xref: /sqlite-3.40.0/src/window.c (revision e99cb2da)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* Fall through.  */
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( p->pSub ){
792         int i;
793         for(i=0; i<p->pSub->nExpr; i++){
794           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795             iCol = i;
796             break;
797           }
798         }
799       }
800       if( iCol<0 ){
801         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
803       }
804       if( p->pSub ){
805         assert( ExprHasProperty(pExpr, EP_Static)==0 );
806         ExprSetProperty(pExpr, EP_Static);
807         sqlite3ExprDelete(pParse->db, pExpr);
808         ExprClearProperty(pExpr, EP_Static);
809         memset(pExpr, 0, sizeof(Expr));
810 
811         pExpr->op = TK_COLUMN;
812         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
813         pExpr->iTable = p->pWin->iEphCsr;
814         pExpr->y.pTab = p->pTab;
815       }
816       if( pParse->db->mallocFailed ) return WRC_Abort;
817       break;
818     }
819 
820     default: /* no-op */
821       break;
822   }
823 
824   return WRC_Continue;
825 }
826 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
827   struct WindowRewrite *p = pWalker->u.pRewrite;
828   Select *pSave = p->pSubSelect;
829   if( pSave==pSelect ){
830     return WRC_Continue;
831   }else{
832     p->pSubSelect = pSelect;
833     sqlite3WalkSelect(pWalker, pSelect);
834     p->pSubSelect = pSave;
835   }
836   return WRC_Prune;
837 }
838 
839 
840 /*
841 ** Iterate through each expression in expression-list pEList. For each:
842 **
843 **   * TK_COLUMN,
844 **   * aggregate function, or
845 **   * window function with a Window object that is not a member of the
846 **     Window list passed as the second argument (pWin).
847 **
848 ** Append the node to output expression-list (*ppSub). And replace it
849 ** with a TK_COLUMN that reads the (N-1)th element of table
850 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
851 ** appending the new one.
852 */
853 static void selectWindowRewriteEList(
854   Parse *pParse,
855   Window *pWin,
856   SrcList *pSrc,
857   ExprList *pEList,               /* Rewrite expressions in this list */
858   Table *pTab,
859   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
860 ){
861   Walker sWalker;
862   WindowRewrite sRewrite;
863 
864   assert( pWin!=0 );
865   memset(&sWalker, 0, sizeof(Walker));
866   memset(&sRewrite, 0, sizeof(WindowRewrite));
867 
868   sRewrite.pSub = *ppSub;
869   sRewrite.pWin = pWin;
870   sRewrite.pSrc = pSrc;
871   sRewrite.pTab = pTab;
872 
873   sWalker.pParse = pParse;
874   sWalker.xExprCallback = selectWindowRewriteExprCb;
875   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
876   sWalker.u.pRewrite = &sRewrite;
877 
878   (void)sqlite3WalkExprList(&sWalker, pEList);
879 
880   *ppSub = sRewrite.pSub;
881 }
882 
883 /*
884 ** Append a copy of each expression in expression-list pAppend to
885 ** expression list pList. Return a pointer to the result list.
886 */
887 static ExprList *exprListAppendList(
888   Parse *pParse,          /* Parsing context */
889   ExprList *pList,        /* List to which to append. Might be NULL */
890   ExprList *pAppend,      /* List of values to append. Might be NULL */
891   int bIntToNull
892 ){
893   if( pAppend ){
894     int i;
895     int nInit = pList ? pList->nExpr : 0;
896     for(i=0; i<pAppend->nExpr; i++){
897       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
898       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
899       if( bIntToNull && pDup && pDup->op==TK_INTEGER ){
900         pDup->op = TK_NULL;
901         pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
902         pDup->u.zToken = 0;
903       }
904       pList = sqlite3ExprListAppend(pParse, pList, pDup);
905       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
906     }
907   }
908   return pList;
909 }
910 
911 /*
912 ** If the SELECT statement passed as the second argument does not invoke
913 ** any SQL window functions, this function is a no-op. Otherwise, it
914 ** rewrites the SELECT statement so that window function xStep functions
915 ** are invoked in the correct order as described under "SELECT REWRITING"
916 ** at the top of this file.
917 */
918 int sqlite3WindowRewrite(Parse *pParse, Select *p){
919   int rc = SQLITE_OK;
920   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
921     Vdbe *v = sqlite3GetVdbe(pParse);
922     sqlite3 *db = pParse->db;
923     Select *pSub = 0;             /* The subquery */
924     SrcList *pSrc = p->pSrc;
925     Expr *pWhere = p->pWhere;
926     ExprList *pGroupBy = p->pGroupBy;
927     Expr *pHaving = p->pHaving;
928     ExprList *pSort = 0;
929 
930     ExprList *pSublist = 0;       /* Expression list for sub-query */
931     Window *pMWin = p->pWin;      /* Master window object */
932     Window *pWin;                 /* Window object iterator */
933     Table *pTab;
934 
935     pTab = sqlite3DbMallocZero(db, sizeof(Table));
936     if( pTab==0 ){
937       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
938     }
939 
940     p->pSrc = 0;
941     p->pWhere = 0;
942     p->pGroupBy = 0;
943     p->pHaving = 0;
944     p->selFlags &= ~SF_Aggregate;
945     p->selFlags |= SF_WinRewrite;
946 
947     /* Create the ORDER BY clause for the sub-select. This is the concatenation
948     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
949     ** redundant, remove the ORDER BY from the parent SELECT.  */
950     pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0);
951     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
952     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
953       int nSave = pSort->nExpr;
954       pSort->nExpr = p->pOrderBy->nExpr;
955       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
956         sqlite3ExprListDelete(db, p->pOrderBy);
957         p->pOrderBy = 0;
958       }
959       pSort->nExpr = nSave;
960     }
961 
962     /* Assign a cursor number for the ephemeral table used to buffer rows.
963     ** The OpenEphemeral instruction is coded later, after it is known how
964     ** many columns the table will have.  */
965     pMWin->iEphCsr = pParse->nTab++;
966     pParse->nTab += 3;
967 
968     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
969     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
970     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
971 
972     /* Append the PARTITION BY and ORDER BY expressions to the to the
973     ** sub-select expression list. They are required to figure out where
974     ** boundaries for partitions and sets of peer rows lie.  */
975     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
976     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
977 
978     /* Append the arguments passed to each window function to the
979     ** sub-select expression list. Also allocate two registers for each
980     ** window function - one for the accumulator, another for interim
981     ** results.  */
982     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
983       ExprList *pArgs = pWin->pOwner->x.pList;
984       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
985         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
986         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
987         pWin->bExprArgs = 1;
988       }else{
989         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
990         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
991       }
992       if( pWin->pFilter ){
993         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
994         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
995       }
996       pWin->regAccum = ++pParse->nMem;
997       pWin->regResult = ++pParse->nMem;
998       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
999     }
1000 
1001     /* If there is no ORDER BY or PARTITION BY clause, and the window
1002     ** function accepts zero arguments, and there are no other columns
1003     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1004     ** that pSublist is still NULL here. Add a constant expression here to
1005     ** keep everything legal in this case.
1006     */
1007     if( pSublist==0 ){
1008       pSublist = sqlite3ExprListAppend(pParse, 0,
1009         sqlite3Expr(db, TK_INTEGER, "0")
1010       );
1011     }
1012 
1013     pSub = sqlite3SelectNew(
1014         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1015     );
1016     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1017     if( p->pSrc ){
1018       Table *pTab2;
1019       p->pSrc->a[0].pSelect = pSub;
1020       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1021       pSub->selFlags |= SF_Expanded;
1022       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1023       if( pTab2==0 ){
1024         rc = SQLITE_NOMEM;
1025       }else{
1026         memcpy(pTab, pTab2, sizeof(Table));
1027         pTab->tabFlags |= TF_Ephemeral;
1028         p->pSrc->a[0].pTab = pTab;
1029         pTab = pTab2;
1030       }
1031       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr);
1032       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1033       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1034       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1035     }else{
1036       sqlite3SelectDelete(db, pSub);
1037     }
1038     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1039     sqlite3DbFree(db, pTab);
1040   }
1041 
1042   if( rc && pParse->nErr==0 ){
1043     assert( pParse->db->mallocFailed );
1044     return sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1045   }
1046   return rc;
1047 }
1048 
1049 /*
1050 ** Unlink the Window object from the Select to which it is attached,
1051 ** if it is attached.
1052 */
1053 void sqlite3WindowUnlinkFromSelect(Window *p){
1054   if( p->ppThis ){
1055     *p->ppThis = p->pNextWin;
1056     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1057     p->ppThis = 0;
1058   }
1059 }
1060 
1061 /*
1062 ** Free the Window object passed as the second argument.
1063 */
1064 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1065   if( p ){
1066     sqlite3WindowUnlinkFromSelect(p);
1067     sqlite3ExprDelete(db, p->pFilter);
1068     sqlite3ExprListDelete(db, p->pPartition);
1069     sqlite3ExprListDelete(db, p->pOrderBy);
1070     sqlite3ExprDelete(db, p->pEnd);
1071     sqlite3ExprDelete(db, p->pStart);
1072     sqlite3DbFree(db, p->zName);
1073     sqlite3DbFree(db, p->zBase);
1074     sqlite3DbFree(db, p);
1075   }
1076 }
1077 
1078 /*
1079 ** Free the linked list of Window objects starting at the second argument.
1080 */
1081 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1082   while( p ){
1083     Window *pNext = p->pNextWin;
1084     sqlite3WindowDelete(db, p);
1085     p = pNext;
1086   }
1087 }
1088 
1089 /*
1090 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1091 ** value should be a non-negative integer.  If the value is not a
1092 ** constant, change it to NULL.  The fact that it is then a non-negative
1093 ** integer will be caught later.  But it is important not to leave
1094 ** variable values in the expression tree.
1095 */
1096 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1097   if( 0==sqlite3ExprIsConstant(pExpr) ){
1098     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1099     sqlite3ExprDelete(pParse->db, pExpr);
1100     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1101   }
1102   return pExpr;
1103 }
1104 
1105 /*
1106 ** Allocate and return a new Window object describing a Window Definition.
1107 */
1108 Window *sqlite3WindowAlloc(
1109   Parse *pParse,    /* Parsing context */
1110   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1111   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1112   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1113   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1114   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1115   u8 eExclude       /* EXCLUDE clause */
1116 ){
1117   Window *pWin = 0;
1118   int bImplicitFrame = 0;
1119 
1120   /* Parser assures the following: */
1121   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1122   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1123            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1124   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1125            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1126   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1127   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1128 
1129   if( eType==0 ){
1130     bImplicitFrame = 1;
1131     eType = TK_RANGE;
1132   }
1133 
1134   /* Additionally, the
1135   ** starting boundary type may not occur earlier in the following list than
1136   ** the ending boundary type:
1137   **
1138   **   UNBOUNDED PRECEDING
1139   **   <expr> PRECEDING
1140   **   CURRENT ROW
1141   **   <expr> FOLLOWING
1142   **   UNBOUNDED FOLLOWING
1143   **
1144   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1145   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1146   ** frame boundary.
1147   */
1148   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1149    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1150   ){
1151     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1152     goto windowAllocErr;
1153   }
1154 
1155   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1156   if( pWin==0 ) goto windowAllocErr;
1157   pWin->eFrmType = eType;
1158   pWin->eStart = eStart;
1159   pWin->eEnd = eEnd;
1160   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1161     eExclude = TK_NO;
1162   }
1163   pWin->eExclude = eExclude;
1164   pWin->bImplicitFrame = bImplicitFrame;
1165   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1166   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1167   return pWin;
1168 
1169 windowAllocErr:
1170   sqlite3ExprDelete(pParse->db, pEnd);
1171   sqlite3ExprDelete(pParse->db, pStart);
1172   return 0;
1173 }
1174 
1175 /*
1176 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1177 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1178 ** equivalent nul-terminated string.
1179 */
1180 Window *sqlite3WindowAssemble(
1181   Parse *pParse,
1182   Window *pWin,
1183   ExprList *pPartition,
1184   ExprList *pOrderBy,
1185   Token *pBase
1186 ){
1187   if( pWin ){
1188     pWin->pPartition = pPartition;
1189     pWin->pOrderBy = pOrderBy;
1190     if( pBase ){
1191       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1192     }
1193   }else{
1194     sqlite3ExprListDelete(pParse->db, pPartition);
1195     sqlite3ExprListDelete(pParse->db, pOrderBy);
1196   }
1197   return pWin;
1198 }
1199 
1200 /*
1201 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1202 ** is the base window. Earlier windows from the same WINDOW clause are
1203 ** stored in the linked list starting at pWin->pNextWin. This function
1204 ** either updates *pWin according to the base specification, or else
1205 ** leaves an error in pParse.
1206 */
1207 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1208   if( pWin->zBase ){
1209     sqlite3 *db = pParse->db;
1210     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1211     if( pExist ){
1212       const char *zErr = 0;
1213       /* Check for errors */
1214       if( pWin->pPartition ){
1215         zErr = "PARTITION clause";
1216       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1217         zErr = "ORDER BY clause";
1218       }else if( pExist->bImplicitFrame==0 ){
1219         zErr = "frame specification";
1220       }
1221       if( zErr ){
1222         sqlite3ErrorMsg(pParse,
1223             "cannot override %s of window: %s", zErr, pWin->zBase
1224         );
1225       }else{
1226         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1227         if( pExist->pOrderBy ){
1228           assert( pWin->pOrderBy==0 );
1229           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1230         }
1231         sqlite3DbFree(db, pWin->zBase);
1232         pWin->zBase = 0;
1233       }
1234     }
1235   }
1236 }
1237 
1238 /*
1239 ** Attach window object pWin to expression p.
1240 */
1241 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1242   if( p ){
1243     assert( p->op==TK_FUNCTION );
1244     assert( pWin );
1245     p->y.pWin = pWin;
1246     ExprSetProperty(p, EP_WinFunc);
1247     pWin->pOwner = p;
1248     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1249       sqlite3ErrorMsg(pParse,
1250           "DISTINCT is not supported for window functions"
1251       );
1252     }
1253   }else{
1254     sqlite3WindowDelete(pParse->db, pWin);
1255   }
1256 }
1257 
1258 /*
1259 ** Possibly link window pWin into the list at pSel->pWin (window functions
1260 ** to be processed as part of SELECT statement pSel). The window is linked
1261 ** in if either (a) there are no other windows already linked to this
1262 ** SELECT, or (b) the windows already linked use a compatible window frame.
1263 */
1264 void sqlite3WindowLink(Select *pSel, Window *pWin){
1265   if( pSel!=0
1266    && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0))
1267   ){
1268     pWin->pNextWin = pSel->pWin;
1269     if( pSel->pWin ){
1270       pSel->pWin->ppThis = &pWin->pNextWin;
1271     }
1272     pSel->pWin = pWin;
1273     pWin->ppThis = &pSel->pWin;
1274   }
1275 }
1276 
1277 /*
1278 ** Return 0 if the two window objects are identical, or non-zero otherwise.
1279 ** Identical window objects can be processed in a single scan.
1280 */
1281 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1282   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1283   if( p1->eFrmType!=p2->eFrmType ) return 1;
1284   if( p1->eStart!=p2->eStart ) return 1;
1285   if( p1->eEnd!=p2->eEnd ) return 1;
1286   if( p1->eExclude!=p2->eExclude ) return 1;
1287   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1288   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1289   if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1;
1290   if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1;
1291   if( bFilter ){
1292     if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1;
1293   }
1294   return 0;
1295 }
1296 
1297 
1298 /*
1299 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1300 ** to begin iterating through the sub-query results. It is used to allocate
1301 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1302 */
1303 void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){
1304   Window *pWin;
1305   Vdbe *v = sqlite3GetVdbe(pParse);
1306 
1307   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1308   ** said registers to NULL.  */
1309   if( pMWin->pPartition ){
1310     int nExpr = pMWin->pPartition->nExpr;
1311     pMWin->regPart = pParse->nMem+1;
1312     pParse->nMem += nExpr;
1313     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1314   }
1315 
1316   pMWin->regOne = ++pParse->nMem;
1317   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1318 
1319   if( pMWin->eExclude ){
1320     pMWin->regStartRowid = ++pParse->nMem;
1321     pMWin->regEndRowid = ++pParse->nMem;
1322     pMWin->csrApp = pParse->nTab++;
1323     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1324     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1325     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1326     return;
1327   }
1328 
1329   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1330     FuncDef *p = pWin->pFunc;
1331     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1332       /* The inline versions of min() and max() require a single ephemeral
1333       ** table and 3 registers. The registers are used as follows:
1334       **
1335       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1336       **   regApp+1: integer value used to ensure keys are unique
1337       **   regApp+2: output of MakeRecord
1338       */
1339       ExprList *pList = pWin->pOwner->x.pList;
1340       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1341       pWin->csrApp = pParse->nTab++;
1342       pWin->regApp = pParse->nMem+1;
1343       pParse->nMem += 3;
1344       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1345         assert( pKeyInfo->aSortFlags[0]==0 );
1346         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1347       }
1348       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1349       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1350       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1351     }
1352     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1353       /* Allocate two registers at pWin->regApp. These will be used to
1354       ** store the start and end index of the current frame.  */
1355       pWin->regApp = pParse->nMem+1;
1356       pWin->csrApp = pParse->nTab++;
1357       pParse->nMem += 2;
1358       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1359     }
1360     else if( p->zName==leadName || p->zName==lagName ){
1361       pWin->csrApp = pParse->nTab++;
1362       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1363     }
1364   }
1365 }
1366 
1367 #define WINDOW_STARTING_INT  0
1368 #define WINDOW_ENDING_INT    1
1369 #define WINDOW_NTH_VALUE_INT 2
1370 #define WINDOW_STARTING_NUM  3
1371 #define WINDOW_ENDING_NUM    4
1372 
1373 /*
1374 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1375 ** value of the second argument to nth_value() (eCond==2) has just been
1376 ** evaluated and the result left in register reg. This function generates VM
1377 ** code to check that the value is a non-negative integer and throws an
1378 ** exception if it is not.
1379 */
1380 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1381   static const char *azErr[] = {
1382     "frame starting offset must be a non-negative integer",
1383     "frame ending offset must be a non-negative integer",
1384     "second argument to nth_value must be a positive integer",
1385     "frame starting offset must be a non-negative number",
1386     "frame ending offset must be a non-negative number",
1387   };
1388   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1389   Vdbe *v = sqlite3GetVdbe(pParse);
1390   int regZero = sqlite3GetTempReg(pParse);
1391   assert( eCond>=0 && eCond<ArraySize(azErr) );
1392   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1393   if( eCond>=WINDOW_STARTING_NUM ){
1394     int regString = sqlite3GetTempReg(pParse);
1395     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1396     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1397     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1398     VdbeCoverage(v);
1399     assert( eCond==3 || eCond==4 );
1400     VdbeCoverageIf(v, eCond==3);
1401     VdbeCoverageIf(v, eCond==4);
1402   }else{
1403     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1404     VdbeCoverage(v);
1405     assert( eCond==0 || eCond==1 || eCond==2 );
1406     VdbeCoverageIf(v, eCond==0);
1407     VdbeCoverageIf(v, eCond==1);
1408     VdbeCoverageIf(v, eCond==2);
1409   }
1410   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1411   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1412   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1413   VdbeCoverageNeverNullIf(v, eCond==2);
1414   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1415   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1416   sqlite3MayAbort(pParse);
1417   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1418   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1419   sqlite3ReleaseTempReg(pParse, regZero);
1420 }
1421 
1422 /*
1423 ** Return the number of arguments passed to the window-function associated
1424 ** with the object passed as the only argument to this function.
1425 */
1426 static int windowArgCount(Window *pWin){
1427   ExprList *pList = pWin->pOwner->x.pList;
1428   return (pList ? pList->nExpr : 0);
1429 }
1430 
1431 typedef struct WindowCodeArg WindowCodeArg;
1432 typedef struct WindowCsrAndReg WindowCsrAndReg;
1433 
1434 /*
1435 ** See comments above struct WindowCodeArg.
1436 */
1437 struct WindowCsrAndReg {
1438   int csr;                        /* Cursor number */
1439   int reg;                        /* First in array of peer values */
1440 };
1441 
1442 /*
1443 ** A single instance of this structure is allocated on the stack by
1444 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1445 ** routines. This is to reduce the number of arguments required by each
1446 ** helper function.
1447 **
1448 ** regArg:
1449 **   Each window function requires an accumulator register (just as an
1450 **   ordinary aggregate function does). This variable is set to the first
1451 **   in an array of accumulator registers - one for each window function
1452 **   in the WindowCodeArg.pMWin list.
1453 **
1454 ** eDelete:
1455 **   The window functions implementation sometimes caches the input rows
1456 **   that it processes in a temporary table. If it is not zero, this
1457 **   variable indicates when rows may be removed from the temp table (in
1458 **   order to reduce memory requirements - it would always be safe just
1459 **   to leave them there). Possible values for eDelete are:
1460 **
1461 **      WINDOW_RETURN_ROW:
1462 **        An input row can be discarded after it is returned to the caller.
1463 **
1464 **      WINDOW_AGGINVERSE:
1465 **        An input row can be discarded after the window functions xInverse()
1466 **        callbacks have been invoked in it.
1467 **
1468 **      WINDOW_AGGSTEP:
1469 **        An input row can be discarded after the window functions xStep()
1470 **        callbacks have been invoked in it.
1471 **
1472 ** start,current,end
1473 **   Consider a window-frame similar to the following:
1474 **
1475 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1476 **
1477 **   The windows functions implmentation caches the input rows in a temp
1478 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1479 **   aggressively removes rows once they are no longer required, but that's
1480 **   a mere detail). It keeps three cursors open on the temp table. One
1481 **   (current) that points to the next row to return to the query engine
1482 **   once its window function values have been calculated. Another (end)
1483 **   points to the next row to call the xStep() method of each window function
1484 **   on (so that it is 2 groups ahead of current). And a third (start) that
1485 **   points to the next row to call the xInverse() method of each window
1486 **   function on.
1487 **
1488 **   Each cursor (start, current and end) consists of a VDBE cursor
1489 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1490 **   WindowCodeArg.reg) that always contains a copy of the peer values
1491 **   read from the corresponding cursor.
1492 **
1493 **   Depending on the window-frame in question, all three cursors may not
1494 **   be required. In this case both WindowCodeArg.csr and reg are set to
1495 **   0.
1496 */
1497 struct WindowCodeArg {
1498   Parse *pParse;             /* Parse context */
1499   Window *pMWin;             /* First in list of functions being processed */
1500   Vdbe *pVdbe;               /* VDBE object */
1501   int addrGosub;             /* OP_Gosub to this address to return one row */
1502   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1503   int regArg;                /* First in array of accumulator registers */
1504   int eDelete;               /* See above */
1505 
1506   WindowCsrAndReg start;
1507   WindowCsrAndReg current;
1508   WindowCsrAndReg end;
1509 };
1510 
1511 /*
1512 ** Generate VM code to read the window frames peer values from cursor csr into
1513 ** an array of registers starting at reg.
1514 */
1515 static void windowReadPeerValues(
1516   WindowCodeArg *p,
1517   int csr,
1518   int reg
1519 ){
1520   Window *pMWin = p->pMWin;
1521   ExprList *pOrderBy = pMWin->pOrderBy;
1522   if( pOrderBy ){
1523     Vdbe *v = sqlite3GetVdbe(p->pParse);
1524     ExprList *pPart = pMWin->pPartition;
1525     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1526     int i;
1527     for(i=0; i<pOrderBy->nExpr; i++){
1528       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1529     }
1530   }
1531 }
1532 
1533 /*
1534 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1535 ** xInverse (if bInverse is non-zero) for each window function in the
1536 ** linked list starting at pMWin. Or, for built-in window functions
1537 ** that do not use the standard function API, generate the required
1538 ** inline VM code.
1539 **
1540 ** If argument csr is greater than or equal to 0, then argument reg is
1541 ** the first register in an array of registers guaranteed to be large
1542 ** enough to hold the array of arguments for each function. In this case
1543 ** the arguments are extracted from the current row of csr into the
1544 ** array of registers before invoking OP_AggStep or OP_AggInverse
1545 **
1546 ** Or, if csr is less than zero, then the array of registers at reg is
1547 ** already populated with all columns from the current row of the sub-query.
1548 **
1549 ** If argument regPartSize is non-zero, then it is a register containing the
1550 ** number of rows in the current partition.
1551 */
1552 static void windowAggStep(
1553   WindowCodeArg *p,
1554   Window *pMWin,                  /* Linked list of window functions */
1555   int csr,                        /* Read arguments from this cursor */
1556   int bInverse,                   /* True to invoke xInverse instead of xStep */
1557   int reg                         /* Array of registers */
1558 ){
1559   Parse *pParse = p->pParse;
1560   Vdbe *v = sqlite3GetVdbe(pParse);
1561   Window *pWin;
1562   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1563     FuncDef *pFunc = pWin->pFunc;
1564     int regArg;
1565     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1566     int i;
1567 
1568     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1569 
1570     /* All OVER clauses in the same window function aggregate step must
1571     ** be the same. */
1572     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)==0 );
1573 
1574     for(i=0; i<nArg; i++){
1575       if( i!=1 || pFunc->zName!=nth_valueName ){
1576         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1577       }else{
1578         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1579       }
1580     }
1581     regArg = reg;
1582 
1583     if( pMWin->regStartRowid==0
1584      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1585      && (pWin->eStart!=TK_UNBOUNDED)
1586     ){
1587       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1588       VdbeCoverage(v);
1589       if( bInverse==0 ){
1590         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1591         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1592         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1593         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1594       }else{
1595         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1596         VdbeCoverageNeverTaken(v);
1597         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1598         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1599       }
1600       sqlite3VdbeJumpHere(v, addrIsNull);
1601     }else if( pWin->regApp ){
1602       assert( pFunc->zName==nth_valueName
1603            || pFunc->zName==first_valueName
1604       );
1605       assert( bInverse==0 || bInverse==1 );
1606       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1607     }else if( pFunc->xSFunc!=noopStepFunc ){
1608       int addrIf = 0;
1609       if( pWin->pFilter ){
1610         int regTmp;
1611         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1612         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1613         regTmp = sqlite3GetTempReg(pParse);
1614         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1615         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1616         VdbeCoverage(v);
1617         sqlite3ReleaseTempReg(pParse, regTmp);
1618       }
1619 
1620       if( pWin->bExprArgs ){
1621         int iStart = sqlite3VdbeCurrentAddr(v);
1622         VdbeOp *pOp, *pEnd;
1623 
1624         nArg = pWin->pOwner->x.pList->nExpr;
1625         regArg = sqlite3GetTempRange(pParse, nArg);
1626         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1627 
1628         pEnd = sqlite3VdbeGetOp(v, -1);
1629         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1630           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1631             pOp->p1 = csr;
1632           }
1633         }
1634       }
1635       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1636         CollSeq *pColl;
1637         assert( nArg>0 );
1638         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1639         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1640       }
1641       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1642                         bInverse, regArg, pWin->regAccum);
1643       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1644       sqlite3VdbeChangeP5(v, (u8)nArg);
1645       if( pWin->bExprArgs ){
1646         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1647       }
1648       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1649     }
1650   }
1651 }
1652 
1653 /*
1654 ** Values that may be passed as the second argument to windowCodeOp().
1655 */
1656 #define WINDOW_RETURN_ROW 1
1657 #define WINDOW_AGGINVERSE 2
1658 #define WINDOW_AGGSTEP    3
1659 
1660 /*
1661 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1662 ** (bFin==1) for each window function in the linked list starting at
1663 ** pMWin. Or, for built-in window-functions that do not use the standard
1664 ** API, generate the equivalent VM code.
1665 */
1666 static void windowAggFinal(WindowCodeArg *p, int bFin){
1667   Parse *pParse = p->pParse;
1668   Window *pMWin = p->pMWin;
1669   Vdbe *v = sqlite3GetVdbe(pParse);
1670   Window *pWin;
1671 
1672   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1673     if( pMWin->regStartRowid==0
1674      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1675      && (pWin->eStart!=TK_UNBOUNDED)
1676     ){
1677       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1678       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1679       VdbeCoverage(v);
1680       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1681       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1682     }else if( pWin->regApp ){
1683       assert( pMWin->regStartRowid==0 );
1684     }else{
1685       int nArg = windowArgCount(pWin);
1686       if( bFin ){
1687         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1688         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1689         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1690         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1691       }else{
1692         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1693         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1694       }
1695     }
1696   }
1697 }
1698 
1699 /*
1700 ** Generate code to calculate the current values of all window functions in the
1701 ** p->pMWin list by doing a full scan of the current window frame. Store the
1702 ** results in the Window.regResult registers, ready to return the upper
1703 ** layer.
1704 */
1705 static void windowFullScan(WindowCodeArg *p){
1706   Window *pWin;
1707   Parse *pParse = p->pParse;
1708   Window *pMWin = p->pMWin;
1709   Vdbe *v = p->pVdbe;
1710 
1711   int regCRowid = 0;              /* Current rowid value */
1712   int regCPeer = 0;               /* Current peer values */
1713   int regRowid = 0;               /* AggStep rowid value */
1714   int regPeer = 0;                /* AggStep peer values */
1715 
1716   int nPeer;
1717   int lblNext;
1718   int lblBrk;
1719   int addrNext;
1720   int csr;
1721 
1722   VdbeModuleComment((v, "windowFullScan begin"));
1723 
1724   assert( pMWin!=0 );
1725   csr = pMWin->csrApp;
1726   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1727 
1728   lblNext = sqlite3VdbeMakeLabel(pParse);
1729   lblBrk = sqlite3VdbeMakeLabel(pParse);
1730 
1731   regCRowid = sqlite3GetTempReg(pParse);
1732   regRowid = sqlite3GetTempReg(pParse);
1733   if( nPeer ){
1734     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1735     regPeer = sqlite3GetTempRange(pParse, nPeer);
1736   }
1737 
1738   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1739   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1740 
1741   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1742     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1743   }
1744 
1745   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1746   VdbeCoverage(v);
1747   addrNext = sqlite3VdbeCurrentAddr(v);
1748   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1749   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1750   VdbeCoverageNeverNull(v);
1751 
1752   if( pMWin->eExclude==TK_CURRENT ){
1753     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1754     VdbeCoverageNeverNull(v);
1755   }else if( pMWin->eExclude!=TK_NO ){
1756     int addr;
1757     int addrEq = 0;
1758     KeyInfo *pKeyInfo = 0;
1759 
1760     if( pMWin->pOrderBy ){
1761       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1762     }
1763     if( pMWin->eExclude==TK_TIES ){
1764       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1765       VdbeCoverageNeverNull(v);
1766     }
1767     if( pKeyInfo ){
1768       windowReadPeerValues(p, csr, regPeer);
1769       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1770       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1771       addr = sqlite3VdbeCurrentAddr(v)+1;
1772       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1773       VdbeCoverageEqNe(v);
1774     }else{
1775       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1776     }
1777     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1778   }
1779 
1780   windowAggStep(p, pMWin, csr, 0, p->regArg);
1781 
1782   sqlite3VdbeResolveLabel(v, lblNext);
1783   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1784   VdbeCoverage(v);
1785   sqlite3VdbeJumpHere(v, addrNext-1);
1786   sqlite3VdbeJumpHere(v, addrNext+1);
1787   sqlite3ReleaseTempReg(pParse, regRowid);
1788   sqlite3ReleaseTempReg(pParse, regCRowid);
1789   if( nPeer ){
1790     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1791     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1792   }
1793 
1794   windowAggFinal(p, 1);
1795   VdbeModuleComment((v, "windowFullScan end"));
1796 }
1797 
1798 /*
1799 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1800 ** return the current row of Window.iEphCsr. If all window functions are
1801 ** aggregate window functions that use the standard API, a single
1802 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1803 ** for per-row processing is only generated for the following built-in window
1804 ** functions:
1805 **
1806 **   nth_value()
1807 **   first_value()
1808 **   lag()
1809 **   lead()
1810 */
1811 static void windowReturnOneRow(WindowCodeArg *p){
1812   Window *pMWin = p->pMWin;
1813   Vdbe *v = p->pVdbe;
1814 
1815   if( pMWin->regStartRowid ){
1816     windowFullScan(p);
1817   }else{
1818     Parse *pParse = p->pParse;
1819     Window *pWin;
1820 
1821     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1822       FuncDef *pFunc = pWin->pFunc;
1823       if( pFunc->zName==nth_valueName
1824        || pFunc->zName==first_valueName
1825       ){
1826         int csr = pWin->csrApp;
1827         int lbl = sqlite3VdbeMakeLabel(pParse);
1828         int tmpReg = sqlite3GetTempReg(pParse);
1829         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1830 
1831         if( pFunc->zName==nth_valueName ){
1832           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1833           windowCheckValue(pParse, tmpReg, 2);
1834         }else{
1835           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1836         }
1837         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1838         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1839         VdbeCoverageNeverNull(v);
1840         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1841         VdbeCoverageNeverTaken(v);
1842         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1843         sqlite3VdbeResolveLabel(v, lbl);
1844         sqlite3ReleaseTempReg(pParse, tmpReg);
1845       }
1846       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1847         int nArg = pWin->pOwner->x.pList->nExpr;
1848         int csr = pWin->csrApp;
1849         int lbl = sqlite3VdbeMakeLabel(pParse);
1850         int tmpReg = sqlite3GetTempReg(pParse);
1851         int iEph = pMWin->iEphCsr;
1852 
1853         if( nArg<3 ){
1854           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1855         }else{
1856           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1857         }
1858         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1859         if( nArg<2 ){
1860           int val = (pFunc->zName==leadName ? 1 : -1);
1861           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1862         }else{
1863           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1864           int tmpReg2 = sqlite3GetTempReg(pParse);
1865           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1866           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1867           sqlite3ReleaseTempReg(pParse, tmpReg2);
1868         }
1869 
1870         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1871         VdbeCoverage(v);
1872         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1873         sqlite3VdbeResolveLabel(v, lbl);
1874         sqlite3ReleaseTempReg(pParse, tmpReg);
1875       }
1876     }
1877   }
1878   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1879 }
1880 
1881 /*
1882 ** Generate code to set the accumulator register for each window function
1883 ** in the linked list passed as the second argument to NULL. And perform
1884 ** any equivalent initialization required by any built-in window functions
1885 ** in the list.
1886 */
1887 static int windowInitAccum(Parse *pParse, Window *pMWin){
1888   Vdbe *v = sqlite3GetVdbe(pParse);
1889   int regArg;
1890   int nArg = 0;
1891   Window *pWin;
1892   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1893     FuncDef *pFunc = pWin->pFunc;
1894     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1895     nArg = MAX(nArg, windowArgCount(pWin));
1896     if( pMWin->regStartRowid==0 ){
1897       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1898         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1899         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1900       }
1901 
1902       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1903         assert( pWin->eStart!=TK_UNBOUNDED );
1904         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1905         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1906       }
1907     }
1908   }
1909   regArg = pParse->nMem+1;
1910   pParse->nMem += nArg;
1911   return regArg;
1912 }
1913 
1914 /*
1915 ** Return true if the current frame should be cached in the ephemeral table,
1916 ** even if there are no xInverse() calls required.
1917 */
1918 static int windowCacheFrame(Window *pMWin){
1919   Window *pWin;
1920   if( pMWin->regStartRowid ) return 1;
1921   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1922     FuncDef *pFunc = pWin->pFunc;
1923     if( (pFunc->zName==nth_valueName)
1924      || (pFunc->zName==first_valueName)
1925      || (pFunc->zName==leadName)
1926      || (pFunc->zName==lagName)
1927     ){
1928       return 1;
1929     }
1930   }
1931   return 0;
1932 }
1933 
1934 /*
1935 ** regOld and regNew are each the first register in an array of size
1936 ** pOrderBy->nExpr. This function generates code to compare the two
1937 ** arrays of registers using the collation sequences and other comparison
1938 ** parameters specified by pOrderBy.
1939 **
1940 ** If the two arrays are not equal, the contents of regNew is copied to
1941 ** regOld and control falls through. Otherwise, if the contents of the arrays
1942 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
1943 */
1944 static void windowIfNewPeer(
1945   Parse *pParse,
1946   ExprList *pOrderBy,
1947   int regNew,                     /* First in array of new values */
1948   int regOld,                     /* First in array of old values */
1949   int addr                        /* Jump here */
1950 ){
1951   Vdbe *v = sqlite3GetVdbe(pParse);
1952   if( pOrderBy ){
1953     int nVal = pOrderBy->nExpr;
1954     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
1955     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
1956     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1957     sqlite3VdbeAddOp3(v, OP_Jump,
1958       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
1959     );
1960     VdbeCoverageEqNe(v);
1961     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
1962   }else{
1963     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
1964   }
1965 }
1966 
1967 /*
1968 ** This function is called as part of generating VM programs for RANGE
1969 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
1970 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
1971 ** code equivalent to:
1972 **
1973 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
1974 **
1975 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
1976 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
1977 **
1978 ** If the sort-order for the ORDER BY term in the window is DESC, then the
1979 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
1980 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
1981 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
1982 ** is OP_Ge, the generated code is equivalent to:
1983 **
1984 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
1985 **
1986 ** A special type of arithmetic is used such that if csr1.peerVal is not
1987 ** a numeric type (real or integer), then the result of the addition addition
1988 ** or subtraction is a a copy of csr1.peerVal.
1989 */
1990 static void windowCodeRangeTest(
1991   WindowCodeArg *p,
1992   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
1993   int csr1,                       /* Cursor number for cursor 1 */
1994   int regVal,                     /* Register containing non-negative number */
1995   int csr2,                       /* Cursor number for cursor 2 */
1996   int lbl                         /* Jump destination if condition is true */
1997 ){
1998   Parse *pParse = p->pParse;
1999   Vdbe *v = sqlite3GetVdbe(pParse);
2000   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2001   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2002   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2003   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2004   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2005   int addrGe;                               /* Jump destination */
2006 
2007   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2008   assert( pOrderBy && pOrderBy->nExpr==1 );
2009   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2010     switch( op ){
2011       case OP_Ge: op = OP_Le; break;
2012       case OP_Gt: op = OP_Lt; break;
2013       default: assert( op==OP_Le ); op = OP_Ge; break;
2014     }
2015     arith = OP_Subtract;
2016   }
2017 
2018   /* Read the peer-value from each cursor into a register */
2019   windowReadPeerValues(p, csr1, reg1);
2020   windowReadPeerValues(p, csr2, reg2);
2021 
2022   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2023       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2024       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2025   ));
2026 
2027   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2028   ** This block adds (or subtracts for DESC) the numeric value in regVal
2029   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2030   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2031   **
2032   **   if( reg1>='' ) goto addrGe;
2033   **   reg1 = reg1 +/- regVal
2034   **   addrGe:
2035   **
2036   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2037   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2038   ** then the arithmetic is performed, but since adding or subtracting from
2039   ** NULL is always NULL anyway, this case is handled as required too.  */
2040   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2041   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2042   VdbeCoverage(v);
2043   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2044   sqlite3VdbeJumpHere(v, addrGe);
2045 
2046   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2047   ** consider NULL values to be larger than all other values, instead of
2048   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2049   ** (and adding that capability causes a performance regression), so
2050   ** instead if the BIGNULL flag is set then cases where either reg1 or
2051   ** reg2 are NULL are handled separately in the following block. The code
2052   ** generated is equivalent to:
2053   **
2054   **   if( reg1 IS NULL ){
2055   **     if( op==OP_Ge ) goto lbl;
2056   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2057   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2058   **   }else if( reg2 IS NULL ){
2059   **     if( op==OP_Le ) goto lbl;
2060   **   }
2061   **
2062   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2063   ** not taken, control jumps over the comparison operator coded below this
2064   ** block.  */
2065   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2066     /* This block runs if reg1 contains a NULL. */
2067     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2068     switch( op ){
2069       case OP_Ge:
2070         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2071         break;
2072       case OP_Gt:
2073         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2074         VdbeCoverage(v);
2075         break;
2076       case OP_Le:
2077         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2078         VdbeCoverage(v);
2079         break;
2080       default: assert( op==OP_Lt ); /* no-op */ break;
2081     }
2082     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2083 
2084     /* This block runs if reg1 is not NULL, but reg2 is. */
2085     sqlite3VdbeJumpHere(v, addr);
2086     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2087     if( op==OP_Gt || op==OP_Ge ){
2088       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2089     }
2090   }
2091 
2092   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2093   ** control skips over this test if the BIGNULL flag is set and either
2094   ** reg1 or reg2 contain a NULL value.  */
2095   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2096   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2097 
2098   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2099   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2100   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2101   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2102   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2103   sqlite3ReleaseTempReg(pParse, reg1);
2104   sqlite3ReleaseTempReg(pParse, reg2);
2105 
2106   VdbeModuleComment((v, "CodeRangeTest: end"));
2107 }
2108 
2109 /*
2110 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2111 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2112 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2113 ** details.
2114 */
2115 static int windowCodeOp(
2116  WindowCodeArg *p,                /* Context object */
2117  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2118  int regCountdown,                /* Register for OP_IfPos countdown */
2119  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2120 ){
2121   int csr, reg;
2122   Parse *pParse = p->pParse;
2123   Window *pMWin = p->pMWin;
2124   int ret = 0;
2125   Vdbe *v = p->pVdbe;
2126   int addrContinue = 0;
2127   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2128 
2129   int lblDone = sqlite3VdbeMakeLabel(pParse);
2130   int addrNextRange = 0;
2131 
2132   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2133   ** starts with UNBOUNDED PRECEDING. */
2134   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2135     assert( regCountdown==0 && jumpOnEof==0 );
2136     return 0;
2137   }
2138 
2139   if( regCountdown>0 ){
2140     if( pMWin->eFrmType==TK_RANGE ){
2141       addrNextRange = sqlite3VdbeCurrentAddr(v);
2142       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2143       if( op==WINDOW_AGGINVERSE ){
2144         if( pMWin->eStart==TK_FOLLOWING ){
2145           windowCodeRangeTest(
2146               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2147           );
2148         }else{
2149           windowCodeRangeTest(
2150               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2151           );
2152         }
2153       }else{
2154         windowCodeRangeTest(
2155             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2156         );
2157       }
2158     }else{
2159       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2160       VdbeCoverage(v);
2161     }
2162   }
2163 
2164   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2165     windowAggFinal(p, 0);
2166   }
2167   addrContinue = sqlite3VdbeCurrentAddr(v);
2168 
2169   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2170   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2171   ** start cursor does not advance past the end cursor within the
2172   ** temporary table. It otherwise might, if (a>b).  */
2173   if( pMWin->eStart==pMWin->eEnd && regCountdown
2174    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2175   ){
2176     int regRowid1 = sqlite3GetTempReg(pParse);
2177     int regRowid2 = sqlite3GetTempReg(pParse);
2178     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2179     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2180     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2181     VdbeCoverage(v);
2182     sqlite3ReleaseTempReg(pParse, regRowid1);
2183     sqlite3ReleaseTempReg(pParse, regRowid2);
2184     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2185   }
2186 
2187   switch( op ){
2188     case WINDOW_RETURN_ROW:
2189       csr = p->current.csr;
2190       reg = p->current.reg;
2191       windowReturnOneRow(p);
2192       break;
2193 
2194     case WINDOW_AGGINVERSE:
2195       csr = p->start.csr;
2196       reg = p->start.reg;
2197       if( pMWin->regStartRowid ){
2198         assert( pMWin->regEndRowid );
2199         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2200       }else{
2201         windowAggStep(p, pMWin, csr, 1, p->regArg);
2202       }
2203       break;
2204 
2205     default:
2206       assert( op==WINDOW_AGGSTEP );
2207       csr = p->end.csr;
2208       reg = p->end.reg;
2209       if( pMWin->regStartRowid ){
2210         assert( pMWin->regEndRowid );
2211         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2212       }else{
2213         windowAggStep(p, pMWin, csr, 0, p->regArg);
2214       }
2215       break;
2216   }
2217 
2218   if( op==p->eDelete ){
2219     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2220     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2221   }
2222 
2223   if( jumpOnEof ){
2224     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2225     VdbeCoverage(v);
2226     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2227   }else{
2228     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2229     VdbeCoverage(v);
2230     if( bPeer ){
2231       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2232     }
2233   }
2234 
2235   if( bPeer ){
2236     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2237     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2238     windowReadPeerValues(p, csr, regTmp);
2239     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2240     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2241   }
2242 
2243   if( addrNextRange ){
2244     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2245   }
2246   sqlite3VdbeResolveLabel(v, lblDone);
2247   return ret;
2248 }
2249 
2250 
2251 /*
2252 ** Allocate and return a duplicate of the Window object indicated by the
2253 ** third argument. Set the Window.pOwner field of the new object to
2254 ** pOwner.
2255 */
2256 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2257   Window *pNew = 0;
2258   if( ALWAYS(p) ){
2259     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2260     if( pNew ){
2261       pNew->zName = sqlite3DbStrDup(db, p->zName);
2262       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2263       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2264       pNew->pFunc = p->pFunc;
2265       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2266       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2267       pNew->eFrmType = p->eFrmType;
2268       pNew->eEnd = p->eEnd;
2269       pNew->eStart = p->eStart;
2270       pNew->eExclude = p->eExclude;
2271       pNew->regResult = p->regResult;
2272       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2273       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2274       pNew->pOwner = pOwner;
2275       pNew->bImplicitFrame = p->bImplicitFrame;
2276     }
2277   }
2278   return pNew;
2279 }
2280 
2281 /*
2282 ** Return a copy of the linked list of Window objects passed as the
2283 ** second argument.
2284 */
2285 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2286   Window *pWin;
2287   Window *pRet = 0;
2288   Window **pp = &pRet;
2289 
2290   for(pWin=p; pWin; pWin=pWin->pNextWin){
2291     *pp = sqlite3WindowDup(db, 0, pWin);
2292     if( *pp==0 ) break;
2293     pp = &((*pp)->pNextWin);
2294   }
2295 
2296   return pRet;
2297 }
2298 
2299 /*
2300 ** Return true if it can be determined at compile time that expression
2301 ** pExpr evaluates to a value that, when cast to an integer, is greater
2302 ** than zero. False otherwise.
2303 **
2304 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2305 ** flag and returns zero.
2306 */
2307 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2308   int ret = 0;
2309   sqlite3 *db = pParse->db;
2310   sqlite3_value *pVal = 0;
2311   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2312   if( pVal && sqlite3_value_int(pVal)>0 ){
2313     ret = 1;
2314   }
2315   sqlite3ValueFree(pVal);
2316   return ret;
2317 }
2318 
2319 /*
2320 ** sqlite3WhereBegin() has already been called for the SELECT statement
2321 ** passed as the second argument when this function is invoked. It generates
2322 ** code to populate the Window.regResult register for each window function
2323 ** and invoke the sub-routine at instruction addrGosub once for each row.
2324 ** sqlite3WhereEnd() is always called before returning.
2325 **
2326 ** This function handles several different types of window frames, which
2327 ** require slightly different processing. The following pseudo code is
2328 ** used to implement window frames of the form:
2329 **
2330 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2331 **
2332 ** Other window frame types use variants of the following:
2333 **
2334 **     ... loop started by sqlite3WhereBegin() ...
2335 **       if( new partition ){
2336 **         Gosub flush
2337 **       }
2338 **       Insert new row into eph table.
2339 **
2340 **       if( first row of partition ){
2341 **         // Rewind three cursors, all open on the eph table.
2342 **         Rewind(csrEnd);
2343 **         Rewind(csrStart);
2344 **         Rewind(csrCurrent);
2345 **
2346 **         regEnd = <expr2>          // FOLLOWING expression
2347 **         regStart = <expr1>        // PRECEDING expression
2348 **       }else{
2349 **         // First time this branch is taken, the eph table contains two
2350 **         // rows. The first row in the partition, which all three cursors
2351 **         // currently point to, and the following row.
2352 **         AGGSTEP
2353 **         if( (regEnd--)<=0 ){
2354 **           RETURN_ROW
2355 **           if( (regStart--)<=0 ){
2356 **             AGGINVERSE
2357 **           }
2358 **         }
2359 **       }
2360 **     }
2361 **     flush:
2362 **       AGGSTEP
2363 **       while( 1 ){
2364 **         RETURN ROW
2365 **         if( csrCurrent is EOF ) break;
2366 **         if( (regStart--)<=0 ){
2367 **           AggInverse(csrStart)
2368 **           Next(csrStart)
2369 **         }
2370 **       }
2371 **
2372 ** The pseudo-code above uses the following shorthand:
2373 **
2374 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2375 **               with arguments read from the current row of cursor csrEnd, then
2376 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2377 **
2378 **   RETURN_ROW: return a row to the caller based on the contents of the
2379 **               current row of csrCurrent and the current state of all
2380 **               aggregates. Then step cursor csrCurrent forward one row.
2381 **
2382 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2383 **               functions with arguments read from the current row of cursor
2384 **               csrStart. Then step csrStart forward one row.
2385 **
2386 ** There are two other ROWS window frames that are handled significantly
2387 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2388 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2389 ** cases because they change the order in which the three cursors (csrStart,
2390 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2391 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2392 ** three.
2393 **
2394 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2395 **
2396 **     ... loop started by sqlite3WhereBegin() ...
2397 **       if( new partition ){
2398 **         Gosub flush
2399 **       }
2400 **       Insert new row into eph table.
2401 **       if( first row of partition ){
2402 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2403 **         regEnd = <expr2>
2404 **         regStart = <expr1>
2405 **       }else{
2406 **         if( (regEnd--)<=0 ){
2407 **           AGGSTEP
2408 **         }
2409 **         RETURN_ROW
2410 **         if( (regStart--)<=0 ){
2411 **           AGGINVERSE
2412 **         }
2413 **       }
2414 **     }
2415 **     flush:
2416 **       if( (regEnd--)<=0 ){
2417 **         AGGSTEP
2418 **       }
2419 **       RETURN_ROW
2420 **
2421 **
2422 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2423 **
2424 **     ... loop started by sqlite3WhereBegin() ...
2425 **     if( new partition ){
2426 **       Gosub flush
2427 **     }
2428 **     Insert new row into eph table.
2429 **     if( first row of partition ){
2430 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2431 **       regEnd = <expr2>
2432 **       regStart = regEnd - <expr1>
2433 **     }else{
2434 **       AGGSTEP
2435 **       if( (regEnd--)<=0 ){
2436 **         RETURN_ROW
2437 **       }
2438 **       if( (regStart--)<=0 ){
2439 **         AGGINVERSE
2440 **       }
2441 **     }
2442 **   }
2443 **   flush:
2444 **     AGGSTEP
2445 **     while( 1 ){
2446 **       if( (regEnd--)<=0 ){
2447 **         RETURN_ROW
2448 **         if( eof ) break;
2449 **       }
2450 **       if( (regStart--)<=0 ){
2451 **         AGGINVERSE
2452 **         if( eof ) break
2453 **       }
2454 **     }
2455 **     while( !eof csrCurrent ){
2456 **       RETURN_ROW
2457 **     }
2458 **
2459 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2460 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2461 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2462 ** This is optimized of course - branches that will never be taken and
2463 ** conditions that are always true are omitted from the VM code. The only
2464 ** exceptional case is:
2465 **
2466 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2467 **
2468 **     ... loop started by sqlite3WhereBegin() ...
2469 **     if( new partition ){
2470 **       Gosub flush
2471 **     }
2472 **     Insert new row into eph table.
2473 **     if( first row of partition ){
2474 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2475 **       regStart = <expr1>
2476 **     }else{
2477 **       AGGSTEP
2478 **     }
2479 **   }
2480 **   flush:
2481 **     AGGSTEP
2482 **     while( 1 ){
2483 **       if( (regStart--)<=0 ){
2484 **         AGGINVERSE
2485 **         if( eof ) break
2486 **       }
2487 **       RETURN_ROW
2488 **     }
2489 **     while( !eof csrCurrent ){
2490 **       RETURN_ROW
2491 **     }
2492 **
2493 ** Also requiring special handling are the cases:
2494 **
2495 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2496 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2497 **
2498 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2499 ** To handle this case, the pseudo-code programs depicted above are modified
2500 ** slightly to be:
2501 **
2502 **     ... loop started by sqlite3WhereBegin() ...
2503 **     if( new partition ){
2504 **       Gosub flush
2505 **     }
2506 **     Insert new row into eph table.
2507 **     if( first row of partition ){
2508 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2509 **       regEnd = <expr2>
2510 **       regStart = <expr1>
2511 **       if( regEnd < regStart ){
2512 **         RETURN_ROW
2513 **         delete eph table contents
2514 **         continue
2515 **       }
2516 **     ...
2517 **
2518 ** The new "continue" statement in the above jumps to the next iteration
2519 ** of the outer loop - the one started by sqlite3WhereBegin().
2520 **
2521 ** The various GROUPS cases are implemented using the same patterns as
2522 ** ROWS. The VM code is modified slightly so that:
2523 **
2524 **   1. The else branch in the main loop is only taken if the row just
2525 **      added to the ephemeral table is the start of a new group. In
2526 **      other words, it becomes:
2527 **
2528 **         ... loop started by sqlite3WhereBegin() ...
2529 **         if( new partition ){
2530 **           Gosub flush
2531 **         }
2532 **         Insert new row into eph table.
2533 **         if( first row of partition ){
2534 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2535 **           regEnd = <expr2>
2536 **           regStart = <expr1>
2537 **         }else if( new group ){
2538 **           ...
2539 **         }
2540 **       }
2541 **
2542 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2543 **      AGGINVERSE step processes the current row of the relevant cursor and
2544 **      all subsequent rows belonging to the same group.
2545 **
2546 ** RANGE window frames are a little different again. As for GROUPS, the
2547 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2548 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2549 ** basic cases:
2550 **
2551 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2552 **
2553 **     ... loop started by sqlite3WhereBegin() ...
2554 **       if( new partition ){
2555 **         Gosub flush
2556 **       }
2557 **       Insert new row into eph table.
2558 **       if( first row of partition ){
2559 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2560 **         regEnd = <expr2>
2561 **         regStart = <expr1>
2562 **       }else{
2563 **         AGGSTEP
2564 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2565 **           RETURN_ROW
2566 **           while( csrStart.key + regStart) < csrCurrent.key ){
2567 **             AGGINVERSE
2568 **           }
2569 **         }
2570 **       }
2571 **     }
2572 **     flush:
2573 **       AGGSTEP
2574 **       while( 1 ){
2575 **         RETURN ROW
2576 **         if( csrCurrent is EOF ) break;
2577 **           while( csrStart.key + regStart) < csrCurrent.key ){
2578 **             AGGINVERSE
2579 **           }
2580 **         }
2581 **       }
2582 **
2583 ** In the above notation, "csr.key" means the current value of the ORDER BY
2584 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2585 ** or <expr PRECEDING) read from cursor csr.
2586 **
2587 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2588 **
2589 **     ... loop started by sqlite3WhereBegin() ...
2590 **       if( new partition ){
2591 **         Gosub flush
2592 **       }
2593 **       Insert new row into eph table.
2594 **       if( first row of partition ){
2595 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2596 **         regEnd = <expr2>
2597 **         regStart = <expr1>
2598 **       }else{
2599 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2600 **           AGGSTEP
2601 **         }
2602 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2603 **           AGGINVERSE
2604 **         }
2605 **         RETURN_ROW
2606 **       }
2607 **     }
2608 **     flush:
2609 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2610 **         AGGSTEP
2611 **       }
2612 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2613 **         AGGINVERSE
2614 **       }
2615 **       RETURN_ROW
2616 **
2617 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2618 **
2619 **     ... loop started by sqlite3WhereBegin() ...
2620 **       if( new partition ){
2621 **         Gosub flush
2622 **       }
2623 **       Insert new row into eph table.
2624 **       if( first row of partition ){
2625 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2626 **         regEnd = <expr2>
2627 **         regStart = <expr1>
2628 **       }else{
2629 **         AGGSTEP
2630 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2631 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2632 **             AGGINVERSE
2633 **           }
2634 **           RETURN_ROW
2635 **         }
2636 **       }
2637 **     }
2638 **     flush:
2639 **       AGGSTEP
2640 **       while( 1 ){
2641 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2642 **           AGGINVERSE
2643 **           if( eof ) break "while( 1 )" loop.
2644 **         }
2645 **         RETURN_ROW
2646 **       }
2647 **       while( !eof csrCurrent ){
2648 **         RETURN_ROW
2649 **       }
2650 **
2651 ** The text above leaves out many details. Refer to the code and comments
2652 ** below for a more complete picture.
2653 */
2654 void sqlite3WindowCodeStep(
2655   Parse *pParse,                  /* Parse context */
2656   Select *p,                      /* Rewritten SELECT statement */
2657   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2658   int regGosub,                   /* Register for OP_Gosub */
2659   int addrGosub                   /* OP_Gosub here to return each row */
2660 ){
2661   Window *pMWin = p->pWin;
2662   ExprList *pOrderBy = pMWin->pOrderBy;
2663   Vdbe *v = sqlite3GetVdbe(pParse);
2664   int csrWrite;                   /* Cursor used to write to eph. table */
2665   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2666   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2667   int iInput;                               /* To iterate through sub cols */
2668   int addrNe;                     /* Address of OP_Ne */
2669   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2670   int addrInteger = 0;            /* Address of OP_Integer */
2671   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2672   int regNew;                     /* Array of registers holding new input row */
2673   int regRecord;                  /* regNew array in record form */
2674   int regRowid;                   /* Rowid for regRecord in eph table */
2675   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2676   int regPeer = 0;                /* Peer values for current row */
2677   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2678   WindowCodeArg s;                /* Context object for sub-routines */
2679   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2680   int regStart = 0;               /* Value of <expr> PRECEDING */
2681   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2682 
2683   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2684        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2685   );
2686   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2687        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2688   );
2689   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2690        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2691        || pMWin->eExclude==TK_NO
2692   );
2693 
2694   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2695 
2696   /* Fill in the context object */
2697   memset(&s, 0, sizeof(WindowCodeArg));
2698   s.pParse = pParse;
2699   s.pMWin = pMWin;
2700   s.pVdbe = v;
2701   s.regGosub = regGosub;
2702   s.addrGosub = addrGosub;
2703   s.current.csr = pMWin->iEphCsr;
2704   csrWrite = s.current.csr+1;
2705   s.start.csr = s.current.csr+2;
2706   s.end.csr = s.current.csr+3;
2707 
2708   /* Figure out when rows may be deleted from the ephemeral table. There
2709   ** are four options - they may never be deleted (eDelete==0), they may
2710   ** be deleted as soon as they are no longer part of the window frame
2711   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2712   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2713   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2714   switch( pMWin->eStart ){
2715     case TK_FOLLOWING:
2716       if( pMWin->eFrmType!=TK_RANGE
2717        && windowExprGtZero(pParse, pMWin->pStart)
2718       ){
2719         s.eDelete = WINDOW_RETURN_ROW;
2720       }
2721       break;
2722     case TK_UNBOUNDED:
2723       if( windowCacheFrame(pMWin)==0 ){
2724         if( pMWin->eEnd==TK_PRECEDING ){
2725           if( pMWin->eFrmType!=TK_RANGE
2726            && windowExprGtZero(pParse, pMWin->pEnd)
2727           ){
2728             s.eDelete = WINDOW_AGGSTEP;
2729           }
2730         }else{
2731           s.eDelete = WINDOW_RETURN_ROW;
2732         }
2733       }
2734       break;
2735     default:
2736       s.eDelete = WINDOW_AGGINVERSE;
2737       break;
2738   }
2739 
2740   /* Allocate registers for the array of values from the sub-query, the
2741   ** samve values in record form, and the rowid used to insert said record
2742   ** into the ephemeral table.  */
2743   regNew = pParse->nMem+1;
2744   pParse->nMem += nInput;
2745   regRecord = ++pParse->nMem;
2746   regRowid = ++pParse->nMem;
2747 
2748   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2749   ** clause, allocate registers to store the results of evaluating each
2750   ** <expr>.  */
2751   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2752     regStart = ++pParse->nMem;
2753   }
2754   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2755     regEnd = ++pParse->nMem;
2756   }
2757 
2758   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2759   ** registers to store copies of the ORDER BY expressions (peer values)
2760   ** for the main loop, and for each cursor (start, current and end). */
2761   if( pMWin->eFrmType!=TK_ROWS ){
2762     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2763     regNewPeer = regNew + pMWin->nBufferCol;
2764     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2765     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2766     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2767     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2768     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2769   }
2770 
2771   /* Load the column values for the row returned by the sub-select
2772   ** into an array of registers starting at regNew. Assemble them into
2773   ** a record in register regRecord. */
2774   for(iInput=0; iInput<nInput; iInput++){
2775     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2776   }
2777   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2778 
2779   /* An input row has just been read into an array of registers starting
2780   ** at regNew. If the window has a PARTITION clause, this block generates
2781   ** VM code to check if the input row is the start of a new partition.
2782   ** If so, it does an OP_Gosub to an address to be filled in later. The
2783   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2784   if( pMWin->pPartition ){
2785     int addr;
2786     ExprList *pPart = pMWin->pPartition;
2787     int nPart = pPart->nExpr;
2788     int regNewPart = regNew + pMWin->nBufferCol;
2789     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2790 
2791     regFlushPart = ++pParse->nMem;
2792     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2793     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2794     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2795     VdbeCoverageEqNe(v);
2796     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2797     VdbeComment((v, "call flush_partition"));
2798     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2799   }
2800 
2801   /* Insert the new row into the ephemeral table */
2802   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2803   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2804   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2805   VdbeCoverageNeverNull(v);
2806 
2807   /* This block is run for the first row of each partition */
2808   s.regArg = windowInitAccum(pParse, pMWin);
2809 
2810   if( regStart ){
2811     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2812     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2813   }
2814   if( regEnd ){
2815     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2816     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2817   }
2818 
2819   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2820     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2821     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2822     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2823     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2824     windowAggFinal(&s, 0);
2825     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2826     VdbeCoverageNeverTaken(v);
2827     windowReturnOneRow(&s);
2828     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2829     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2830     sqlite3VdbeJumpHere(v, addrGe);
2831   }
2832   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2833     assert( pMWin->eEnd==TK_FOLLOWING );
2834     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2835   }
2836 
2837   if( pMWin->eStart!=TK_UNBOUNDED ){
2838     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2839     VdbeCoverageNeverTaken(v);
2840   }
2841   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2842   VdbeCoverageNeverTaken(v);
2843   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2844   VdbeCoverageNeverTaken(v);
2845   if( regPeer && pOrderBy ){
2846     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2847     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2848     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2849     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2850   }
2851 
2852   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2853 
2854   sqlite3VdbeJumpHere(v, addrNe);
2855 
2856   /* Beginning of the block executed for the second and subsequent rows. */
2857   if( regPeer ){
2858     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2859   }
2860   if( pMWin->eStart==TK_FOLLOWING ){
2861     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2862     if( pMWin->eEnd!=TK_UNBOUNDED ){
2863       if( pMWin->eFrmType==TK_RANGE ){
2864         int lbl = sqlite3VdbeMakeLabel(pParse);
2865         int addrNext = sqlite3VdbeCurrentAddr(v);
2866         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2867         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2868         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2869         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2870         sqlite3VdbeResolveLabel(v, lbl);
2871       }else{
2872         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2873         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2874       }
2875     }
2876   }else
2877   if( pMWin->eEnd==TK_PRECEDING ){
2878     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2879     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2880     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2881     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2882     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2883   }else{
2884     int addr = 0;
2885     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2886     if( pMWin->eEnd!=TK_UNBOUNDED ){
2887       if( pMWin->eFrmType==TK_RANGE ){
2888         int lbl = 0;
2889         addr = sqlite3VdbeCurrentAddr(v);
2890         if( regEnd ){
2891           lbl = sqlite3VdbeMakeLabel(pParse);
2892           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2893         }
2894         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2895         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2896         if( regEnd ){
2897           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2898           sqlite3VdbeResolveLabel(v, lbl);
2899         }
2900       }else{
2901         if( regEnd ){
2902           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2903           VdbeCoverage(v);
2904         }
2905         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2906         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2907         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2908       }
2909     }
2910   }
2911 
2912   /* End of the main input loop */
2913   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2914   sqlite3WhereEnd(pWInfo);
2915 
2916   /* Fall through */
2917   if( pMWin->pPartition ){
2918     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2919     sqlite3VdbeJumpHere(v, addrGosubFlush);
2920   }
2921 
2922   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2923   VdbeCoverage(v);
2924   if( pMWin->eEnd==TK_PRECEDING ){
2925     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2926     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2927     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2928     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2929   }else if( pMWin->eStart==TK_FOLLOWING ){
2930     int addrStart;
2931     int addrBreak1;
2932     int addrBreak2;
2933     int addrBreak3;
2934     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2935     if( pMWin->eFrmType==TK_RANGE ){
2936       addrStart = sqlite3VdbeCurrentAddr(v);
2937       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2938       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2939     }else
2940     if( pMWin->eEnd==TK_UNBOUNDED ){
2941       addrStart = sqlite3VdbeCurrentAddr(v);
2942       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
2943       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
2944     }else{
2945       assert( pMWin->eEnd==TK_FOLLOWING );
2946       addrStart = sqlite3VdbeCurrentAddr(v);
2947       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
2948       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2949     }
2950     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2951     sqlite3VdbeJumpHere(v, addrBreak2);
2952     addrStart = sqlite3VdbeCurrentAddr(v);
2953     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2954     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2955     sqlite3VdbeJumpHere(v, addrBreak1);
2956     sqlite3VdbeJumpHere(v, addrBreak3);
2957   }else{
2958     int addrBreak;
2959     int addrStart;
2960     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2961     addrStart = sqlite3VdbeCurrentAddr(v);
2962     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2963     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2964     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2965     sqlite3VdbeJumpHere(v, addrBreak);
2966   }
2967   sqlite3VdbeJumpHere(v, addrEmpty);
2968 
2969   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2970   if( pMWin->pPartition ){
2971     if( pMWin->regStartRowid ){
2972       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
2973       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
2974     }
2975     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
2976     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
2977   }
2978 }
2979 
2980 #endif /* SQLITE_OMIT_WINDOWFUNC */
2981