xref: /sqlite-3.40.0/src/window.c (revision dedd51ae)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,  \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,  \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,  \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* no break */ deliberate_fall_through
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( pParse->db->mallocFailed ) return WRC_Abort;
792       if( p->pSub ){
793         int i;
794         for(i=0; i<p->pSub->nExpr; i++){
795           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
796             iCol = i;
797             break;
798           }
799         }
800       }
801       if( iCol<0 ){
802         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
803         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
804         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
805       }
806       if( p->pSub ){
807         int f = pExpr->flags & EP_Collate;
808         assert( ExprHasProperty(pExpr, EP_Static)==0 );
809         ExprSetProperty(pExpr, EP_Static);
810         sqlite3ExprDelete(pParse->db, pExpr);
811         ExprClearProperty(pExpr, EP_Static);
812         memset(pExpr, 0, sizeof(Expr));
813 
814         pExpr->op = TK_COLUMN;
815         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
816         pExpr->iTable = p->pWin->iEphCsr;
817         pExpr->y.pTab = p->pTab;
818         pExpr->flags = f;
819       }
820       if( pParse->db->mallocFailed ) return WRC_Abort;
821       break;
822     }
823 
824     default: /* no-op */
825       break;
826   }
827 
828   return WRC_Continue;
829 }
830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
831   struct WindowRewrite *p = pWalker->u.pRewrite;
832   Select *pSave = p->pSubSelect;
833   if( pSave==pSelect ){
834     return WRC_Continue;
835   }else{
836     p->pSubSelect = pSelect;
837     sqlite3WalkSelect(pWalker, pSelect);
838     p->pSubSelect = pSave;
839   }
840   return WRC_Prune;
841 }
842 
843 
844 /*
845 ** Iterate through each expression in expression-list pEList. For each:
846 **
847 **   * TK_COLUMN,
848 **   * aggregate function, or
849 **   * window function with a Window object that is not a member of the
850 **     Window list passed as the second argument (pWin).
851 **
852 ** Append the node to output expression-list (*ppSub). And replace it
853 ** with a TK_COLUMN that reads the (N-1)th element of table
854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
855 ** appending the new one.
856 */
857 static void selectWindowRewriteEList(
858   Parse *pParse,
859   Window *pWin,
860   SrcList *pSrc,
861   ExprList *pEList,               /* Rewrite expressions in this list */
862   Table *pTab,
863   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
864 ){
865   Walker sWalker;
866   WindowRewrite sRewrite;
867 
868   assert( pWin!=0 );
869   memset(&sWalker, 0, sizeof(Walker));
870   memset(&sRewrite, 0, sizeof(WindowRewrite));
871 
872   sRewrite.pSub = *ppSub;
873   sRewrite.pWin = pWin;
874   sRewrite.pSrc = pSrc;
875   sRewrite.pTab = pTab;
876 
877   sWalker.pParse = pParse;
878   sWalker.xExprCallback = selectWindowRewriteExprCb;
879   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
880   sWalker.u.pRewrite = &sRewrite;
881 
882   (void)sqlite3WalkExprList(&sWalker, pEList);
883 
884   *ppSub = sRewrite.pSub;
885 }
886 
887 /*
888 ** Append a copy of each expression in expression-list pAppend to
889 ** expression list pList. Return a pointer to the result list.
890 */
891 static ExprList *exprListAppendList(
892   Parse *pParse,          /* Parsing context */
893   ExprList *pList,        /* List to which to append. Might be NULL */
894   ExprList *pAppend,      /* List of values to append. Might be NULL */
895   int bIntToNull
896 ){
897   if( pAppend ){
898     int i;
899     int nInit = pList ? pList->nExpr : 0;
900     for(i=0; i<pAppend->nExpr; i++){
901       sqlite3 *db = pParse->db;
902       Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
903       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
904       if( db->mallocFailed ){
905         sqlite3ExprDelete(db, pDup);
906         break;
907       }
908       if( bIntToNull ){
909         int iDummy;
910         Expr *pSub;
911         pSub = sqlite3ExprSkipCollateAndLikely(pDup);
912         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
913           pSub->op = TK_NULL;
914           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
915           pSub->u.zToken = 0;
916         }
917       }
918       pList = sqlite3ExprListAppend(pParse, pList, pDup);
919       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
920     }
921   }
922   return pList;
923 }
924 
925 /*
926 ** When rewriting a query, if the new subquery in the FROM clause
927 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
928 ** then we have to increase the Expr->op2 values of those nodes
929 ** due to the extra subquery layer that was added.
930 **
931 ** See also the incrAggDepth() routine in resolve.c
932 */
933 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
934   if( pExpr->op==TK_AGG_FUNCTION
935    && pExpr->op2>=pWalker->walkerDepth
936   ){
937     pExpr->op2++;
938   }
939   return WRC_Continue;
940 }
941 
942 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){
943   if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){
944     assert( !ExprHasProperty(pExpr, EP_IntValue) );
945      sqlite3ErrorMsg(pWalker->pParse,
946          "misuse of aggregate: %s()", pExpr->u.zToken);
947   }
948   return WRC_Continue;
949 }
950 
951 /*
952 ** If the SELECT statement passed as the second argument does not invoke
953 ** any SQL window functions, this function is a no-op. Otherwise, it
954 ** rewrites the SELECT statement so that window function xStep functions
955 ** are invoked in the correct order as described under "SELECT REWRITING"
956 ** at the top of this file.
957 */
958 int sqlite3WindowRewrite(Parse *pParse, Select *p){
959   int rc = SQLITE_OK;
960   if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) ){
961     Vdbe *v = sqlite3GetVdbe(pParse);
962     sqlite3 *db = pParse->db;
963     Select *pSub = 0;             /* The subquery */
964     SrcList *pSrc = p->pSrc;
965     Expr *pWhere = p->pWhere;
966     ExprList *pGroupBy = p->pGroupBy;
967     Expr *pHaving = p->pHaving;
968     ExprList *pSort = 0;
969 
970     ExprList *pSublist = 0;       /* Expression list for sub-query */
971     Window *pMWin = p->pWin;      /* Main window object */
972     Window *pWin;                 /* Window object iterator */
973     Table *pTab;
974     Walker w;
975 
976     u32 selFlags = p->selFlags;
977 
978     pTab = sqlite3DbMallocZero(db, sizeof(Table));
979     if( pTab==0 ){
980       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
981     }
982     sqlite3AggInfoPersistWalkerInit(&w, pParse);
983     sqlite3WalkSelect(&w, p);
984     if( (p->selFlags & SF_Aggregate)==0 ){
985       w.xExprCallback = disallowAggregatesInOrderByCb;
986       w.xSelectCallback = 0;
987       sqlite3WalkExprList(&w, p->pOrderBy);
988     }
989 
990     p->pSrc = 0;
991     p->pWhere = 0;
992     p->pGroupBy = 0;
993     p->pHaving = 0;
994     p->selFlags &= ~SF_Aggregate;
995     p->selFlags |= SF_WinRewrite;
996 
997     /* Create the ORDER BY clause for the sub-select. This is the concatenation
998     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
999     ** redundant, remove the ORDER BY from the parent SELECT.  */
1000     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
1001     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
1002     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
1003       int nSave = pSort->nExpr;
1004       pSort->nExpr = p->pOrderBy->nExpr;
1005       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
1006         sqlite3ExprListDelete(db, p->pOrderBy);
1007         p->pOrderBy = 0;
1008       }
1009       pSort->nExpr = nSave;
1010     }
1011 
1012     /* Assign a cursor number for the ephemeral table used to buffer rows.
1013     ** The OpenEphemeral instruction is coded later, after it is known how
1014     ** many columns the table will have.  */
1015     pMWin->iEphCsr = pParse->nTab++;
1016     pParse->nTab += 3;
1017 
1018     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1019     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1020     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1021 
1022     /* Append the PARTITION BY and ORDER BY expressions to the to the
1023     ** sub-select expression list. They are required to figure out where
1024     ** boundaries for partitions and sets of peer rows lie.  */
1025     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1026     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1027 
1028     /* Append the arguments passed to each window function to the
1029     ** sub-select expression list. Also allocate two registers for each
1030     ** window function - one for the accumulator, another for interim
1031     ** results.  */
1032     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1033       ExprList *pArgs;
1034       assert( ExprUseXList(pWin->pOwner) );
1035       pArgs = pWin->pOwner->x.pList;
1036       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1037         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1038         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1039         pWin->bExprArgs = 1;
1040       }else{
1041         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1042         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1043       }
1044       if( pWin->pFilter ){
1045         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1046         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1047       }
1048       pWin->regAccum = ++pParse->nMem;
1049       pWin->regResult = ++pParse->nMem;
1050       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1051     }
1052 
1053     /* If there is no ORDER BY or PARTITION BY clause, and the window
1054     ** function accepts zero arguments, and there are no other columns
1055     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1056     ** that pSublist is still NULL here. Add a constant expression here to
1057     ** keep everything legal in this case.
1058     */
1059     if( pSublist==0 ){
1060       pSublist = sqlite3ExprListAppend(pParse, 0,
1061         sqlite3Expr(db, TK_INTEGER, "0")
1062       );
1063     }
1064 
1065     pSub = sqlite3SelectNew(
1066         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1067     );
1068     SELECTTRACE(1,pParse,pSub,
1069        ("New window-function subquery in FROM clause of (%u/%p)\n",
1070        p->selId, p));
1071     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1072     assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside
1073                                      ** of sqlite3DbMallocRawNN() called from
1074                                      ** sqlite3SrcListAppend() */
1075     if( p->pSrc ){
1076       Table *pTab2;
1077       p->pSrc->a[0].pSelect = pSub;
1078       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1079       pSub->selFlags |= SF_Expanded|SF_OrderByReqd;
1080       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1081       pSub->selFlags |= (selFlags & SF_Aggregate);
1082       if( pTab2==0 ){
1083         /* Might actually be some other kind of error, but in that case
1084         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1085         ** the correct error message regardless. */
1086         rc = SQLITE_NOMEM;
1087       }else{
1088         memcpy(pTab, pTab2, sizeof(Table));
1089         pTab->tabFlags |= TF_Ephemeral;
1090         p->pSrc->a[0].pTab = pTab;
1091         pTab = pTab2;
1092         memset(&w, 0, sizeof(w));
1093         w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1094         w.xSelectCallback = sqlite3WalkerDepthIncrease;
1095         w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1096         sqlite3WalkSelect(&w, pSub);
1097       }
1098     }else{
1099       sqlite3SelectDelete(db, pSub);
1100     }
1101     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1102 
1103     /* Defer deleting the temporary table pTab because if an error occurred,
1104     ** there could still be references to that table embedded in the
1105     ** result-set or ORDER BY clause of the SELECT statement p.  */
1106     sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab);
1107   }
1108 
1109   assert( rc==SQLITE_OK || pParse->nErr!=0 );
1110   return rc;
1111 }
1112 
1113 /*
1114 ** Unlink the Window object from the Select to which it is attached,
1115 ** if it is attached.
1116 */
1117 void sqlite3WindowUnlinkFromSelect(Window *p){
1118   if( p->ppThis ){
1119     *p->ppThis = p->pNextWin;
1120     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1121     p->ppThis = 0;
1122   }
1123 }
1124 
1125 /*
1126 ** Free the Window object passed as the second argument.
1127 */
1128 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1129   if( p ){
1130     sqlite3WindowUnlinkFromSelect(p);
1131     sqlite3ExprDelete(db, p->pFilter);
1132     sqlite3ExprListDelete(db, p->pPartition);
1133     sqlite3ExprListDelete(db, p->pOrderBy);
1134     sqlite3ExprDelete(db, p->pEnd);
1135     sqlite3ExprDelete(db, p->pStart);
1136     sqlite3DbFree(db, p->zName);
1137     sqlite3DbFree(db, p->zBase);
1138     sqlite3DbFree(db, p);
1139   }
1140 }
1141 
1142 /*
1143 ** Free the linked list of Window objects starting at the second argument.
1144 */
1145 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1146   while( p ){
1147     Window *pNext = p->pNextWin;
1148     sqlite3WindowDelete(db, p);
1149     p = pNext;
1150   }
1151 }
1152 
1153 /*
1154 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1155 ** value should be a non-negative integer.  If the value is not a
1156 ** constant, change it to NULL.  The fact that it is then a non-negative
1157 ** integer will be caught later.  But it is important not to leave
1158 ** variable values in the expression tree.
1159 */
1160 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1161   if( 0==sqlite3ExprIsConstant(pExpr) ){
1162     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1163     sqlite3ExprDelete(pParse->db, pExpr);
1164     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1165   }
1166   return pExpr;
1167 }
1168 
1169 /*
1170 ** Allocate and return a new Window object describing a Window Definition.
1171 */
1172 Window *sqlite3WindowAlloc(
1173   Parse *pParse,    /* Parsing context */
1174   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1175   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1176   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1177   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1178   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1179   u8 eExclude       /* EXCLUDE clause */
1180 ){
1181   Window *pWin = 0;
1182   int bImplicitFrame = 0;
1183 
1184   /* Parser assures the following: */
1185   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1186   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1187            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1188   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1189            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1190   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1191   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1192 
1193   if( eType==0 ){
1194     bImplicitFrame = 1;
1195     eType = TK_RANGE;
1196   }
1197 
1198   /* Additionally, the
1199   ** starting boundary type may not occur earlier in the following list than
1200   ** the ending boundary type:
1201   **
1202   **   UNBOUNDED PRECEDING
1203   **   <expr> PRECEDING
1204   **   CURRENT ROW
1205   **   <expr> FOLLOWING
1206   **   UNBOUNDED FOLLOWING
1207   **
1208   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1209   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1210   ** frame boundary.
1211   */
1212   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1213    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1214   ){
1215     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1216     goto windowAllocErr;
1217   }
1218 
1219   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1220   if( pWin==0 ) goto windowAllocErr;
1221   pWin->eFrmType = eType;
1222   pWin->eStart = eStart;
1223   pWin->eEnd = eEnd;
1224   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1225     eExclude = TK_NO;
1226   }
1227   pWin->eExclude = eExclude;
1228   pWin->bImplicitFrame = bImplicitFrame;
1229   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1230   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1231   return pWin;
1232 
1233 windowAllocErr:
1234   sqlite3ExprDelete(pParse->db, pEnd);
1235   sqlite3ExprDelete(pParse->db, pStart);
1236   return 0;
1237 }
1238 
1239 /*
1240 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1241 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1242 ** equivalent nul-terminated string.
1243 */
1244 Window *sqlite3WindowAssemble(
1245   Parse *pParse,
1246   Window *pWin,
1247   ExprList *pPartition,
1248   ExprList *pOrderBy,
1249   Token *pBase
1250 ){
1251   if( pWin ){
1252     pWin->pPartition = pPartition;
1253     pWin->pOrderBy = pOrderBy;
1254     if( pBase ){
1255       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1256     }
1257   }else{
1258     sqlite3ExprListDelete(pParse->db, pPartition);
1259     sqlite3ExprListDelete(pParse->db, pOrderBy);
1260   }
1261   return pWin;
1262 }
1263 
1264 /*
1265 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1266 ** is the base window. Earlier windows from the same WINDOW clause are
1267 ** stored in the linked list starting at pWin->pNextWin. This function
1268 ** either updates *pWin according to the base specification, or else
1269 ** leaves an error in pParse.
1270 */
1271 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1272   if( pWin->zBase ){
1273     sqlite3 *db = pParse->db;
1274     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1275     if( pExist ){
1276       const char *zErr = 0;
1277       /* Check for errors */
1278       if( pWin->pPartition ){
1279         zErr = "PARTITION clause";
1280       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1281         zErr = "ORDER BY clause";
1282       }else if( pExist->bImplicitFrame==0 ){
1283         zErr = "frame specification";
1284       }
1285       if( zErr ){
1286         sqlite3ErrorMsg(pParse,
1287             "cannot override %s of window: %s", zErr, pWin->zBase
1288         );
1289       }else{
1290         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1291         if( pExist->pOrderBy ){
1292           assert( pWin->pOrderBy==0 );
1293           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1294         }
1295         sqlite3DbFree(db, pWin->zBase);
1296         pWin->zBase = 0;
1297       }
1298     }
1299   }
1300 }
1301 
1302 /*
1303 ** Attach window object pWin to expression p.
1304 */
1305 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1306   if( p ){
1307     assert( p->op==TK_FUNCTION );
1308     assert( pWin );
1309     p->y.pWin = pWin;
1310     ExprSetProperty(p, EP_WinFunc);
1311     pWin->pOwner = p;
1312     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1313       sqlite3ErrorMsg(pParse,
1314           "DISTINCT is not supported for window functions"
1315       );
1316     }
1317   }else{
1318     sqlite3WindowDelete(pParse->db, pWin);
1319   }
1320 }
1321 
1322 /*
1323 ** Possibly link window pWin into the list at pSel->pWin (window functions
1324 ** to be processed as part of SELECT statement pSel). The window is linked
1325 ** in if either (a) there are no other windows already linked to this
1326 ** SELECT, or (b) the windows already linked use a compatible window frame.
1327 */
1328 void sqlite3WindowLink(Select *pSel, Window *pWin){
1329   if( pSel ){
1330     if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
1331       pWin->pNextWin = pSel->pWin;
1332       if( pSel->pWin ){
1333         pSel->pWin->ppThis = &pWin->pNextWin;
1334       }
1335       pSel->pWin = pWin;
1336       pWin->ppThis = &pSel->pWin;
1337     }else{
1338       if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
1339         pSel->selFlags |= SF_MultiPart;
1340       }
1341     }
1342   }
1343 }
1344 
1345 /*
1346 ** Return 0 if the two window objects are identical, 1 if they are
1347 ** different, or 2 if it cannot be determined if the objects are identical
1348 ** or not. Identical window objects can be processed in a single scan.
1349 */
1350 int sqlite3WindowCompare(
1351   const Parse *pParse,
1352   const Window *p1,
1353   const Window *p2,
1354   int bFilter
1355 ){
1356   int res;
1357   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1358   if( p1->eFrmType!=p2->eFrmType ) return 1;
1359   if( p1->eStart!=p2->eStart ) return 1;
1360   if( p1->eEnd!=p2->eEnd ) return 1;
1361   if( p1->eExclude!=p2->eExclude ) return 1;
1362   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1363   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1364   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1365     return res;
1366   }
1367   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1368     return res;
1369   }
1370   if( bFilter ){
1371     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1372       return res;
1373     }
1374   }
1375   return 0;
1376 }
1377 
1378 
1379 /*
1380 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1381 ** to begin iterating through the sub-query results. It is used to allocate
1382 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1383 */
1384 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1385   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1386   Window *pMWin = pSelect->pWin;
1387   Window *pWin;
1388   Vdbe *v = sqlite3GetVdbe(pParse);
1389 
1390   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1391   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1392   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1393   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1394 
1395   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1396   ** said registers to NULL.  */
1397   if( pMWin->pPartition ){
1398     int nExpr = pMWin->pPartition->nExpr;
1399     pMWin->regPart = pParse->nMem+1;
1400     pParse->nMem += nExpr;
1401     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1402   }
1403 
1404   pMWin->regOne = ++pParse->nMem;
1405   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1406 
1407   if( pMWin->eExclude ){
1408     pMWin->regStartRowid = ++pParse->nMem;
1409     pMWin->regEndRowid = ++pParse->nMem;
1410     pMWin->csrApp = pParse->nTab++;
1411     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1412     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1413     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1414     return;
1415   }
1416 
1417   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1418     FuncDef *p = pWin->pFunc;
1419     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1420       /* The inline versions of min() and max() require a single ephemeral
1421       ** table and 3 registers. The registers are used as follows:
1422       **
1423       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1424       **   regApp+1: integer value used to ensure keys are unique
1425       **   regApp+2: output of MakeRecord
1426       */
1427       ExprList *pList;
1428       KeyInfo *pKeyInfo;
1429       assert( ExprUseXList(pWin->pOwner) );
1430       pList = pWin->pOwner->x.pList;
1431       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1432       pWin->csrApp = pParse->nTab++;
1433       pWin->regApp = pParse->nMem+1;
1434       pParse->nMem += 3;
1435       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1436         assert( pKeyInfo->aSortFlags[0]==0 );
1437         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1438       }
1439       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1440       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1441       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1442     }
1443     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1444       /* Allocate two registers at pWin->regApp. These will be used to
1445       ** store the start and end index of the current frame.  */
1446       pWin->regApp = pParse->nMem+1;
1447       pWin->csrApp = pParse->nTab++;
1448       pParse->nMem += 2;
1449       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1450     }
1451     else if( p->zName==leadName || p->zName==lagName ){
1452       pWin->csrApp = pParse->nTab++;
1453       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1454     }
1455   }
1456 }
1457 
1458 #define WINDOW_STARTING_INT  0
1459 #define WINDOW_ENDING_INT    1
1460 #define WINDOW_NTH_VALUE_INT 2
1461 #define WINDOW_STARTING_NUM  3
1462 #define WINDOW_ENDING_NUM    4
1463 
1464 /*
1465 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1466 ** value of the second argument to nth_value() (eCond==2) has just been
1467 ** evaluated and the result left in register reg. This function generates VM
1468 ** code to check that the value is a non-negative integer and throws an
1469 ** exception if it is not.
1470 */
1471 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1472   static const char *azErr[] = {
1473     "frame starting offset must be a non-negative integer",
1474     "frame ending offset must be a non-negative integer",
1475     "second argument to nth_value must be a positive integer",
1476     "frame starting offset must be a non-negative number",
1477     "frame ending offset must be a non-negative number",
1478   };
1479   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1480   Vdbe *v = sqlite3GetVdbe(pParse);
1481   int regZero = sqlite3GetTempReg(pParse);
1482   assert( eCond>=0 && eCond<ArraySize(azErr) );
1483   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1484   if( eCond>=WINDOW_STARTING_NUM ){
1485     int regString = sqlite3GetTempReg(pParse);
1486     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1487     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1488     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1489     VdbeCoverage(v);
1490     assert( eCond==3 || eCond==4 );
1491     VdbeCoverageIf(v, eCond==3);
1492     VdbeCoverageIf(v, eCond==4);
1493   }else{
1494     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1495     VdbeCoverage(v);
1496     assert( eCond==0 || eCond==1 || eCond==2 );
1497     VdbeCoverageIf(v, eCond==0);
1498     VdbeCoverageIf(v, eCond==1);
1499     VdbeCoverageIf(v, eCond==2);
1500   }
1501   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1502   sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
1503   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1504   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1505   VdbeCoverageNeverNullIf(v, eCond==2);
1506   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1507   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1508   sqlite3MayAbort(pParse);
1509   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1510   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1511   sqlite3ReleaseTempReg(pParse, regZero);
1512 }
1513 
1514 /*
1515 ** Return the number of arguments passed to the window-function associated
1516 ** with the object passed as the only argument to this function.
1517 */
1518 static int windowArgCount(Window *pWin){
1519   const ExprList *pList;
1520   assert( ExprUseXList(pWin->pOwner) );
1521   pList = pWin->pOwner->x.pList;
1522   return (pList ? pList->nExpr : 0);
1523 }
1524 
1525 typedef struct WindowCodeArg WindowCodeArg;
1526 typedef struct WindowCsrAndReg WindowCsrAndReg;
1527 
1528 /*
1529 ** See comments above struct WindowCodeArg.
1530 */
1531 struct WindowCsrAndReg {
1532   int csr;                        /* Cursor number */
1533   int reg;                        /* First in array of peer values */
1534 };
1535 
1536 /*
1537 ** A single instance of this structure is allocated on the stack by
1538 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1539 ** routines. This is to reduce the number of arguments required by each
1540 ** helper function.
1541 **
1542 ** regArg:
1543 **   Each window function requires an accumulator register (just as an
1544 **   ordinary aggregate function does). This variable is set to the first
1545 **   in an array of accumulator registers - one for each window function
1546 **   in the WindowCodeArg.pMWin list.
1547 **
1548 ** eDelete:
1549 **   The window functions implementation sometimes caches the input rows
1550 **   that it processes in a temporary table. If it is not zero, this
1551 **   variable indicates when rows may be removed from the temp table (in
1552 **   order to reduce memory requirements - it would always be safe just
1553 **   to leave them there). Possible values for eDelete are:
1554 **
1555 **      WINDOW_RETURN_ROW:
1556 **        An input row can be discarded after it is returned to the caller.
1557 **
1558 **      WINDOW_AGGINVERSE:
1559 **        An input row can be discarded after the window functions xInverse()
1560 **        callbacks have been invoked in it.
1561 **
1562 **      WINDOW_AGGSTEP:
1563 **        An input row can be discarded after the window functions xStep()
1564 **        callbacks have been invoked in it.
1565 **
1566 ** start,current,end
1567 **   Consider a window-frame similar to the following:
1568 **
1569 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1570 **
1571 **   The windows functions implmentation caches the input rows in a temp
1572 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1573 **   aggressively removes rows once they are no longer required, but that's
1574 **   a mere detail). It keeps three cursors open on the temp table. One
1575 **   (current) that points to the next row to return to the query engine
1576 **   once its window function values have been calculated. Another (end)
1577 **   points to the next row to call the xStep() method of each window function
1578 **   on (so that it is 2 groups ahead of current). And a third (start) that
1579 **   points to the next row to call the xInverse() method of each window
1580 **   function on.
1581 **
1582 **   Each cursor (start, current and end) consists of a VDBE cursor
1583 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1584 **   WindowCodeArg.reg) that always contains a copy of the peer values
1585 **   read from the corresponding cursor.
1586 **
1587 **   Depending on the window-frame in question, all three cursors may not
1588 **   be required. In this case both WindowCodeArg.csr and reg are set to
1589 **   0.
1590 */
1591 struct WindowCodeArg {
1592   Parse *pParse;             /* Parse context */
1593   Window *pMWin;             /* First in list of functions being processed */
1594   Vdbe *pVdbe;               /* VDBE object */
1595   int addrGosub;             /* OP_Gosub to this address to return one row */
1596   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1597   int regArg;                /* First in array of accumulator registers */
1598   int eDelete;               /* See above */
1599   int regRowid;
1600 
1601   WindowCsrAndReg start;
1602   WindowCsrAndReg current;
1603   WindowCsrAndReg end;
1604 };
1605 
1606 /*
1607 ** Generate VM code to read the window frames peer values from cursor csr into
1608 ** an array of registers starting at reg.
1609 */
1610 static void windowReadPeerValues(
1611   WindowCodeArg *p,
1612   int csr,
1613   int reg
1614 ){
1615   Window *pMWin = p->pMWin;
1616   ExprList *pOrderBy = pMWin->pOrderBy;
1617   if( pOrderBy ){
1618     Vdbe *v = sqlite3GetVdbe(p->pParse);
1619     ExprList *pPart = pMWin->pPartition;
1620     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1621     int i;
1622     for(i=0; i<pOrderBy->nExpr; i++){
1623       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1624     }
1625   }
1626 }
1627 
1628 /*
1629 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1630 ** xInverse (if bInverse is non-zero) for each window function in the
1631 ** linked list starting at pMWin. Or, for built-in window functions
1632 ** that do not use the standard function API, generate the required
1633 ** inline VM code.
1634 **
1635 ** If argument csr is greater than or equal to 0, then argument reg is
1636 ** the first register in an array of registers guaranteed to be large
1637 ** enough to hold the array of arguments for each function. In this case
1638 ** the arguments are extracted from the current row of csr into the
1639 ** array of registers before invoking OP_AggStep or OP_AggInverse
1640 **
1641 ** Or, if csr is less than zero, then the array of registers at reg is
1642 ** already populated with all columns from the current row of the sub-query.
1643 **
1644 ** If argument regPartSize is non-zero, then it is a register containing the
1645 ** number of rows in the current partition.
1646 */
1647 static void windowAggStep(
1648   WindowCodeArg *p,
1649   Window *pMWin,                  /* Linked list of window functions */
1650   int csr,                        /* Read arguments from this cursor */
1651   int bInverse,                   /* True to invoke xInverse instead of xStep */
1652   int reg                         /* Array of registers */
1653 ){
1654   Parse *pParse = p->pParse;
1655   Vdbe *v = sqlite3GetVdbe(pParse);
1656   Window *pWin;
1657   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1658     FuncDef *pFunc = pWin->pFunc;
1659     int regArg;
1660     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1661     int i;
1662 
1663     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1664 
1665     /* All OVER clauses in the same window function aggregate step must
1666     ** be the same. */
1667     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1668 
1669     for(i=0; i<nArg; i++){
1670       if( i!=1 || pFunc->zName!=nth_valueName ){
1671         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1672       }else{
1673         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1674       }
1675     }
1676     regArg = reg;
1677 
1678     if( pMWin->regStartRowid==0
1679      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1680      && (pWin->eStart!=TK_UNBOUNDED)
1681     ){
1682       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1683       VdbeCoverage(v);
1684       if( bInverse==0 ){
1685         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1686         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1687         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1688         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1689       }else{
1690         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1691         VdbeCoverageNeverTaken(v);
1692         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1693         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1694       }
1695       sqlite3VdbeJumpHere(v, addrIsNull);
1696     }else if( pWin->regApp ){
1697       assert( pFunc->zName==nth_valueName
1698            || pFunc->zName==first_valueName
1699       );
1700       assert( bInverse==0 || bInverse==1 );
1701       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1702     }else if( pFunc->xSFunc!=noopStepFunc ){
1703       int addrIf = 0;
1704       if( pWin->pFilter ){
1705         int regTmp;
1706         assert( ExprUseXList(pWin->pOwner) );
1707         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1708         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1709         regTmp = sqlite3GetTempReg(pParse);
1710         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1711         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1712         VdbeCoverage(v);
1713         sqlite3ReleaseTempReg(pParse, regTmp);
1714       }
1715 
1716       if( pWin->bExprArgs ){
1717         int iOp = sqlite3VdbeCurrentAddr(v);
1718         int iEnd;
1719 
1720         assert( ExprUseXList(pWin->pOwner) );
1721         nArg = pWin->pOwner->x.pList->nExpr;
1722         regArg = sqlite3GetTempRange(pParse, nArg);
1723         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1724 
1725         for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){
1726           VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp);
1727           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1728             pOp->p1 = csr;
1729           }
1730         }
1731       }
1732       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1733         CollSeq *pColl;
1734         assert( nArg>0 );
1735         assert( ExprUseXList(pWin->pOwner) );
1736         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1737         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1738       }
1739       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1740                         bInverse, regArg, pWin->regAccum);
1741       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1742       sqlite3VdbeChangeP5(v, (u8)nArg);
1743       if( pWin->bExprArgs ){
1744         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1745       }
1746       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1747     }
1748   }
1749 }
1750 
1751 /*
1752 ** Values that may be passed as the second argument to windowCodeOp().
1753 */
1754 #define WINDOW_RETURN_ROW 1
1755 #define WINDOW_AGGINVERSE 2
1756 #define WINDOW_AGGSTEP    3
1757 
1758 /*
1759 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1760 ** (bFin==1) for each window function in the linked list starting at
1761 ** pMWin. Or, for built-in window-functions that do not use the standard
1762 ** API, generate the equivalent VM code.
1763 */
1764 static void windowAggFinal(WindowCodeArg *p, int bFin){
1765   Parse *pParse = p->pParse;
1766   Window *pMWin = p->pMWin;
1767   Vdbe *v = sqlite3GetVdbe(pParse);
1768   Window *pWin;
1769 
1770   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1771     if( pMWin->regStartRowid==0
1772      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1773      && (pWin->eStart!=TK_UNBOUNDED)
1774     ){
1775       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1776       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1777       VdbeCoverage(v);
1778       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1779       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1780     }else if( pWin->regApp ){
1781       assert( pMWin->regStartRowid==0 );
1782     }else{
1783       int nArg = windowArgCount(pWin);
1784       if( bFin ){
1785         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1786         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1787         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1788         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1789       }else{
1790         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1791         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1792       }
1793     }
1794   }
1795 }
1796 
1797 /*
1798 ** Generate code to calculate the current values of all window functions in the
1799 ** p->pMWin list by doing a full scan of the current window frame. Store the
1800 ** results in the Window.regResult registers, ready to return the upper
1801 ** layer.
1802 */
1803 static void windowFullScan(WindowCodeArg *p){
1804   Window *pWin;
1805   Parse *pParse = p->pParse;
1806   Window *pMWin = p->pMWin;
1807   Vdbe *v = p->pVdbe;
1808 
1809   int regCRowid = 0;              /* Current rowid value */
1810   int regCPeer = 0;               /* Current peer values */
1811   int regRowid = 0;               /* AggStep rowid value */
1812   int regPeer = 0;                /* AggStep peer values */
1813 
1814   int nPeer;
1815   int lblNext;
1816   int lblBrk;
1817   int addrNext;
1818   int csr;
1819 
1820   VdbeModuleComment((v, "windowFullScan begin"));
1821 
1822   assert( pMWin!=0 );
1823   csr = pMWin->csrApp;
1824   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1825 
1826   lblNext = sqlite3VdbeMakeLabel(pParse);
1827   lblBrk = sqlite3VdbeMakeLabel(pParse);
1828 
1829   regCRowid = sqlite3GetTempReg(pParse);
1830   regRowid = sqlite3GetTempReg(pParse);
1831   if( nPeer ){
1832     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1833     regPeer = sqlite3GetTempRange(pParse, nPeer);
1834   }
1835 
1836   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1837   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1838 
1839   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1840     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1841   }
1842 
1843   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1844   VdbeCoverage(v);
1845   addrNext = sqlite3VdbeCurrentAddr(v);
1846   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1847   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1848   VdbeCoverageNeverNull(v);
1849 
1850   if( pMWin->eExclude==TK_CURRENT ){
1851     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1852     VdbeCoverageNeverNull(v);
1853   }else if( pMWin->eExclude!=TK_NO ){
1854     int addr;
1855     int addrEq = 0;
1856     KeyInfo *pKeyInfo = 0;
1857 
1858     if( pMWin->pOrderBy ){
1859       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1860     }
1861     if( pMWin->eExclude==TK_TIES ){
1862       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1863       VdbeCoverageNeverNull(v);
1864     }
1865     if( pKeyInfo ){
1866       windowReadPeerValues(p, csr, regPeer);
1867       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1868       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1869       addr = sqlite3VdbeCurrentAddr(v)+1;
1870       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1871       VdbeCoverageEqNe(v);
1872     }else{
1873       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1874     }
1875     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1876   }
1877 
1878   windowAggStep(p, pMWin, csr, 0, p->regArg);
1879 
1880   sqlite3VdbeResolveLabel(v, lblNext);
1881   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1882   VdbeCoverage(v);
1883   sqlite3VdbeJumpHere(v, addrNext-1);
1884   sqlite3VdbeJumpHere(v, addrNext+1);
1885   sqlite3ReleaseTempReg(pParse, regRowid);
1886   sqlite3ReleaseTempReg(pParse, regCRowid);
1887   if( nPeer ){
1888     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1889     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1890   }
1891 
1892   windowAggFinal(p, 1);
1893   VdbeModuleComment((v, "windowFullScan end"));
1894 }
1895 
1896 /*
1897 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1898 ** return the current row of Window.iEphCsr. If all window functions are
1899 ** aggregate window functions that use the standard API, a single
1900 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1901 ** for per-row processing is only generated for the following built-in window
1902 ** functions:
1903 **
1904 **   nth_value()
1905 **   first_value()
1906 **   lag()
1907 **   lead()
1908 */
1909 static void windowReturnOneRow(WindowCodeArg *p){
1910   Window *pMWin = p->pMWin;
1911   Vdbe *v = p->pVdbe;
1912 
1913   if( pMWin->regStartRowid ){
1914     windowFullScan(p);
1915   }else{
1916     Parse *pParse = p->pParse;
1917     Window *pWin;
1918 
1919     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1920       FuncDef *pFunc = pWin->pFunc;
1921       assert( ExprUseXList(pWin->pOwner) );
1922       if( pFunc->zName==nth_valueName
1923        || pFunc->zName==first_valueName
1924       ){
1925         int csr = pWin->csrApp;
1926         int lbl = sqlite3VdbeMakeLabel(pParse);
1927         int tmpReg = sqlite3GetTempReg(pParse);
1928         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1929 
1930         if( pFunc->zName==nth_valueName ){
1931           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1932           windowCheckValue(pParse, tmpReg, 2);
1933         }else{
1934           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1935         }
1936         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1937         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1938         VdbeCoverageNeverNull(v);
1939         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1940         VdbeCoverageNeverTaken(v);
1941         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1942         sqlite3VdbeResolveLabel(v, lbl);
1943         sqlite3ReleaseTempReg(pParse, tmpReg);
1944       }
1945       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1946         int nArg = pWin->pOwner->x.pList->nExpr;
1947         int csr = pWin->csrApp;
1948         int lbl = sqlite3VdbeMakeLabel(pParse);
1949         int tmpReg = sqlite3GetTempReg(pParse);
1950         int iEph = pMWin->iEphCsr;
1951 
1952         if( nArg<3 ){
1953           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1954         }else{
1955           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1956         }
1957         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1958         if( nArg<2 ){
1959           int val = (pFunc->zName==leadName ? 1 : -1);
1960           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1961         }else{
1962           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1963           int tmpReg2 = sqlite3GetTempReg(pParse);
1964           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1965           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1966           sqlite3ReleaseTempReg(pParse, tmpReg2);
1967         }
1968 
1969         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1970         VdbeCoverage(v);
1971         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1972         sqlite3VdbeResolveLabel(v, lbl);
1973         sqlite3ReleaseTempReg(pParse, tmpReg);
1974       }
1975     }
1976   }
1977   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1978 }
1979 
1980 /*
1981 ** Generate code to set the accumulator register for each window function
1982 ** in the linked list passed as the second argument to NULL. And perform
1983 ** any equivalent initialization required by any built-in window functions
1984 ** in the list.
1985 */
1986 static int windowInitAccum(Parse *pParse, Window *pMWin){
1987   Vdbe *v = sqlite3GetVdbe(pParse);
1988   int regArg;
1989   int nArg = 0;
1990   Window *pWin;
1991   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1992     FuncDef *pFunc = pWin->pFunc;
1993     assert( pWin->regAccum );
1994     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1995     nArg = MAX(nArg, windowArgCount(pWin));
1996     if( pMWin->regStartRowid==0 ){
1997       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1998         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1999         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
2000       }
2001 
2002       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
2003         assert( pWin->eStart!=TK_UNBOUNDED );
2004         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
2005         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
2006       }
2007     }
2008   }
2009   regArg = pParse->nMem+1;
2010   pParse->nMem += nArg;
2011   return regArg;
2012 }
2013 
2014 /*
2015 ** Return true if the current frame should be cached in the ephemeral table,
2016 ** even if there are no xInverse() calls required.
2017 */
2018 static int windowCacheFrame(Window *pMWin){
2019   Window *pWin;
2020   if( pMWin->regStartRowid ) return 1;
2021   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
2022     FuncDef *pFunc = pWin->pFunc;
2023     if( (pFunc->zName==nth_valueName)
2024      || (pFunc->zName==first_valueName)
2025      || (pFunc->zName==leadName)
2026      || (pFunc->zName==lagName)
2027     ){
2028       return 1;
2029     }
2030   }
2031   return 0;
2032 }
2033 
2034 /*
2035 ** regOld and regNew are each the first register in an array of size
2036 ** pOrderBy->nExpr. This function generates code to compare the two
2037 ** arrays of registers using the collation sequences and other comparison
2038 ** parameters specified by pOrderBy.
2039 **
2040 ** If the two arrays are not equal, the contents of regNew is copied to
2041 ** regOld and control falls through. Otherwise, if the contents of the arrays
2042 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2043 */
2044 static void windowIfNewPeer(
2045   Parse *pParse,
2046   ExprList *pOrderBy,
2047   int regNew,                     /* First in array of new values */
2048   int regOld,                     /* First in array of old values */
2049   int addr                        /* Jump here */
2050 ){
2051   Vdbe *v = sqlite3GetVdbe(pParse);
2052   if( pOrderBy ){
2053     int nVal = pOrderBy->nExpr;
2054     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2055     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2056     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2057     sqlite3VdbeAddOp3(v, OP_Jump,
2058       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2059     );
2060     VdbeCoverageEqNe(v);
2061     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2062   }else{
2063     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2064   }
2065 }
2066 
2067 /*
2068 ** This function is called as part of generating VM programs for RANGE
2069 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2070 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2071 ** code equivalent to:
2072 **
2073 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2074 **
2075 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2076 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2077 **
2078 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2079 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2080 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2081 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2082 ** is OP_Ge, the generated code is equivalent to:
2083 **
2084 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2085 **
2086 ** A special type of arithmetic is used such that if csr1.peerVal is not
2087 ** a numeric type (real or integer), then the result of the addition
2088 ** or subtraction is a a copy of csr1.peerVal.
2089 */
2090 static void windowCodeRangeTest(
2091   WindowCodeArg *p,
2092   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2093   int csr1,                       /* Cursor number for cursor 1 */
2094   int regVal,                     /* Register containing non-negative number */
2095   int csr2,                       /* Cursor number for cursor 2 */
2096   int lbl                         /* Jump destination if condition is true */
2097 ){
2098   Parse *pParse = p->pParse;
2099   Vdbe *v = sqlite3GetVdbe(pParse);
2100   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2101   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2102   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2103   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2104   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2105   int addrGe;                               /* Jump destination */
2106   int addrDone = sqlite3VdbeMakeLabel(pParse);   /* Address past OP_Ge */
2107   CollSeq *pColl;
2108 
2109   /* Read the peer-value from each cursor into a register */
2110   windowReadPeerValues(p, csr1, reg1);
2111   windowReadPeerValues(p, csr2, reg2);
2112 
2113   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2114   assert( pOrderBy && pOrderBy->nExpr==1 );
2115   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2116     switch( op ){
2117       case OP_Ge: op = OP_Le; break;
2118       case OP_Gt: op = OP_Lt; break;
2119       default: assert( op==OP_Le ); op = OP_Ge; break;
2120     }
2121     arith = OP_Subtract;
2122   }
2123 
2124   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2125       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2126       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2127   ));
2128 
2129   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2130   ** consider NULL values to be larger than all other values, instead of
2131   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2132   ** (and adding that capability causes a performance regression), so
2133   ** instead if the BIGNULL flag is set then cases where either reg1 or
2134   ** reg2 are NULL are handled separately in the following block. The code
2135   ** generated is equivalent to:
2136   **
2137   **   if( reg1 IS NULL ){
2138   **     if( op==OP_Ge ) goto lbl;
2139   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2140   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2141   **   }else if( reg2 IS NULL ){
2142   **     if( op==OP_Le ) goto lbl;
2143   **   }
2144   **
2145   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2146   ** not taken, control jumps over the comparison operator coded below this
2147   ** block.  */
2148   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2149     /* This block runs if reg1 contains a NULL. */
2150     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2151     switch( op ){
2152       case OP_Ge:
2153         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2154         break;
2155       case OP_Gt:
2156         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2157         VdbeCoverage(v);
2158         break;
2159       case OP_Le:
2160         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2161         VdbeCoverage(v);
2162         break;
2163       default: assert( op==OP_Lt ); /* no-op */ break;
2164     }
2165     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
2166 
2167     /* This block runs if reg1 is not NULL, but reg2 is. */
2168     sqlite3VdbeJumpHere(v, addr);
2169     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2170     if( op==OP_Gt || op==OP_Ge ){
2171       sqlite3VdbeChangeP2(v, -1, addrDone);
2172     }
2173   }
2174 
2175   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2176   ** This block adds (or subtracts for DESC) the numeric value in regVal
2177   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2178   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2179   **
2180   **   if( reg1>='' ) goto addrGe;
2181   **   reg1 = reg1 +/- regVal
2182   **   addrGe:
2183   **
2184   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2185   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2186   ** then the arithmetic is performed, but since adding or subtracting from
2187   ** NULL is always NULL anyway, this case is handled as required too.  */
2188   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2189   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2190   VdbeCoverage(v);
2191   if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
2192     sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2193   }
2194   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2195   sqlite3VdbeJumpHere(v, addrGe);
2196 
2197   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2198   ** control skips over this test if the BIGNULL flag is set and either
2199   ** reg1 or reg2 contain a NULL value.  */
2200   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2201   pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
2202   sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
2203   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2204   sqlite3VdbeResolveLabel(v, addrDone);
2205 
2206   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2207   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2208   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2209   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2210   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2211   sqlite3ReleaseTempReg(pParse, reg1);
2212   sqlite3ReleaseTempReg(pParse, reg2);
2213 
2214   VdbeModuleComment((v, "CodeRangeTest: end"));
2215 }
2216 
2217 /*
2218 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2219 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2220 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2221 ** details.
2222 */
2223 static int windowCodeOp(
2224  WindowCodeArg *p,                /* Context object */
2225  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2226  int regCountdown,                /* Register for OP_IfPos countdown */
2227  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2228 ){
2229   int csr, reg;
2230   Parse *pParse = p->pParse;
2231   Window *pMWin = p->pMWin;
2232   int ret = 0;
2233   Vdbe *v = p->pVdbe;
2234   int addrContinue = 0;
2235   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2236 
2237   int lblDone = sqlite3VdbeMakeLabel(pParse);
2238   int addrNextRange = 0;
2239 
2240   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2241   ** starts with UNBOUNDED PRECEDING. */
2242   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2243     assert( regCountdown==0 && jumpOnEof==0 );
2244     return 0;
2245   }
2246 
2247   if( regCountdown>0 ){
2248     if( pMWin->eFrmType==TK_RANGE ){
2249       addrNextRange = sqlite3VdbeCurrentAddr(v);
2250       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2251       if( op==WINDOW_AGGINVERSE ){
2252         if( pMWin->eStart==TK_FOLLOWING ){
2253           windowCodeRangeTest(
2254               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2255           );
2256         }else{
2257           windowCodeRangeTest(
2258               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2259           );
2260         }
2261       }else{
2262         windowCodeRangeTest(
2263             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2264         );
2265       }
2266     }else{
2267       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2268       VdbeCoverage(v);
2269     }
2270   }
2271 
2272   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2273     windowAggFinal(p, 0);
2274   }
2275   addrContinue = sqlite3VdbeCurrentAddr(v);
2276 
2277   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2278   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2279   ** start cursor does not advance past the end cursor within the
2280   ** temporary table. It otherwise might, if (a>b). Also ensure that,
2281   ** if the input cursor is still finding new rows, that the end
2282   ** cursor does not go past it to EOF. */
2283   if( pMWin->eStart==pMWin->eEnd && regCountdown
2284    && pMWin->eFrmType==TK_RANGE
2285   ){
2286     int regRowid1 = sqlite3GetTempReg(pParse);
2287     int regRowid2 = sqlite3GetTempReg(pParse);
2288     if( op==WINDOW_AGGINVERSE ){
2289       sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2290       sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2291       sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2292       VdbeCoverage(v);
2293     }else if( p->regRowid ){
2294       sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1);
2295       sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1);
2296       VdbeCoverageNeverNull(v);
2297     }
2298     sqlite3ReleaseTempReg(pParse, regRowid1);
2299     sqlite3ReleaseTempReg(pParse, regRowid2);
2300     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2301   }
2302 
2303   switch( op ){
2304     case WINDOW_RETURN_ROW:
2305       csr = p->current.csr;
2306       reg = p->current.reg;
2307       windowReturnOneRow(p);
2308       break;
2309 
2310     case WINDOW_AGGINVERSE:
2311       csr = p->start.csr;
2312       reg = p->start.reg;
2313       if( pMWin->regStartRowid ){
2314         assert( pMWin->regEndRowid );
2315         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2316       }else{
2317         windowAggStep(p, pMWin, csr, 1, p->regArg);
2318       }
2319       break;
2320 
2321     default:
2322       assert( op==WINDOW_AGGSTEP );
2323       csr = p->end.csr;
2324       reg = p->end.reg;
2325       if( pMWin->regStartRowid ){
2326         assert( pMWin->regEndRowid );
2327         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2328       }else{
2329         windowAggStep(p, pMWin, csr, 0, p->regArg);
2330       }
2331       break;
2332   }
2333 
2334   if( op==p->eDelete ){
2335     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2336     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2337   }
2338 
2339   if( jumpOnEof ){
2340     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2341     VdbeCoverage(v);
2342     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2343   }else{
2344     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2345     VdbeCoverage(v);
2346     if( bPeer ){
2347       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2348     }
2349   }
2350 
2351   if( bPeer ){
2352     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2353     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2354     windowReadPeerValues(p, csr, regTmp);
2355     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2356     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2357   }
2358 
2359   if( addrNextRange ){
2360     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2361   }
2362   sqlite3VdbeResolveLabel(v, lblDone);
2363   return ret;
2364 }
2365 
2366 
2367 /*
2368 ** Allocate and return a duplicate of the Window object indicated by the
2369 ** third argument. Set the Window.pOwner field of the new object to
2370 ** pOwner.
2371 */
2372 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2373   Window *pNew = 0;
2374   if( ALWAYS(p) ){
2375     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2376     if( pNew ){
2377       pNew->zName = sqlite3DbStrDup(db, p->zName);
2378       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2379       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2380       pNew->pFunc = p->pFunc;
2381       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2382       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2383       pNew->eFrmType = p->eFrmType;
2384       pNew->eEnd = p->eEnd;
2385       pNew->eStart = p->eStart;
2386       pNew->eExclude = p->eExclude;
2387       pNew->regResult = p->regResult;
2388       pNew->regAccum = p->regAccum;
2389       pNew->iArgCol = p->iArgCol;
2390       pNew->iEphCsr = p->iEphCsr;
2391       pNew->bExprArgs = p->bExprArgs;
2392       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2393       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2394       pNew->pOwner = pOwner;
2395       pNew->bImplicitFrame = p->bImplicitFrame;
2396     }
2397   }
2398   return pNew;
2399 }
2400 
2401 /*
2402 ** Return a copy of the linked list of Window objects passed as the
2403 ** second argument.
2404 */
2405 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2406   Window *pWin;
2407   Window *pRet = 0;
2408   Window **pp = &pRet;
2409 
2410   for(pWin=p; pWin; pWin=pWin->pNextWin){
2411     *pp = sqlite3WindowDup(db, 0, pWin);
2412     if( *pp==0 ) break;
2413     pp = &((*pp)->pNextWin);
2414   }
2415 
2416   return pRet;
2417 }
2418 
2419 /*
2420 ** Return true if it can be determined at compile time that expression
2421 ** pExpr evaluates to a value that, when cast to an integer, is greater
2422 ** than zero. False otherwise.
2423 **
2424 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2425 ** flag and returns zero.
2426 */
2427 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2428   int ret = 0;
2429   sqlite3 *db = pParse->db;
2430   sqlite3_value *pVal = 0;
2431   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2432   if( pVal && sqlite3_value_int(pVal)>0 ){
2433     ret = 1;
2434   }
2435   sqlite3ValueFree(pVal);
2436   return ret;
2437 }
2438 
2439 /*
2440 ** sqlite3WhereBegin() has already been called for the SELECT statement
2441 ** passed as the second argument when this function is invoked. It generates
2442 ** code to populate the Window.regResult register for each window function
2443 ** and invoke the sub-routine at instruction addrGosub once for each row.
2444 ** sqlite3WhereEnd() is always called before returning.
2445 **
2446 ** This function handles several different types of window frames, which
2447 ** require slightly different processing. The following pseudo code is
2448 ** used to implement window frames of the form:
2449 **
2450 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2451 **
2452 ** Other window frame types use variants of the following:
2453 **
2454 **     ... loop started by sqlite3WhereBegin() ...
2455 **       if( new partition ){
2456 **         Gosub flush
2457 **       }
2458 **       Insert new row into eph table.
2459 **
2460 **       if( first row of partition ){
2461 **         // Rewind three cursors, all open on the eph table.
2462 **         Rewind(csrEnd);
2463 **         Rewind(csrStart);
2464 **         Rewind(csrCurrent);
2465 **
2466 **         regEnd = <expr2>          // FOLLOWING expression
2467 **         regStart = <expr1>        // PRECEDING expression
2468 **       }else{
2469 **         // First time this branch is taken, the eph table contains two
2470 **         // rows. The first row in the partition, which all three cursors
2471 **         // currently point to, and the following row.
2472 **         AGGSTEP
2473 **         if( (regEnd--)<=0 ){
2474 **           RETURN_ROW
2475 **           if( (regStart--)<=0 ){
2476 **             AGGINVERSE
2477 **           }
2478 **         }
2479 **       }
2480 **     }
2481 **     flush:
2482 **       AGGSTEP
2483 **       while( 1 ){
2484 **         RETURN ROW
2485 **         if( csrCurrent is EOF ) break;
2486 **         if( (regStart--)<=0 ){
2487 **           AggInverse(csrStart)
2488 **           Next(csrStart)
2489 **         }
2490 **       }
2491 **
2492 ** The pseudo-code above uses the following shorthand:
2493 **
2494 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2495 **               with arguments read from the current row of cursor csrEnd, then
2496 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2497 **
2498 **   RETURN_ROW: return a row to the caller based on the contents of the
2499 **               current row of csrCurrent and the current state of all
2500 **               aggregates. Then step cursor csrCurrent forward one row.
2501 **
2502 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2503 **               functions with arguments read from the current row of cursor
2504 **               csrStart. Then step csrStart forward one row.
2505 **
2506 ** There are two other ROWS window frames that are handled significantly
2507 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2508 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2509 ** cases because they change the order in which the three cursors (csrStart,
2510 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2511 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2512 ** three.
2513 **
2514 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2515 **
2516 **     ... loop started by sqlite3WhereBegin() ...
2517 **       if( new partition ){
2518 **         Gosub flush
2519 **       }
2520 **       Insert new row into eph table.
2521 **       if( first row of partition ){
2522 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2523 **         regEnd = <expr2>
2524 **         regStart = <expr1>
2525 **       }else{
2526 **         if( (regEnd--)<=0 ){
2527 **           AGGSTEP
2528 **         }
2529 **         RETURN_ROW
2530 **         if( (regStart--)<=0 ){
2531 **           AGGINVERSE
2532 **         }
2533 **       }
2534 **     }
2535 **     flush:
2536 **       if( (regEnd--)<=0 ){
2537 **         AGGSTEP
2538 **       }
2539 **       RETURN_ROW
2540 **
2541 **
2542 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2543 **
2544 **     ... loop started by sqlite3WhereBegin() ...
2545 **     if( new partition ){
2546 **       Gosub flush
2547 **     }
2548 **     Insert new row into eph table.
2549 **     if( first row of partition ){
2550 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2551 **       regEnd = <expr2>
2552 **       regStart = regEnd - <expr1>
2553 **     }else{
2554 **       AGGSTEP
2555 **       if( (regEnd--)<=0 ){
2556 **         RETURN_ROW
2557 **       }
2558 **       if( (regStart--)<=0 ){
2559 **         AGGINVERSE
2560 **       }
2561 **     }
2562 **   }
2563 **   flush:
2564 **     AGGSTEP
2565 **     while( 1 ){
2566 **       if( (regEnd--)<=0 ){
2567 **         RETURN_ROW
2568 **         if( eof ) break;
2569 **       }
2570 **       if( (regStart--)<=0 ){
2571 **         AGGINVERSE
2572 **         if( eof ) break
2573 **       }
2574 **     }
2575 **     while( !eof csrCurrent ){
2576 **       RETURN_ROW
2577 **     }
2578 **
2579 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2580 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2581 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2582 ** This is optimized of course - branches that will never be taken and
2583 ** conditions that are always true are omitted from the VM code. The only
2584 ** exceptional case is:
2585 **
2586 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2587 **
2588 **     ... loop started by sqlite3WhereBegin() ...
2589 **     if( new partition ){
2590 **       Gosub flush
2591 **     }
2592 **     Insert new row into eph table.
2593 **     if( first row of partition ){
2594 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2595 **       regStart = <expr1>
2596 **     }else{
2597 **       AGGSTEP
2598 **     }
2599 **   }
2600 **   flush:
2601 **     AGGSTEP
2602 **     while( 1 ){
2603 **       if( (regStart--)<=0 ){
2604 **         AGGINVERSE
2605 **         if( eof ) break
2606 **       }
2607 **       RETURN_ROW
2608 **     }
2609 **     while( !eof csrCurrent ){
2610 **       RETURN_ROW
2611 **     }
2612 **
2613 ** Also requiring special handling are the cases:
2614 **
2615 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2616 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2617 **
2618 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2619 ** To handle this case, the pseudo-code programs depicted above are modified
2620 ** slightly to be:
2621 **
2622 **     ... loop started by sqlite3WhereBegin() ...
2623 **     if( new partition ){
2624 **       Gosub flush
2625 **     }
2626 **     Insert new row into eph table.
2627 **     if( first row of partition ){
2628 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2629 **       regEnd = <expr2>
2630 **       regStart = <expr1>
2631 **       if( regEnd < regStart ){
2632 **         RETURN_ROW
2633 **         delete eph table contents
2634 **         continue
2635 **       }
2636 **     ...
2637 **
2638 ** The new "continue" statement in the above jumps to the next iteration
2639 ** of the outer loop - the one started by sqlite3WhereBegin().
2640 **
2641 ** The various GROUPS cases are implemented using the same patterns as
2642 ** ROWS. The VM code is modified slightly so that:
2643 **
2644 **   1. The else branch in the main loop is only taken if the row just
2645 **      added to the ephemeral table is the start of a new group. In
2646 **      other words, it becomes:
2647 **
2648 **         ... loop started by sqlite3WhereBegin() ...
2649 **         if( new partition ){
2650 **           Gosub flush
2651 **         }
2652 **         Insert new row into eph table.
2653 **         if( first row of partition ){
2654 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2655 **           regEnd = <expr2>
2656 **           regStart = <expr1>
2657 **         }else if( new group ){
2658 **           ...
2659 **         }
2660 **       }
2661 **
2662 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2663 **      AGGINVERSE step processes the current row of the relevant cursor and
2664 **      all subsequent rows belonging to the same group.
2665 **
2666 ** RANGE window frames are a little different again. As for GROUPS, the
2667 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2668 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2669 ** basic cases:
2670 **
2671 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2672 **
2673 **     ... loop started by sqlite3WhereBegin() ...
2674 **       if( new partition ){
2675 **         Gosub flush
2676 **       }
2677 **       Insert new row into eph table.
2678 **       if( first row of partition ){
2679 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2680 **         regEnd = <expr2>
2681 **         regStart = <expr1>
2682 **       }else{
2683 **         AGGSTEP
2684 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2685 **           RETURN_ROW
2686 **           while( csrStart.key + regStart) < csrCurrent.key ){
2687 **             AGGINVERSE
2688 **           }
2689 **         }
2690 **       }
2691 **     }
2692 **     flush:
2693 **       AGGSTEP
2694 **       while( 1 ){
2695 **         RETURN ROW
2696 **         if( csrCurrent is EOF ) break;
2697 **           while( csrStart.key + regStart) < csrCurrent.key ){
2698 **             AGGINVERSE
2699 **           }
2700 **         }
2701 **       }
2702 **
2703 ** In the above notation, "csr.key" means the current value of the ORDER BY
2704 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2705 ** or <expr PRECEDING) read from cursor csr.
2706 **
2707 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2708 **
2709 **     ... loop started by sqlite3WhereBegin() ...
2710 **       if( new partition ){
2711 **         Gosub flush
2712 **       }
2713 **       Insert new row into eph table.
2714 **       if( first row of partition ){
2715 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2716 **         regEnd = <expr2>
2717 **         regStart = <expr1>
2718 **       }else{
2719 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2720 **           AGGSTEP
2721 **         }
2722 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2723 **           AGGINVERSE
2724 **         }
2725 **         RETURN_ROW
2726 **       }
2727 **     }
2728 **     flush:
2729 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2730 **         AGGSTEP
2731 **       }
2732 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2733 **         AGGINVERSE
2734 **       }
2735 **       RETURN_ROW
2736 **
2737 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2738 **
2739 **     ... loop started by sqlite3WhereBegin() ...
2740 **       if( new partition ){
2741 **         Gosub flush
2742 **       }
2743 **       Insert new row into eph table.
2744 **       if( first row of partition ){
2745 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2746 **         regEnd = <expr2>
2747 **         regStart = <expr1>
2748 **       }else{
2749 **         AGGSTEP
2750 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2751 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2752 **             AGGINVERSE
2753 **           }
2754 **           RETURN_ROW
2755 **         }
2756 **       }
2757 **     }
2758 **     flush:
2759 **       AGGSTEP
2760 **       while( 1 ){
2761 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2762 **           AGGINVERSE
2763 **           if( eof ) break "while( 1 )" loop.
2764 **         }
2765 **         RETURN_ROW
2766 **       }
2767 **       while( !eof csrCurrent ){
2768 **         RETURN_ROW
2769 **       }
2770 **
2771 ** The text above leaves out many details. Refer to the code and comments
2772 ** below for a more complete picture.
2773 */
2774 void sqlite3WindowCodeStep(
2775   Parse *pParse,                  /* Parse context */
2776   Select *p,                      /* Rewritten SELECT statement */
2777   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2778   int regGosub,                   /* Register for OP_Gosub */
2779   int addrGosub                   /* OP_Gosub here to return each row */
2780 ){
2781   Window *pMWin = p->pWin;
2782   ExprList *pOrderBy = pMWin->pOrderBy;
2783   Vdbe *v = sqlite3GetVdbe(pParse);
2784   int csrWrite;                   /* Cursor used to write to eph. table */
2785   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2786   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2787   int iInput;                               /* To iterate through sub cols */
2788   int addrNe;                     /* Address of OP_Ne */
2789   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2790   int addrInteger = 0;            /* Address of OP_Integer */
2791   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2792   int regNew;                     /* Array of registers holding new input row */
2793   int regRecord;                  /* regNew array in record form */
2794   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2795   int regPeer = 0;                /* Peer values for current row */
2796   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2797   WindowCodeArg s;                /* Context object for sub-routines */
2798   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2799   int regStart = 0;               /* Value of <expr> PRECEDING */
2800   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2801 
2802   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2803        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2804   );
2805   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2806        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2807   );
2808   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2809        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2810        || pMWin->eExclude==TK_NO
2811   );
2812 
2813   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2814 
2815   /* Fill in the context object */
2816   memset(&s, 0, sizeof(WindowCodeArg));
2817   s.pParse = pParse;
2818   s.pMWin = pMWin;
2819   s.pVdbe = v;
2820   s.regGosub = regGosub;
2821   s.addrGosub = addrGosub;
2822   s.current.csr = pMWin->iEphCsr;
2823   csrWrite = s.current.csr+1;
2824   s.start.csr = s.current.csr+2;
2825   s.end.csr = s.current.csr+3;
2826 
2827   /* Figure out when rows may be deleted from the ephemeral table. There
2828   ** are four options - they may never be deleted (eDelete==0), they may
2829   ** be deleted as soon as they are no longer part of the window frame
2830   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2831   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2832   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2833   switch( pMWin->eStart ){
2834     case TK_FOLLOWING:
2835       if( pMWin->eFrmType!=TK_RANGE
2836        && windowExprGtZero(pParse, pMWin->pStart)
2837       ){
2838         s.eDelete = WINDOW_RETURN_ROW;
2839       }
2840       break;
2841     case TK_UNBOUNDED:
2842       if( windowCacheFrame(pMWin)==0 ){
2843         if( pMWin->eEnd==TK_PRECEDING ){
2844           if( pMWin->eFrmType!=TK_RANGE
2845            && windowExprGtZero(pParse, pMWin->pEnd)
2846           ){
2847             s.eDelete = WINDOW_AGGSTEP;
2848           }
2849         }else{
2850           s.eDelete = WINDOW_RETURN_ROW;
2851         }
2852       }
2853       break;
2854     default:
2855       s.eDelete = WINDOW_AGGINVERSE;
2856       break;
2857   }
2858 
2859   /* Allocate registers for the array of values from the sub-query, the
2860   ** samve values in record form, and the rowid used to insert said record
2861   ** into the ephemeral table.  */
2862   regNew = pParse->nMem+1;
2863   pParse->nMem += nInput;
2864   regRecord = ++pParse->nMem;
2865   s.regRowid = ++pParse->nMem;
2866 
2867   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2868   ** clause, allocate registers to store the results of evaluating each
2869   ** <expr>.  */
2870   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2871     regStart = ++pParse->nMem;
2872   }
2873   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2874     regEnd = ++pParse->nMem;
2875   }
2876 
2877   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2878   ** registers to store copies of the ORDER BY expressions (peer values)
2879   ** for the main loop, and for each cursor (start, current and end). */
2880   if( pMWin->eFrmType!=TK_ROWS ){
2881     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2882     regNewPeer = regNew + pMWin->nBufferCol;
2883     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2884     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2885     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2886     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2887     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2888   }
2889 
2890   /* Load the column values for the row returned by the sub-select
2891   ** into an array of registers starting at regNew. Assemble them into
2892   ** a record in register regRecord. */
2893   for(iInput=0; iInput<nInput; iInput++){
2894     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2895   }
2896   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2897 
2898   /* An input row has just been read into an array of registers starting
2899   ** at regNew. If the window has a PARTITION clause, this block generates
2900   ** VM code to check if the input row is the start of a new partition.
2901   ** If so, it does an OP_Gosub to an address to be filled in later. The
2902   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2903   if( pMWin->pPartition ){
2904     int addr;
2905     ExprList *pPart = pMWin->pPartition;
2906     int nPart = pPart->nExpr;
2907     int regNewPart = regNew + pMWin->nBufferCol;
2908     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2909 
2910     regFlushPart = ++pParse->nMem;
2911     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2912     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2913     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2914     VdbeCoverageEqNe(v);
2915     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2916     VdbeComment((v, "call flush_partition"));
2917     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2918   }
2919 
2920   /* Insert the new row into the ephemeral table */
2921   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid);
2922   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid);
2923   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid);
2924   VdbeCoverageNeverNull(v);
2925 
2926   /* This block is run for the first row of each partition */
2927   s.regArg = windowInitAccum(pParse, pMWin);
2928 
2929   if( regStart ){
2930     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2931     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2932   }
2933   if( regEnd ){
2934     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2935     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2936   }
2937 
2938   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2939     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2940     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2941     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2942     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2943     windowAggFinal(&s, 0);
2944     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2945     VdbeCoverageNeverTaken(v);
2946     windowReturnOneRow(&s);
2947     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2948     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2949     sqlite3VdbeJumpHere(v, addrGe);
2950   }
2951   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2952     assert( pMWin->eEnd==TK_FOLLOWING );
2953     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2954   }
2955 
2956   if( pMWin->eStart!=TK_UNBOUNDED ){
2957     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2958     VdbeCoverageNeverTaken(v);
2959   }
2960   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2961   VdbeCoverageNeverTaken(v);
2962   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2963   VdbeCoverageNeverTaken(v);
2964   if( regPeer && pOrderBy ){
2965     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2966     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2967     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2968     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2969   }
2970 
2971   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2972 
2973   sqlite3VdbeJumpHere(v, addrNe);
2974 
2975   /* Beginning of the block executed for the second and subsequent rows. */
2976   if( regPeer ){
2977     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2978   }
2979   if( pMWin->eStart==TK_FOLLOWING ){
2980     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2981     if( pMWin->eEnd!=TK_UNBOUNDED ){
2982       if( pMWin->eFrmType==TK_RANGE ){
2983         int lbl = sqlite3VdbeMakeLabel(pParse);
2984         int addrNext = sqlite3VdbeCurrentAddr(v);
2985         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2986         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2987         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2988         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2989         sqlite3VdbeResolveLabel(v, lbl);
2990       }else{
2991         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2992         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2993       }
2994     }
2995   }else
2996   if( pMWin->eEnd==TK_PRECEDING ){
2997     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2998     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2999     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3000     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3001     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3002   }else{
3003     int addr = 0;
3004     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3005     if( pMWin->eEnd!=TK_UNBOUNDED ){
3006       if( pMWin->eFrmType==TK_RANGE ){
3007         int lbl = 0;
3008         addr = sqlite3VdbeCurrentAddr(v);
3009         if( regEnd ){
3010           lbl = sqlite3VdbeMakeLabel(pParse);
3011           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
3012         }
3013         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3014         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3015         if( regEnd ){
3016           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
3017           sqlite3VdbeResolveLabel(v, lbl);
3018         }
3019       }else{
3020         if( regEnd ){
3021           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
3022           VdbeCoverage(v);
3023         }
3024         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3025         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3026         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
3027       }
3028     }
3029   }
3030 
3031   /* End of the main input loop */
3032   sqlite3VdbeResolveLabel(v, lblWhereEnd);
3033   sqlite3WhereEnd(pWInfo);
3034 
3035   /* Fall through */
3036   if( pMWin->pPartition ){
3037     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
3038     sqlite3VdbeJumpHere(v, addrGosubFlush);
3039   }
3040 
3041   s.regRowid = 0;
3042   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
3043   VdbeCoverage(v);
3044   if( pMWin->eEnd==TK_PRECEDING ){
3045     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
3046     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
3047     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3048     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3049   }else if( pMWin->eStart==TK_FOLLOWING ){
3050     int addrStart;
3051     int addrBreak1;
3052     int addrBreak2;
3053     int addrBreak3;
3054     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3055     if( pMWin->eFrmType==TK_RANGE ){
3056       addrStart = sqlite3VdbeCurrentAddr(v);
3057       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3058       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3059     }else
3060     if( pMWin->eEnd==TK_UNBOUNDED ){
3061       addrStart = sqlite3VdbeCurrentAddr(v);
3062       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3063       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3064     }else{
3065       assert( pMWin->eEnd==TK_FOLLOWING );
3066       addrStart = sqlite3VdbeCurrentAddr(v);
3067       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3068       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3069     }
3070     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3071     sqlite3VdbeJumpHere(v, addrBreak2);
3072     addrStart = sqlite3VdbeCurrentAddr(v);
3073     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3074     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3075     sqlite3VdbeJumpHere(v, addrBreak1);
3076     sqlite3VdbeJumpHere(v, addrBreak3);
3077   }else{
3078     int addrBreak;
3079     int addrStart;
3080     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3081     addrStart = sqlite3VdbeCurrentAddr(v);
3082     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3083     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3084     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3085     sqlite3VdbeJumpHere(v, addrBreak);
3086   }
3087   sqlite3VdbeJumpHere(v, addrEmpty);
3088 
3089   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3090   if( pMWin->pPartition ){
3091     if( pMWin->regStartRowid ){
3092       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3093       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3094     }
3095     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3096     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3097   }
3098 }
3099 
3100 #endif /* SQLITE_OMIT_WINDOWFUNC */
3101