1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* Fall through. */ 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( p->pSub ){ 792 int i; 793 for(i=0; i<p->pSub->nExpr; i++){ 794 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 795 iCol = i; 796 break; 797 } 798 } 799 } 800 if( iCol<0 ){ 801 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 802 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 803 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 804 } 805 if( p->pSub ){ 806 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 807 ExprSetProperty(pExpr, EP_Static); 808 sqlite3ExprDelete(pParse->db, pExpr); 809 ExprClearProperty(pExpr, EP_Static); 810 memset(pExpr, 0, sizeof(Expr)); 811 812 pExpr->op = TK_COLUMN; 813 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 814 pExpr->iTable = p->pWin->iEphCsr; 815 pExpr->y.pTab = p->pTab; 816 } 817 if( pParse->db->mallocFailed ) return WRC_Abort; 818 break; 819 } 820 821 default: /* no-op */ 822 break; 823 } 824 825 return WRC_Continue; 826 } 827 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 828 struct WindowRewrite *p = pWalker->u.pRewrite; 829 Select *pSave = p->pSubSelect; 830 if( pSave==pSelect ){ 831 return WRC_Continue; 832 }else{ 833 p->pSubSelect = pSelect; 834 sqlite3WalkSelect(pWalker, pSelect); 835 p->pSubSelect = pSave; 836 } 837 return WRC_Prune; 838 } 839 840 841 /* 842 ** Iterate through each expression in expression-list pEList. For each: 843 ** 844 ** * TK_COLUMN, 845 ** * aggregate function, or 846 ** * window function with a Window object that is not a member of the 847 ** Window list passed as the second argument (pWin). 848 ** 849 ** Append the node to output expression-list (*ppSub). And replace it 850 ** with a TK_COLUMN that reads the (N-1)th element of table 851 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 852 ** appending the new one. 853 */ 854 static void selectWindowRewriteEList( 855 Parse *pParse, 856 Window *pWin, 857 SrcList *pSrc, 858 ExprList *pEList, /* Rewrite expressions in this list */ 859 Table *pTab, 860 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 861 ){ 862 Walker sWalker; 863 WindowRewrite sRewrite; 864 865 assert( pWin!=0 ); 866 memset(&sWalker, 0, sizeof(Walker)); 867 memset(&sRewrite, 0, sizeof(WindowRewrite)); 868 869 sRewrite.pSub = *ppSub; 870 sRewrite.pWin = pWin; 871 sRewrite.pSrc = pSrc; 872 sRewrite.pTab = pTab; 873 874 sWalker.pParse = pParse; 875 sWalker.xExprCallback = selectWindowRewriteExprCb; 876 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 877 sWalker.u.pRewrite = &sRewrite; 878 879 (void)sqlite3WalkExprList(&sWalker, pEList); 880 881 *ppSub = sRewrite.pSub; 882 } 883 884 /* 885 ** Append a copy of each expression in expression-list pAppend to 886 ** expression list pList. Return a pointer to the result list. 887 */ 888 static ExprList *exprListAppendList( 889 Parse *pParse, /* Parsing context */ 890 ExprList *pList, /* List to which to append. Might be NULL */ 891 ExprList *pAppend, /* List of values to append. Might be NULL */ 892 int bIntToNull 893 ){ 894 if( pAppend ){ 895 int i; 896 int nInit = pList ? pList->nExpr : 0; 897 for(i=0; i<pAppend->nExpr; i++){ 898 int iDummy; 899 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); 900 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 901 if( bIntToNull && pDup && sqlite3ExprIsInteger(pDup, &iDummy) ){ 902 pDup->op = TK_NULL; 903 pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 904 pDup->u.zToken = 0; 905 } 906 pList = sqlite3ExprListAppend(pParse, pList, pDup); 907 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 908 } 909 } 910 return pList; 911 } 912 913 /* 914 ** If the SELECT statement passed as the second argument does not invoke 915 ** any SQL window functions, this function is a no-op. Otherwise, it 916 ** rewrites the SELECT statement so that window function xStep functions 917 ** are invoked in the correct order as described under "SELECT REWRITING" 918 ** at the top of this file. 919 */ 920 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 921 int rc = SQLITE_OK; 922 if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){ 923 Vdbe *v = sqlite3GetVdbe(pParse); 924 sqlite3 *db = pParse->db; 925 Select *pSub = 0; /* The subquery */ 926 SrcList *pSrc = p->pSrc; 927 Expr *pWhere = p->pWhere; 928 ExprList *pGroupBy = p->pGroupBy; 929 Expr *pHaving = p->pHaving; 930 ExprList *pSort = 0; 931 932 ExprList *pSublist = 0; /* Expression list for sub-query */ 933 Window *pMWin = p->pWin; /* Master window object */ 934 Window *pWin; /* Window object iterator */ 935 Table *pTab; 936 937 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 938 if( pTab==0 ){ 939 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 940 } 941 942 p->pSrc = 0; 943 p->pWhere = 0; 944 p->pGroupBy = 0; 945 p->pHaving = 0; 946 p->selFlags &= ~SF_Aggregate; 947 p->selFlags |= SF_WinRewrite; 948 949 /* Create the ORDER BY clause for the sub-select. This is the concatenation 950 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 951 ** redundant, remove the ORDER BY from the parent SELECT. */ 952 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 953 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 954 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 955 int nSave = pSort->nExpr; 956 pSort->nExpr = p->pOrderBy->nExpr; 957 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 958 sqlite3ExprListDelete(db, p->pOrderBy); 959 p->pOrderBy = 0; 960 } 961 pSort->nExpr = nSave; 962 } 963 964 /* Assign a cursor number for the ephemeral table used to buffer rows. 965 ** The OpenEphemeral instruction is coded later, after it is known how 966 ** many columns the table will have. */ 967 pMWin->iEphCsr = pParse->nTab++; 968 pParse->nTab += 3; 969 970 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 971 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 972 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 973 974 /* Append the PARTITION BY and ORDER BY expressions to the to the 975 ** sub-select expression list. They are required to figure out where 976 ** boundaries for partitions and sets of peer rows lie. */ 977 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 978 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 979 980 /* Append the arguments passed to each window function to the 981 ** sub-select expression list. Also allocate two registers for each 982 ** window function - one for the accumulator, another for interim 983 ** results. */ 984 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 985 ExprList *pArgs = pWin->pOwner->x.pList; 986 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 987 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 988 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 989 pWin->bExprArgs = 1; 990 }else{ 991 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 992 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 993 } 994 if( pWin->pFilter ){ 995 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 996 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 997 } 998 pWin->regAccum = ++pParse->nMem; 999 pWin->regResult = ++pParse->nMem; 1000 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1001 } 1002 1003 /* If there is no ORDER BY or PARTITION BY clause, and the window 1004 ** function accepts zero arguments, and there are no other columns 1005 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1006 ** that pSublist is still NULL here. Add a constant expression here to 1007 ** keep everything legal in this case. 1008 */ 1009 if( pSublist==0 ){ 1010 pSublist = sqlite3ExprListAppend(pParse, 0, 1011 sqlite3Expr(db, TK_INTEGER, "0") 1012 ); 1013 } 1014 1015 pSub = sqlite3SelectNew( 1016 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1017 ); 1018 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1019 if( p->pSrc ){ 1020 Table *pTab2; 1021 p->pSrc->a[0].pSelect = pSub; 1022 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1023 pSub->selFlags |= SF_Expanded; 1024 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1025 if( pTab2==0 ){ 1026 /* Might actually be some other kind of error, but in that case 1027 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1028 ** the correct error message regardless. */ 1029 rc = SQLITE_NOMEM; 1030 }else{ 1031 memcpy(pTab, pTab2, sizeof(Table)); 1032 pTab->tabFlags |= TF_Ephemeral; 1033 p->pSrc->a[0].pTab = pTab; 1034 pTab = pTab2; 1035 } 1036 }else{ 1037 sqlite3SelectDelete(db, pSub); 1038 } 1039 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1040 sqlite3DbFree(db, pTab); 1041 } 1042 1043 if( rc ){ 1044 if( pParse->nErr==0 ){ 1045 assert( pParse->db->mallocFailed ); 1046 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1047 } 1048 sqlite3SelectReset(pParse, p); 1049 } 1050 return rc; 1051 } 1052 1053 /* 1054 ** Unlink the Window object from the Select to which it is attached, 1055 ** if it is attached. 1056 */ 1057 void sqlite3WindowUnlinkFromSelect(Window *p){ 1058 if( p->ppThis ){ 1059 *p->ppThis = p->pNextWin; 1060 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1061 p->ppThis = 0; 1062 } 1063 } 1064 1065 /* 1066 ** Free the Window object passed as the second argument. 1067 */ 1068 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1069 if( p ){ 1070 sqlite3WindowUnlinkFromSelect(p); 1071 sqlite3ExprDelete(db, p->pFilter); 1072 sqlite3ExprListDelete(db, p->pPartition); 1073 sqlite3ExprListDelete(db, p->pOrderBy); 1074 sqlite3ExprDelete(db, p->pEnd); 1075 sqlite3ExprDelete(db, p->pStart); 1076 sqlite3DbFree(db, p->zName); 1077 sqlite3DbFree(db, p->zBase); 1078 sqlite3DbFree(db, p); 1079 } 1080 } 1081 1082 /* 1083 ** Free the linked list of Window objects starting at the second argument. 1084 */ 1085 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1086 while( p ){ 1087 Window *pNext = p->pNextWin; 1088 sqlite3WindowDelete(db, p); 1089 p = pNext; 1090 } 1091 } 1092 1093 /* 1094 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1095 ** value should be a non-negative integer. If the value is not a 1096 ** constant, change it to NULL. The fact that it is then a non-negative 1097 ** integer will be caught later. But it is important not to leave 1098 ** variable values in the expression tree. 1099 */ 1100 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1101 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1102 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1103 sqlite3ExprDelete(pParse->db, pExpr); 1104 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1105 } 1106 return pExpr; 1107 } 1108 1109 /* 1110 ** Allocate and return a new Window object describing a Window Definition. 1111 */ 1112 Window *sqlite3WindowAlloc( 1113 Parse *pParse, /* Parsing context */ 1114 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1115 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1116 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1117 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1118 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1119 u8 eExclude /* EXCLUDE clause */ 1120 ){ 1121 Window *pWin = 0; 1122 int bImplicitFrame = 0; 1123 1124 /* Parser assures the following: */ 1125 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1126 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1127 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1128 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1129 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1130 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1131 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1132 1133 if( eType==0 ){ 1134 bImplicitFrame = 1; 1135 eType = TK_RANGE; 1136 } 1137 1138 /* Additionally, the 1139 ** starting boundary type may not occur earlier in the following list than 1140 ** the ending boundary type: 1141 ** 1142 ** UNBOUNDED PRECEDING 1143 ** <expr> PRECEDING 1144 ** CURRENT ROW 1145 ** <expr> FOLLOWING 1146 ** UNBOUNDED FOLLOWING 1147 ** 1148 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1149 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1150 ** frame boundary. 1151 */ 1152 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1153 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1154 ){ 1155 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1156 goto windowAllocErr; 1157 } 1158 1159 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1160 if( pWin==0 ) goto windowAllocErr; 1161 pWin->eFrmType = eType; 1162 pWin->eStart = eStart; 1163 pWin->eEnd = eEnd; 1164 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1165 eExclude = TK_NO; 1166 } 1167 pWin->eExclude = eExclude; 1168 pWin->bImplicitFrame = bImplicitFrame; 1169 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1170 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1171 return pWin; 1172 1173 windowAllocErr: 1174 sqlite3ExprDelete(pParse->db, pEnd); 1175 sqlite3ExprDelete(pParse->db, pStart); 1176 return 0; 1177 } 1178 1179 /* 1180 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1181 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1182 ** equivalent nul-terminated string. 1183 */ 1184 Window *sqlite3WindowAssemble( 1185 Parse *pParse, 1186 Window *pWin, 1187 ExprList *pPartition, 1188 ExprList *pOrderBy, 1189 Token *pBase 1190 ){ 1191 if( pWin ){ 1192 pWin->pPartition = pPartition; 1193 pWin->pOrderBy = pOrderBy; 1194 if( pBase ){ 1195 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1196 } 1197 }else{ 1198 sqlite3ExprListDelete(pParse->db, pPartition); 1199 sqlite3ExprListDelete(pParse->db, pOrderBy); 1200 } 1201 return pWin; 1202 } 1203 1204 /* 1205 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1206 ** is the base window. Earlier windows from the same WINDOW clause are 1207 ** stored in the linked list starting at pWin->pNextWin. This function 1208 ** either updates *pWin according to the base specification, or else 1209 ** leaves an error in pParse. 1210 */ 1211 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1212 if( pWin->zBase ){ 1213 sqlite3 *db = pParse->db; 1214 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1215 if( pExist ){ 1216 const char *zErr = 0; 1217 /* Check for errors */ 1218 if( pWin->pPartition ){ 1219 zErr = "PARTITION clause"; 1220 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1221 zErr = "ORDER BY clause"; 1222 }else if( pExist->bImplicitFrame==0 ){ 1223 zErr = "frame specification"; 1224 } 1225 if( zErr ){ 1226 sqlite3ErrorMsg(pParse, 1227 "cannot override %s of window: %s", zErr, pWin->zBase 1228 ); 1229 }else{ 1230 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1231 if( pExist->pOrderBy ){ 1232 assert( pWin->pOrderBy==0 ); 1233 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1234 } 1235 sqlite3DbFree(db, pWin->zBase); 1236 pWin->zBase = 0; 1237 } 1238 } 1239 } 1240 } 1241 1242 /* 1243 ** Attach window object pWin to expression p. 1244 */ 1245 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1246 if( p ){ 1247 assert( p->op==TK_FUNCTION ); 1248 assert( pWin ); 1249 p->y.pWin = pWin; 1250 ExprSetProperty(p, EP_WinFunc); 1251 pWin->pOwner = p; 1252 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1253 sqlite3ErrorMsg(pParse, 1254 "DISTINCT is not supported for window functions" 1255 ); 1256 } 1257 }else{ 1258 sqlite3WindowDelete(pParse->db, pWin); 1259 } 1260 } 1261 1262 /* 1263 ** Possibly link window pWin into the list at pSel->pWin (window functions 1264 ** to be processed as part of SELECT statement pSel). The window is linked 1265 ** in if either (a) there are no other windows already linked to this 1266 ** SELECT, or (b) the windows already linked use a compatible window frame. 1267 */ 1268 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1269 if( pSel!=0 1270 && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0)) 1271 ){ 1272 pWin->pNextWin = pSel->pWin; 1273 if( pSel->pWin ){ 1274 pSel->pWin->ppThis = &pWin->pNextWin; 1275 } 1276 pSel->pWin = pWin; 1277 pWin->ppThis = &pSel->pWin; 1278 } 1279 } 1280 1281 /* 1282 ** Return 0 if the two window objects are identical, 1 if they are 1283 ** different, or 2 if it cannot be determined if the objects are identical 1284 ** or not. Identical window objects can be processed in a single scan. 1285 */ 1286 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1287 int res; 1288 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1289 if( p1->eFrmType!=p2->eFrmType ) return 1; 1290 if( p1->eStart!=p2->eStart ) return 1; 1291 if( p1->eEnd!=p2->eEnd ) return 1; 1292 if( p1->eExclude!=p2->eExclude ) return 1; 1293 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1294 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1295 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1296 return res; 1297 } 1298 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1299 return res; 1300 } 1301 if( bFilter ){ 1302 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1303 return res; 1304 } 1305 } 1306 return 0; 1307 } 1308 1309 1310 /* 1311 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1312 ** to begin iterating through the sub-query results. It is used to allocate 1313 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1314 */ 1315 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1316 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1317 Window *pMWin = pSelect->pWin; 1318 Window *pWin; 1319 Vdbe *v = sqlite3GetVdbe(pParse); 1320 1321 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1322 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1323 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1324 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1325 1326 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1327 ** said registers to NULL. */ 1328 if( pMWin->pPartition ){ 1329 int nExpr = pMWin->pPartition->nExpr; 1330 pMWin->regPart = pParse->nMem+1; 1331 pParse->nMem += nExpr; 1332 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1333 } 1334 1335 pMWin->regOne = ++pParse->nMem; 1336 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1337 1338 if( pMWin->eExclude ){ 1339 pMWin->regStartRowid = ++pParse->nMem; 1340 pMWin->regEndRowid = ++pParse->nMem; 1341 pMWin->csrApp = pParse->nTab++; 1342 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1343 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1344 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1345 return; 1346 } 1347 1348 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1349 FuncDef *p = pWin->pFunc; 1350 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1351 /* The inline versions of min() and max() require a single ephemeral 1352 ** table and 3 registers. The registers are used as follows: 1353 ** 1354 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1355 ** regApp+1: integer value used to ensure keys are unique 1356 ** regApp+2: output of MakeRecord 1357 */ 1358 ExprList *pList = pWin->pOwner->x.pList; 1359 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1360 pWin->csrApp = pParse->nTab++; 1361 pWin->regApp = pParse->nMem+1; 1362 pParse->nMem += 3; 1363 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1364 assert( pKeyInfo->aSortFlags[0]==0 ); 1365 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1366 } 1367 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1368 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1369 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1370 } 1371 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1372 /* Allocate two registers at pWin->regApp. These will be used to 1373 ** store the start and end index of the current frame. */ 1374 pWin->regApp = pParse->nMem+1; 1375 pWin->csrApp = pParse->nTab++; 1376 pParse->nMem += 2; 1377 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1378 } 1379 else if( p->zName==leadName || p->zName==lagName ){ 1380 pWin->csrApp = pParse->nTab++; 1381 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1382 } 1383 } 1384 } 1385 1386 #define WINDOW_STARTING_INT 0 1387 #define WINDOW_ENDING_INT 1 1388 #define WINDOW_NTH_VALUE_INT 2 1389 #define WINDOW_STARTING_NUM 3 1390 #define WINDOW_ENDING_NUM 4 1391 1392 /* 1393 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1394 ** value of the second argument to nth_value() (eCond==2) has just been 1395 ** evaluated and the result left in register reg. This function generates VM 1396 ** code to check that the value is a non-negative integer and throws an 1397 ** exception if it is not. 1398 */ 1399 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1400 static const char *azErr[] = { 1401 "frame starting offset must be a non-negative integer", 1402 "frame ending offset must be a non-negative integer", 1403 "second argument to nth_value must be a positive integer", 1404 "frame starting offset must be a non-negative number", 1405 "frame ending offset must be a non-negative number", 1406 }; 1407 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1408 Vdbe *v = sqlite3GetVdbe(pParse); 1409 int regZero = sqlite3GetTempReg(pParse); 1410 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1411 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1412 if( eCond>=WINDOW_STARTING_NUM ){ 1413 int regString = sqlite3GetTempReg(pParse); 1414 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1415 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1416 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1417 VdbeCoverage(v); 1418 assert( eCond==3 || eCond==4 ); 1419 VdbeCoverageIf(v, eCond==3); 1420 VdbeCoverageIf(v, eCond==4); 1421 }else{ 1422 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1423 VdbeCoverage(v); 1424 assert( eCond==0 || eCond==1 || eCond==2 ); 1425 VdbeCoverageIf(v, eCond==0); 1426 VdbeCoverageIf(v, eCond==1); 1427 VdbeCoverageIf(v, eCond==2); 1428 } 1429 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1430 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1431 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1432 VdbeCoverageNeverNullIf(v, eCond==2); 1433 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1434 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1435 sqlite3MayAbort(pParse); 1436 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1437 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1438 sqlite3ReleaseTempReg(pParse, regZero); 1439 } 1440 1441 /* 1442 ** Return the number of arguments passed to the window-function associated 1443 ** with the object passed as the only argument to this function. 1444 */ 1445 static int windowArgCount(Window *pWin){ 1446 ExprList *pList = pWin->pOwner->x.pList; 1447 return (pList ? pList->nExpr : 0); 1448 } 1449 1450 typedef struct WindowCodeArg WindowCodeArg; 1451 typedef struct WindowCsrAndReg WindowCsrAndReg; 1452 1453 /* 1454 ** See comments above struct WindowCodeArg. 1455 */ 1456 struct WindowCsrAndReg { 1457 int csr; /* Cursor number */ 1458 int reg; /* First in array of peer values */ 1459 }; 1460 1461 /* 1462 ** A single instance of this structure is allocated on the stack by 1463 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1464 ** routines. This is to reduce the number of arguments required by each 1465 ** helper function. 1466 ** 1467 ** regArg: 1468 ** Each window function requires an accumulator register (just as an 1469 ** ordinary aggregate function does). This variable is set to the first 1470 ** in an array of accumulator registers - one for each window function 1471 ** in the WindowCodeArg.pMWin list. 1472 ** 1473 ** eDelete: 1474 ** The window functions implementation sometimes caches the input rows 1475 ** that it processes in a temporary table. If it is not zero, this 1476 ** variable indicates when rows may be removed from the temp table (in 1477 ** order to reduce memory requirements - it would always be safe just 1478 ** to leave them there). Possible values for eDelete are: 1479 ** 1480 ** WINDOW_RETURN_ROW: 1481 ** An input row can be discarded after it is returned to the caller. 1482 ** 1483 ** WINDOW_AGGINVERSE: 1484 ** An input row can be discarded after the window functions xInverse() 1485 ** callbacks have been invoked in it. 1486 ** 1487 ** WINDOW_AGGSTEP: 1488 ** An input row can be discarded after the window functions xStep() 1489 ** callbacks have been invoked in it. 1490 ** 1491 ** start,current,end 1492 ** Consider a window-frame similar to the following: 1493 ** 1494 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1495 ** 1496 ** The windows functions implmentation caches the input rows in a temp 1497 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1498 ** aggressively removes rows once they are no longer required, but that's 1499 ** a mere detail). It keeps three cursors open on the temp table. One 1500 ** (current) that points to the next row to return to the query engine 1501 ** once its window function values have been calculated. Another (end) 1502 ** points to the next row to call the xStep() method of each window function 1503 ** on (so that it is 2 groups ahead of current). And a third (start) that 1504 ** points to the next row to call the xInverse() method of each window 1505 ** function on. 1506 ** 1507 ** Each cursor (start, current and end) consists of a VDBE cursor 1508 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1509 ** WindowCodeArg.reg) that always contains a copy of the peer values 1510 ** read from the corresponding cursor. 1511 ** 1512 ** Depending on the window-frame in question, all three cursors may not 1513 ** be required. In this case both WindowCodeArg.csr and reg are set to 1514 ** 0. 1515 */ 1516 struct WindowCodeArg { 1517 Parse *pParse; /* Parse context */ 1518 Window *pMWin; /* First in list of functions being processed */ 1519 Vdbe *pVdbe; /* VDBE object */ 1520 int addrGosub; /* OP_Gosub to this address to return one row */ 1521 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1522 int regArg; /* First in array of accumulator registers */ 1523 int eDelete; /* See above */ 1524 1525 WindowCsrAndReg start; 1526 WindowCsrAndReg current; 1527 WindowCsrAndReg end; 1528 }; 1529 1530 /* 1531 ** Generate VM code to read the window frames peer values from cursor csr into 1532 ** an array of registers starting at reg. 1533 */ 1534 static void windowReadPeerValues( 1535 WindowCodeArg *p, 1536 int csr, 1537 int reg 1538 ){ 1539 Window *pMWin = p->pMWin; 1540 ExprList *pOrderBy = pMWin->pOrderBy; 1541 if( pOrderBy ){ 1542 Vdbe *v = sqlite3GetVdbe(p->pParse); 1543 ExprList *pPart = pMWin->pPartition; 1544 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1545 int i; 1546 for(i=0; i<pOrderBy->nExpr; i++){ 1547 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1548 } 1549 } 1550 } 1551 1552 /* 1553 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1554 ** xInverse (if bInverse is non-zero) for each window function in the 1555 ** linked list starting at pMWin. Or, for built-in window functions 1556 ** that do not use the standard function API, generate the required 1557 ** inline VM code. 1558 ** 1559 ** If argument csr is greater than or equal to 0, then argument reg is 1560 ** the first register in an array of registers guaranteed to be large 1561 ** enough to hold the array of arguments for each function. In this case 1562 ** the arguments are extracted from the current row of csr into the 1563 ** array of registers before invoking OP_AggStep or OP_AggInverse 1564 ** 1565 ** Or, if csr is less than zero, then the array of registers at reg is 1566 ** already populated with all columns from the current row of the sub-query. 1567 ** 1568 ** If argument regPartSize is non-zero, then it is a register containing the 1569 ** number of rows in the current partition. 1570 */ 1571 static void windowAggStep( 1572 WindowCodeArg *p, 1573 Window *pMWin, /* Linked list of window functions */ 1574 int csr, /* Read arguments from this cursor */ 1575 int bInverse, /* True to invoke xInverse instead of xStep */ 1576 int reg /* Array of registers */ 1577 ){ 1578 Parse *pParse = p->pParse; 1579 Vdbe *v = sqlite3GetVdbe(pParse); 1580 Window *pWin; 1581 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1582 FuncDef *pFunc = pWin->pFunc; 1583 int regArg; 1584 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1585 int i; 1586 1587 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1588 1589 /* All OVER clauses in the same window function aggregate step must 1590 ** be the same. */ 1591 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1592 1593 for(i=0; i<nArg; i++){ 1594 if( i!=1 || pFunc->zName!=nth_valueName ){ 1595 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1596 }else{ 1597 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1598 } 1599 } 1600 regArg = reg; 1601 1602 if( pMWin->regStartRowid==0 1603 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1604 && (pWin->eStart!=TK_UNBOUNDED) 1605 ){ 1606 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1607 VdbeCoverage(v); 1608 if( bInverse==0 ){ 1609 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1610 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1611 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1612 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1613 }else{ 1614 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1615 VdbeCoverageNeverTaken(v); 1616 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1617 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1618 } 1619 sqlite3VdbeJumpHere(v, addrIsNull); 1620 }else if( pWin->regApp ){ 1621 assert( pFunc->zName==nth_valueName 1622 || pFunc->zName==first_valueName 1623 ); 1624 assert( bInverse==0 || bInverse==1 ); 1625 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1626 }else if( pFunc->xSFunc!=noopStepFunc ){ 1627 int addrIf = 0; 1628 if( pWin->pFilter ){ 1629 int regTmp; 1630 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1631 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1632 regTmp = sqlite3GetTempReg(pParse); 1633 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1634 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1635 VdbeCoverage(v); 1636 sqlite3ReleaseTempReg(pParse, regTmp); 1637 } 1638 1639 if( pWin->bExprArgs ){ 1640 int iStart = sqlite3VdbeCurrentAddr(v); 1641 VdbeOp *pOp, *pEnd; 1642 1643 nArg = pWin->pOwner->x.pList->nExpr; 1644 regArg = sqlite3GetTempRange(pParse, nArg); 1645 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1646 1647 pEnd = sqlite3VdbeGetOp(v, -1); 1648 for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){ 1649 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1650 pOp->p1 = csr; 1651 } 1652 } 1653 } 1654 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1655 CollSeq *pColl; 1656 assert( nArg>0 ); 1657 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1658 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1659 } 1660 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1661 bInverse, regArg, pWin->regAccum); 1662 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1663 sqlite3VdbeChangeP5(v, (u8)nArg); 1664 if( pWin->bExprArgs ){ 1665 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1666 } 1667 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1668 } 1669 } 1670 } 1671 1672 /* 1673 ** Values that may be passed as the second argument to windowCodeOp(). 1674 */ 1675 #define WINDOW_RETURN_ROW 1 1676 #define WINDOW_AGGINVERSE 2 1677 #define WINDOW_AGGSTEP 3 1678 1679 /* 1680 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1681 ** (bFin==1) for each window function in the linked list starting at 1682 ** pMWin. Or, for built-in window-functions that do not use the standard 1683 ** API, generate the equivalent VM code. 1684 */ 1685 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1686 Parse *pParse = p->pParse; 1687 Window *pMWin = p->pMWin; 1688 Vdbe *v = sqlite3GetVdbe(pParse); 1689 Window *pWin; 1690 1691 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1692 if( pMWin->regStartRowid==0 1693 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1694 && (pWin->eStart!=TK_UNBOUNDED) 1695 ){ 1696 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1697 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1698 VdbeCoverage(v); 1699 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1700 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1701 }else if( pWin->regApp ){ 1702 assert( pMWin->regStartRowid==0 ); 1703 }else{ 1704 int nArg = windowArgCount(pWin); 1705 if( bFin ){ 1706 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1707 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1708 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1709 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1710 }else{ 1711 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1712 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1713 } 1714 } 1715 } 1716 } 1717 1718 /* 1719 ** Generate code to calculate the current values of all window functions in the 1720 ** p->pMWin list by doing a full scan of the current window frame. Store the 1721 ** results in the Window.regResult registers, ready to return the upper 1722 ** layer. 1723 */ 1724 static void windowFullScan(WindowCodeArg *p){ 1725 Window *pWin; 1726 Parse *pParse = p->pParse; 1727 Window *pMWin = p->pMWin; 1728 Vdbe *v = p->pVdbe; 1729 1730 int regCRowid = 0; /* Current rowid value */ 1731 int regCPeer = 0; /* Current peer values */ 1732 int regRowid = 0; /* AggStep rowid value */ 1733 int regPeer = 0; /* AggStep peer values */ 1734 1735 int nPeer; 1736 int lblNext; 1737 int lblBrk; 1738 int addrNext; 1739 int csr; 1740 1741 VdbeModuleComment((v, "windowFullScan begin")); 1742 1743 assert( pMWin!=0 ); 1744 csr = pMWin->csrApp; 1745 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1746 1747 lblNext = sqlite3VdbeMakeLabel(pParse); 1748 lblBrk = sqlite3VdbeMakeLabel(pParse); 1749 1750 regCRowid = sqlite3GetTempReg(pParse); 1751 regRowid = sqlite3GetTempReg(pParse); 1752 if( nPeer ){ 1753 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1754 regPeer = sqlite3GetTempRange(pParse, nPeer); 1755 } 1756 1757 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1758 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1759 1760 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1761 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1762 } 1763 1764 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1765 VdbeCoverage(v); 1766 addrNext = sqlite3VdbeCurrentAddr(v); 1767 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1768 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1769 VdbeCoverageNeverNull(v); 1770 1771 if( pMWin->eExclude==TK_CURRENT ){ 1772 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1773 VdbeCoverageNeverNull(v); 1774 }else if( pMWin->eExclude!=TK_NO ){ 1775 int addr; 1776 int addrEq = 0; 1777 KeyInfo *pKeyInfo = 0; 1778 1779 if( pMWin->pOrderBy ){ 1780 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1781 } 1782 if( pMWin->eExclude==TK_TIES ){ 1783 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1784 VdbeCoverageNeverNull(v); 1785 } 1786 if( pKeyInfo ){ 1787 windowReadPeerValues(p, csr, regPeer); 1788 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1789 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1790 addr = sqlite3VdbeCurrentAddr(v)+1; 1791 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1792 VdbeCoverageEqNe(v); 1793 }else{ 1794 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1795 } 1796 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1797 } 1798 1799 windowAggStep(p, pMWin, csr, 0, p->regArg); 1800 1801 sqlite3VdbeResolveLabel(v, lblNext); 1802 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1803 VdbeCoverage(v); 1804 sqlite3VdbeJumpHere(v, addrNext-1); 1805 sqlite3VdbeJumpHere(v, addrNext+1); 1806 sqlite3ReleaseTempReg(pParse, regRowid); 1807 sqlite3ReleaseTempReg(pParse, regCRowid); 1808 if( nPeer ){ 1809 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1810 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1811 } 1812 1813 windowAggFinal(p, 1); 1814 VdbeModuleComment((v, "windowFullScan end")); 1815 } 1816 1817 /* 1818 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1819 ** return the current row of Window.iEphCsr. If all window functions are 1820 ** aggregate window functions that use the standard API, a single 1821 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1822 ** for per-row processing is only generated for the following built-in window 1823 ** functions: 1824 ** 1825 ** nth_value() 1826 ** first_value() 1827 ** lag() 1828 ** lead() 1829 */ 1830 static void windowReturnOneRow(WindowCodeArg *p){ 1831 Window *pMWin = p->pMWin; 1832 Vdbe *v = p->pVdbe; 1833 1834 if( pMWin->regStartRowid ){ 1835 windowFullScan(p); 1836 }else{ 1837 Parse *pParse = p->pParse; 1838 Window *pWin; 1839 1840 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1841 FuncDef *pFunc = pWin->pFunc; 1842 if( pFunc->zName==nth_valueName 1843 || pFunc->zName==first_valueName 1844 ){ 1845 int csr = pWin->csrApp; 1846 int lbl = sqlite3VdbeMakeLabel(pParse); 1847 int tmpReg = sqlite3GetTempReg(pParse); 1848 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1849 1850 if( pFunc->zName==nth_valueName ){ 1851 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1852 windowCheckValue(pParse, tmpReg, 2); 1853 }else{ 1854 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1855 } 1856 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1857 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1858 VdbeCoverageNeverNull(v); 1859 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1860 VdbeCoverageNeverTaken(v); 1861 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1862 sqlite3VdbeResolveLabel(v, lbl); 1863 sqlite3ReleaseTempReg(pParse, tmpReg); 1864 } 1865 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1866 int nArg = pWin->pOwner->x.pList->nExpr; 1867 int csr = pWin->csrApp; 1868 int lbl = sqlite3VdbeMakeLabel(pParse); 1869 int tmpReg = sqlite3GetTempReg(pParse); 1870 int iEph = pMWin->iEphCsr; 1871 1872 if( nArg<3 ){ 1873 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1874 }else{ 1875 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1876 } 1877 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1878 if( nArg<2 ){ 1879 int val = (pFunc->zName==leadName ? 1 : -1); 1880 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1881 }else{ 1882 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1883 int tmpReg2 = sqlite3GetTempReg(pParse); 1884 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1885 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1886 sqlite3ReleaseTempReg(pParse, tmpReg2); 1887 } 1888 1889 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1890 VdbeCoverage(v); 1891 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1892 sqlite3VdbeResolveLabel(v, lbl); 1893 sqlite3ReleaseTempReg(pParse, tmpReg); 1894 } 1895 } 1896 } 1897 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1898 } 1899 1900 /* 1901 ** Generate code to set the accumulator register for each window function 1902 ** in the linked list passed as the second argument to NULL. And perform 1903 ** any equivalent initialization required by any built-in window functions 1904 ** in the list. 1905 */ 1906 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1907 Vdbe *v = sqlite3GetVdbe(pParse); 1908 int regArg; 1909 int nArg = 0; 1910 Window *pWin; 1911 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1912 FuncDef *pFunc = pWin->pFunc; 1913 assert( pWin->regAccum ); 1914 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1915 nArg = MAX(nArg, windowArgCount(pWin)); 1916 if( pMWin->regStartRowid==0 ){ 1917 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1918 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1919 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1920 } 1921 1922 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1923 assert( pWin->eStart!=TK_UNBOUNDED ); 1924 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1925 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1926 } 1927 } 1928 } 1929 regArg = pParse->nMem+1; 1930 pParse->nMem += nArg; 1931 return regArg; 1932 } 1933 1934 /* 1935 ** Return true if the current frame should be cached in the ephemeral table, 1936 ** even if there are no xInverse() calls required. 1937 */ 1938 static int windowCacheFrame(Window *pMWin){ 1939 Window *pWin; 1940 if( pMWin->regStartRowid ) return 1; 1941 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1942 FuncDef *pFunc = pWin->pFunc; 1943 if( (pFunc->zName==nth_valueName) 1944 || (pFunc->zName==first_valueName) 1945 || (pFunc->zName==leadName) 1946 || (pFunc->zName==lagName) 1947 ){ 1948 return 1; 1949 } 1950 } 1951 return 0; 1952 } 1953 1954 /* 1955 ** regOld and regNew are each the first register in an array of size 1956 ** pOrderBy->nExpr. This function generates code to compare the two 1957 ** arrays of registers using the collation sequences and other comparison 1958 ** parameters specified by pOrderBy. 1959 ** 1960 ** If the two arrays are not equal, the contents of regNew is copied to 1961 ** regOld and control falls through. Otherwise, if the contents of the arrays 1962 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 1963 */ 1964 static void windowIfNewPeer( 1965 Parse *pParse, 1966 ExprList *pOrderBy, 1967 int regNew, /* First in array of new values */ 1968 int regOld, /* First in array of old values */ 1969 int addr /* Jump here */ 1970 ){ 1971 Vdbe *v = sqlite3GetVdbe(pParse); 1972 if( pOrderBy ){ 1973 int nVal = pOrderBy->nExpr; 1974 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 1975 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 1976 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1977 sqlite3VdbeAddOp3(v, OP_Jump, 1978 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 1979 ); 1980 VdbeCoverageEqNe(v); 1981 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 1982 }else{ 1983 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 1984 } 1985 } 1986 1987 /* 1988 ** This function is called as part of generating VM programs for RANGE 1989 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 1990 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 1991 ** code equivalent to: 1992 ** 1993 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 1994 ** 1995 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 1996 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 1997 ** 1998 ** If the sort-order for the ORDER BY term in the window is DESC, then the 1999 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2000 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2001 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2002 ** is OP_Ge, the generated code is equivalent to: 2003 ** 2004 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2005 ** 2006 ** A special type of arithmetic is used such that if csr1.peerVal is not 2007 ** a numeric type (real or integer), then the result of the addition addition 2008 ** or subtraction is a a copy of csr1.peerVal. 2009 */ 2010 static void windowCodeRangeTest( 2011 WindowCodeArg *p, 2012 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2013 int csr1, /* Cursor number for cursor 1 */ 2014 int regVal, /* Register containing non-negative number */ 2015 int csr2, /* Cursor number for cursor 2 */ 2016 int lbl /* Jump destination if condition is true */ 2017 ){ 2018 Parse *pParse = p->pParse; 2019 Vdbe *v = sqlite3GetVdbe(pParse); 2020 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2021 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2022 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2023 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2024 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2025 int addrGe; /* Jump destination */ 2026 2027 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2028 assert( pOrderBy && pOrderBy->nExpr==1 ); 2029 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2030 switch( op ){ 2031 case OP_Ge: op = OP_Le; break; 2032 case OP_Gt: op = OP_Lt; break; 2033 default: assert( op==OP_Le ); op = OP_Ge; break; 2034 } 2035 arith = OP_Subtract; 2036 } 2037 2038 /* Read the peer-value from each cursor into a register */ 2039 windowReadPeerValues(p, csr1, reg1); 2040 windowReadPeerValues(p, csr2, reg2); 2041 2042 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2043 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2044 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2045 )); 2046 2047 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2048 ** This block adds (or subtracts for DESC) the numeric value in regVal 2049 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2050 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2051 ** 2052 ** if( reg1>='' ) goto addrGe; 2053 ** reg1 = reg1 +/- regVal 2054 ** addrGe: 2055 ** 2056 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2057 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2058 ** then the arithmetic is performed, but since adding or subtracting from 2059 ** NULL is always NULL anyway, this case is handled as required too. */ 2060 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2061 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2062 VdbeCoverage(v); 2063 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2064 sqlite3VdbeJumpHere(v, addrGe); 2065 2066 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2067 ** consider NULL values to be larger than all other values, instead of 2068 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2069 ** (and adding that capability causes a performance regression), so 2070 ** instead if the BIGNULL flag is set then cases where either reg1 or 2071 ** reg2 are NULL are handled separately in the following block. The code 2072 ** generated is equivalent to: 2073 ** 2074 ** if( reg1 IS NULL ){ 2075 ** if( op==OP_Ge ) goto lbl; 2076 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2077 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2078 ** }else if( reg2 IS NULL ){ 2079 ** if( op==OP_Le ) goto lbl; 2080 ** } 2081 ** 2082 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2083 ** not taken, control jumps over the comparison operator coded below this 2084 ** block. */ 2085 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2086 /* This block runs if reg1 contains a NULL. */ 2087 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2088 switch( op ){ 2089 case OP_Ge: 2090 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2091 break; 2092 case OP_Gt: 2093 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2094 VdbeCoverage(v); 2095 break; 2096 case OP_Le: 2097 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2098 VdbeCoverage(v); 2099 break; 2100 default: assert( op==OP_Lt ); /* no-op */ break; 2101 } 2102 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 2103 2104 /* This block runs if reg1 is not NULL, but reg2 is. */ 2105 sqlite3VdbeJumpHere(v, addr); 2106 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2107 if( op==OP_Gt || op==OP_Ge ){ 2108 sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1); 2109 } 2110 } 2111 2112 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2113 ** control skips over this test if the BIGNULL flag is set and either 2114 ** reg1 or reg2 contain a NULL value. */ 2115 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2116 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2117 2118 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2119 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2120 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2121 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2122 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2123 sqlite3ReleaseTempReg(pParse, reg1); 2124 sqlite3ReleaseTempReg(pParse, reg2); 2125 2126 VdbeModuleComment((v, "CodeRangeTest: end")); 2127 } 2128 2129 /* 2130 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2131 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2132 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2133 ** details. 2134 */ 2135 static int windowCodeOp( 2136 WindowCodeArg *p, /* Context object */ 2137 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2138 int regCountdown, /* Register for OP_IfPos countdown */ 2139 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2140 ){ 2141 int csr, reg; 2142 Parse *pParse = p->pParse; 2143 Window *pMWin = p->pMWin; 2144 int ret = 0; 2145 Vdbe *v = p->pVdbe; 2146 int addrContinue = 0; 2147 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2148 2149 int lblDone = sqlite3VdbeMakeLabel(pParse); 2150 int addrNextRange = 0; 2151 2152 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2153 ** starts with UNBOUNDED PRECEDING. */ 2154 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2155 assert( regCountdown==0 && jumpOnEof==0 ); 2156 return 0; 2157 } 2158 2159 if( regCountdown>0 ){ 2160 if( pMWin->eFrmType==TK_RANGE ){ 2161 addrNextRange = sqlite3VdbeCurrentAddr(v); 2162 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2163 if( op==WINDOW_AGGINVERSE ){ 2164 if( pMWin->eStart==TK_FOLLOWING ){ 2165 windowCodeRangeTest( 2166 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2167 ); 2168 }else{ 2169 windowCodeRangeTest( 2170 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2171 ); 2172 } 2173 }else{ 2174 windowCodeRangeTest( 2175 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2176 ); 2177 } 2178 }else{ 2179 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2180 VdbeCoverage(v); 2181 } 2182 } 2183 2184 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2185 windowAggFinal(p, 0); 2186 } 2187 addrContinue = sqlite3VdbeCurrentAddr(v); 2188 2189 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2190 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2191 ** start cursor does not advance past the end cursor within the 2192 ** temporary table. It otherwise might, if (a>b). */ 2193 if( pMWin->eStart==pMWin->eEnd && regCountdown 2194 && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE 2195 ){ 2196 int regRowid1 = sqlite3GetTempReg(pParse); 2197 int regRowid2 = sqlite3GetTempReg(pParse); 2198 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2199 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2200 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2201 VdbeCoverage(v); 2202 sqlite3ReleaseTempReg(pParse, regRowid1); 2203 sqlite3ReleaseTempReg(pParse, regRowid2); 2204 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2205 } 2206 2207 switch( op ){ 2208 case WINDOW_RETURN_ROW: 2209 csr = p->current.csr; 2210 reg = p->current.reg; 2211 windowReturnOneRow(p); 2212 break; 2213 2214 case WINDOW_AGGINVERSE: 2215 csr = p->start.csr; 2216 reg = p->start.reg; 2217 if( pMWin->regStartRowid ){ 2218 assert( pMWin->regEndRowid ); 2219 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2220 }else{ 2221 windowAggStep(p, pMWin, csr, 1, p->regArg); 2222 } 2223 break; 2224 2225 default: 2226 assert( op==WINDOW_AGGSTEP ); 2227 csr = p->end.csr; 2228 reg = p->end.reg; 2229 if( pMWin->regStartRowid ){ 2230 assert( pMWin->regEndRowid ); 2231 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2232 }else{ 2233 windowAggStep(p, pMWin, csr, 0, p->regArg); 2234 } 2235 break; 2236 } 2237 2238 if( op==p->eDelete ){ 2239 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2240 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2241 } 2242 2243 if( jumpOnEof ){ 2244 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2245 VdbeCoverage(v); 2246 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2247 }else{ 2248 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2249 VdbeCoverage(v); 2250 if( bPeer ){ 2251 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2252 } 2253 } 2254 2255 if( bPeer ){ 2256 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2257 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2258 windowReadPeerValues(p, csr, regTmp); 2259 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2260 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2261 } 2262 2263 if( addrNextRange ){ 2264 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2265 } 2266 sqlite3VdbeResolveLabel(v, lblDone); 2267 return ret; 2268 } 2269 2270 2271 /* 2272 ** Allocate and return a duplicate of the Window object indicated by the 2273 ** third argument. Set the Window.pOwner field of the new object to 2274 ** pOwner. 2275 */ 2276 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2277 Window *pNew = 0; 2278 if( ALWAYS(p) ){ 2279 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2280 if( pNew ){ 2281 pNew->zName = sqlite3DbStrDup(db, p->zName); 2282 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2283 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2284 pNew->pFunc = p->pFunc; 2285 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2286 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2287 pNew->eFrmType = p->eFrmType; 2288 pNew->eEnd = p->eEnd; 2289 pNew->eStart = p->eStart; 2290 pNew->eExclude = p->eExclude; 2291 pNew->regResult = p->regResult; 2292 pNew->regAccum = p->regAccum; 2293 pNew->iArgCol = p->iArgCol; 2294 pNew->iEphCsr = p->iEphCsr; 2295 pNew->bExprArgs = p->bExprArgs; 2296 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2297 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2298 pNew->pOwner = pOwner; 2299 pNew->bImplicitFrame = p->bImplicitFrame; 2300 } 2301 } 2302 return pNew; 2303 } 2304 2305 /* 2306 ** Return a copy of the linked list of Window objects passed as the 2307 ** second argument. 2308 */ 2309 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2310 Window *pWin; 2311 Window *pRet = 0; 2312 Window **pp = &pRet; 2313 2314 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2315 *pp = sqlite3WindowDup(db, 0, pWin); 2316 if( *pp==0 ) break; 2317 pp = &((*pp)->pNextWin); 2318 } 2319 2320 return pRet; 2321 } 2322 2323 /* 2324 ** Return true if it can be determined at compile time that expression 2325 ** pExpr evaluates to a value that, when cast to an integer, is greater 2326 ** than zero. False otherwise. 2327 ** 2328 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2329 ** flag and returns zero. 2330 */ 2331 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2332 int ret = 0; 2333 sqlite3 *db = pParse->db; 2334 sqlite3_value *pVal = 0; 2335 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2336 if( pVal && sqlite3_value_int(pVal)>0 ){ 2337 ret = 1; 2338 } 2339 sqlite3ValueFree(pVal); 2340 return ret; 2341 } 2342 2343 /* 2344 ** sqlite3WhereBegin() has already been called for the SELECT statement 2345 ** passed as the second argument when this function is invoked. It generates 2346 ** code to populate the Window.regResult register for each window function 2347 ** and invoke the sub-routine at instruction addrGosub once for each row. 2348 ** sqlite3WhereEnd() is always called before returning. 2349 ** 2350 ** This function handles several different types of window frames, which 2351 ** require slightly different processing. The following pseudo code is 2352 ** used to implement window frames of the form: 2353 ** 2354 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2355 ** 2356 ** Other window frame types use variants of the following: 2357 ** 2358 ** ... loop started by sqlite3WhereBegin() ... 2359 ** if( new partition ){ 2360 ** Gosub flush 2361 ** } 2362 ** Insert new row into eph table. 2363 ** 2364 ** if( first row of partition ){ 2365 ** // Rewind three cursors, all open on the eph table. 2366 ** Rewind(csrEnd); 2367 ** Rewind(csrStart); 2368 ** Rewind(csrCurrent); 2369 ** 2370 ** regEnd = <expr2> // FOLLOWING expression 2371 ** regStart = <expr1> // PRECEDING expression 2372 ** }else{ 2373 ** // First time this branch is taken, the eph table contains two 2374 ** // rows. The first row in the partition, which all three cursors 2375 ** // currently point to, and the following row. 2376 ** AGGSTEP 2377 ** if( (regEnd--)<=0 ){ 2378 ** RETURN_ROW 2379 ** if( (regStart--)<=0 ){ 2380 ** AGGINVERSE 2381 ** } 2382 ** } 2383 ** } 2384 ** } 2385 ** flush: 2386 ** AGGSTEP 2387 ** while( 1 ){ 2388 ** RETURN ROW 2389 ** if( csrCurrent is EOF ) break; 2390 ** if( (regStart--)<=0 ){ 2391 ** AggInverse(csrStart) 2392 ** Next(csrStart) 2393 ** } 2394 ** } 2395 ** 2396 ** The pseudo-code above uses the following shorthand: 2397 ** 2398 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2399 ** with arguments read from the current row of cursor csrEnd, then 2400 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2401 ** 2402 ** RETURN_ROW: return a row to the caller based on the contents of the 2403 ** current row of csrCurrent and the current state of all 2404 ** aggregates. Then step cursor csrCurrent forward one row. 2405 ** 2406 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2407 ** functions with arguments read from the current row of cursor 2408 ** csrStart. Then step csrStart forward one row. 2409 ** 2410 ** There are two other ROWS window frames that are handled significantly 2411 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2412 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2413 ** cases because they change the order in which the three cursors (csrStart, 2414 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2415 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2416 ** three. 2417 ** 2418 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2419 ** 2420 ** ... loop started by sqlite3WhereBegin() ... 2421 ** if( new partition ){ 2422 ** Gosub flush 2423 ** } 2424 ** Insert new row into eph table. 2425 ** if( first row of partition ){ 2426 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2427 ** regEnd = <expr2> 2428 ** regStart = <expr1> 2429 ** }else{ 2430 ** if( (regEnd--)<=0 ){ 2431 ** AGGSTEP 2432 ** } 2433 ** RETURN_ROW 2434 ** if( (regStart--)<=0 ){ 2435 ** AGGINVERSE 2436 ** } 2437 ** } 2438 ** } 2439 ** flush: 2440 ** if( (regEnd--)<=0 ){ 2441 ** AGGSTEP 2442 ** } 2443 ** RETURN_ROW 2444 ** 2445 ** 2446 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2447 ** 2448 ** ... loop started by sqlite3WhereBegin() ... 2449 ** if( new partition ){ 2450 ** Gosub flush 2451 ** } 2452 ** Insert new row into eph table. 2453 ** if( first row of partition ){ 2454 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2455 ** regEnd = <expr2> 2456 ** regStart = regEnd - <expr1> 2457 ** }else{ 2458 ** AGGSTEP 2459 ** if( (regEnd--)<=0 ){ 2460 ** RETURN_ROW 2461 ** } 2462 ** if( (regStart--)<=0 ){ 2463 ** AGGINVERSE 2464 ** } 2465 ** } 2466 ** } 2467 ** flush: 2468 ** AGGSTEP 2469 ** while( 1 ){ 2470 ** if( (regEnd--)<=0 ){ 2471 ** RETURN_ROW 2472 ** if( eof ) break; 2473 ** } 2474 ** if( (regStart--)<=0 ){ 2475 ** AGGINVERSE 2476 ** if( eof ) break 2477 ** } 2478 ** } 2479 ** while( !eof csrCurrent ){ 2480 ** RETURN_ROW 2481 ** } 2482 ** 2483 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2484 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2485 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2486 ** This is optimized of course - branches that will never be taken and 2487 ** conditions that are always true are omitted from the VM code. The only 2488 ** exceptional case is: 2489 ** 2490 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2491 ** 2492 ** ... loop started by sqlite3WhereBegin() ... 2493 ** if( new partition ){ 2494 ** Gosub flush 2495 ** } 2496 ** Insert new row into eph table. 2497 ** if( first row of partition ){ 2498 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2499 ** regStart = <expr1> 2500 ** }else{ 2501 ** AGGSTEP 2502 ** } 2503 ** } 2504 ** flush: 2505 ** AGGSTEP 2506 ** while( 1 ){ 2507 ** if( (regStart--)<=0 ){ 2508 ** AGGINVERSE 2509 ** if( eof ) break 2510 ** } 2511 ** RETURN_ROW 2512 ** } 2513 ** while( !eof csrCurrent ){ 2514 ** RETURN_ROW 2515 ** } 2516 ** 2517 ** Also requiring special handling are the cases: 2518 ** 2519 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2520 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2521 ** 2522 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2523 ** To handle this case, the pseudo-code programs depicted above are modified 2524 ** slightly to be: 2525 ** 2526 ** ... loop started by sqlite3WhereBegin() ... 2527 ** if( new partition ){ 2528 ** Gosub flush 2529 ** } 2530 ** Insert new row into eph table. 2531 ** if( first row of partition ){ 2532 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2533 ** regEnd = <expr2> 2534 ** regStart = <expr1> 2535 ** if( regEnd < regStart ){ 2536 ** RETURN_ROW 2537 ** delete eph table contents 2538 ** continue 2539 ** } 2540 ** ... 2541 ** 2542 ** The new "continue" statement in the above jumps to the next iteration 2543 ** of the outer loop - the one started by sqlite3WhereBegin(). 2544 ** 2545 ** The various GROUPS cases are implemented using the same patterns as 2546 ** ROWS. The VM code is modified slightly so that: 2547 ** 2548 ** 1. The else branch in the main loop is only taken if the row just 2549 ** added to the ephemeral table is the start of a new group. In 2550 ** other words, it becomes: 2551 ** 2552 ** ... loop started by sqlite3WhereBegin() ... 2553 ** if( new partition ){ 2554 ** Gosub flush 2555 ** } 2556 ** Insert new row into eph table. 2557 ** if( first row of partition ){ 2558 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2559 ** regEnd = <expr2> 2560 ** regStart = <expr1> 2561 ** }else if( new group ){ 2562 ** ... 2563 ** } 2564 ** } 2565 ** 2566 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2567 ** AGGINVERSE step processes the current row of the relevant cursor and 2568 ** all subsequent rows belonging to the same group. 2569 ** 2570 ** RANGE window frames are a little different again. As for GROUPS, the 2571 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2572 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2573 ** basic cases: 2574 ** 2575 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2576 ** 2577 ** ... loop started by sqlite3WhereBegin() ... 2578 ** if( new partition ){ 2579 ** Gosub flush 2580 ** } 2581 ** Insert new row into eph table. 2582 ** if( first row of partition ){ 2583 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2584 ** regEnd = <expr2> 2585 ** regStart = <expr1> 2586 ** }else{ 2587 ** AGGSTEP 2588 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2589 ** RETURN_ROW 2590 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2591 ** AGGINVERSE 2592 ** } 2593 ** } 2594 ** } 2595 ** } 2596 ** flush: 2597 ** AGGSTEP 2598 ** while( 1 ){ 2599 ** RETURN ROW 2600 ** if( csrCurrent is EOF ) break; 2601 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2602 ** AGGINVERSE 2603 ** } 2604 ** } 2605 ** } 2606 ** 2607 ** In the above notation, "csr.key" means the current value of the ORDER BY 2608 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2609 ** or <expr PRECEDING) read from cursor csr. 2610 ** 2611 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2612 ** 2613 ** ... loop started by sqlite3WhereBegin() ... 2614 ** if( new partition ){ 2615 ** Gosub flush 2616 ** } 2617 ** Insert new row into eph table. 2618 ** if( first row of partition ){ 2619 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2620 ** regEnd = <expr2> 2621 ** regStart = <expr1> 2622 ** }else{ 2623 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2624 ** AGGSTEP 2625 ** } 2626 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2627 ** AGGINVERSE 2628 ** } 2629 ** RETURN_ROW 2630 ** } 2631 ** } 2632 ** flush: 2633 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2634 ** AGGSTEP 2635 ** } 2636 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2637 ** AGGINVERSE 2638 ** } 2639 ** RETURN_ROW 2640 ** 2641 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2642 ** 2643 ** ... loop started by sqlite3WhereBegin() ... 2644 ** if( new partition ){ 2645 ** Gosub flush 2646 ** } 2647 ** Insert new row into eph table. 2648 ** if( first row of partition ){ 2649 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2650 ** regEnd = <expr2> 2651 ** regStart = <expr1> 2652 ** }else{ 2653 ** AGGSTEP 2654 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2655 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2656 ** AGGINVERSE 2657 ** } 2658 ** RETURN_ROW 2659 ** } 2660 ** } 2661 ** } 2662 ** flush: 2663 ** AGGSTEP 2664 ** while( 1 ){ 2665 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2666 ** AGGINVERSE 2667 ** if( eof ) break "while( 1 )" loop. 2668 ** } 2669 ** RETURN_ROW 2670 ** } 2671 ** while( !eof csrCurrent ){ 2672 ** RETURN_ROW 2673 ** } 2674 ** 2675 ** The text above leaves out many details. Refer to the code and comments 2676 ** below for a more complete picture. 2677 */ 2678 void sqlite3WindowCodeStep( 2679 Parse *pParse, /* Parse context */ 2680 Select *p, /* Rewritten SELECT statement */ 2681 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2682 int regGosub, /* Register for OP_Gosub */ 2683 int addrGosub /* OP_Gosub here to return each row */ 2684 ){ 2685 Window *pMWin = p->pWin; 2686 ExprList *pOrderBy = pMWin->pOrderBy; 2687 Vdbe *v = sqlite3GetVdbe(pParse); 2688 int csrWrite; /* Cursor used to write to eph. table */ 2689 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2690 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2691 int iInput; /* To iterate through sub cols */ 2692 int addrNe; /* Address of OP_Ne */ 2693 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2694 int addrInteger = 0; /* Address of OP_Integer */ 2695 int addrEmpty; /* Address of OP_Rewind in flush: */ 2696 int regNew; /* Array of registers holding new input row */ 2697 int regRecord; /* regNew array in record form */ 2698 int regRowid; /* Rowid for regRecord in eph table */ 2699 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2700 int regPeer = 0; /* Peer values for current row */ 2701 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2702 WindowCodeArg s; /* Context object for sub-routines */ 2703 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2704 int regStart = 0; /* Value of <expr> PRECEDING */ 2705 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2706 2707 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2708 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2709 ); 2710 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2711 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2712 ); 2713 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2714 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2715 || pMWin->eExclude==TK_NO 2716 ); 2717 2718 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2719 2720 /* Fill in the context object */ 2721 memset(&s, 0, sizeof(WindowCodeArg)); 2722 s.pParse = pParse; 2723 s.pMWin = pMWin; 2724 s.pVdbe = v; 2725 s.regGosub = regGosub; 2726 s.addrGosub = addrGosub; 2727 s.current.csr = pMWin->iEphCsr; 2728 csrWrite = s.current.csr+1; 2729 s.start.csr = s.current.csr+2; 2730 s.end.csr = s.current.csr+3; 2731 2732 /* Figure out when rows may be deleted from the ephemeral table. There 2733 ** are four options - they may never be deleted (eDelete==0), they may 2734 ** be deleted as soon as they are no longer part of the window frame 2735 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2736 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2737 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2738 switch( pMWin->eStart ){ 2739 case TK_FOLLOWING: 2740 if( pMWin->eFrmType!=TK_RANGE 2741 && windowExprGtZero(pParse, pMWin->pStart) 2742 ){ 2743 s.eDelete = WINDOW_RETURN_ROW; 2744 } 2745 break; 2746 case TK_UNBOUNDED: 2747 if( windowCacheFrame(pMWin)==0 ){ 2748 if( pMWin->eEnd==TK_PRECEDING ){ 2749 if( pMWin->eFrmType!=TK_RANGE 2750 && windowExprGtZero(pParse, pMWin->pEnd) 2751 ){ 2752 s.eDelete = WINDOW_AGGSTEP; 2753 } 2754 }else{ 2755 s.eDelete = WINDOW_RETURN_ROW; 2756 } 2757 } 2758 break; 2759 default: 2760 s.eDelete = WINDOW_AGGINVERSE; 2761 break; 2762 } 2763 2764 /* Allocate registers for the array of values from the sub-query, the 2765 ** samve values in record form, and the rowid used to insert said record 2766 ** into the ephemeral table. */ 2767 regNew = pParse->nMem+1; 2768 pParse->nMem += nInput; 2769 regRecord = ++pParse->nMem; 2770 regRowid = ++pParse->nMem; 2771 2772 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2773 ** clause, allocate registers to store the results of evaluating each 2774 ** <expr>. */ 2775 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2776 regStart = ++pParse->nMem; 2777 } 2778 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2779 regEnd = ++pParse->nMem; 2780 } 2781 2782 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2783 ** registers to store copies of the ORDER BY expressions (peer values) 2784 ** for the main loop, and for each cursor (start, current and end). */ 2785 if( pMWin->eFrmType!=TK_ROWS ){ 2786 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2787 regNewPeer = regNew + pMWin->nBufferCol; 2788 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2789 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2790 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2791 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2792 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2793 } 2794 2795 /* Load the column values for the row returned by the sub-select 2796 ** into an array of registers starting at regNew. Assemble them into 2797 ** a record in register regRecord. */ 2798 for(iInput=0; iInput<nInput; iInput++){ 2799 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2800 } 2801 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2802 2803 /* An input row has just been read into an array of registers starting 2804 ** at regNew. If the window has a PARTITION clause, this block generates 2805 ** VM code to check if the input row is the start of a new partition. 2806 ** If so, it does an OP_Gosub to an address to be filled in later. The 2807 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2808 if( pMWin->pPartition ){ 2809 int addr; 2810 ExprList *pPart = pMWin->pPartition; 2811 int nPart = pPart->nExpr; 2812 int regNewPart = regNew + pMWin->nBufferCol; 2813 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2814 2815 regFlushPart = ++pParse->nMem; 2816 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2817 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2818 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2819 VdbeCoverageEqNe(v); 2820 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2821 VdbeComment((v, "call flush_partition")); 2822 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2823 } 2824 2825 /* Insert the new row into the ephemeral table */ 2826 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2827 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2828 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2829 VdbeCoverageNeverNull(v); 2830 2831 /* This block is run for the first row of each partition */ 2832 s.regArg = windowInitAccum(pParse, pMWin); 2833 2834 if( regStart ){ 2835 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2836 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2837 } 2838 if( regEnd ){ 2839 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2840 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2841 } 2842 2843 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2844 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2845 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2846 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2847 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2848 windowAggFinal(&s, 0); 2849 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2850 VdbeCoverageNeverTaken(v); 2851 windowReturnOneRow(&s); 2852 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2853 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2854 sqlite3VdbeJumpHere(v, addrGe); 2855 } 2856 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2857 assert( pMWin->eEnd==TK_FOLLOWING ); 2858 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2859 } 2860 2861 if( pMWin->eStart!=TK_UNBOUNDED ){ 2862 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2863 VdbeCoverageNeverTaken(v); 2864 } 2865 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2866 VdbeCoverageNeverTaken(v); 2867 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2868 VdbeCoverageNeverTaken(v); 2869 if( regPeer && pOrderBy ){ 2870 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2871 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2872 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2873 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2874 } 2875 2876 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2877 2878 sqlite3VdbeJumpHere(v, addrNe); 2879 2880 /* Beginning of the block executed for the second and subsequent rows. */ 2881 if( regPeer ){ 2882 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2883 } 2884 if( pMWin->eStart==TK_FOLLOWING ){ 2885 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2886 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2887 if( pMWin->eFrmType==TK_RANGE ){ 2888 int lbl = sqlite3VdbeMakeLabel(pParse); 2889 int addrNext = sqlite3VdbeCurrentAddr(v); 2890 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2891 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2892 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2893 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2894 sqlite3VdbeResolveLabel(v, lbl); 2895 }else{ 2896 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2897 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2898 } 2899 } 2900 }else 2901 if( pMWin->eEnd==TK_PRECEDING ){ 2902 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2903 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2904 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2905 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2906 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2907 }else{ 2908 int addr = 0; 2909 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2910 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2911 if( pMWin->eFrmType==TK_RANGE ){ 2912 int lbl = 0; 2913 addr = sqlite3VdbeCurrentAddr(v); 2914 if( regEnd ){ 2915 lbl = sqlite3VdbeMakeLabel(pParse); 2916 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2917 } 2918 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2919 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2920 if( regEnd ){ 2921 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2922 sqlite3VdbeResolveLabel(v, lbl); 2923 } 2924 }else{ 2925 if( regEnd ){ 2926 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2927 VdbeCoverage(v); 2928 } 2929 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2930 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2931 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2932 } 2933 } 2934 } 2935 2936 /* End of the main input loop */ 2937 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2938 sqlite3WhereEnd(pWInfo); 2939 2940 /* Fall through */ 2941 if( pMWin->pPartition ){ 2942 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2943 sqlite3VdbeJumpHere(v, addrGosubFlush); 2944 } 2945 2946 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2947 VdbeCoverage(v); 2948 if( pMWin->eEnd==TK_PRECEDING ){ 2949 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2950 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2951 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2952 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2953 }else if( pMWin->eStart==TK_FOLLOWING ){ 2954 int addrStart; 2955 int addrBreak1; 2956 int addrBreak2; 2957 int addrBreak3; 2958 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2959 if( pMWin->eFrmType==TK_RANGE ){ 2960 addrStart = sqlite3VdbeCurrentAddr(v); 2961 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2962 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2963 }else 2964 if( pMWin->eEnd==TK_UNBOUNDED ){ 2965 addrStart = sqlite3VdbeCurrentAddr(v); 2966 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 2967 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 2968 }else{ 2969 assert( pMWin->eEnd==TK_FOLLOWING ); 2970 addrStart = sqlite3VdbeCurrentAddr(v); 2971 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 2972 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2973 } 2974 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2975 sqlite3VdbeJumpHere(v, addrBreak2); 2976 addrStart = sqlite3VdbeCurrentAddr(v); 2977 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2978 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2979 sqlite3VdbeJumpHere(v, addrBreak1); 2980 sqlite3VdbeJumpHere(v, addrBreak3); 2981 }else{ 2982 int addrBreak; 2983 int addrStart; 2984 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2985 addrStart = sqlite3VdbeCurrentAddr(v); 2986 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2987 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2988 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2989 sqlite3VdbeJumpHere(v, addrBreak); 2990 } 2991 sqlite3VdbeJumpHere(v, addrEmpty); 2992 2993 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2994 if( pMWin->pPartition ){ 2995 if( pMWin->regStartRowid ){ 2996 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 2997 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 2998 } 2999 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3000 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3001 } 3002 } 3003 3004 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3005