1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* no break */ deliberate_fall_through 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( pParse->db->mallocFailed ) return WRC_Abort; 792 if( p->pSub ){ 793 int i; 794 for(i=0; i<p->pSub->nExpr; i++){ 795 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 796 iCol = i; 797 break; 798 } 799 } 800 } 801 if( iCol<0 ){ 802 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 803 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 804 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 805 } 806 if( p->pSub ){ 807 int f = pExpr->flags & EP_Collate; 808 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 809 ExprSetProperty(pExpr, EP_Static); 810 sqlite3ExprDelete(pParse->db, pExpr); 811 ExprClearProperty(pExpr, EP_Static); 812 memset(pExpr, 0, sizeof(Expr)); 813 814 pExpr->op = TK_COLUMN; 815 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 816 pExpr->iTable = p->pWin->iEphCsr; 817 pExpr->y.pTab = p->pTab; 818 pExpr->flags = f; 819 } 820 if( pParse->db->mallocFailed ) return WRC_Abort; 821 break; 822 } 823 824 default: /* no-op */ 825 break; 826 } 827 828 return WRC_Continue; 829 } 830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 831 struct WindowRewrite *p = pWalker->u.pRewrite; 832 Select *pSave = p->pSubSelect; 833 if( pSave==pSelect ){ 834 return WRC_Continue; 835 }else{ 836 p->pSubSelect = pSelect; 837 sqlite3WalkSelect(pWalker, pSelect); 838 p->pSubSelect = pSave; 839 } 840 return WRC_Prune; 841 } 842 843 844 /* 845 ** Iterate through each expression in expression-list pEList. For each: 846 ** 847 ** * TK_COLUMN, 848 ** * aggregate function, or 849 ** * window function with a Window object that is not a member of the 850 ** Window list passed as the second argument (pWin). 851 ** 852 ** Append the node to output expression-list (*ppSub). And replace it 853 ** with a TK_COLUMN that reads the (N-1)th element of table 854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 855 ** appending the new one. 856 */ 857 static void selectWindowRewriteEList( 858 Parse *pParse, 859 Window *pWin, 860 SrcList *pSrc, 861 ExprList *pEList, /* Rewrite expressions in this list */ 862 Table *pTab, 863 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 864 ){ 865 Walker sWalker; 866 WindowRewrite sRewrite; 867 868 assert( pWin!=0 ); 869 memset(&sWalker, 0, sizeof(Walker)); 870 memset(&sRewrite, 0, sizeof(WindowRewrite)); 871 872 sRewrite.pSub = *ppSub; 873 sRewrite.pWin = pWin; 874 sRewrite.pSrc = pSrc; 875 sRewrite.pTab = pTab; 876 877 sWalker.pParse = pParse; 878 sWalker.xExprCallback = selectWindowRewriteExprCb; 879 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 880 sWalker.u.pRewrite = &sRewrite; 881 882 (void)sqlite3WalkExprList(&sWalker, pEList); 883 884 *ppSub = sRewrite.pSub; 885 } 886 887 /* 888 ** Append a copy of each expression in expression-list pAppend to 889 ** expression list pList. Return a pointer to the result list. 890 */ 891 static ExprList *exprListAppendList( 892 Parse *pParse, /* Parsing context */ 893 ExprList *pList, /* List to which to append. Might be NULL */ 894 ExprList *pAppend, /* List of values to append. Might be NULL */ 895 int bIntToNull 896 ){ 897 if( pAppend ){ 898 int i; 899 int nInit = pList ? pList->nExpr : 0; 900 for(i=0; i<pAppend->nExpr; i++){ 901 sqlite3 *db = pParse->db; 902 Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); 903 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 904 if( db->mallocFailed ){ 905 sqlite3ExprDelete(db, pDup); 906 break; 907 } 908 if( bIntToNull ){ 909 int iDummy; 910 Expr *pSub; 911 pSub = sqlite3ExprSkipCollateAndLikely(pDup); 912 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 913 pSub->op = TK_NULL; 914 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 915 pSub->u.zToken = 0; 916 } 917 } 918 pList = sqlite3ExprListAppend(pParse, pList, pDup); 919 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 920 } 921 } 922 return pList; 923 } 924 925 /* 926 ** When rewriting a query, if the new subquery in the FROM clause 927 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 928 ** then we have to increase the Expr->op2 values of those nodes 929 ** due to the extra subquery layer that was added. 930 ** 931 ** See also the incrAggDepth() routine in resolve.c 932 */ 933 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 934 if( pExpr->op==TK_AGG_FUNCTION 935 && pExpr->op2>=pWalker->walkerDepth 936 ){ 937 pExpr->op2++; 938 } 939 return WRC_Continue; 940 } 941 942 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){ 943 if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){ 944 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 945 sqlite3ErrorMsg(pWalker->pParse, 946 "misuse of aggregate: %s()", pExpr->u.zToken); 947 } 948 return WRC_Continue; 949 } 950 951 /* 952 ** If the SELECT statement passed as the second argument does not invoke 953 ** any SQL window functions, this function is a no-op. Otherwise, it 954 ** rewrites the SELECT statement so that window function xStep functions 955 ** are invoked in the correct order as described under "SELECT REWRITING" 956 ** at the top of this file. 957 */ 958 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 959 int rc = SQLITE_OK; 960 if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) ){ 961 Vdbe *v = sqlite3GetVdbe(pParse); 962 sqlite3 *db = pParse->db; 963 Select *pSub = 0; /* The subquery */ 964 SrcList *pSrc = p->pSrc; 965 Expr *pWhere = p->pWhere; 966 ExprList *pGroupBy = p->pGroupBy; 967 Expr *pHaving = p->pHaving; 968 ExprList *pSort = 0; 969 970 ExprList *pSublist = 0; /* Expression list for sub-query */ 971 Window *pMWin = p->pWin; /* Main window object */ 972 Window *pWin; /* Window object iterator */ 973 Table *pTab; 974 Walker w; 975 976 u32 selFlags = p->selFlags; 977 978 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 979 if( pTab==0 ){ 980 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 981 } 982 sqlite3AggInfoPersistWalkerInit(&w, pParse); 983 sqlite3WalkSelect(&w, p); 984 if( (p->selFlags & SF_Aggregate)==0 ){ 985 w.xExprCallback = disallowAggregatesInOrderByCb; 986 w.xSelectCallback = 0; 987 sqlite3WalkExprList(&w, p->pOrderBy); 988 } 989 990 p->pSrc = 0; 991 p->pWhere = 0; 992 p->pGroupBy = 0; 993 p->pHaving = 0; 994 p->selFlags &= ~SF_Aggregate; 995 p->selFlags |= SF_WinRewrite; 996 997 /* Create the ORDER BY clause for the sub-select. This is the concatenation 998 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 999 ** redundant, remove the ORDER BY from the parent SELECT. */ 1000 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 1001 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 1002 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 1003 int nSave = pSort->nExpr; 1004 pSort->nExpr = p->pOrderBy->nExpr; 1005 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 1006 sqlite3ExprListDelete(db, p->pOrderBy); 1007 p->pOrderBy = 0; 1008 } 1009 pSort->nExpr = nSave; 1010 } 1011 1012 /* Assign a cursor number for the ephemeral table used to buffer rows. 1013 ** The OpenEphemeral instruction is coded later, after it is known how 1014 ** many columns the table will have. */ 1015 pMWin->iEphCsr = pParse->nTab++; 1016 pParse->nTab += 3; 1017 1018 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 1019 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1020 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1021 1022 /* Append the PARTITION BY and ORDER BY expressions to the to the 1023 ** sub-select expression list. They are required to figure out where 1024 ** boundaries for partitions and sets of peer rows lie. */ 1025 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1026 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1027 1028 /* Append the arguments passed to each window function to the 1029 ** sub-select expression list. Also allocate two registers for each 1030 ** window function - one for the accumulator, another for interim 1031 ** results. */ 1032 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1033 ExprList *pArgs; 1034 assert( ExprUseXList(pWin->pOwner) ); 1035 pArgs = pWin->pOwner->x.pList; 1036 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1037 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1038 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1039 pWin->bExprArgs = 1; 1040 }else{ 1041 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1042 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1043 } 1044 if( pWin->pFilter ){ 1045 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1046 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1047 } 1048 pWin->regAccum = ++pParse->nMem; 1049 pWin->regResult = ++pParse->nMem; 1050 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1051 } 1052 1053 /* If there is no ORDER BY or PARTITION BY clause, and the window 1054 ** function accepts zero arguments, and there are no other columns 1055 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1056 ** that pSublist is still NULL here. Add a constant expression here to 1057 ** keep everything legal in this case. 1058 */ 1059 if( pSublist==0 ){ 1060 pSublist = sqlite3ExprListAppend(pParse, 0, 1061 sqlite3Expr(db, TK_INTEGER, "0") 1062 ); 1063 } 1064 1065 pSub = sqlite3SelectNew( 1066 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1067 ); 1068 SELECTTRACE(1,pParse,pSub, 1069 ("New window-function subquery in FROM clause of (%u/%p)\n", 1070 p->selId, p)); 1071 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1072 assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside 1073 ** of sqlite3DbMallocRawNN() called from 1074 ** sqlite3SrcListAppend() */ 1075 if( p->pSrc ){ 1076 Table *pTab2; 1077 p->pSrc->a[0].pSelect = pSub; 1078 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1079 pSub->selFlags |= SF_Expanded|SF_OrderByReqd; 1080 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1081 pSub->selFlags |= (selFlags & SF_Aggregate); 1082 if( pTab2==0 ){ 1083 /* Might actually be some other kind of error, but in that case 1084 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1085 ** the correct error message regardless. */ 1086 rc = SQLITE_NOMEM; 1087 }else{ 1088 memcpy(pTab, pTab2, sizeof(Table)); 1089 pTab->tabFlags |= TF_Ephemeral; 1090 p->pSrc->a[0].pTab = pTab; 1091 pTab = pTab2; 1092 memset(&w, 0, sizeof(w)); 1093 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1094 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1095 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1096 sqlite3WalkSelect(&w, pSub); 1097 } 1098 }else{ 1099 sqlite3SelectDelete(db, pSub); 1100 } 1101 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1102 1103 /* Defer deleting the temporary table pTab because if an error occurred, 1104 ** there could still be references to that table embedded in the 1105 ** result-set or ORDER BY clause of the SELECT statement p. */ 1106 sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab); 1107 } 1108 1109 assert( rc==SQLITE_OK || pParse->nErr!=0 ); 1110 return rc; 1111 } 1112 1113 /* 1114 ** Unlink the Window object from the Select to which it is attached, 1115 ** if it is attached. 1116 */ 1117 void sqlite3WindowUnlinkFromSelect(Window *p){ 1118 if( p->ppThis ){ 1119 *p->ppThis = p->pNextWin; 1120 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1121 p->ppThis = 0; 1122 } 1123 } 1124 1125 /* 1126 ** Free the Window object passed as the second argument. 1127 */ 1128 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1129 if( p ){ 1130 sqlite3WindowUnlinkFromSelect(p); 1131 sqlite3ExprDelete(db, p->pFilter); 1132 sqlite3ExprListDelete(db, p->pPartition); 1133 sqlite3ExprListDelete(db, p->pOrderBy); 1134 sqlite3ExprDelete(db, p->pEnd); 1135 sqlite3ExprDelete(db, p->pStart); 1136 sqlite3DbFree(db, p->zName); 1137 sqlite3DbFree(db, p->zBase); 1138 sqlite3DbFree(db, p); 1139 } 1140 } 1141 1142 /* 1143 ** Free the linked list of Window objects starting at the second argument. 1144 */ 1145 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1146 while( p ){ 1147 Window *pNext = p->pNextWin; 1148 sqlite3WindowDelete(db, p); 1149 p = pNext; 1150 } 1151 } 1152 1153 /* 1154 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1155 ** value should be a non-negative integer. If the value is not a 1156 ** constant, change it to NULL. The fact that it is then a non-negative 1157 ** integer will be caught later. But it is important not to leave 1158 ** variable values in the expression tree. 1159 */ 1160 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1161 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1162 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1163 sqlite3ExprDelete(pParse->db, pExpr); 1164 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1165 } 1166 return pExpr; 1167 } 1168 1169 /* 1170 ** Allocate and return a new Window object describing a Window Definition. 1171 */ 1172 Window *sqlite3WindowAlloc( 1173 Parse *pParse, /* Parsing context */ 1174 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1175 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1176 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1177 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1178 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1179 u8 eExclude /* EXCLUDE clause */ 1180 ){ 1181 Window *pWin = 0; 1182 int bImplicitFrame = 0; 1183 1184 /* Parser assures the following: */ 1185 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1186 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1187 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1188 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1189 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1190 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1191 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1192 1193 if( eType==0 ){ 1194 bImplicitFrame = 1; 1195 eType = TK_RANGE; 1196 } 1197 1198 /* Additionally, the 1199 ** starting boundary type may not occur earlier in the following list than 1200 ** the ending boundary type: 1201 ** 1202 ** UNBOUNDED PRECEDING 1203 ** <expr> PRECEDING 1204 ** CURRENT ROW 1205 ** <expr> FOLLOWING 1206 ** UNBOUNDED FOLLOWING 1207 ** 1208 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1209 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1210 ** frame boundary. 1211 */ 1212 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1213 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1214 ){ 1215 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1216 goto windowAllocErr; 1217 } 1218 1219 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1220 if( pWin==0 ) goto windowAllocErr; 1221 pWin->eFrmType = eType; 1222 pWin->eStart = eStart; 1223 pWin->eEnd = eEnd; 1224 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1225 eExclude = TK_NO; 1226 } 1227 pWin->eExclude = eExclude; 1228 pWin->bImplicitFrame = bImplicitFrame; 1229 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1230 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1231 return pWin; 1232 1233 windowAllocErr: 1234 sqlite3ExprDelete(pParse->db, pEnd); 1235 sqlite3ExprDelete(pParse->db, pStart); 1236 return 0; 1237 } 1238 1239 /* 1240 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1241 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1242 ** equivalent nul-terminated string. 1243 */ 1244 Window *sqlite3WindowAssemble( 1245 Parse *pParse, 1246 Window *pWin, 1247 ExprList *pPartition, 1248 ExprList *pOrderBy, 1249 Token *pBase 1250 ){ 1251 if( pWin ){ 1252 pWin->pPartition = pPartition; 1253 pWin->pOrderBy = pOrderBy; 1254 if( pBase ){ 1255 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1256 } 1257 }else{ 1258 sqlite3ExprListDelete(pParse->db, pPartition); 1259 sqlite3ExprListDelete(pParse->db, pOrderBy); 1260 } 1261 return pWin; 1262 } 1263 1264 /* 1265 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1266 ** is the base window. Earlier windows from the same WINDOW clause are 1267 ** stored in the linked list starting at pWin->pNextWin. This function 1268 ** either updates *pWin according to the base specification, or else 1269 ** leaves an error in pParse. 1270 */ 1271 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1272 if( pWin->zBase ){ 1273 sqlite3 *db = pParse->db; 1274 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1275 if( pExist ){ 1276 const char *zErr = 0; 1277 /* Check for errors */ 1278 if( pWin->pPartition ){ 1279 zErr = "PARTITION clause"; 1280 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1281 zErr = "ORDER BY clause"; 1282 }else if( pExist->bImplicitFrame==0 ){ 1283 zErr = "frame specification"; 1284 } 1285 if( zErr ){ 1286 sqlite3ErrorMsg(pParse, 1287 "cannot override %s of window: %s", zErr, pWin->zBase 1288 ); 1289 }else{ 1290 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1291 if( pExist->pOrderBy ){ 1292 assert( pWin->pOrderBy==0 ); 1293 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1294 } 1295 sqlite3DbFree(db, pWin->zBase); 1296 pWin->zBase = 0; 1297 } 1298 } 1299 } 1300 } 1301 1302 /* 1303 ** Attach window object pWin to expression p. 1304 */ 1305 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1306 if( p ){ 1307 assert( p->op==TK_FUNCTION ); 1308 assert( pWin ); 1309 p->y.pWin = pWin; 1310 ExprSetProperty(p, EP_WinFunc); 1311 pWin->pOwner = p; 1312 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1313 sqlite3ErrorMsg(pParse, 1314 "DISTINCT is not supported for window functions" 1315 ); 1316 } 1317 }else{ 1318 sqlite3WindowDelete(pParse->db, pWin); 1319 } 1320 } 1321 1322 /* 1323 ** Possibly link window pWin into the list at pSel->pWin (window functions 1324 ** to be processed as part of SELECT statement pSel). The window is linked 1325 ** in if either (a) there are no other windows already linked to this 1326 ** SELECT, or (b) the windows already linked use a compatible window frame. 1327 */ 1328 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1329 if( pSel ){ 1330 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ 1331 pWin->pNextWin = pSel->pWin; 1332 if( pSel->pWin ){ 1333 pSel->pWin->ppThis = &pWin->pNextWin; 1334 } 1335 pSel->pWin = pWin; 1336 pWin->ppThis = &pSel->pWin; 1337 }else{ 1338 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ 1339 pSel->selFlags |= SF_MultiPart; 1340 } 1341 } 1342 } 1343 } 1344 1345 /* 1346 ** Return 0 if the two window objects are identical, 1 if they are 1347 ** different, or 2 if it cannot be determined if the objects are identical 1348 ** or not. Identical window objects can be processed in a single scan. 1349 */ 1350 int sqlite3WindowCompare( 1351 const Parse *pParse, 1352 const Window *p1, 1353 const Window *p2, 1354 int bFilter 1355 ){ 1356 int res; 1357 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1358 if( p1->eFrmType!=p2->eFrmType ) return 1; 1359 if( p1->eStart!=p2->eStart ) return 1; 1360 if( p1->eEnd!=p2->eEnd ) return 1; 1361 if( p1->eExclude!=p2->eExclude ) return 1; 1362 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1363 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1364 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1365 return res; 1366 } 1367 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1368 return res; 1369 } 1370 if( bFilter ){ 1371 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1372 return res; 1373 } 1374 } 1375 return 0; 1376 } 1377 1378 1379 /* 1380 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1381 ** to begin iterating through the sub-query results. It is used to allocate 1382 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1383 */ 1384 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1385 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1386 Window *pMWin = pSelect->pWin; 1387 Window *pWin; 1388 Vdbe *v = sqlite3GetVdbe(pParse); 1389 1390 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1391 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1392 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1393 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1394 1395 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1396 ** said registers to NULL. */ 1397 if( pMWin->pPartition ){ 1398 int nExpr = pMWin->pPartition->nExpr; 1399 pMWin->regPart = pParse->nMem+1; 1400 pParse->nMem += nExpr; 1401 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1402 } 1403 1404 pMWin->regOne = ++pParse->nMem; 1405 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1406 1407 if( pMWin->eExclude ){ 1408 pMWin->regStartRowid = ++pParse->nMem; 1409 pMWin->regEndRowid = ++pParse->nMem; 1410 pMWin->csrApp = pParse->nTab++; 1411 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1412 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1413 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1414 return; 1415 } 1416 1417 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1418 FuncDef *p = pWin->pFunc; 1419 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1420 /* The inline versions of min() and max() require a single ephemeral 1421 ** table and 3 registers. The registers are used as follows: 1422 ** 1423 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1424 ** regApp+1: integer value used to ensure keys are unique 1425 ** regApp+2: output of MakeRecord 1426 */ 1427 ExprList *pList; 1428 KeyInfo *pKeyInfo; 1429 assert( ExprUseXList(pWin->pOwner) ); 1430 pList = pWin->pOwner->x.pList; 1431 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1432 pWin->csrApp = pParse->nTab++; 1433 pWin->regApp = pParse->nMem+1; 1434 pParse->nMem += 3; 1435 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1436 assert( pKeyInfo->aSortFlags[0]==0 ); 1437 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1438 } 1439 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1440 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1441 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1442 } 1443 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1444 /* Allocate two registers at pWin->regApp. These will be used to 1445 ** store the start and end index of the current frame. */ 1446 pWin->regApp = pParse->nMem+1; 1447 pWin->csrApp = pParse->nTab++; 1448 pParse->nMem += 2; 1449 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1450 } 1451 else if( p->zName==leadName || p->zName==lagName ){ 1452 pWin->csrApp = pParse->nTab++; 1453 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1454 } 1455 } 1456 } 1457 1458 #define WINDOW_STARTING_INT 0 1459 #define WINDOW_ENDING_INT 1 1460 #define WINDOW_NTH_VALUE_INT 2 1461 #define WINDOW_STARTING_NUM 3 1462 #define WINDOW_ENDING_NUM 4 1463 1464 /* 1465 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1466 ** value of the second argument to nth_value() (eCond==2) has just been 1467 ** evaluated and the result left in register reg. This function generates VM 1468 ** code to check that the value is a non-negative integer and throws an 1469 ** exception if it is not. 1470 */ 1471 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1472 static const char *azErr[] = { 1473 "frame starting offset must be a non-negative integer", 1474 "frame ending offset must be a non-negative integer", 1475 "second argument to nth_value must be a positive integer", 1476 "frame starting offset must be a non-negative number", 1477 "frame ending offset must be a non-negative number", 1478 }; 1479 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1480 Vdbe *v = sqlite3GetVdbe(pParse); 1481 int regZero = sqlite3GetTempReg(pParse); 1482 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1483 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1484 if( eCond>=WINDOW_STARTING_NUM ){ 1485 int regString = sqlite3GetTempReg(pParse); 1486 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1487 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1488 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1489 VdbeCoverage(v); 1490 assert( eCond==3 || eCond==4 ); 1491 VdbeCoverageIf(v, eCond==3); 1492 VdbeCoverageIf(v, eCond==4); 1493 }else{ 1494 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1495 VdbeCoverage(v); 1496 assert( eCond==0 || eCond==1 || eCond==2 ); 1497 VdbeCoverageIf(v, eCond==0); 1498 VdbeCoverageIf(v, eCond==1); 1499 VdbeCoverageIf(v, eCond==2); 1500 } 1501 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1502 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); 1503 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1504 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1505 VdbeCoverageNeverNullIf(v, eCond==2); 1506 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1507 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1508 sqlite3MayAbort(pParse); 1509 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1510 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1511 sqlite3ReleaseTempReg(pParse, regZero); 1512 } 1513 1514 /* 1515 ** Return the number of arguments passed to the window-function associated 1516 ** with the object passed as the only argument to this function. 1517 */ 1518 static int windowArgCount(Window *pWin){ 1519 const ExprList *pList; 1520 assert( ExprUseXList(pWin->pOwner) ); 1521 pList = pWin->pOwner->x.pList; 1522 return (pList ? pList->nExpr : 0); 1523 } 1524 1525 typedef struct WindowCodeArg WindowCodeArg; 1526 typedef struct WindowCsrAndReg WindowCsrAndReg; 1527 1528 /* 1529 ** See comments above struct WindowCodeArg. 1530 */ 1531 struct WindowCsrAndReg { 1532 int csr; /* Cursor number */ 1533 int reg; /* First in array of peer values */ 1534 }; 1535 1536 /* 1537 ** A single instance of this structure is allocated on the stack by 1538 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1539 ** routines. This is to reduce the number of arguments required by each 1540 ** helper function. 1541 ** 1542 ** regArg: 1543 ** Each window function requires an accumulator register (just as an 1544 ** ordinary aggregate function does). This variable is set to the first 1545 ** in an array of accumulator registers - one for each window function 1546 ** in the WindowCodeArg.pMWin list. 1547 ** 1548 ** eDelete: 1549 ** The window functions implementation sometimes caches the input rows 1550 ** that it processes in a temporary table. If it is not zero, this 1551 ** variable indicates when rows may be removed from the temp table (in 1552 ** order to reduce memory requirements - it would always be safe just 1553 ** to leave them there). Possible values for eDelete are: 1554 ** 1555 ** WINDOW_RETURN_ROW: 1556 ** An input row can be discarded after it is returned to the caller. 1557 ** 1558 ** WINDOW_AGGINVERSE: 1559 ** An input row can be discarded after the window functions xInverse() 1560 ** callbacks have been invoked in it. 1561 ** 1562 ** WINDOW_AGGSTEP: 1563 ** An input row can be discarded after the window functions xStep() 1564 ** callbacks have been invoked in it. 1565 ** 1566 ** start,current,end 1567 ** Consider a window-frame similar to the following: 1568 ** 1569 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1570 ** 1571 ** The windows functions implmentation caches the input rows in a temp 1572 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1573 ** aggressively removes rows once they are no longer required, but that's 1574 ** a mere detail). It keeps three cursors open on the temp table. One 1575 ** (current) that points to the next row to return to the query engine 1576 ** once its window function values have been calculated. Another (end) 1577 ** points to the next row to call the xStep() method of each window function 1578 ** on (so that it is 2 groups ahead of current). And a third (start) that 1579 ** points to the next row to call the xInverse() method of each window 1580 ** function on. 1581 ** 1582 ** Each cursor (start, current and end) consists of a VDBE cursor 1583 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1584 ** WindowCodeArg.reg) that always contains a copy of the peer values 1585 ** read from the corresponding cursor. 1586 ** 1587 ** Depending on the window-frame in question, all three cursors may not 1588 ** be required. In this case both WindowCodeArg.csr and reg are set to 1589 ** 0. 1590 */ 1591 struct WindowCodeArg { 1592 Parse *pParse; /* Parse context */ 1593 Window *pMWin; /* First in list of functions being processed */ 1594 Vdbe *pVdbe; /* VDBE object */ 1595 int addrGosub; /* OP_Gosub to this address to return one row */ 1596 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1597 int regArg; /* First in array of accumulator registers */ 1598 int eDelete; /* See above */ 1599 int regRowid; 1600 1601 WindowCsrAndReg start; 1602 WindowCsrAndReg current; 1603 WindowCsrAndReg end; 1604 }; 1605 1606 /* 1607 ** Generate VM code to read the window frames peer values from cursor csr into 1608 ** an array of registers starting at reg. 1609 */ 1610 static void windowReadPeerValues( 1611 WindowCodeArg *p, 1612 int csr, 1613 int reg 1614 ){ 1615 Window *pMWin = p->pMWin; 1616 ExprList *pOrderBy = pMWin->pOrderBy; 1617 if( pOrderBy ){ 1618 Vdbe *v = sqlite3GetVdbe(p->pParse); 1619 ExprList *pPart = pMWin->pPartition; 1620 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1621 int i; 1622 for(i=0; i<pOrderBy->nExpr; i++){ 1623 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1624 } 1625 } 1626 } 1627 1628 /* 1629 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1630 ** xInverse (if bInverse is non-zero) for each window function in the 1631 ** linked list starting at pMWin. Or, for built-in window functions 1632 ** that do not use the standard function API, generate the required 1633 ** inline VM code. 1634 ** 1635 ** If argument csr is greater than or equal to 0, then argument reg is 1636 ** the first register in an array of registers guaranteed to be large 1637 ** enough to hold the array of arguments for each function. In this case 1638 ** the arguments are extracted from the current row of csr into the 1639 ** array of registers before invoking OP_AggStep or OP_AggInverse 1640 ** 1641 ** Or, if csr is less than zero, then the array of registers at reg is 1642 ** already populated with all columns from the current row of the sub-query. 1643 ** 1644 ** If argument regPartSize is non-zero, then it is a register containing the 1645 ** number of rows in the current partition. 1646 */ 1647 static void windowAggStep( 1648 WindowCodeArg *p, 1649 Window *pMWin, /* Linked list of window functions */ 1650 int csr, /* Read arguments from this cursor */ 1651 int bInverse, /* True to invoke xInverse instead of xStep */ 1652 int reg /* Array of registers */ 1653 ){ 1654 Parse *pParse = p->pParse; 1655 Vdbe *v = sqlite3GetVdbe(pParse); 1656 Window *pWin; 1657 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1658 FuncDef *pFunc = pWin->pFunc; 1659 int regArg; 1660 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1661 int i; 1662 1663 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1664 1665 /* All OVER clauses in the same window function aggregate step must 1666 ** be the same. */ 1667 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1668 1669 for(i=0; i<nArg; i++){ 1670 if( i!=1 || pFunc->zName!=nth_valueName ){ 1671 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1672 }else{ 1673 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1674 } 1675 } 1676 regArg = reg; 1677 1678 if( pMWin->regStartRowid==0 1679 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1680 && (pWin->eStart!=TK_UNBOUNDED) 1681 ){ 1682 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1683 VdbeCoverage(v); 1684 if( bInverse==0 ){ 1685 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1686 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1687 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1688 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1689 }else{ 1690 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1691 VdbeCoverageNeverTaken(v); 1692 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1693 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1694 } 1695 sqlite3VdbeJumpHere(v, addrIsNull); 1696 }else if( pWin->regApp ){ 1697 assert( pFunc->zName==nth_valueName 1698 || pFunc->zName==first_valueName 1699 ); 1700 assert( bInverse==0 || bInverse==1 ); 1701 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1702 }else if( pFunc->xSFunc!=noopStepFunc ){ 1703 int addrIf = 0; 1704 if( pWin->pFilter ){ 1705 int regTmp; 1706 assert( ExprUseXList(pWin->pOwner) ); 1707 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1708 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1709 regTmp = sqlite3GetTempReg(pParse); 1710 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1711 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1712 VdbeCoverage(v); 1713 sqlite3ReleaseTempReg(pParse, regTmp); 1714 } 1715 1716 if( pWin->bExprArgs ){ 1717 int iOp = sqlite3VdbeCurrentAddr(v); 1718 int iEnd; 1719 1720 assert( ExprUseXList(pWin->pOwner) ); 1721 nArg = pWin->pOwner->x.pList->nExpr; 1722 regArg = sqlite3GetTempRange(pParse, nArg); 1723 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1724 1725 for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){ 1726 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp); 1727 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1728 pOp->p1 = csr; 1729 } 1730 } 1731 } 1732 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1733 CollSeq *pColl; 1734 assert( nArg>0 ); 1735 assert( ExprUseXList(pWin->pOwner) ); 1736 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1737 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1738 } 1739 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1740 bInverse, regArg, pWin->regAccum); 1741 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1742 sqlite3VdbeChangeP5(v, (u8)nArg); 1743 if( pWin->bExprArgs ){ 1744 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1745 } 1746 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1747 } 1748 } 1749 } 1750 1751 /* 1752 ** Values that may be passed as the second argument to windowCodeOp(). 1753 */ 1754 #define WINDOW_RETURN_ROW 1 1755 #define WINDOW_AGGINVERSE 2 1756 #define WINDOW_AGGSTEP 3 1757 1758 /* 1759 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1760 ** (bFin==1) for each window function in the linked list starting at 1761 ** pMWin. Or, for built-in window-functions that do not use the standard 1762 ** API, generate the equivalent VM code. 1763 */ 1764 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1765 Parse *pParse = p->pParse; 1766 Window *pMWin = p->pMWin; 1767 Vdbe *v = sqlite3GetVdbe(pParse); 1768 Window *pWin; 1769 1770 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1771 if( pMWin->regStartRowid==0 1772 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1773 && (pWin->eStart!=TK_UNBOUNDED) 1774 ){ 1775 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1776 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1777 VdbeCoverage(v); 1778 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1779 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1780 }else if( pWin->regApp ){ 1781 assert( pMWin->regStartRowid==0 ); 1782 }else{ 1783 int nArg = windowArgCount(pWin); 1784 if( bFin ){ 1785 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1786 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1787 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1788 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1789 }else{ 1790 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1791 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1792 } 1793 } 1794 } 1795 } 1796 1797 /* 1798 ** Generate code to calculate the current values of all window functions in the 1799 ** p->pMWin list by doing a full scan of the current window frame. Store the 1800 ** results in the Window.regResult registers, ready to return the upper 1801 ** layer. 1802 */ 1803 static void windowFullScan(WindowCodeArg *p){ 1804 Window *pWin; 1805 Parse *pParse = p->pParse; 1806 Window *pMWin = p->pMWin; 1807 Vdbe *v = p->pVdbe; 1808 1809 int regCRowid = 0; /* Current rowid value */ 1810 int regCPeer = 0; /* Current peer values */ 1811 int regRowid = 0; /* AggStep rowid value */ 1812 int regPeer = 0; /* AggStep peer values */ 1813 1814 int nPeer; 1815 int lblNext; 1816 int lblBrk; 1817 int addrNext; 1818 int csr; 1819 1820 VdbeModuleComment((v, "windowFullScan begin")); 1821 1822 assert( pMWin!=0 ); 1823 csr = pMWin->csrApp; 1824 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1825 1826 lblNext = sqlite3VdbeMakeLabel(pParse); 1827 lblBrk = sqlite3VdbeMakeLabel(pParse); 1828 1829 regCRowid = sqlite3GetTempReg(pParse); 1830 regRowid = sqlite3GetTempReg(pParse); 1831 if( nPeer ){ 1832 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1833 regPeer = sqlite3GetTempRange(pParse, nPeer); 1834 } 1835 1836 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1837 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1838 1839 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1840 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1841 } 1842 1843 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1844 VdbeCoverage(v); 1845 addrNext = sqlite3VdbeCurrentAddr(v); 1846 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1847 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1848 VdbeCoverageNeverNull(v); 1849 1850 if( pMWin->eExclude==TK_CURRENT ){ 1851 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1852 VdbeCoverageNeverNull(v); 1853 }else if( pMWin->eExclude!=TK_NO ){ 1854 int addr; 1855 int addrEq = 0; 1856 KeyInfo *pKeyInfo = 0; 1857 1858 if( pMWin->pOrderBy ){ 1859 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1860 } 1861 if( pMWin->eExclude==TK_TIES ){ 1862 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1863 VdbeCoverageNeverNull(v); 1864 } 1865 if( pKeyInfo ){ 1866 windowReadPeerValues(p, csr, regPeer); 1867 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1868 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1869 addr = sqlite3VdbeCurrentAddr(v)+1; 1870 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1871 VdbeCoverageEqNe(v); 1872 }else{ 1873 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1874 } 1875 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1876 } 1877 1878 windowAggStep(p, pMWin, csr, 0, p->regArg); 1879 1880 sqlite3VdbeResolveLabel(v, lblNext); 1881 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1882 VdbeCoverage(v); 1883 sqlite3VdbeJumpHere(v, addrNext-1); 1884 sqlite3VdbeJumpHere(v, addrNext+1); 1885 sqlite3ReleaseTempReg(pParse, regRowid); 1886 sqlite3ReleaseTempReg(pParse, regCRowid); 1887 if( nPeer ){ 1888 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1889 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1890 } 1891 1892 windowAggFinal(p, 1); 1893 VdbeModuleComment((v, "windowFullScan end")); 1894 } 1895 1896 /* 1897 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1898 ** return the current row of Window.iEphCsr. If all window functions are 1899 ** aggregate window functions that use the standard API, a single 1900 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1901 ** for per-row processing is only generated for the following built-in window 1902 ** functions: 1903 ** 1904 ** nth_value() 1905 ** first_value() 1906 ** lag() 1907 ** lead() 1908 */ 1909 static void windowReturnOneRow(WindowCodeArg *p){ 1910 Window *pMWin = p->pMWin; 1911 Vdbe *v = p->pVdbe; 1912 1913 if( pMWin->regStartRowid ){ 1914 windowFullScan(p); 1915 }else{ 1916 Parse *pParse = p->pParse; 1917 Window *pWin; 1918 1919 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1920 FuncDef *pFunc = pWin->pFunc; 1921 assert( ExprUseXList(pWin->pOwner) ); 1922 if( pFunc->zName==nth_valueName 1923 || pFunc->zName==first_valueName 1924 ){ 1925 int csr = pWin->csrApp; 1926 int lbl = sqlite3VdbeMakeLabel(pParse); 1927 int tmpReg = sqlite3GetTempReg(pParse); 1928 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1929 1930 if( pFunc->zName==nth_valueName ){ 1931 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1932 windowCheckValue(pParse, tmpReg, 2); 1933 }else{ 1934 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1935 } 1936 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1937 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1938 VdbeCoverageNeverNull(v); 1939 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1940 VdbeCoverageNeverTaken(v); 1941 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1942 sqlite3VdbeResolveLabel(v, lbl); 1943 sqlite3ReleaseTempReg(pParse, tmpReg); 1944 } 1945 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1946 int nArg = pWin->pOwner->x.pList->nExpr; 1947 int csr = pWin->csrApp; 1948 int lbl = sqlite3VdbeMakeLabel(pParse); 1949 int tmpReg = sqlite3GetTempReg(pParse); 1950 int iEph = pMWin->iEphCsr; 1951 1952 if( nArg<3 ){ 1953 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1954 }else{ 1955 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1956 } 1957 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1958 if( nArg<2 ){ 1959 int val = (pFunc->zName==leadName ? 1 : -1); 1960 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1961 }else{ 1962 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1963 int tmpReg2 = sqlite3GetTempReg(pParse); 1964 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1965 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1966 sqlite3ReleaseTempReg(pParse, tmpReg2); 1967 } 1968 1969 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1970 VdbeCoverage(v); 1971 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1972 sqlite3VdbeResolveLabel(v, lbl); 1973 sqlite3ReleaseTempReg(pParse, tmpReg); 1974 } 1975 } 1976 } 1977 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1978 } 1979 1980 /* 1981 ** Generate code to set the accumulator register for each window function 1982 ** in the linked list passed as the second argument to NULL. And perform 1983 ** any equivalent initialization required by any built-in window functions 1984 ** in the list. 1985 */ 1986 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1987 Vdbe *v = sqlite3GetVdbe(pParse); 1988 int regArg; 1989 int nArg = 0; 1990 Window *pWin; 1991 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1992 FuncDef *pFunc = pWin->pFunc; 1993 assert( pWin->regAccum ); 1994 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1995 nArg = MAX(nArg, windowArgCount(pWin)); 1996 if( pMWin->regStartRowid==0 ){ 1997 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1998 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1999 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 2000 } 2001 2002 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 2003 assert( pWin->eStart!=TK_UNBOUNDED ); 2004 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 2005 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 2006 } 2007 } 2008 } 2009 regArg = pParse->nMem+1; 2010 pParse->nMem += nArg; 2011 return regArg; 2012 } 2013 2014 /* 2015 ** Return true if the current frame should be cached in the ephemeral table, 2016 ** even if there are no xInverse() calls required. 2017 */ 2018 static int windowCacheFrame(Window *pMWin){ 2019 Window *pWin; 2020 if( pMWin->regStartRowid ) return 1; 2021 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 2022 FuncDef *pFunc = pWin->pFunc; 2023 if( (pFunc->zName==nth_valueName) 2024 || (pFunc->zName==first_valueName) 2025 || (pFunc->zName==leadName) 2026 || (pFunc->zName==lagName) 2027 ){ 2028 return 1; 2029 } 2030 } 2031 return 0; 2032 } 2033 2034 /* 2035 ** regOld and regNew are each the first register in an array of size 2036 ** pOrderBy->nExpr. This function generates code to compare the two 2037 ** arrays of registers using the collation sequences and other comparison 2038 ** parameters specified by pOrderBy. 2039 ** 2040 ** If the two arrays are not equal, the contents of regNew is copied to 2041 ** regOld and control falls through. Otherwise, if the contents of the arrays 2042 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2043 */ 2044 static void windowIfNewPeer( 2045 Parse *pParse, 2046 ExprList *pOrderBy, 2047 int regNew, /* First in array of new values */ 2048 int regOld, /* First in array of old values */ 2049 int addr /* Jump here */ 2050 ){ 2051 Vdbe *v = sqlite3GetVdbe(pParse); 2052 if( pOrderBy ){ 2053 int nVal = pOrderBy->nExpr; 2054 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2055 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2056 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2057 sqlite3VdbeAddOp3(v, OP_Jump, 2058 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2059 ); 2060 VdbeCoverageEqNe(v); 2061 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2062 }else{ 2063 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2064 } 2065 } 2066 2067 /* 2068 ** This function is called as part of generating VM programs for RANGE 2069 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2070 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2071 ** code equivalent to: 2072 ** 2073 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2074 ** 2075 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2076 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2077 ** 2078 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2079 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2080 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2081 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2082 ** is OP_Ge, the generated code is equivalent to: 2083 ** 2084 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2085 ** 2086 ** A special type of arithmetic is used such that if csr1.peerVal is not 2087 ** a numeric type (real or integer), then the result of the addition 2088 ** or subtraction is a a copy of csr1.peerVal. 2089 */ 2090 static void windowCodeRangeTest( 2091 WindowCodeArg *p, 2092 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2093 int csr1, /* Cursor number for cursor 1 */ 2094 int regVal, /* Register containing non-negative number */ 2095 int csr2, /* Cursor number for cursor 2 */ 2096 int lbl /* Jump destination if condition is true */ 2097 ){ 2098 Parse *pParse = p->pParse; 2099 Vdbe *v = sqlite3GetVdbe(pParse); 2100 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2101 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2102 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2103 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2104 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2105 int addrGe; /* Jump destination */ 2106 int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ 2107 CollSeq *pColl; 2108 2109 /* Read the peer-value from each cursor into a register */ 2110 windowReadPeerValues(p, csr1, reg1); 2111 windowReadPeerValues(p, csr2, reg2); 2112 2113 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2114 assert( pOrderBy && pOrderBy->nExpr==1 ); 2115 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2116 switch( op ){ 2117 case OP_Ge: op = OP_Le; break; 2118 case OP_Gt: op = OP_Lt; break; 2119 default: assert( op==OP_Le ); op = OP_Ge; break; 2120 } 2121 arith = OP_Subtract; 2122 } 2123 2124 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2125 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2126 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2127 )); 2128 2129 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2130 ** consider NULL values to be larger than all other values, instead of 2131 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2132 ** (and adding that capability causes a performance regression), so 2133 ** instead if the BIGNULL flag is set then cases where either reg1 or 2134 ** reg2 are NULL are handled separately in the following block. The code 2135 ** generated is equivalent to: 2136 ** 2137 ** if( reg1 IS NULL ){ 2138 ** if( op==OP_Ge ) goto lbl; 2139 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2140 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2141 ** }else if( reg2 IS NULL ){ 2142 ** if( op==OP_Le ) goto lbl; 2143 ** } 2144 ** 2145 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2146 ** not taken, control jumps over the comparison operator coded below this 2147 ** block. */ 2148 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2149 /* This block runs if reg1 contains a NULL. */ 2150 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2151 switch( op ){ 2152 case OP_Ge: 2153 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2154 break; 2155 case OP_Gt: 2156 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2157 VdbeCoverage(v); 2158 break; 2159 case OP_Le: 2160 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2161 VdbeCoverage(v); 2162 break; 2163 default: assert( op==OP_Lt ); /* no-op */ break; 2164 } 2165 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 2166 2167 /* This block runs if reg1 is not NULL, but reg2 is. */ 2168 sqlite3VdbeJumpHere(v, addr); 2169 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2170 if( op==OP_Gt || op==OP_Ge ){ 2171 sqlite3VdbeChangeP2(v, -1, addrDone); 2172 } 2173 } 2174 2175 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2176 ** This block adds (or subtracts for DESC) the numeric value in regVal 2177 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2178 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2179 ** 2180 ** if( reg1>='' ) goto addrGe; 2181 ** reg1 = reg1 +/- regVal 2182 ** addrGe: 2183 ** 2184 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2185 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2186 ** then the arithmetic is performed, but since adding or subtracting from 2187 ** NULL is always NULL anyway, this case is handled as required too. */ 2188 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2189 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2190 VdbeCoverage(v); 2191 if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ 2192 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2193 } 2194 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2195 sqlite3VdbeJumpHere(v, addrGe); 2196 2197 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2198 ** control skips over this test if the BIGNULL flag is set and either 2199 ** reg1 or reg2 contain a NULL value. */ 2200 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2201 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); 2202 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); 2203 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2204 sqlite3VdbeResolveLabel(v, addrDone); 2205 2206 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2207 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2208 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2209 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2210 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2211 sqlite3ReleaseTempReg(pParse, reg1); 2212 sqlite3ReleaseTempReg(pParse, reg2); 2213 2214 VdbeModuleComment((v, "CodeRangeTest: end")); 2215 } 2216 2217 /* 2218 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2219 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2220 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2221 ** details. 2222 */ 2223 static int windowCodeOp( 2224 WindowCodeArg *p, /* Context object */ 2225 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2226 int regCountdown, /* Register for OP_IfPos countdown */ 2227 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2228 ){ 2229 int csr, reg; 2230 Parse *pParse = p->pParse; 2231 Window *pMWin = p->pMWin; 2232 int ret = 0; 2233 Vdbe *v = p->pVdbe; 2234 int addrContinue = 0; 2235 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2236 2237 int lblDone = sqlite3VdbeMakeLabel(pParse); 2238 int addrNextRange = 0; 2239 2240 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2241 ** starts with UNBOUNDED PRECEDING. */ 2242 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2243 assert( regCountdown==0 && jumpOnEof==0 ); 2244 return 0; 2245 } 2246 2247 if( regCountdown>0 ){ 2248 if( pMWin->eFrmType==TK_RANGE ){ 2249 addrNextRange = sqlite3VdbeCurrentAddr(v); 2250 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2251 if( op==WINDOW_AGGINVERSE ){ 2252 if( pMWin->eStart==TK_FOLLOWING ){ 2253 windowCodeRangeTest( 2254 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2255 ); 2256 }else{ 2257 windowCodeRangeTest( 2258 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2259 ); 2260 } 2261 }else{ 2262 windowCodeRangeTest( 2263 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2264 ); 2265 } 2266 }else{ 2267 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2268 VdbeCoverage(v); 2269 } 2270 } 2271 2272 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2273 windowAggFinal(p, 0); 2274 } 2275 addrContinue = sqlite3VdbeCurrentAddr(v); 2276 2277 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2278 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2279 ** start cursor does not advance past the end cursor within the 2280 ** temporary table. It otherwise might, if (a>b). Also ensure that, 2281 ** if the input cursor is still finding new rows, that the end 2282 ** cursor does not go past it to EOF. */ 2283 if( pMWin->eStart==pMWin->eEnd && regCountdown 2284 && pMWin->eFrmType==TK_RANGE 2285 ){ 2286 int regRowid1 = sqlite3GetTempReg(pParse); 2287 int regRowid2 = sqlite3GetTempReg(pParse); 2288 if( op==WINDOW_AGGINVERSE ){ 2289 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2290 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2291 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2292 VdbeCoverage(v); 2293 }else if( p->regRowid ){ 2294 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1); 2295 sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1); 2296 VdbeCoverageNeverNull(v); 2297 } 2298 sqlite3ReleaseTempReg(pParse, regRowid1); 2299 sqlite3ReleaseTempReg(pParse, regRowid2); 2300 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2301 } 2302 2303 switch( op ){ 2304 case WINDOW_RETURN_ROW: 2305 csr = p->current.csr; 2306 reg = p->current.reg; 2307 windowReturnOneRow(p); 2308 break; 2309 2310 case WINDOW_AGGINVERSE: 2311 csr = p->start.csr; 2312 reg = p->start.reg; 2313 if( pMWin->regStartRowid ){ 2314 assert( pMWin->regEndRowid ); 2315 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2316 }else{ 2317 windowAggStep(p, pMWin, csr, 1, p->regArg); 2318 } 2319 break; 2320 2321 default: 2322 assert( op==WINDOW_AGGSTEP ); 2323 csr = p->end.csr; 2324 reg = p->end.reg; 2325 if( pMWin->regStartRowid ){ 2326 assert( pMWin->regEndRowid ); 2327 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2328 }else{ 2329 windowAggStep(p, pMWin, csr, 0, p->regArg); 2330 } 2331 break; 2332 } 2333 2334 if( op==p->eDelete ){ 2335 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2336 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2337 } 2338 2339 if( jumpOnEof ){ 2340 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2341 VdbeCoverage(v); 2342 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2343 }else{ 2344 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2345 VdbeCoverage(v); 2346 if( bPeer ){ 2347 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2348 } 2349 } 2350 2351 if( bPeer ){ 2352 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2353 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2354 windowReadPeerValues(p, csr, regTmp); 2355 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2356 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2357 } 2358 2359 if( addrNextRange ){ 2360 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2361 } 2362 sqlite3VdbeResolveLabel(v, lblDone); 2363 return ret; 2364 } 2365 2366 2367 /* 2368 ** Allocate and return a duplicate of the Window object indicated by the 2369 ** third argument. Set the Window.pOwner field of the new object to 2370 ** pOwner. 2371 */ 2372 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2373 Window *pNew = 0; 2374 if( ALWAYS(p) ){ 2375 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2376 if( pNew ){ 2377 pNew->zName = sqlite3DbStrDup(db, p->zName); 2378 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2379 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2380 pNew->pFunc = p->pFunc; 2381 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2382 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2383 pNew->eFrmType = p->eFrmType; 2384 pNew->eEnd = p->eEnd; 2385 pNew->eStart = p->eStart; 2386 pNew->eExclude = p->eExclude; 2387 pNew->regResult = p->regResult; 2388 pNew->regAccum = p->regAccum; 2389 pNew->iArgCol = p->iArgCol; 2390 pNew->iEphCsr = p->iEphCsr; 2391 pNew->bExprArgs = p->bExprArgs; 2392 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2393 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2394 pNew->pOwner = pOwner; 2395 pNew->bImplicitFrame = p->bImplicitFrame; 2396 } 2397 } 2398 return pNew; 2399 } 2400 2401 /* 2402 ** Return a copy of the linked list of Window objects passed as the 2403 ** second argument. 2404 */ 2405 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2406 Window *pWin; 2407 Window *pRet = 0; 2408 Window **pp = &pRet; 2409 2410 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2411 *pp = sqlite3WindowDup(db, 0, pWin); 2412 if( *pp==0 ) break; 2413 pp = &((*pp)->pNextWin); 2414 } 2415 2416 return pRet; 2417 } 2418 2419 /* 2420 ** Return true if it can be determined at compile time that expression 2421 ** pExpr evaluates to a value that, when cast to an integer, is greater 2422 ** than zero. False otherwise. 2423 ** 2424 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2425 ** flag and returns zero. 2426 */ 2427 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2428 int ret = 0; 2429 sqlite3 *db = pParse->db; 2430 sqlite3_value *pVal = 0; 2431 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2432 if( pVal && sqlite3_value_int(pVal)>0 ){ 2433 ret = 1; 2434 } 2435 sqlite3ValueFree(pVal); 2436 return ret; 2437 } 2438 2439 /* 2440 ** sqlite3WhereBegin() has already been called for the SELECT statement 2441 ** passed as the second argument when this function is invoked. It generates 2442 ** code to populate the Window.regResult register for each window function 2443 ** and invoke the sub-routine at instruction addrGosub once for each row. 2444 ** sqlite3WhereEnd() is always called before returning. 2445 ** 2446 ** This function handles several different types of window frames, which 2447 ** require slightly different processing. The following pseudo code is 2448 ** used to implement window frames of the form: 2449 ** 2450 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2451 ** 2452 ** Other window frame types use variants of the following: 2453 ** 2454 ** ... loop started by sqlite3WhereBegin() ... 2455 ** if( new partition ){ 2456 ** Gosub flush 2457 ** } 2458 ** Insert new row into eph table. 2459 ** 2460 ** if( first row of partition ){ 2461 ** // Rewind three cursors, all open on the eph table. 2462 ** Rewind(csrEnd); 2463 ** Rewind(csrStart); 2464 ** Rewind(csrCurrent); 2465 ** 2466 ** regEnd = <expr2> // FOLLOWING expression 2467 ** regStart = <expr1> // PRECEDING expression 2468 ** }else{ 2469 ** // First time this branch is taken, the eph table contains two 2470 ** // rows. The first row in the partition, which all three cursors 2471 ** // currently point to, and the following row. 2472 ** AGGSTEP 2473 ** if( (regEnd--)<=0 ){ 2474 ** RETURN_ROW 2475 ** if( (regStart--)<=0 ){ 2476 ** AGGINVERSE 2477 ** } 2478 ** } 2479 ** } 2480 ** } 2481 ** flush: 2482 ** AGGSTEP 2483 ** while( 1 ){ 2484 ** RETURN ROW 2485 ** if( csrCurrent is EOF ) break; 2486 ** if( (regStart--)<=0 ){ 2487 ** AggInverse(csrStart) 2488 ** Next(csrStart) 2489 ** } 2490 ** } 2491 ** 2492 ** The pseudo-code above uses the following shorthand: 2493 ** 2494 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2495 ** with arguments read from the current row of cursor csrEnd, then 2496 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2497 ** 2498 ** RETURN_ROW: return a row to the caller based on the contents of the 2499 ** current row of csrCurrent and the current state of all 2500 ** aggregates. Then step cursor csrCurrent forward one row. 2501 ** 2502 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2503 ** functions with arguments read from the current row of cursor 2504 ** csrStart. Then step csrStart forward one row. 2505 ** 2506 ** There are two other ROWS window frames that are handled significantly 2507 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2508 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2509 ** cases because they change the order in which the three cursors (csrStart, 2510 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2511 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2512 ** three. 2513 ** 2514 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2515 ** 2516 ** ... loop started by sqlite3WhereBegin() ... 2517 ** if( new partition ){ 2518 ** Gosub flush 2519 ** } 2520 ** Insert new row into eph table. 2521 ** if( first row of partition ){ 2522 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2523 ** regEnd = <expr2> 2524 ** regStart = <expr1> 2525 ** }else{ 2526 ** if( (regEnd--)<=0 ){ 2527 ** AGGSTEP 2528 ** } 2529 ** RETURN_ROW 2530 ** if( (regStart--)<=0 ){ 2531 ** AGGINVERSE 2532 ** } 2533 ** } 2534 ** } 2535 ** flush: 2536 ** if( (regEnd--)<=0 ){ 2537 ** AGGSTEP 2538 ** } 2539 ** RETURN_ROW 2540 ** 2541 ** 2542 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2543 ** 2544 ** ... loop started by sqlite3WhereBegin() ... 2545 ** if( new partition ){ 2546 ** Gosub flush 2547 ** } 2548 ** Insert new row into eph table. 2549 ** if( first row of partition ){ 2550 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2551 ** regEnd = <expr2> 2552 ** regStart = regEnd - <expr1> 2553 ** }else{ 2554 ** AGGSTEP 2555 ** if( (regEnd--)<=0 ){ 2556 ** RETURN_ROW 2557 ** } 2558 ** if( (regStart--)<=0 ){ 2559 ** AGGINVERSE 2560 ** } 2561 ** } 2562 ** } 2563 ** flush: 2564 ** AGGSTEP 2565 ** while( 1 ){ 2566 ** if( (regEnd--)<=0 ){ 2567 ** RETURN_ROW 2568 ** if( eof ) break; 2569 ** } 2570 ** if( (regStart--)<=0 ){ 2571 ** AGGINVERSE 2572 ** if( eof ) break 2573 ** } 2574 ** } 2575 ** while( !eof csrCurrent ){ 2576 ** RETURN_ROW 2577 ** } 2578 ** 2579 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2580 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2581 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2582 ** This is optimized of course - branches that will never be taken and 2583 ** conditions that are always true are omitted from the VM code. The only 2584 ** exceptional case is: 2585 ** 2586 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2587 ** 2588 ** ... loop started by sqlite3WhereBegin() ... 2589 ** if( new partition ){ 2590 ** Gosub flush 2591 ** } 2592 ** Insert new row into eph table. 2593 ** if( first row of partition ){ 2594 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2595 ** regStart = <expr1> 2596 ** }else{ 2597 ** AGGSTEP 2598 ** } 2599 ** } 2600 ** flush: 2601 ** AGGSTEP 2602 ** while( 1 ){ 2603 ** if( (regStart--)<=0 ){ 2604 ** AGGINVERSE 2605 ** if( eof ) break 2606 ** } 2607 ** RETURN_ROW 2608 ** } 2609 ** while( !eof csrCurrent ){ 2610 ** RETURN_ROW 2611 ** } 2612 ** 2613 ** Also requiring special handling are the cases: 2614 ** 2615 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2616 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2617 ** 2618 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2619 ** To handle this case, the pseudo-code programs depicted above are modified 2620 ** slightly to be: 2621 ** 2622 ** ... loop started by sqlite3WhereBegin() ... 2623 ** if( new partition ){ 2624 ** Gosub flush 2625 ** } 2626 ** Insert new row into eph table. 2627 ** if( first row of partition ){ 2628 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2629 ** regEnd = <expr2> 2630 ** regStart = <expr1> 2631 ** if( regEnd < regStart ){ 2632 ** RETURN_ROW 2633 ** delete eph table contents 2634 ** continue 2635 ** } 2636 ** ... 2637 ** 2638 ** The new "continue" statement in the above jumps to the next iteration 2639 ** of the outer loop - the one started by sqlite3WhereBegin(). 2640 ** 2641 ** The various GROUPS cases are implemented using the same patterns as 2642 ** ROWS. The VM code is modified slightly so that: 2643 ** 2644 ** 1. The else branch in the main loop is only taken if the row just 2645 ** added to the ephemeral table is the start of a new group. In 2646 ** other words, it becomes: 2647 ** 2648 ** ... loop started by sqlite3WhereBegin() ... 2649 ** if( new partition ){ 2650 ** Gosub flush 2651 ** } 2652 ** Insert new row into eph table. 2653 ** if( first row of partition ){ 2654 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2655 ** regEnd = <expr2> 2656 ** regStart = <expr1> 2657 ** }else if( new group ){ 2658 ** ... 2659 ** } 2660 ** } 2661 ** 2662 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2663 ** AGGINVERSE step processes the current row of the relevant cursor and 2664 ** all subsequent rows belonging to the same group. 2665 ** 2666 ** RANGE window frames are a little different again. As for GROUPS, the 2667 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2668 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2669 ** basic cases: 2670 ** 2671 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2672 ** 2673 ** ... loop started by sqlite3WhereBegin() ... 2674 ** if( new partition ){ 2675 ** Gosub flush 2676 ** } 2677 ** Insert new row into eph table. 2678 ** if( first row of partition ){ 2679 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2680 ** regEnd = <expr2> 2681 ** regStart = <expr1> 2682 ** }else{ 2683 ** AGGSTEP 2684 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2685 ** RETURN_ROW 2686 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2687 ** AGGINVERSE 2688 ** } 2689 ** } 2690 ** } 2691 ** } 2692 ** flush: 2693 ** AGGSTEP 2694 ** while( 1 ){ 2695 ** RETURN ROW 2696 ** if( csrCurrent is EOF ) break; 2697 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2698 ** AGGINVERSE 2699 ** } 2700 ** } 2701 ** } 2702 ** 2703 ** In the above notation, "csr.key" means the current value of the ORDER BY 2704 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2705 ** or <expr PRECEDING) read from cursor csr. 2706 ** 2707 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2708 ** 2709 ** ... loop started by sqlite3WhereBegin() ... 2710 ** if( new partition ){ 2711 ** Gosub flush 2712 ** } 2713 ** Insert new row into eph table. 2714 ** if( first row of partition ){ 2715 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2716 ** regEnd = <expr2> 2717 ** regStart = <expr1> 2718 ** }else{ 2719 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2720 ** AGGSTEP 2721 ** } 2722 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2723 ** AGGINVERSE 2724 ** } 2725 ** RETURN_ROW 2726 ** } 2727 ** } 2728 ** flush: 2729 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2730 ** AGGSTEP 2731 ** } 2732 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2733 ** AGGINVERSE 2734 ** } 2735 ** RETURN_ROW 2736 ** 2737 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2738 ** 2739 ** ... loop started by sqlite3WhereBegin() ... 2740 ** if( new partition ){ 2741 ** Gosub flush 2742 ** } 2743 ** Insert new row into eph table. 2744 ** if( first row of partition ){ 2745 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2746 ** regEnd = <expr2> 2747 ** regStart = <expr1> 2748 ** }else{ 2749 ** AGGSTEP 2750 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2751 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2752 ** AGGINVERSE 2753 ** } 2754 ** RETURN_ROW 2755 ** } 2756 ** } 2757 ** } 2758 ** flush: 2759 ** AGGSTEP 2760 ** while( 1 ){ 2761 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2762 ** AGGINVERSE 2763 ** if( eof ) break "while( 1 )" loop. 2764 ** } 2765 ** RETURN_ROW 2766 ** } 2767 ** while( !eof csrCurrent ){ 2768 ** RETURN_ROW 2769 ** } 2770 ** 2771 ** The text above leaves out many details. Refer to the code and comments 2772 ** below for a more complete picture. 2773 */ 2774 void sqlite3WindowCodeStep( 2775 Parse *pParse, /* Parse context */ 2776 Select *p, /* Rewritten SELECT statement */ 2777 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2778 int regGosub, /* Register for OP_Gosub */ 2779 int addrGosub /* OP_Gosub here to return each row */ 2780 ){ 2781 Window *pMWin = p->pWin; 2782 ExprList *pOrderBy = pMWin->pOrderBy; 2783 Vdbe *v = sqlite3GetVdbe(pParse); 2784 int csrWrite; /* Cursor used to write to eph. table */ 2785 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2786 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2787 int iInput; /* To iterate through sub cols */ 2788 int addrNe; /* Address of OP_Ne */ 2789 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2790 int addrInteger = 0; /* Address of OP_Integer */ 2791 int addrEmpty; /* Address of OP_Rewind in flush: */ 2792 int regNew; /* Array of registers holding new input row */ 2793 int regRecord; /* regNew array in record form */ 2794 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2795 int regPeer = 0; /* Peer values for current row */ 2796 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2797 WindowCodeArg s; /* Context object for sub-routines */ 2798 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2799 int regStart = 0; /* Value of <expr> PRECEDING */ 2800 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2801 2802 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2803 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2804 ); 2805 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2806 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2807 ); 2808 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2809 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2810 || pMWin->eExclude==TK_NO 2811 ); 2812 2813 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2814 2815 /* Fill in the context object */ 2816 memset(&s, 0, sizeof(WindowCodeArg)); 2817 s.pParse = pParse; 2818 s.pMWin = pMWin; 2819 s.pVdbe = v; 2820 s.regGosub = regGosub; 2821 s.addrGosub = addrGosub; 2822 s.current.csr = pMWin->iEphCsr; 2823 csrWrite = s.current.csr+1; 2824 s.start.csr = s.current.csr+2; 2825 s.end.csr = s.current.csr+3; 2826 2827 /* Figure out when rows may be deleted from the ephemeral table. There 2828 ** are four options - they may never be deleted (eDelete==0), they may 2829 ** be deleted as soon as they are no longer part of the window frame 2830 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2831 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2832 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2833 switch( pMWin->eStart ){ 2834 case TK_FOLLOWING: 2835 if( pMWin->eFrmType!=TK_RANGE 2836 && windowExprGtZero(pParse, pMWin->pStart) 2837 ){ 2838 s.eDelete = WINDOW_RETURN_ROW; 2839 } 2840 break; 2841 case TK_UNBOUNDED: 2842 if( windowCacheFrame(pMWin)==0 ){ 2843 if( pMWin->eEnd==TK_PRECEDING ){ 2844 if( pMWin->eFrmType!=TK_RANGE 2845 && windowExprGtZero(pParse, pMWin->pEnd) 2846 ){ 2847 s.eDelete = WINDOW_AGGSTEP; 2848 } 2849 }else{ 2850 s.eDelete = WINDOW_RETURN_ROW; 2851 } 2852 } 2853 break; 2854 default: 2855 s.eDelete = WINDOW_AGGINVERSE; 2856 break; 2857 } 2858 2859 /* Allocate registers for the array of values from the sub-query, the 2860 ** samve values in record form, and the rowid used to insert said record 2861 ** into the ephemeral table. */ 2862 regNew = pParse->nMem+1; 2863 pParse->nMem += nInput; 2864 regRecord = ++pParse->nMem; 2865 s.regRowid = ++pParse->nMem; 2866 2867 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2868 ** clause, allocate registers to store the results of evaluating each 2869 ** <expr>. */ 2870 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2871 regStart = ++pParse->nMem; 2872 } 2873 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2874 regEnd = ++pParse->nMem; 2875 } 2876 2877 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2878 ** registers to store copies of the ORDER BY expressions (peer values) 2879 ** for the main loop, and for each cursor (start, current and end). */ 2880 if( pMWin->eFrmType!=TK_ROWS ){ 2881 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2882 regNewPeer = regNew + pMWin->nBufferCol; 2883 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2884 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2885 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2886 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2887 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2888 } 2889 2890 /* Load the column values for the row returned by the sub-select 2891 ** into an array of registers starting at regNew. Assemble them into 2892 ** a record in register regRecord. */ 2893 for(iInput=0; iInput<nInput; iInput++){ 2894 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2895 } 2896 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2897 2898 /* An input row has just been read into an array of registers starting 2899 ** at regNew. If the window has a PARTITION clause, this block generates 2900 ** VM code to check if the input row is the start of a new partition. 2901 ** If so, it does an OP_Gosub to an address to be filled in later. The 2902 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2903 if( pMWin->pPartition ){ 2904 int addr; 2905 ExprList *pPart = pMWin->pPartition; 2906 int nPart = pPart->nExpr; 2907 int regNewPart = regNew + pMWin->nBufferCol; 2908 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2909 2910 regFlushPart = ++pParse->nMem; 2911 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2912 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2913 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2914 VdbeCoverageEqNe(v); 2915 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2916 VdbeComment((v, "call flush_partition")); 2917 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2918 } 2919 2920 /* Insert the new row into the ephemeral table */ 2921 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid); 2922 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid); 2923 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid); 2924 VdbeCoverageNeverNull(v); 2925 2926 /* This block is run for the first row of each partition */ 2927 s.regArg = windowInitAccum(pParse, pMWin); 2928 2929 if( regStart ){ 2930 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2931 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2932 } 2933 if( regEnd ){ 2934 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2935 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2936 } 2937 2938 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2939 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2940 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2941 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2942 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2943 windowAggFinal(&s, 0); 2944 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2945 VdbeCoverageNeverTaken(v); 2946 windowReturnOneRow(&s); 2947 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2948 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2949 sqlite3VdbeJumpHere(v, addrGe); 2950 } 2951 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2952 assert( pMWin->eEnd==TK_FOLLOWING ); 2953 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2954 } 2955 2956 if( pMWin->eStart!=TK_UNBOUNDED ){ 2957 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2958 VdbeCoverageNeverTaken(v); 2959 } 2960 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2961 VdbeCoverageNeverTaken(v); 2962 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2963 VdbeCoverageNeverTaken(v); 2964 if( regPeer && pOrderBy ){ 2965 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2966 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2967 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2968 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2969 } 2970 2971 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2972 2973 sqlite3VdbeJumpHere(v, addrNe); 2974 2975 /* Beginning of the block executed for the second and subsequent rows. */ 2976 if( regPeer ){ 2977 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2978 } 2979 if( pMWin->eStart==TK_FOLLOWING ){ 2980 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2981 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2982 if( pMWin->eFrmType==TK_RANGE ){ 2983 int lbl = sqlite3VdbeMakeLabel(pParse); 2984 int addrNext = sqlite3VdbeCurrentAddr(v); 2985 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2986 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2987 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2988 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2989 sqlite3VdbeResolveLabel(v, lbl); 2990 }else{ 2991 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2992 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2993 } 2994 } 2995 }else 2996 if( pMWin->eEnd==TK_PRECEDING ){ 2997 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2998 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2999 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3000 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3001 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3002 }else{ 3003 int addr = 0; 3004 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3005 if( pMWin->eEnd!=TK_UNBOUNDED ){ 3006 if( pMWin->eFrmType==TK_RANGE ){ 3007 int lbl = 0; 3008 addr = sqlite3VdbeCurrentAddr(v); 3009 if( regEnd ){ 3010 lbl = sqlite3VdbeMakeLabel(pParse); 3011 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 3012 } 3013 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3014 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3015 if( regEnd ){ 3016 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 3017 sqlite3VdbeResolveLabel(v, lbl); 3018 } 3019 }else{ 3020 if( regEnd ){ 3021 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 3022 VdbeCoverage(v); 3023 } 3024 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3025 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3026 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 3027 } 3028 } 3029 } 3030 3031 /* End of the main input loop */ 3032 sqlite3VdbeResolveLabel(v, lblWhereEnd); 3033 sqlite3WhereEnd(pWInfo); 3034 3035 /* Fall through */ 3036 if( pMWin->pPartition ){ 3037 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 3038 sqlite3VdbeJumpHere(v, addrGosubFlush); 3039 } 3040 3041 s.regRowid = 0; 3042 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 3043 VdbeCoverage(v); 3044 if( pMWin->eEnd==TK_PRECEDING ){ 3045 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 3046 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3047 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3048 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3049 }else if( pMWin->eStart==TK_FOLLOWING ){ 3050 int addrStart; 3051 int addrBreak1; 3052 int addrBreak2; 3053 int addrBreak3; 3054 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3055 if( pMWin->eFrmType==TK_RANGE ){ 3056 addrStart = sqlite3VdbeCurrentAddr(v); 3057 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3058 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3059 }else 3060 if( pMWin->eEnd==TK_UNBOUNDED ){ 3061 addrStart = sqlite3VdbeCurrentAddr(v); 3062 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3063 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3064 }else{ 3065 assert( pMWin->eEnd==TK_FOLLOWING ); 3066 addrStart = sqlite3VdbeCurrentAddr(v); 3067 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3068 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3069 } 3070 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3071 sqlite3VdbeJumpHere(v, addrBreak2); 3072 addrStart = sqlite3VdbeCurrentAddr(v); 3073 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3074 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3075 sqlite3VdbeJumpHere(v, addrBreak1); 3076 sqlite3VdbeJumpHere(v, addrBreak3); 3077 }else{ 3078 int addrBreak; 3079 int addrStart; 3080 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3081 addrStart = sqlite3VdbeCurrentAddr(v); 3082 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3083 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3084 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3085 sqlite3VdbeJumpHere(v, addrBreak); 3086 } 3087 sqlite3VdbeJumpHere(v, addrEmpty); 3088 3089 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3090 if( pMWin->pPartition ){ 3091 if( pMWin->regStartRowid ){ 3092 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3093 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3094 } 3095 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3096 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3097 } 3098 } 3099 3100 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3101