941 ); 1942 } 1943 }else{ 1944 addrIf = sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, 0, 1); 1945 VdbeCoverage(v); 1946 } 1947 } 1948 1949 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 1950 windowAggFinal(p, 0); 1951 } 1952 addrContinue = sqlite3VdbeCurrentAddr(v); 1953 switch( op ){ 1954 case WINDOW_RETURN_ROW: 1955 csr = p->current.csr; 1956 reg = p->current.reg; 1957 windowReturnOneRow(p); 1958 break; 1959 1960 case WINDOW_AGGINVERSE: 1961 csr = p->start.csr; 1962 reg = p->start.reg; 1963 if( pMWin->regStartRowid ){ 1964 assert( pMWin->regEndRowid ); 1965 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 1966 }else{ 1967 windowAggStep(pParse, pMWin, csr, 1, p->regArg); 1968 } 1969 break; 1970 1971 default: 1972 assert( op==WINDOW_AGGSTEP ); 1973 csr = p->end.csr; 1974 reg = p->end.reg; 1975 if( pMWin->regStartRowid ){ 1976 assert( pMWin->regEndRowid ); 1977 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 1978 }else{ 1979 windowAggStep(pParse, pMWin, csr, 0, p->regArg); 1980 } 1981 break; 1982 } 1983 1984 if( op==p->eDelete ){ 1985 sqlite3VdbeAddOp1(v, OP_Delete, csr); 1986 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 1987 } 1988 1989 if( jumpOnEof ){ 1990 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 1991 VdbeCoverage(v); 1992 ret = sqlite3VdbeAddOp0(v, OP_Goto); 1993 }else{ 1994 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 1995 VdbeCoverage(v); 1996 if( bPeer ){ 1997 addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); 1998 } 1999 } 2000 2001 if( bPeer ){ 2002 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2003 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2004 windowReadPeerValues(p, csr, regTmp); 2005 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2006 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2007 } 2008 2009 if( addrNextRange ){ 2010 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2011 } 2012 sqlite3VdbeResolveLabel(v, lblDone); 2013 if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto); 2014 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 2015 return ret; 2016 } 2017 2018 2019 /* 2020 ** Allocate and return a duplicate of the Window object indicated by the 2021 ** third argument. Set the Window.pOwner field of the new object to 2022 ** pOwner. 2023 */ 2024 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2025 Window *pNew = 0; 2026 if( ALWAYS(p) ){ 2027 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2028 if( pNew ){ 2029 pNew->zName = sqlite3DbStrDup(db, p->zName); 2030 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2031 pNew->pFunc = p->pFunc; 2032 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2033 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2034 pNew->eFrmType = p->eFrmType; 2035 pNew->eEnd = p->eEnd; 2036 pNew->eStart = p->eStart; 2037 pNew->eExclude = p->eExclude; 2038 pNew->regResult = p->regResult; 2039 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2040 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2041 pNew->pOwner = pOwner; 2042 } 2043 } 2044 return pNew; 2045 } 2046 2047 /* 2048 ** Return a copy of the linked list of Window objects passed as the 2049 ** second argument. 2050 */ 2051 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2052 Window *pWin; 2053 Window *pRet = 0; 2054 Window **pp = &pRet; 2055 2056 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2057 *pp = sqlite3WindowDup(db, 0, pWin); 2058 if( *pp==0 ) break; 2059 pp = &((*pp)->pNextWin); 2060 } 2061 2062 return pRet; 2063 } 2064 2065 /* 2066 ** Return true if it can be determined at compile time that expression 2067 ** pExpr evaluates to a value that, when cast to an integer, is greater 2068 ** than zero. False otherwise. 2069 ** 2070 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2071 ** flag and returns zero. 2072 */ 2073 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2074 int ret = 0; 2075 sqlite3 *db = pParse->db; 2076 sqlite3_value *pVal = 0; 2077 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2078 if( pVal && sqlite3_value_int(pVal)>0 ){ 2079 ret = 1; 2080 } 2081 sqlite3ValueFree(pVal); 2082 return ret; 2083 } 2084 2085 /* 2086 ** sqlite3WhereBegin() has already been called for the SELECT statement 2087 ** passed as the second argument when this function is invoked. It generates 2088 ** code to populate the Window.regResult register for each window function 2089 ** and invoke the sub-routine at instruction addrGosub once for each row. 2090 ** sqlite3WhereEnd() is always called before returning. 2091 ** 2092 ** This function handles several different types of window frames, which 2093 ** require slightly different processing. The following pseudo code is 2094 ** used to implement window frames of the form: 2095 ** 2096 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2097 ** 2098 ** Other window frame types use variants of the following: 2099 ** 2100 ** ... loop started by sqlite3WhereBegin() ... 2101 ** if( new partition ){ 2102 ** Gosub flush 2103 ** } 2104 ** Insert new row into eph table. 2105 ** 2106 ** if( first row of partition ){ 2107 ** // Rewind three cursors, all open on the eph table. 2108 ** Rewind(csrEnd); 2109 ** Rewind(csrStart); 2110 ** Rewind(csrCurrent); 2111 ** 2112 ** regEnd = <expr2> // FOLLOWING expression 2113 ** regStart = <expr1> // PRECEDING expression 2114 ** }else{ 2115 ** // First time this branch is taken, the eph table contains two 2116 ** // rows. The first row in the partition, which all three cursors 2117 ** // currently point to, and the following row. 2118 ** AGGSTEP 2119 ** if( (regEnd--)<=0 ){ 2120 ** RETURN_ROW 2121 ** if( (regStart--)<=0 ){ 2122 ** AGGINVERSE 2123 ** } 2124 ** } 2125 ** } 2126 ** } 2127 ** flush: 2128 ** AGGSTEP 2129 ** while( 1 ){ 2130 ** RETURN ROW 2131 ** if( csrCurrent is EOF ) break; 2132 ** if( (regStart--)<=0 ){ 2133 ** AggInverse(csrStart) 2134 ** Next(csrStart) 2135 ** } 2136 ** } 2137 ** 2138 ** The pseudo-code above uses the following shorthand: 2139 ** 2140 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2141 ** with arguments read from the current row of cursor csrEnd, then 2142 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2143 ** 2144 ** RETURN_ROW: return a row to the caller based on the contents of the 2145 ** current row of csrCurrent and the current state of all 2146 ** aggregates. Then step cursor csrCurrent forward one row. 2147 ** 2148 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2149 ** functions with arguments read from the current row of cursor 2150 ** csrStart. Then step csrStart forward one row. 2151 ** 2152 ** There are two other ROWS window frames that are handled significantly 2153 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2154 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2155 ** cases because they change the order in which the three cursors (csrStart, 2156 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2157 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2158 ** three. 2159 ** 2160 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2161 ** 2162 ** ... loop started by sqlite3WhereBegin() ... 2163 ** if( new partition ){ 2164 ** Gosub flush 2165 ** } 2166 ** Insert new row into eph table. 2167 ** if( first row of partition ){ 2168 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2169 ** regEnd = <expr2> 2170 ** regStart = <expr1> 2171 ** }else{ 2172 ** if( (regEnd--)<=0 ){ 2173 ** AGGSTEP 2174 ** } 2175 ** RETURN_ROW 2176 ** if( (regStart--)<=0 ){ 2177 ** AGGINVERSE 2178 ** } 2179 ** } 2180 ** } 2181 ** flush: 2182 ** if( (regEnd--)<=0 ){ 2183 ** AGGSTEP 2184 ** } 2185 ** RETURN_ROW 2186 ** 2187 ** 2188 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2189 ** 2190 ** ... loop started by sqlite3WhereBegin() ... 2191 ** if( new partition ){ 2192 ** Gosub flush 2193 ** } 2194 ** Insert new row into eph table. 2195 ** if( first row of partition ){ 2196 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2197 ** regEnd = <expr2> 2198 ** regStart = regEnd - <expr1> 2199 ** }else{ 2200 ** AGGSTEP 2201 ** if( (regEnd--)<=0 ){ 2202 ** RETURN_ROW 2203 ** } 2204 ** if( (regStart--)<=0 ){ 2205 ** AGGINVERSE 2206 ** } 2207 ** } 2208 ** } 2209 ** flush: 2210 ** AGGSTEP 2211 ** while( 1 ){ 2212 ** if( (regEnd--)<=0 ){ 2213 ** RETURN_ROW 2214 ** if( eof ) break; 2215 ** } 2216 ** if( (regStart--)<=0 ){ 2217 ** AGGINVERSE 2218 ** if( eof ) break 2219 ** } 2220 ** } 2221 ** while( !eof csrCurrent ){ 2222 ** RETURN_ROW 2223 ** } 2224 ** 2225 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2226 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2227 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2228 ** This is optimized of course - branches that will never be taken and 2229 ** conditions that are always true are omitted from the VM code. The only 2230 ** exceptional case is: 2231 ** 2232 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2233 ** 2234 ** ... loop started by sqlite3WhereBegin() ... 2235 ** if( new partition ){ 2236 ** Gosub flush 2237 ** } 2238 ** Insert new row into eph table. 2239 ** if( first row of partition ){ 2240 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2241 ** regStart = <expr1> 2242 ** }else{ 2243 ** AGGSTEP 2244 ** } 2245 ** } 2246 ** flush: 2247 ** AGGSTEP 2248 ** while( 1 ){ 2249 ** if( (regStart--)<=0 ){ 2250 ** AGGINVERSE 2251 ** if( eof ) break 2252 ** } 2253 ** RETURN_ROW 2254 ** } 2255 ** while( !eof csrCurrent ){ 2256 ** RETURN_ROW 2257 ** } 2258 ** 2259 ** Also requiring special handling are the cases: 2260 ** 2261 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2262 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2263 ** 2264 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2265 ** To handle this case, the pseudo-code programs depicted above are modified 2266 ** slightly to be: 2267 ** 2268 ** ... loop started by sqlite3WhereBegin() ... 2269 ** if( new partition ){ 2270 ** Gosub flush 2271 ** } 2272 ** Insert new row into eph table. 2273 ** if( first row of partition ){ 2274 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2275 ** regEnd = <expr2> 2276 ** regStart = <expr1> 2277 ** if( regEnd < regStart ){ 2278 ** RETURN_ROW 2279 ** delete eph table contents 2280 ** continue 2281 ** } 2282 ** ... 2283 ** 2284 ** The new "continue" statement in the above jumps to the next iteration 2285 ** of the outer loop - the one started by sqlite3WhereBegin(). 2286 ** 2287 ** The various GROUPS cases are implemented using the same patterns as 2288 ** ROWS. The VM code is modified slightly so that: 2289 ** 2290 ** 1. The else branch in the main loop is only taken if the row just 2291 ** added to the ephemeral table is the start of a new group. In 2292 ** other words, it becomes: 2293 ** 2294 ** ... loop started by sqlite3WhereBegin() ... 2295 ** if( new partition ){ 2296 ** Gosub flush 2297 ** } 2298 ** Insert new row into eph table. 2299 ** if( first row of partition ){ 2300 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2301 ** regEnd = <expr2> 2302 ** regStart = <expr1> 2303 ** }else if( new group ){ 2304 ** ... 2305 ** } 2306 ** } 2307 ** 2308 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2309 ** AGGINVERSE step processes the current row of the relevant cursor and 2310 ** all subsequent rows belonging to the same group. 2311 ** 2312 ** RANGE window frames are a little different again. As for GROUPS, the 2313 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2314 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2315 ** basic cases: 2316 ** 2317 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2318 ** 2319 ** ... loop started by sqlite3WhereBegin() ... 2320 ** if( new partition ){ 2321 ** Gosub flush 2322 ** } 2323 ** Insert new row into eph table. 2324 ** if( first row of partition ){ 2325 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2326 ** regEnd = <expr2> 2327 ** regStart = <expr1> 2328 ** }else{ 2329 ** AGGSTEP 2330 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2331 ** RETURN_ROW 2332 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2333 ** AGGINVERSE 2334 ** } 2335 ** } 2336 ** } 2337 ** } 2338 ** flush: 2339 ** AGGSTEP 2340 ** while( 1 ){ 2341 ** RETURN ROW 2342 ** if( csrCurrent is EOF ) break; 2343 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2344 ** AGGINVERSE 2345 ** } 2346 ** } 2347 ** } 2348 ** 2349 ** In the above notation, "csr.key" means the current value of the ORDER BY 2350 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2351 ** or <expr PRECEDING) read from cursor csr. 2352 ** 2353 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2354 ** 2355 ** ... loop started by sqlite3WhereBegin() ... 2356 ** if( new partition ){ 2357 ** Gosub flush 2358 ** } 2359 ** Insert new row into eph table. 2360 ** if( first row of partition ){ 2361 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2362 ** regEnd = <expr2> 2363 ** regStart = <expr1> 2364 ** }else{ 2365 ** if( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2366 ** AGGSTEP 2367 ** } 2368 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2369 ** AGGINVERSE 2370 ** } 2371 ** RETURN_ROW 2372 ** } 2373 ** } 2374 ** flush: 2375 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2376 ** AGGSTEP 2377 ** } 2378 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2379 ** AGGINVERSE 2380 ** } 2381 ** RETURN_ROW 2382 ** 2383 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2384 ** 2385 ** ... loop started by sqlite3WhereBegin() ... 2386 ** if( new partition ){ 2387 ** Gosub flush 2388 ** } 2389 ** Insert new row into eph table. 2390 ** if( first row of partition ){ 2391 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2392 ** regEnd = <expr2> 2393 ** regStart = <expr1> 2394 ** }else{ 2395 ** AGGSTEP 2396 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2397 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2398 ** AGGINVERSE 2399 ** } 2400 ** RETURN_ROW 2401 ** } 2402 ** } 2403 ** } 2404 ** flush: 2405 ** AGGSTEP 2406 ** while( 1 ){ 2407 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2408 ** AGGINVERSE 2409 ** if( eof ) break "while( 1 )" loop. 2410 ** } 2411 ** RETURN_ROW 2412 ** } 2413 ** while( !eof csrCurrent ){ 2414 ** RETURN_ROW 2415 ** } 2416 ** 2417 ** The text above leaves out many details. Refer to the code and comments 2418 ** below for a more complete picture. 2419 */ 2420 void sqlite3WindowCodeStep( 2421 Parse *pParse, /* Parse context */ 2422 Select *p, /* Rewritten SELECT statement */ 2423 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2424 int regGosub, /* Register for OP_Gosub */ 2425 int addrGosub /* OP_Gosub here to return each row */ 2426 ){ 2427 Window *pMWin = p->pWin; 2428 ExprList *pOrderBy = pMWin->pOrderBy; 2429 Vdbe *v = sqlite3GetVdbe(pParse); 2430 int csrWrite; /* Cursor used to write to eph. table */ 2431 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2432 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2433 int iInput; /* To iterate through sub cols */ 2434 int addrNe; /* Address of OP_Ne */ 2435 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2436 int addrInteger = 0; /* Address of OP_Integer */ 2437 int addrEmpty; /* Address of OP_Rewind in flush: */ 2438 int regStart = 0; /* Value of <expr> PRECEDING */ 2439 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2440 int regNew; /* Array of registers holding new input row */ 2441 int regRecord; /* regNew array in record form */ 2442 int regRowid; /* Rowid for regRecord in eph table */ 2443 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2444 int regPeer = 0; /* Peer values for current row */ 2445 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2446 WindowCodeArg s; /* Context object for sub-routines */ 2447 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2448 2449 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2450 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2451 ); 2452 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2453 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2454 ); 2455 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2456 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2457 || pMWin->eExclude==TK_NO 2458 ); 2459 2460 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2461 2462 /* Fill in the context object */ 2463 memset(&s, 0, sizeof(WindowCodeArg)); 2464 s.pParse = pParse; 2465 s.pMWin = pMWin; 2466 s.pVdbe = v; 2467 s.regGosub = regGosub; 2468 s.addrGosub = addrGosub; 2469 s.current.csr = pMWin->iEphCsr; 2470 csrWrite = s.current.csr+1; 2471 s.start.csr = s.current.csr+2; 2472 s.end.csr = s.current.csr+3; 2473 2474 /* Figure out when rows may be deleted from the ephemeral table. There 2475 ** are four options - they may never be deleted (eDelete==0), they may 2476 ** be deleted as soon as they are no longer part of the window frame 2477 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2478 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2479 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2480 switch( pMWin->eStart ){ 2481 case TK_FOLLOWING: 2482 if( pMWin->eFrmType!=TK_RANGE 2483 && windowExprGtZero(pParse, pMWin->pStart) 2484 ){ 2485 s.eDelete = WINDOW_RETURN_ROW; 2486 } 2487 break; 2488 case TK_UNBOUNDED: 2489 if( windowCacheFrame(pMWin)==0 ){ 2490 if( pMWin->eEnd==TK_PRECEDING ){ 2491 if( pMWin->eFrmType!=TK_RANGE 2492 && windowExprGtZero(pParse, pMWin->pEnd) 2493 ){ 2494 s.eDelete = WINDOW_AGGSTEP; 2495 } 2496 }else{ 2497 s.eDelete = WINDOW_RETURN_ROW; 2498 } 2499 } 2500 break; 2501 default: 2502 s.eDelete = WINDOW_AGGINVERSE; 2503 break; 2504 } 2505 2506 /* Allocate registers for the array of values from the sub-query, the 2507 ** samve values in record form, and the rowid used to insert said record 2508 ** into the ephemeral table. */ 2509 regNew = pParse->nMem+1; 2510 pParse->nMem += nInput; 2511 regRecord = ++pParse->nMem; 2512 regRowid = ++pParse->nMem; 2513 2514 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2515 ** clause, allocate registers to store the results of evaluating each 2516 ** <expr>. */ 2517 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2518 regStart = ++pParse->nMem; 2519 } 2520 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2521 regEnd = ++pParse->nMem; 2522 } 2523 2524 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2525 ** registers to store copies of the ORDER BY expressions (peer values) 2526 ** for the main loop, and for each cursor (start, current and end). */ 2527 if( pMWin->eFrmType!=TK_ROWS ){ 2528 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2529 regNewPeer = regNew + pMWin->nBufferCol; 2530 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2531 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2532 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2533 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2534 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2535 } 2536 2537 /* Load the column values for the row returned by the sub-select 2538 ** into an array of registers starting at regNew. Assemble them into 2539 ** a record in register regRecord. */ 2540 for(iInput=0; iInput<nInput; iInput++){ 2541 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2542 } 2543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2544 2545 /* An input row has just been read into an array of registers starting 2546 ** at regNew. If the window has a PARTITION clause, this block generates 2547 ** VM code to check if the input row is the start of a new partition. 2548 ** If so, it does an OP_Gosub to an address to be filled in later. The 2549 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2550 if( pMWin->pPartition ){ 2551 int addr; 2552 ExprList *pPart = pMWin->pPartition; 2553 int nPart = pPart->nExpr; 2554 int regNewPart = regNew + pMWin->nBufferCol; 2555 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2556 2557 regFlushPart = ++pParse->nMem; 2558 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2559 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2560 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2561 VdbeCoverageEqNe(v); 2562 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2563 VdbeComment((v, "call flush_partition")); 2564 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2565 } 2566 2567 /* Insert the new row into the ephemeral table */ 2568 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2569 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2570 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2571 VdbeCoverageNeverNull(v); 2572 2573 /* This block is run for the first row of each partition */ 2574 s.regArg = windowInitAccum(pParse, pMWin); 2575 2576 if( regStart ){ 2577 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2578 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); 2579 } 2580 if( regEnd ){ 2581 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2582 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); 2583 } 2584 2585 if( pMWin->eStart==pMWin->eEnd && regStart ){ 2586 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2587 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2588 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2589 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2590 windowAggFinal(&s, 0); 2591 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2592 VdbeCoverageNeverTaken(v); 2593 windowReturnOneRow(&s); 2594 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2595 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2596 sqlite3VdbeJumpHere(v, addrGe); 2597 } 2598 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2599 assert( pMWin->eEnd==TK_FOLLOWING ); 2600 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2601 } 2602 2603 if( pMWin->eStart!=TK_UNBOUNDED ){ 2604 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2605 VdbeCoverageNeverTaken(v); 2606 } 2607 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2608 VdbeCoverageNeverTaken(v); 2609 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2610 VdbeCoverageNeverTaken(v); 2611 if( regPeer && pOrderBy ){ 2612 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2613 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2614 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2615 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2616 } 2617 2618 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2619 2620 sqlite3VdbeJumpHere(v, addrNe); 2621 2622 /* Beginning of the block executed for the second and subsequent rows. */ 2623 if( regPeer ){ 2624 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2625 } 2626 if( pMWin->eStart==TK_FOLLOWING ){ 2627 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2628 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2629 if( pMWin->eFrmType==TK_RANGE ){ 2630 int lbl = sqlite3VdbeMakeLabel(pParse); 2631 int addrNext = sqlite3VdbeCurrentAddr(v); 2632 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2633 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2634 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2635 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2636 sqlite3VdbeResolveLabel(v, lbl); 2637 }else{ 2638 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2639 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2640 } 2641 } 2642 }else 2643 if( pMWin->eEnd==TK_PRECEDING ){ 2644 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2645 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2646 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2647 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2648 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2649 }else{ 2650 int addr = 0; 2651 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2652 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2653 if( pMWin->eFrmType==TK_RANGE ){ 2654 int lbl = 0; 2655 addr = sqlite3VdbeCurrentAddr(v); 2656 if( regEnd ){ 2657 lbl = sqlite3VdbeMakeLabel(pParse); 2658 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2659 } 2660 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2661 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2662 if( regEnd ){ 2663 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2664 sqlite3VdbeResolveLabel(v, lbl); 2665 } 2666 }else{ 2667 if( regEnd ){ 2668 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2669 VdbeCoverage(v); 2670 } 2671 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2672 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2673 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2674 } 2675 } 2676 } 2677 2678 /* End of the main input loop */ 2679 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2680 sqlite3WhereEnd(pWInfo); 2681 2682 /* Fall through */ 2683 if( pMWin->pPartition ){ 2684 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2685 sqlite3VdbeJumpHere(v, addrGosubFlush); 2686 } 2687 2688 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2689 VdbeCoverage(v); 2690 if( pMWin->eEnd==TK_PRECEDING ){ 2691 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2692 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2693 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2694 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2695 }else if( pMWin->eStart==TK_FOLLOWING ){ 2696 int addrStart; 2697 int addrBreak1; 2698 int addrBreak2; 2699 int addrBreak3; 2700 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2701 if( pMWin->eFrmType==TK_RANGE ){ 2702 addrStart = sqlite3VdbeCurrentAddr(v); 2703 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2704 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2705 }else 2706 if( pMWin->eEnd==TK_UNBOUNDED ){ 2707 addrStart = sqlite3VdbeCurrentAddr(v); 2708 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 2709 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 2710 }else{ 2711 assert( pMWin->eEnd==TK_FOLLOWING ); 2712 addrStart = sqlite3VdbeCurrentAddr(v); 2713 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 2714 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2715 } 2716 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2717 sqlite3VdbeJumpHere(v, addrBreak2); 2718 addrStart = sqlite3VdbeCurrentAddr(v); 2719 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2720 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2721 sqlite3VdbeJumpHere(v, addrBreak1); 2722 sqlite3VdbeJumpHere(v, addrBreak3); 2723 }else{ 2724 int addrBreak; 2725 int addrStart; 2726 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2727 addrStart = sqlite3VdbeCurrentAddr(v); 2728 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2729 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2730 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2731 sqlite3VdbeJumpHere(v, addrBreak); 2732 } 2733 sqlite3VdbeJumpHere(v, addrEmpty); 2734 2735 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2736 if( pMWin->pPartition ){ 2737 if( pMWin->regStartRowid ){ 2738 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 2739 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 2740 } 2741 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 2742 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 2743 } 2744 } 2745 2746 #endif /* SQLITE_OMIT_WINDOWFUNC */ 2747