xref: /sqlite-3.40.0/src/window.c (revision d22ecfd3)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* no break */ deliberate_fall_through
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( pParse->db->mallocFailed ) return WRC_Abort;
792       if( p->pSub ){
793         int i;
794         for(i=0; i<p->pSub->nExpr; i++){
795           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
796             iCol = i;
797             break;
798           }
799         }
800       }
801       if( iCol<0 ){
802         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
803         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
804         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
805       }
806       if( p->pSub ){
807         int f = pExpr->flags & EP_Collate;
808         assert( ExprHasProperty(pExpr, EP_Static)==0 );
809         ExprSetProperty(pExpr, EP_Static);
810         sqlite3ExprDelete(pParse->db, pExpr);
811         ExprClearProperty(pExpr, EP_Static);
812         memset(pExpr, 0, sizeof(Expr));
813 
814         pExpr->op = TK_COLUMN;
815         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
816         pExpr->iTable = p->pWin->iEphCsr;
817         pExpr->y.pTab = p->pTab;
818         pExpr->flags = f;
819       }
820       if( pParse->db->mallocFailed ) return WRC_Abort;
821       break;
822     }
823 
824     default: /* no-op */
825       break;
826   }
827 
828   return WRC_Continue;
829 }
830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
831   struct WindowRewrite *p = pWalker->u.pRewrite;
832   Select *pSave = p->pSubSelect;
833   if( pSave==pSelect ){
834     return WRC_Continue;
835   }else{
836     p->pSubSelect = pSelect;
837     sqlite3WalkSelect(pWalker, pSelect);
838     p->pSubSelect = pSave;
839   }
840   return WRC_Prune;
841 }
842 
843 
844 /*
845 ** Iterate through each expression in expression-list pEList. For each:
846 **
847 **   * TK_COLUMN,
848 **   * aggregate function, or
849 **   * window function with a Window object that is not a member of the
850 **     Window list passed as the second argument (pWin).
851 **
852 ** Append the node to output expression-list (*ppSub). And replace it
853 ** with a TK_COLUMN that reads the (N-1)th element of table
854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
855 ** appending the new one.
856 */
857 static void selectWindowRewriteEList(
858   Parse *pParse,
859   Window *pWin,
860   SrcList *pSrc,
861   ExprList *pEList,               /* Rewrite expressions in this list */
862   Table *pTab,
863   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
864 ){
865   Walker sWalker;
866   WindowRewrite sRewrite;
867 
868   assert( pWin!=0 );
869   memset(&sWalker, 0, sizeof(Walker));
870   memset(&sRewrite, 0, sizeof(WindowRewrite));
871 
872   sRewrite.pSub = *ppSub;
873   sRewrite.pWin = pWin;
874   sRewrite.pSrc = pSrc;
875   sRewrite.pTab = pTab;
876 
877   sWalker.pParse = pParse;
878   sWalker.xExprCallback = selectWindowRewriteExprCb;
879   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
880   sWalker.u.pRewrite = &sRewrite;
881 
882   (void)sqlite3WalkExprList(&sWalker, pEList);
883 
884   *ppSub = sRewrite.pSub;
885 }
886 
887 /*
888 ** Append a copy of each expression in expression-list pAppend to
889 ** expression list pList. Return a pointer to the result list.
890 */
891 static ExprList *exprListAppendList(
892   Parse *pParse,          /* Parsing context */
893   ExprList *pList,        /* List to which to append. Might be NULL */
894   ExprList *pAppend,      /* List of values to append. Might be NULL */
895   int bIntToNull
896 ){
897   if( pAppend ){
898     int i;
899     int nInit = pList ? pList->nExpr : 0;
900     for(i=0; i<pAppend->nExpr; i++){
901       sqlite3 *db = pParse->db;
902       Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
903       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
904       if( db->mallocFailed ){
905         sqlite3ExprDelete(db, pDup);
906         break;
907       }
908       if( bIntToNull ){
909         int iDummy;
910         Expr *pSub;
911         for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){
912           assert( pSub );
913         }
914         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
915           pSub->op = TK_NULL;
916           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
917           pSub->u.zToken = 0;
918         }
919       }
920       pList = sqlite3ExprListAppend(pParse, pList, pDup);
921       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
922     }
923   }
924   return pList;
925 }
926 
927 /*
928 ** When rewriting a query, if the new subquery in the FROM clause
929 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
930 ** then we have to increase the Expr->op2 values of those nodes
931 ** due to the extra subquery layer that was added.
932 **
933 ** See also the incrAggDepth() routine in resolve.c
934 */
935 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
936   if( pExpr->op==TK_AGG_FUNCTION
937    && pExpr->op2>=pWalker->walkerDepth
938   ){
939     pExpr->op2++;
940   }
941   return WRC_Continue;
942 }
943 
944 /*
945 ** If the SELECT statement passed as the second argument does not invoke
946 ** any SQL window functions, this function is a no-op. Otherwise, it
947 ** rewrites the SELECT statement so that window function xStep functions
948 ** are invoked in the correct order as described under "SELECT REWRITING"
949 ** at the top of this file.
950 */
951 int sqlite3WindowRewrite(Parse *pParse, Select *p){
952   int rc = SQLITE_OK;
953   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
954     Vdbe *v = sqlite3GetVdbe(pParse);
955     sqlite3 *db = pParse->db;
956     Select *pSub = 0;             /* The subquery */
957     SrcList *pSrc = p->pSrc;
958     Expr *pWhere = p->pWhere;
959     ExprList *pGroupBy = p->pGroupBy;
960     Expr *pHaving = p->pHaving;
961     ExprList *pSort = 0;
962 
963     ExprList *pSublist = 0;       /* Expression list for sub-query */
964     Window *pMWin = p->pWin;      /* Main window object */
965     Window *pWin;                 /* Window object iterator */
966     Table *pTab;
967     Walker w;
968 
969     u32 selFlags = p->selFlags;
970 
971     pTab = sqlite3DbMallocZero(db, sizeof(Table));
972     if( pTab==0 ){
973       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
974     }
975     sqlite3AggInfoPersistWalkerInit(&w, pParse);
976     sqlite3WalkSelect(&w, p);
977 
978     p->pSrc = 0;
979     p->pWhere = 0;
980     p->pGroupBy = 0;
981     p->pHaving = 0;
982     p->selFlags &= ~SF_Aggregate;
983     p->selFlags |= SF_WinRewrite;
984 
985     /* Create the ORDER BY clause for the sub-select. This is the concatenation
986     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
987     ** redundant, remove the ORDER BY from the parent SELECT.  */
988     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
989     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
990     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
991       int nSave = pSort->nExpr;
992       pSort->nExpr = p->pOrderBy->nExpr;
993       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
994         sqlite3ExprListDelete(db, p->pOrderBy);
995         p->pOrderBy = 0;
996       }
997       pSort->nExpr = nSave;
998     }
999 
1000     /* Assign a cursor number for the ephemeral table used to buffer rows.
1001     ** The OpenEphemeral instruction is coded later, after it is known how
1002     ** many columns the table will have.  */
1003     pMWin->iEphCsr = pParse->nTab++;
1004     pParse->nTab += 3;
1005 
1006     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1007     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1008     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1009 
1010     /* Append the PARTITION BY and ORDER BY expressions to the to the
1011     ** sub-select expression list. They are required to figure out where
1012     ** boundaries for partitions and sets of peer rows lie.  */
1013     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1014     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1015 
1016     /* Append the arguments passed to each window function to the
1017     ** sub-select expression list. Also allocate two registers for each
1018     ** window function - one for the accumulator, another for interim
1019     ** results.  */
1020     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1021       ExprList *pArgs = pWin->pOwner->x.pList;
1022       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1023         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1024         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1025         pWin->bExprArgs = 1;
1026       }else{
1027         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1028         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1029       }
1030       if( pWin->pFilter ){
1031         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1032         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1033       }
1034       pWin->regAccum = ++pParse->nMem;
1035       pWin->regResult = ++pParse->nMem;
1036       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1037     }
1038 
1039     /* If there is no ORDER BY or PARTITION BY clause, and the window
1040     ** function accepts zero arguments, and there are no other columns
1041     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1042     ** that pSublist is still NULL here. Add a constant expression here to
1043     ** keep everything legal in this case.
1044     */
1045     if( pSublist==0 ){
1046       pSublist = sqlite3ExprListAppend(pParse, 0,
1047         sqlite3Expr(db, TK_INTEGER, "0")
1048       );
1049     }
1050 
1051     pSub = sqlite3SelectNew(
1052         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1053     );
1054     SELECTTRACE(1,pParse,pSub,
1055        ("New window-function subquery in FROM clause of (%u/%p)\n",
1056        p->selId, p));
1057     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1058     if( p->pSrc ){
1059       Table *pTab2;
1060       p->pSrc->a[0].pSelect = pSub;
1061       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1062       pSub->selFlags |= SF_Expanded;
1063       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1064       pSub->selFlags |= (selFlags & SF_Aggregate);
1065       if( pTab2==0 ){
1066         /* Might actually be some other kind of error, but in that case
1067         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1068         ** the correct error message regardless. */
1069         rc = SQLITE_NOMEM;
1070       }else{
1071         memcpy(pTab, pTab2, sizeof(Table));
1072         pTab->tabFlags |= TF_Ephemeral;
1073         p->pSrc->a[0].pTab = pTab;
1074         pTab = pTab2;
1075         memset(&w, 0, sizeof(w));
1076         w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1077         w.xSelectCallback = sqlite3WalkerDepthIncrease;
1078         w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1079         sqlite3WalkSelect(&w, pSub);
1080       }
1081     }else{
1082       sqlite3SelectDelete(db, pSub);
1083     }
1084     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1085     sqlite3DbFree(db, pTab);
1086   }
1087 
1088   if( rc ){
1089     if( pParse->nErr==0 ){
1090       assert( pParse->db->mallocFailed );
1091       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1092     }
1093   }
1094   return rc;
1095 }
1096 
1097 /*
1098 ** Unlink the Window object from the Select to which it is attached,
1099 ** if it is attached.
1100 */
1101 void sqlite3WindowUnlinkFromSelect(Window *p){
1102   if( p->ppThis ){
1103     *p->ppThis = p->pNextWin;
1104     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1105     p->ppThis = 0;
1106   }
1107 }
1108 
1109 /*
1110 ** Free the Window object passed as the second argument.
1111 */
1112 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1113   if( p ){
1114     sqlite3WindowUnlinkFromSelect(p);
1115     sqlite3ExprDelete(db, p->pFilter);
1116     sqlite3ExprListDelete(db, p->pPartition);
1117     sqlite3ExprListDelete(db, p->pOrderBy);
1118     sqlite3ExprDelete(db, p->pEnd);
1119     sqlite3ExprDelete(db, p->pStart);
1120     sqlite3DbFree(db, p->zName);
1121     sqlite3DbFree(db, p->zBase);
1122     sqlite3DbFree(db, p);
1123   }
1124 }
1125 
1126 /*
1127 ** Free the linked list of Window objects starting at the second argument.
1128 */
1129 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1130   while( p ){
1131     Window *pNext = p->pNextWin;
1132     sqlite3WindowDelete(db, p);
1133     p = pNext;
1134   }
1135 }
1136 
1137 /*
1138 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1139 ** value should be a non-negative integer.  If the value is not a
1140 ** constant, change it to NULL.  The fact that it is then a non-negative
1141 ** integer will be caught later.  But it is important not to leave
1142 ** variable values in the expression tree.
1143 */
1144 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1145   if( 0==sqlite3ExprIsConstant(pExpr) ){
1146     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1147     sqlite3ExprDelete(pParse->db, pExpr);
1148     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1149   }
1150   return pExpr;
1151 }
1152 
1153 /*
1154 ** Allocate and return a new Window object describing a Window Definition.
1155 */
1156 Window *sqlite3WindowAlloc(
1157   Parse *pParse,    /* Parsing context */
1158   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1159   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1160   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1161   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1162   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1163   u8 eExclude       /* EXCLUDE clause */
1164 ){
1165   Window *pWin = 0;
1166   int bImplicitFrame = 0;
1167 
1168   /* Parser assures the following: */
1169   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1170   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1171            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1172   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1173            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1174   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1175   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1176 
1177   if( eType==0 ){
1178     bImplicitFrame = 1;
1179     eType = TK_RANGE;
1180   }
1181 
1182   /* Additionally, the
1183   ** starting boundary type may not occur earlier in the following list than
1184   ** the ending boundary type:
1185   **
1186   **   UNBOUNDED PRECEDING
1187   **   <expr> PRECEDING
1188   **   CURRENT ROW
1189   **   <expr> FOLLOWING
1190   **   UNBOUNDED FOLLOWING
1191   **
1192   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1193   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1194   ** frame boundary.
1195   */
1196   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1197    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1198   ){
1199     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1200     goto windowAllocErr;
1201   }
1202 
1203   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1204   if( pWin==0 ) goto windowAllocErr;
1205   pWin->eFrmType = eType;
1206   pWin->eStart = eStart;
1207   pWin->eEnd = eEnd;
1208   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1209     eExclude = TK_NO;
1210   }
1211   pWin->eExclude = eExclude;
1212   pWin->bImplicitFrame = bImplicitFrame;
1213   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1214   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1215   return pWin;
1216 
1217 windowAllocErr:
1218   sqlite3ExprDelete(pParse->db, pEnd);
1219   sqlite3ExprDelete(pParse->db, pStart);
1220   return 0;
1221 }
1222 
1223 /*
1224 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1225 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1226 ** equivalent nul-terminated string.
1227 */
1228 Window *sqlite3WindowAssemble(
1229   Parse *pParse,
1230   Window *pWin,
1231   ExprList *pPartition,
1232   ExprList *pOrderBy,
1233   Token *pBase
1234 ){
1235   if( pWin ){
1236     pWin->pPartition = pPartition;
1237     pWin->pOrderBy = pOrderBy;
1238     if( pBase ){
1239       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1240     }
1241   }else{
1242     sqlite3ExprListDelete(pParse->db, pPartition);
1243     sqlite3ExprListDelete(pParse->db, pOrderBy);
1244   }
1245   return pWin;
1246 }
1247 
1248 /*
1249 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1250 ** is the base window. Earlier windows from the same WINDOW clause are
1251 ** stored in the linked list starting at pWin->pNextWin. This function
1252 ** either updates *pWin according to the base specification, or else
1253 ** leaves an error in pParse.
1254 */
1255 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1256   if( pWin->zBase ){
1257     sqlite3 *db = pParse->db;
1258     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1259     if( pExist ){
1260       const char *zErr = 0;
1261       /* Check for errors */
1262       if( pWin->pPartition ){
1263         zErr = "PARTITION clause";
1264       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1265         zErr = "ORDER BY clause";
1266       }else if( pExist->bImplicitFrame==0 ){
1267         zErr = "frame specification";
1268       }
1269       if( zErr ){
1270         sqlite3ErrorMsg(pParse,
1271             "cannot override %s of window: %s", zErr, pWin->zBase
1272         );
1273       }else{
1274         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1275         if( pExist->pOrderBy ){
1276           assert( pWin->pOrderBy==0 );
1277           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1278         }
1279         sqlite3DbFree(db, pWin->zBase);
1280         pWin->zBase = 0;
1281       }
1282     }
1283   }
1284 }
1285 
1286 /*
1287 ** Attach window object pWin to expression p.
1288 */
1289 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1290   if( p ){
1291     assert( p->op==TK_FUNCTION );
1292     assert( pWin );
1293     p->y.pWin = pWin;
1294     ExprSetProperty(p, EP_WinFunc);
1295     pWin->pOwner = p;
1296     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1297       sqlite3ErrorMsg(pParse,
1298           "DISTINCT is not supported for window functions"
1299       );
1300     }
1301   }else{
1302     sqlite3WindowDelete(pParse->db, pWin);
1303   }
1304 }
1305 
1306 /*
1307 ** Possibly link window pWin into the list at pSel->pWin (window functions
1308 ** to be processed as part of SELECT statement pSel). The window is linked
1309 ** in if either (a) there are no other windows already linked to this
1310 ** SELECT, or (b) the windows already linked use a compatible window frame.
1311 */
1312 void sqlite3WindowLink(Select *pSel, Window *pWin){
1313   if( pSel ){
1314     if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
1315       pWin->pNextWin = pSel->pWin;
1316       if( pSel->pWin ){
1317         pSel->pWin->ppThis = &pWin->pNextWin;
1318       }
1319       pSel->pWin = pWin;
1320       pWin->ppThis = &pSel->pWin;
1321     }else{
1322       if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
1323         pSel->selFlags |= SF_MultiPart;
1324       }
1325     }
1326   }
1327 }
1328 
1329 /*
1330 ** Return 0 if the two window objects are identical, 1 if they are
1331 ** different, or 2 if it cannot be determined if the objects are identical
1332 ** or not. Identical window objects can be processed in a single scan.
1333 */
1334 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1335   int res;
1336   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1337   if( p1->eFrmType!=p2->eFrmType ) return 1;
1338   if( p1->eStart!=p2->eStart ) return 1;
1339   if( p1->eEnd!=p2->eEnd ) return 1;
1340   if( p1->eExclude!=p2->eExclude ) return 1;
1341   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1342   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1343   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1344     return res;
1345   }
1346   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1347     return res;
1348   }
1349   if( bFilter ){
1350     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1351       return res;
1352     }
1353   }
1354   return 0;
1355 }
1356 
1357 
1358 /*
1359 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1360 ** to begin iterating through the sub-query results. It is used to allocate
1361 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1362 */
1363 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1364   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1365   Window *pMWin = pSelect->pWin;
1366   Window *pWin;
1367   Vdbe *v = sqlite3GetVdbe(pParse);
1368 
1369   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1370   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1371   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1372   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1373 
1374   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1375   ** said registers to NULL.  */
1376   if( pMWin->pPartition ){
1377     int nExpr = pMWin->pPartition->nExpr;
1378     pMWin->regPart = pParse->nMem+1;
1379     pParse->nMem += nExpr;
1380     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1381   }
1382 
1383   pMWin->regOne = ++pParse->nMem;
1384   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1385 
1386   if( pMWin->eExclude ){
1387     pMWin->regStartRowid = ++pParse->nMem;
1388     pMWin->regEndRowid = ++pParse->nMem;
1389     pMWin->csrApp = pParse->nTab++;
1390     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1391     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1392     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1393     return;
1394   }
1395 
1396   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1397     FuncDef *p = pWin->pFunc;
1398     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1399       /* The inline versions of min() and max() require a single ephemeral
1400       ** table and 3 registers. The registers are used as follows:
1401       **
1402       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1403       **   regApp+1: integer value used to ensure keys are unique
1404       **   regApp+2: output of MakeRecord
1405       */
1406       ExprList *pList = pWin->pOwner->x.pList;
1407       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1408       pWin->csrApp = pParse->nTab++;
1409       pWin->regApp = pParse->nMem+1;
1410       pParse->nMem += 3;
1411       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1412         assert( pKeyInfo->aSortFlags[0]==0 );
1413         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1414       }
1415       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1416       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1417       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1418     }
1419     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1420       /* Allocate two registers at pWin->regApp. These will be used to
1421       ** store the start and end index of the current frame.  */
1422       pWin->regApp = pParse->nMem+1;
1423       pWin->csrApp = pParse->nTab++;
1424       pParse->nMem += 2;
1425       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1426     }
1427     else if( p->zName==leadName || p->zName==lagName ){
1428       pWin->csrApp = pParse->nTab++;
1429       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1430     }
1431   }
1432 }
1433 
1434 #define WINDOW_STARTING_INT  0
1435 #define WINDOW_ENDING_INT    1
1436 #define WINDOW_NTH_VALUE_INT 2
1437 #define WINDOW_STARTING_NUM  3
1438 #define WINDOW_ENDING_NUM    4
1439 
1440 /*
1441 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1442 ** value of the second argument to nth_value() (eCond==2) has just been
1443 ** evaluated and the result left in register reg. This function generates VM
1444 ** code to check that the value is a non-negative integer and throws an
1445 ** exception if it is not.
1446 */
1447 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1448   static const char *azErr[] = {
1449     "frame starting offset must be a non-negative integer",
1450     "frame ending offset must be a non-negative integer",
1451     "second argument to nth_value must be a positive integer",
1452     "frame starting offset must be a non-negative number",
1453     "frame ending offset must be a non-negative number",
1454   };
1455   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1456   Vdbe *v = sqlite3GetVdbe(pParse);
1457   int regZero = sqlite3GetTempReg(pParse);
1458   assert( eCond>=0 && eCond<ArraySize(azErr) );
1459   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1460   if( eCond>=WINDOW_STARTING_NUM ){
1461     int regString = sqlite3GetTempReg(pParse);
1462     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1463     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1464     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1465     VdbeCoverage(v);
1466     assert( eCond==3 || eCond==4 );
1467     VdbeCoverageIf(v, eCond==3);
1468     VdbeCoverageIf(v, eCond==4);
1469   }else{
1470     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1471     VdbeCoverage(v);
1472     assert( eCond==0 || eCond==1 || eCond==2 );
1473     VdbeCoverageIf(v, eCond==0);
1474     VdbeCoverageIf(v, eCond==1);
1475     VdbeCoverageIf(v, eCond==2);
1476   }
1477   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1478   sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
1479   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1480   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1481   VdbeCoverageNeverNullIf(v, eCond==2);
1482   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1483   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1484   sqlite3MayAbort(pParse);
1485   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1486   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1487   sqlite3ReleaseTempReg(pParse, regZero);
1488 }
1489 
1490 /*
1491 ** Return the number of arguments passed to the window-function associated
1492 ** with the object passed as the only argument to this function.
1493 */
1494 static int windowArgCount(Window *pWin){
1495   ExprList *pList = pWin->pOwner->x.pList;
1496   return (pList ? pList->nExpr : 0);
1497 }
1498 
1499 typedef struct WindowCodeArg WindowCodeArg;
1500 typedef struct WindowCsrAndReg WindowCsrAndReg;
1501 
1502 /*
1503 ** See comments above struct WindowCodeArg.
1504 */
1505 struct WindowCsrAndReg {
1506   int csr;                        /* Cursor number */
1507   int reg;                        /* First in array of peer values */
1508 };
1509 
1510 /*
1511 ** A single instance of this structure is allocated on the stack by
1512 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1513 ** routines. This is to reduce the number of arguments required by each
1514 ** helper function.
1515 **
1516 ** regArg:
1517 **   Each window function requires an accumulator register (just as an
1518 **   ordinary aggregate function does). This variable is set to the first
1519 **   in an array of accumulator registers - one for each window function
1520 **   in the WindowCodeArg.pMWin list.
1521 **
1522 ** eDelete:
1523 **   The window functions implementation sometimes caches the input rows
1524 **   that it processes in a temporary table. If it is not zero, this
1525 **   variable indicates when rows may be removed from the temp table (in
1526 **   order to reduce memory requirements - it would always be safe just
1527 **   to leave them there). Possible values for eDelete are:
1528 **
1529 **      WINDOW_RETURN_ROW:
1530 **        An input row can be discarded after it is returned to the caller.
1531 **
1532 **      WINDOW_AGGINVERSE:
1533 **        An input row can be discarded after the window functions xInverse()
1534 **        callbacks have been invoked in it.
1535 **
1536 **      WINDOW_AGGSTEP:
1537 **        An input row can be discarded after the window functions xStep()
1538 **        callbacks have been invoked in it.
1539 **
1540 ** start,current,end
1541 **   Consider a window-frame similar to the following:
1542 **
1543 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1544 **
1545 **   The windows functions implmentation caches the input rows in a temp
1546 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1547 **   aggressively removes rows once they are no longer required, but that's
1548 **   a mere detail). It keeps three cursors open on the temp table. One
1549 **   (current) that points to the next row to return to the query engine
1550 **   once its window function values have been calculated. Another (end)
1551 **   points to the next row to call the xStep() method of each window function
1552 **   on (so that it is 2 groups ahead of current). And a third (start) that
1553 **   points to the next row to call the xInverse() method of each window
1554 **   function on.
1555 **
1556 **   Each cursor (start, current and end) consists of a VDBE cursor
1557 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1558 **   WindowCodeArg.reg) that always contains a copy of the peer values
1559 **   read from the corresponding cursor.
1560 **
1561 **   Depending on the window-frame in question, all three cursors may not
1562 **   be required. In this case both WindowCodeArg.csr and reg are set to
1563 **   0.
1564 */
1565 struct WindowCodeArg {
1566   Parse *pParse;             /* Parse context */
1567   Window *pMWin;             /* First in list of functions being processed */
1568   Vdbe *pVdbe;               /* VDBE object */
1569   int addrGosub;             /* OP_Gosub to this address to return one row */
1570   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1571   int regArg;                /* First in array of accumulator registers */
1572   int eDelete;               /* See above */
1573 
1574   WindowCsrAndReg start;
1575   WindowCsrAndReg current;
1576   WindowCsrAndReg end;
1577 };
1578 
1579 /*
1580 ** Generate VM code to read the window frames peer values from cursor csr into
1581 ** an array of registers starting at reg.
1582 */
1583 static void windowReadPeerValues(
1584   WindowCodeArg *p,
1585   int csr,
1586   int reg
1587 ){
1588   Window *pMWin = p->pMWin;
1589   ExprList *pOrderBy = pMWin->pOrderBy;
1590   if( pOrderBy ){
1591     Vdbe *v = sqlite3GetVdbe(p->pParse);
1592     ExprList *pPart = pMWin->pPartition;
1593     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1594     int i;
1595     for(i=0; i<pOrderBy->nExpr; i++){
1596       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1597     }
1598   }
1599 }
1600 
1601 /*
1602 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1603 ** xInverse (if bInverse is non-zero) for each window function in the
1604 ** linked list starting at pMWin. Or, for built-in window functions
1605 ** that do not use the standard function API, generate the required
1606 ** inline VM code.
1607 **
1608 ** If argument csr is greater than or equal to 0, then argument reg is
1609 ** the first register in an array of registers guaranteed to be large
1610 ** enough to hold the array of arguments for each function. In this case
1611 ** the arguments are extracted from the current row of csr into the
1612 ** array of registers before invoking OP_AggStep or OP_AggInverse
1613 **
1614 ** Or, if csr is less than zero, then the array of registers at reg is
1615 ** already populated with all columns from the current row of the sub-query.
1616 **
1617 ** If argument regPartSize is non-zero, then it is a register containing the
1618 ** number of rows in the current partition.
1619 */
1620 static void windowAggStep(
1621   WindowCodeArg *p,
1622   Window *pMWin,                  /* Linked list of window functions */
1623   int csr,                        /* Read arguments from this cursor */
1624   int bInverse,                   /* True to invoke xInverse instead of xStep */
1625   int reg                         /* Array of registers */
1626 ){
1627   Parse *pParse = p->pParse;
1628   Vdbe *v = sqlite3GetVdbe(pParse);
1629   Window *pWin;
1630   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1631     FuncDef *pFunc = pWin->pFunc;
1632     int regArg;
1633     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1634     int i;
1635 
1636     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1637 
1638     /* All OVER clauses in the same window function aggregate step must
1639     ** be the same. */
1640     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1641 
1642     for(i=0; i<nArg; i++){
1643       if( i!=1 || pFunc->zName!=nth_valueName ){
1644         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1645       }else{
1646         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1647       }
1648     }
1649     regArg = reg;
1650 
1651     if( pMWin->regStartRowid==0
1652      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1653      && (pWin->eStart!=TK_UNBOUNDED)
1654     ){
1655       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1656       VdbeCoverage(v);
1657       if( bInverse==0 ){
1658         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1659         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1660         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1661         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1662       }else{
1663         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1664         VdbeCoverageNeverTaken(v);
1665         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1666         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1667       }
1668       sqlite3VdbeJumpHere(v, addrIsNull);
1669     }else if( pWin->regApp ){
1670       assert( pFunc->zName==nth_valueName
1671            || pFunc->zName==first_valueName
1672       );
1673       assert( bInverse==0 || bInverse==1 );
1674       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1675     }else if( pFunc->xSFunc!=noopStepFunc ){
1676       int addrIf = 0;
1677       if( pWin->pFilter ){
1678         int regTmp;
1679         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1680         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1681         regTmp = sqlite3GetTempReg(pParse);
1682         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1683         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1684         VdbeCoverage(v);
1685         sqlite3ReleaseTempReg(pParse, regTmp);
1686       }
1687 
1688       if( pWin->bExprArgs ){
1689         int iStart = sqlite3VdbeCurrentAddr(v);
1690         VdbeOp *pOp, *pEnd;
1691 
1692         nArg = pWin->pOwner->x.pList->nExpr;
1693         regArg = sqlite3GetTempRange(pParse, nArg);
1694         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1695 
1696         pEnd = sqlite3VdbeGetOp(v, -1);
1697         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1698           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1699             pOp->p1 = csr;
1700           }
1701         }
1702       }
1703       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1704         CollSeq *pColl;
1705         assert( nArg>0 );
1706         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1707         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1708       }
1709       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1710                         bInverse, regArg, pWin->regAccum);
1711       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1712       sqlite3VdbeChangeP5(v, (u8)nArg);
1713       if( pWin->bExprArgs ){
1714         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1715       }
1716       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1717     }
1718   }
1719 }
1720 
1721 /*
1722 ** Values that may be passed as the second argument to windowCodeOp().
1723 */
1724 #define WINDOW_RETURN_ROW 1
1725 #define WINDOW_AGGINVERSE 2
1726 #define WINDOW_AGGSTEP    3
1727 
1728 /*
1729 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1730 ** (bFin==1) for each window function in the linked list starting at
1731 ** pMWin. Or, for built-in window-functions that do not use the standard
1732 ** API, generate the equivalent VM code.
1733 */
1734 static void windowAggFinal(WindowCodeArg *p, int bFin){
1735   Parse *pParse = p->pParse;
1736   Window *pMWin = p->pMWin;
1737   Vdbe *v = sqlite3GetVdbe(pParse);
1738   Window *pWin;
1739 
1740   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1741     if( pMWin->regStartRowid==0
1742      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1743      && (pWin->eStart!=TK_UNBOUNDED)
1744     ){
1745       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1746       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1747       VdbeCoverage(v);
1748       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1749       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1750     }else if( pWin->regApp ){
1751       assert( pMWin->regStartRowid==0 );
1752     }else{
1753       int nArg = windowArgCount(pWin);
1754       if( bFin ){
1755         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1756         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1757         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1758         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1759       }else{
1760         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1761         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1762       }
1763     }
1764   }
1765 }
1766 
1767 /*
1768 ** Generate code to calculate the current values of all window functions in the
1769 ** p->pMWin list by doing a full scan of the current window frame. Store the
1770 ** results in the Window.regResult registers, ready to return the upper
1771 ** layer.
1772 */
1773 static void windowFullScan(WindowCodeArg *p){
1774   Window *pWin;
1775   Parse *pParse = p->pParse;
1776   Window *pMWin = p->pMWin;
1777   Vdbe *v = p->pVdbe;
1778 
1779   int regCRowid = 0;              /* Current rowid value */
1780   int regCPeer = 0;               /* Current peer values */
1781   int regRowid = 0;               /* AggStep rowid value */
1782   int regPeer = 0;                /* AggStep peer values */
1783 
1784   int nPeer;
1785   int lblNext;
1786   int lblBrk;
1787   int addrNext;
1788   int csr;
1789 
1790   VdbeModuleComment((v, "windowFullScan begin"));
1791 
1792   assert( pMWin!=0 );
1793   csr = pMWin->csrApp;
1794   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1795 
1796   lblNext = sqlite3VdbeMakeLabel(pParse);
1797   lblBrk = sqlite3VdbeMakeLabel(pParse);
1798 
1799   regCRowid = sqlite3GetTempReg(pParse);
1800   regRowid = sqlite3GetTempReg(pParse);
1801   if( nPeer ){
1802     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1803     regPeer = sqlite3GetTempRange(pParse, nPeer);
1804   }
1805 
1806   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1807   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1808 
1809   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1810     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1811   }
1812 
1813   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1814   VdbeCoverage(v);
1815   addrNext = sqlite3VdbeCurrentAddr(v);
1816   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1817   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1818   VdbeCoverageNeverNull(v);
1819 
1820   if( pMWin->eExclude==TK_CURRENT ){
1821     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1822     VdbeCoverageNeverNull(v);
1823   }else if( pMWin->eExclude!=TK_NO ){
1824     int addr;
1825     int addrEq = 0;
1826     KeyInfo *pKeyInfo = 0;
1827 
1828     if( pMWin->pOrderBy ){
1829       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1830     }
1831     if( pMWin->eExclude==TK_TIES ){
1832       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1833       VdbeCoverageNeverNull(v);
1834     }
1835     if( pKeyInfo ){
1836       windowReadPeerValues(p, csr, regPeer);
1837       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1838       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1839       addr = sqlite3VdbeCurrentAddr(v)+1;
1840       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1841       VdbeCoverageEqNe(v);
1842     }else{
1843       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1844     }
1845     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1846   }
1847 
1848   windowAggStep(p, pMWin, csr, 0, p->regArg);
1849 
1850   sqlite3VdbeResolveLabel(v, lblNext);
1851   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1852   VdbeCoverage(v);
1853   sqlite3VdbeJumpHere(v, addrNext-1);
1854   sqlite3VdbeJumpHere(v, addrNext+1);
1855   sqlite3ReleaseTempReg(pParse, regRowid);
1856   sqlite3ReleaseTempReg(pParse, regCRowid);
1857   if( nPeer ){
1858     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1859     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1860   }
1861 
1862   windowAggFinal(p, 1);
1863   VdbeModuleComment((v, "windowFullScan end"));
1864 }
1865 
1866 /*
1867 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1868 ** return the current row of Window.iEphCsr. If all window functions are
1869 ** aggregate window functions that use the standard API, a single
1870 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1871 ** for per-row processing is only generated for the following built-in window
1872 ** functions:
1873 **
1874 **   nth_value()
1875 **   first_value()
1876 **   lag()
1877 **   lead()
1878 */
1879 static void windowReturnOneRow(WindowCodeArg *p){
1880   Window *pMWin = p->pMWin;
1881   Vdbe *v = p->pVdbe;
1882 
1883   if( pMWin->regStartRowid ){
1884     windowFullScan(p);
1885   }else{
1886     Parse *pParse = p->pParse;
1887     Window *pWin;
1888 
1889     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1890       FuncDef *pFunc = pWin->pFunc;
1891       if( pFunc->zName==nth_valueName
1892        || pFunc->zName==first_valueName
1893       ){
1894         int csr = pWin->csrApp;
1895         int lbl = sqlite3VdbeMakeLabel(pParse);
1896         int tmpReg = sqlite3GetTempReg(pParse);
1897         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1898 
1899         if( pFunc->zName==nth_valueName ){
1900           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1901           windowCheckValue(pParse, tmpReg, 2);
1902         }else{
1903           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1904         }
1905         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1906         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1907         VdbeCoverageNeverNull(v);
1908         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1909         VdbeCoverageNeverTaken(v);
1910         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1911         sqlite3VdbeResolveLabel(v, lbl);
1912         sqlite3ReleaseTempReg(pParse, tmpReg);
1913       }
1914       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1915         int nArg = pWin->pOwner->x.pList->nExpr;
1916         int csr = pWin->csrApp;
1917         int lbl = sqlite3VdbeMakeLabel(pParse);
1918         int tmpReg = sqlite3GetTempReg(pParse);
1919         int iEph = pMWin->iEphCsr;
1920 
1921         if( nArg<3 ){
1922           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1923         }else{
1924           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1925         }
1926         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1927         if( nArg<2 ){
1928           int val = (pFunc->zName==leadName ? 1 : -1);
1929           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1930         }else{
1931           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1932           int tmpReg2 = sqlite3GetTempReg(pParse);
1933           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1934           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1935           sqlite3ReleaseTempReg(pParse, tmpReg2);
1936         }
1937 
1938         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1939         VdbeCoverage(v);
1940         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1941         sqlite3VdbeResolveLabel(v, lbl);
1942         sqlite3ReleaseTempReg(pParse, tmpReg);
1943       }
1944     }
1945   }
1946   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1947 }
1948 
1949 /*
1950 ** Generate code to set the accumulator register for each window function
1951 ** in the linked list passed as the second argument to NULL. And perform
1952 ** any equivalent initialization required by any built-in window functions
1953 ** in the list.
1954 */
1955 static int windowInitAccum(Parse *pParse, Window *pMWin){
1956   Vdbe *v = sqlite3GetVdbe(pParse);
1957   int regArg;
1958   int nArg = 0;
1959   Window *pWin;
1960   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1961     FuncDef *pFunc = pWin->pFunc;
1962     assert( pWin->regAccum );
1963     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1964     nArg = MAX(nArg, windowArgCount(pWin));
1965     if( pMWin->regStartRowid==0 ){
1966       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1967         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1968         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1969       }
1970 
1971       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1972         assert( pWin->eStart!=TK_UNBOUNDED );
1973         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1974         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1975       }
1976     }
1977   }
1978   regArg = pParse->nMem+1;
1979   pParse->nMem += nArg;
1980   return regArg;
1981 }
1982 
1983 /*
1984 ** Return true if the current frame should be cached in the ephemeral table,
1985 ** even if there are no xInverse() calls required.
1986 */
1987 static int windowCacheFrame(Window *pMWin){
1988   Window *pWin;
1989   if( pMWin->regStartRowid ) return 1;
1990   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1991     FuncDef *pFunc = pWin->pFunc;
1992     if( (pFunc->zName==nth_valueName)
1993      || (pFunc->zName==first_valueName)
1994      || (pFunc->zName==leadName)
1995      || (pFunc->zName==lagName)
1996     ){
1997       return 1;
1998     }
1999   }
2000   return 0;
2001 }
2002 
2003 /*
2004 ** regOld and regNew are each the first register in an array of size
2005 ** pOrderBy->nExpr. This function generates code to compare the two
2006 ** arrays of registers using the collation sequences and other comparison
2007 ** parameters specified by pOrderBy.
2008 **
2009 ** If the two arrays are not equal, the contents of regNew is copied to
2010 ** regOld and control falls through. Otherwise, if the contents of the arrays
2011 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2012 */
2013 static void windowIfNewPeer(
2014   Parse *pParse,
2015   ExprList *pOrderBy,
2016   int regNew,                     /* First in array of new values */
2017   int regOld,                     /* First in array of old values */
2018   int addr                        /* Jump here */
2019 ){
2020   Vdbe *v = sqlite3GetVdbe(pParse);
2021   if( pOrderBy ){
2022     int nVal = pOrderBy->nExpr;
2023     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2024     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2025     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2026     sqlite3VdbeAddOp3(v, OP_Jump,
2027       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2028     );
2029     VdbeCoverageEqNe(v);
2030     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2031   }else{
2032     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2033   }
2034 }
2035 
2036 /*
2037 ** This function is called as part of generating VM programs for RANGE
2038 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2039 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2040 ** code equivalent to:
2041 **
2042 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2043 **
2044 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2045 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2046 **
2047 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2048 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2049 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2050 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2051 ** is OP_Ge, the generated code is equivalent to:
2052 **
2053 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2054 **
2055 ** A special type of arithmetic is used such that if csr1.peerVal is not
2056 ** a numeric type (real or integer), then the result of the addition
2057 ** or subtraction is a a copy of csr1.peerVal.
2058 */
2059 static void windowCodeRangeTest(
2060   WindowCodeArg *p,
2061   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2062   int csr1,                       /* Cursor number for cursor 1 */
2063   int regVal,                     /* Register containing non-negative number */
2064   int csr2,                       /* Cursor number for cursor 2 */
2065   int lbl                         /* Jump destination if condition is true */
2066 ){
2067   Parse *pParse = p->pParse;
2068   Vdbe *v = sqlite3GetVdbe(pParse);
2069   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2070   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2071   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2072   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2073   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2074   int addrGe;                               /* Jump destination */
2075   int addrDone = sqlite3VdbeMakeLabel(pParse);   /* Address past OP_Ge */
2076   CollSeq *pColl;
2077 
2078   /* Read the peer-value from each cursor into a register */
2079   windowReadPeerValues(p, csr1, reg1);
2080   windowReadPeerValues(p, csr2, reg2);
2081 
2082   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2083   assert( pOrderBy && pOrderBy->nExpr==1 );
2084   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2085     switch( op ){
2086       case OP_Ge: op = OP_Le; break;
2087       case OP_Gt: op = OP_Lt; break;
2088       default: assert( op==OP_Le ); op = OP_Ge; break;
2089     }
2090     arith = OP_Subtract;
2091   }
2092 
2093   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2094       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2095       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2096   ));
2097 
2098   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2099   ** consider NULL values to be larger than all other values, instead of
2100   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2101   ** (and adding that capability causes a performance regression), so
2102   ** instead if the BIGNULL flag is set then cases where either reg1 or
2103   ** reg2 are NULL are handled separately in the following block. The code
2104   ** generated is equivalent to:
2105   **
2106   **   if( reg1 IS NULL ){
2107   **     if( op==OP_Ge ) goto lbl;
2108   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2109   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2110   **   }else if( reg2 IS NULL ){
2111   **     if( op==OP_Le ) goto lbl;
2112   **   }
2113   **
2114   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2115   ** not taken, control jumps over the comparison operator coded below this
2116   ** block.  */
2117   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2118     /* This block runs if reg1 contains a NULL. */
2119     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2120     switch( op ){
2121       case OP_Ge:
2122         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2123         break;
2124       case OP_Gt:
2125         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2126         VdbeCoverage(v);
2127         break;
2128       case OP_Le:
2129         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2130         VdbeCoverage(v);
2131         break;
2132       default: assert( op==OP_Lt ); /* no-op */ break;
2133     }
2134     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
2135 
2136     /* This block runs if reg1 is not NULL, but reg2 is. */
2137     sqlite3VdbeJumpHere(v, addr);
2138     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2139     if( op==OP_Gt || op==OP_Ge ){
2140       sqlite3VdbeChangeP2(v, -1, addrDone);
2141     }
2142   }
2143 
2144   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2145   ** This block adds (or subtracts for DESC) the numeric value in regVal
2146   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2147   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2148   **
2149   **   if( reg1>='' ) goto addrGe;
2150   **   reg1 = reg1 +/- regVal
2151   **   addrGe:
2152   **
2153   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2154   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2155   ** then the arithmetic is performed, but since adding or subtracting from
2156   ** NULL is always NULL anyway, this case is handled as required too.  */
2157   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2158   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2159   VdbeCoverage(v);
2160   if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
2161     sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2162   }
2163   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2164   sqlite3VdbeJumpHere(v, addrGe);
2165 
2166   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2167   ** control skips over this test if the BIGNULL flag is set and either
2168   ** reg1 or reg2 contain a NULL value.  */
2169   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2170   pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
2171   sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
2172   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2173   sqlite3VdbeResolveLabel(v, addrDone);
2174 
2175   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2176   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2177   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2178   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2179   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2180   sqlite3ReleaseTempReg(pParse, reg1);
2181   sqlite3ReleaseTempReg(pParse, reg2);
2182 
2183   VdbeModuleComment((v, "CodeRangeTest: end"));
2184 }
2185 
2186 /*
2187 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2188 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2189 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2190 ** details.
2191 */
2192 static int windowCodeOp(
2193  WindowCodeArg *p,                /* Context object */
2194  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2195  int regCountdown,                /* Register for OP_IfPos countdown */
2196  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2197 ){
2198   int csr, reg;
2199   Parse *pParse = p->pParse;
2200   Window *pMWin = p->pMWin;
2201   int ret = 0;
2202   Vdbe *v = p->pVdbe;
2203   int addrContinue = 0;
2204   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2205 
2206   int lblDone = sqlite3VdbeMakeLabel(pParse);
2207   int addrNextRange = 0;
2208 
2209   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2210   ** starts with UNBOUNDED PRECEDING. */
2211   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2212     assert( regCountdown==0 && jumpOnEof==0 );
2213     return 0;
2214   }
2215 
2216   if( regCountdown>0 ){
2217     if( pMWin->eFrmType==TK_RANGE ){
2218       addrNextRange = sqlite3VdbeCurrentAddr(v);
2219       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2220       if( op==WINDOW_AGGINVERSE ){
2221         if( pMWin->eStart==TK_FOLLOWING ){
2222           windowCodeRangeTest(
2223               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2224           );
2225         }else{
2226           windowCodeRangeTest(
2227               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2228           );
2229         }
2230       }else{
2231         windowCodeRangeTest(
2232             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2233         );
2234       }
2235     }else{
2236       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2237       VdbeCoverage(v);
2238     }
2239   }
2240 
2241   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2242     windowAggFinal(p, 0);
2243   }
2244   addrContinue = sqlite3VdbeCurrentAddr(v);
2245 
2246   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2247   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2248   ** start cursor does not advance past the end cursor within the
2249   ** temporary table. It otherwise might, if (a>b).  */
2250   if( pMWin->eStart==pMWin->eEnd && regCountdown
2251    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2252   ){
2253     int regRowid1 = sqlite3GetTempReg(pParse);
2254     int regRowid2 = sqlite3GetTempReg(pParse);
2255     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2256     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2257     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2258     VdbeCoverage(v);
2259     sqlite3ReleaseTempReg(pParse, regRowid1);
2260     sqlite3ReleaseTempReg(pParse, regRowid2);
2261     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2262   }
2263 
2264   switch( op ){
2265     case WINDOW_RETURN_ROW:
2266       csr = p->current.csr;
2267       reg = p->current.reg;
2268       windowReturnOneRow(p);
2269       break;
2270 
2271     case WINDOW_AGGINVERSE:
2272       csr = p->start.csr;
2273       reg = p->start.reg;
2274       if( pMWin->regStartRowid ){
2275         assert( pMWin->regEndRowid );
2276         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2277       }else{
2278         windowAggStep(p, pMWin, csr, 1, p->regArg);
2279       }
2280       break;
2281 
2282     default:
2283       assert( op==WINDOW_AGGSTEP );
2284       csr = p->end.csr;
2285       reg = p->end.reg;
2286       if( pMWin->regStartRowid ){
2287         assert( pMWin->regEndRowid );
2288         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2289       }else{
2290         windowAggStep(p, pMWin, csr, 0, p->regArg);
2291       }
2292       break;
2293   }
2294 
2295   if( op==p->eDelete ){
2296     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2297     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2298   }
2299 
2300   if( jumpOnEof ){
2301     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2302     VdbeCoverage(v);
2303     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2304   }else{
2305     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2306     VdbeCoverage(v);
2307     if( bPeer ){
2308       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2309     }
2310   }
2311 
2312   if( bPeer ){
2313     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2314     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2315     windowReadPeerValues(p, csr, regTmp);
2316     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2317     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2318   }
2319 
2320   if( addrNextRange ){
2321     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2322   }
2323   sqlite3VdbeResolveLabel(v, lblDone);
2324   return ret;
2325 }
2326 
2327 
2328 /*
2329 ** Allocate and return a duplicate of the Window object indicated by the
2330 ** third argument. Set the Window.pOwner field of the new object to
2331 ** pOwner.
2332 */
2333 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2334   Window *pNew = 0;
2335   if( ALWAYS(p) ){
2336     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2337     if( pNew ){
2338       pNew->zName = sqlite3DbStrDup(db, p->zName);
2339       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2340       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2341       pNew->pFunc = p->pFunc;
2342       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2343       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2344       pNew->eFrmType = p->eFrmType;
2345       pNew->eEnd = p->eEnd;
2346       pNew->eStart = p->eStart;
2347       pNew->eExclude = p->eExclude;
2348       pNew->regResult = p->regResult;
2349       pNew->regAccum = p->regAccum;
2350       pNew->iArgCol = p->iArgCol;
2351       pNew->iEphCsr = p->iEphCsr;
2352       pNew->bExprArgs = p->bExprArgs;
2353       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2354       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2355       pNew->pOwner = pOwner;
2356       pNew->bImplicitFrame = p->bImplicitFrame;
2357     }
2358   }
2359   return pNew;
2360 }
2361 
2362 /*
2363 ** Return a copy of the linked list of Window objects passed as the
2364 ** second argument.
2365 */
2366 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2367   Window *pWin;
2368   Window *pRet = 0;
2369   Window **pp = &pRet;
2370 
2371   for(pWin=p; pWin; pWin=pWin->pNextWin){
2372     *pp = sqlite3WindowDup(db, 0, pWin);
2373     if( *pp==0 ) break;
2374     pp = &((*pp)->pNextWin);
2375   }
2376 
2377   return pRet;
2378 }
2379 
2380 /*
2381 ** Return true if it can be determined at compile time that expression
2382 ** pExpr evaluates to a value that, when cast to an integer, is greater
2383 ** than zero. False otherwise.
2384 **
2385 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2386 ** flag and returns zero.
2387 */
2388 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2389   int ret = 0;
2390   sqlite3 *db = pParse->db;
2391   sqlite3_value *pVal = 0;
2392   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2393   if( pVal && sqlite3_value_int(pVal)>0 ){
2394     ret = 1;
2395   }
2396   sqlite3ValueFree(pVal);
2397   return ret;
2398 }
2399 
2400 /*
2401 ** sqlite3WhereBegin() has already been called for the SELECT statement
2402 ** passed as the second argument when this function is invoked. It generates
2403 ** code to populate the Window.regResult register for each window function
2404 ** and invoke the sub-routine at instruction addrGosub once for each row.
2405 ** sqlite3WhereEnd() is always called before returning.
2406 **
2407 ** This function handles several different types of window frames, which
2408 ** require slightly different processing. The following pseudo code is
2409 ** used to implement window frames of the form:
2410 **
2411 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2412 **
2413 ** Other window frame types use variants of the following:
2414 **
2415 **     ... loop started by sqlite3WhereBegin() ...
2416 **       if( new partition ){
2417 **         Gosub flush
2418 **       }
2419 **       Insert new row into eph table.
2420 **
2421 **       if( first row of partition ){
2422 **         // Rewind three cursors, all open on the eph table.
2423 **         Rewind(csrEnd);
2424 **         Rewind(csrStart);
2425 **         Rewind(csrCurrent);
2426 **
2427 **         regEnd = <expr2>          // FOLLOWING expression
2428 **         regStart = <expr1>        // PRECEDING expression
2429 **       }else{
2430 **         // First time this branch is taken, the eph table contains two
2431 **         // rows. The first row in the partition, which all three cursors
2432 **         // currently point to, and the following row.
2433 **         AGGSTEP
2434 **         if( (regEnd--)<=0 ){
2435 **           RETURN_ROW
2436 **           if( (regStart--)<=0 ){
2437 **             AGGINVERSE
2438 **           }
2439 **         }
2440 **       }
2441 **     }
2442 **     flush:
2443 **       AGGSTEP
2444 **       while( 1 ){
2445 **         RETURN ROW
2446 **         if( csrCurrent is EOF ) break;
2447 **         if( (regStart--)<=0 ){
2448 **           AggInverse(csrStart)
2449 **           Next(csrStart)
2450 **         }
2451 **       }
2452 **
2453 ** The pseudo-code above uses the following shorthand:
2454 **
2455 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2456 **               with arguments read from the current row of cursor csrEnd, then
2457 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2458 **
2459 **   RETURN_ROW: return a row to the caller based on the contents of the
2460 **               current row of csrCurrent and the current state of all
2461 **               aggregates. Then step cursor csrCurrent forward one row.
2462 **
2463 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2464 **               functions with arguments read from the current row of cursor
2465 **               csrStart. Then step csrStart forward one row.
2466 **
2467 ** There are two other ROWS window frames that are handled significantly
2468 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2469 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2470 ** cases because they change the order in which the three cursors (csrStart,
2471 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2472 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2473 ** three.
2474 **
2475 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2476 **
2477 **     ... loop started by sqlite3WhereBegin() ...
2478 **       if( new partition ){
2479 **         Gosub flush
2480 **       }
2481 **       Insert new row into eph table.
2482 **       if( first row of partition ){
2483 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2484 **         regEnd = <expr2>
2485 **         regStart = <expr1>
2486 **       }else{
2487 **         if( (regEnd--)<=0 ){
2488 **           AGGSTEP
2489 **         }
2490 **         RETURN_ROW
2491 **         if( (regStart--)<=0 ){
2492 **           AGGINVERSE
2493 **         }
2494 **       }
2495 **     }
2496 **     flush:
2497 **       if( (regEnd--)<=0 ){
2498 **         AGGSTEP
2499 **       }
2500 **       RETURN_ROW
2501 **
2502 **
2503 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2504 **
2505 **     ... loop started by sqlite3WhereBegin() ...
2506 **     if( new partition ){
2507 **       Gosub flush
2508 **     }
2509 **     Insert new row into eph table.
2510 **     if( first row of partition ){
2511 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2512 **       regEnd = <expr2>
2513 **       regStart = regEnd - <expr1>
2514 **     }else{
2515 **       AGGSTEP
2516 **       if( (regEnd--)<=0 ){
2517 **         RETURN_ROW
2518 **       }
2519 **       if( (regStart--)<=0 ){
2520 **         AGGINVERSE
2521 **       }
2522 **     }
2523 **   }
2524 **   flush:
2525 **     AGGSTEP
2526 **     while( 1 ){
2527 **       if( (regEnd--)<=0 ){
2528 **         RETURN_ROW
2529 **         if( eof ) break;
2530 **       }
2531 **       if( (regStart--)<=0 ){
2532 **         AGGINVERSE
2533 **         if( eof ) break
2534 **       }
2535 **     }
2536 **     while( !eof csrCurrent ){
2537 **       RETURN_ROW
2538 **     }
2539 **
2540 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2541 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2542 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2543 ** This is optimized of course - branches that will never be taken and
2544 ** conditions that are always true are omitted from the VM code. The only
2545 ** exceptional case is:
2546 **
2547 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2548 **
2549 **     ... loop started by sqlite3WhereBegin() ...
2550 **     if( new partition ){
2551 **       Gosub flush
2552 **     }
2553 **     Insert new row into eph table.
2554 **     if( first row of partition ){
2555 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2556 **       regStart = <expr1>
2557 **     }else{
2558 **       AGGSTEP
2559 **     }
2560 **   }
2561 **   flush:
2562 **     AGGSTEP
2563 **     while( 1 ){
2564 **       if( (regStart--)<=0 ){
2565 **         AGGINVERSE
2566 **         if( eof ) break
2567 **       }
2568 **       RETURN_ROW
2569 **     }
2570 **     while( !eof csrCurrent ){
2571 **       RETURN_ROW
2572 **     }
2573 **
2574 ** Also requiring special handling are the cases:
2575 **
2576 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2577 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2578 **
2579 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2580 ** To handle this case, the pseudo-code programs depicted above are modified
2581 ** slightly to be:
2582 **
2583 **     ... loop started by sqlite3WhereBegin() ...
2584 **     if( new partition ){
2585 **       Gosub flush
2586 **     }
2587 **     Insert new row into eph table.
2588 **     if( first row of partition ){
2589 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2590 **       regEnd = <expr2>
2591 **       regStart = <expr1>
2592 **       if( regEnd < regStart ){
2593 **         RETURN_ROW
2594 **         delete eph table contents
2595 **         continue
2596 **       }
2597 **     ...
2598 **
2599 ** The new "continue" statement in the above jumps to the next iteration
2600 ** of the outer loop - the one started by sqlite3WhereBegin().
2601 **
2602 ** The various GROUPS cases are implemented using the same patterns as
2603 ** ROWS. The VM code is modified slightly so that:
2604 **
2605 **   1. The else branch in the main loop is only taken if the row just
2606 **      added to the ephemeral table is the start of a new group. In
2607 **      other words, it becomes:
2608 **
2609 **         ... loop started by sqlite3WhereBegin() ...
2610 **         if( new partition ){
2611 **           Gosub flush
2612 **         }
2613 **         Insert new row into eph table.
2614 **         if( first row of partition ){
2615 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2616 **           regEnd = <expr2>
2617 **           regStart = <expr1>
2618 **         }else if( new group ){
2619 **           ...
2620 **         }
2621 **       }
2622 **
2623 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2624 **      AGGINVERSE step processes the current row of the relevant cursor and
2625 **      all subsequent rows belonging to the same group.
2626 **
2627 ** RANGE window frames are a little different again. As for GROUPS, the
2628 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2629 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2630 ** basic cases:
2631 **
2632 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2633 **
2634 **     ... loop started by sqlite3WhereBegin() ...
2635 **       if( new partition ){
2636 **         Gosub flush
2637 **       }
2638 **       Insert new row into eph table.
2639 **       if( first row of partition ){
2640 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2641 **         regEnd = <expr2>
2642 **         regStart = <expr1>
2643 **       }else{
2644 **         AGGSTEP
2645 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2646 **           RETURN_ROW
2647 **           while( csrStart.key + regStart) < csrCurrent.key ){
2648 **             AGGINVERSE
2649 **           }
2650 **         }
2651 **       }
2652 **     }
2653 **     flush:
2654 **       AGGSTEP
2655 **       while( 1 ){
2656 **         RETURN ROW
2657 **         if( csrCurrent is EOF ) break;
2658 **           while( csrStart.key + regStart) < csrCurrent.key ){
2659 **             AGGINVERSE
2660 **           }
2661 **         }
2662 **       }
2663 **
2664 ** In the above notation, "csr.key" means the current value of the ORDER BY
2665 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2666 ** or <expr PRECEDING) read from cursor csr.
2667 **
2668 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2669 **
2670 **     ... loop started by sqlite3WhereBegin() ...
2671 **       if( new partition ){
2672 **         Gosub flush
2673 **       }
2674 **       Insert new row into eph table.
2675 **       if( first row of partition ){
2676 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2677 **         regEnd = <expr2>
2678 **         regStart = <expr1>
2679 **       }else{
2680 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2681 **           AGGSTEP
2682 **         }
2683 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2684 **           AGGINVERSE
2685 **         }
2686 **         RETURN_ROW
2687 **       }
2688 **     }
2689 **     flush:
2690 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2691 **         AGGSTEP
2692 **       }
2693 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2694 **         AGGINVERSE
2695 **       }
2696 **       RETURN_ROW
2697 **
2698 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2699 **
2700 **     ... loop started by sqlite3WhereBegin() ...
2701 **       if( new partition ){
2702 **         Gosub flush
2703 **       }
2704 **       Insert new row into eph table.
2705 **       if( first row of partition ){
2706 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2707 **         regEnd = <expr2>
2708 **         regStart = <expr1>
2709 **       }else{
2710 **         AGGSTEP
2711 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2712 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2713 **             AGGINVERSE
2714 **           }
2715 **           RETURN_ROW
2716 **         }
2717 **       }
2718 **     }
2719 **     flush:
2720 **       AGGSTEP
2721 **       while( 1 ){
2722 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2723 **           AGGINVERSE
2724 **           if( eof ) break "while( 1 )" loop.
2725 **         }
2726 **         RETURN_ROW
2727 **       }
2728 **       while( !eof csrCurrent ){
2729 **         RETURN_ROW
2730 **       }
2731 **
2732 ** The text above leaves out many details. Refer to the code and comments
2733 ** below for a more complete picture.
2734 */
2735 void sqlite3WindowCodeStep(
2736   Parse *pParse,                  /* Parse context */
2737   Select *p,                      /* Rewritten SELECT statement */
2738   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2739   int regGosub,                   /* Register for OP_Gosub */
2740   int addrGosub                   /* OP_Gosub here to return each row */
2741 ){
2742   Window *pMWin = p->pWin;
2743   ExprList *pOrderBy = pMWin->pOrderBy;
2744   Vdbe *v = sqlite3GetVdbe(pParse);
2745   int csrWrite;                   /* Cursor used to write to eph. table */
2746   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2747   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2748   int iInput;                               /* To iterate through sub cols */
2749   int addrNe;                     /* Address of OP_Ne */
2750   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2751   int addrInteger = 0;            /* Address of OP_Integer */
2752   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2753   int regNew;                     /* Array of registers holding new input row */
2754   int regRecord;                  /* regNew array in record form */
2755   int regRowid;                   /* Rowid for regRecord in eph table */
2756   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2757   int regPeer = 0;                /* Peer values for current row */
2758   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2759   WindowCodeArg s;                /* Context object for sub-routines */
2760   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2761   int regStart = 0;               /* Value of <expr> PRECEDING */
2762   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2763 
2764   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2765        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2766   );
2767   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2768        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2769   );
2770   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2771        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2772        || pMWin->eExclude==TK_NO
2773   );
2774 
2775   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2776 
2777   /* Fill in the context object */
2778   memset(&s, 0, sizeof(WindowCodeArg));
2779   s.pParse = pParse;
2780   s.pMWin = pMWin;
2781   s.pVdbe = v;
2782   s.regGosub = regGosub;
2783   s.addrGosub = addrGosub;
2784   s.current.csr = pMWin->iEphCsr;
2785   csrWrite = s.current.csr+1;
2786   s.start.csr = s.current.csr+2;
2787   s.end.csr = s.current.csr+3;
2788 
2789   /* Figure out when rows may be deleted from the ephemeral table. There
2790   ** are four options - they may never be deleted (eDelete==0), they may
2791   ** be deleted as soon as they are no longer part of the window frame
2792   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2793   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2794   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2795   switch( pMWin->eStart ){
2796     case TK_FOLLOWING:
2797       if( pMWin->eFrmType!=TK_RANGE
2798        && windowExprGtZero(pParse, pMWin->pStart)
2799       ){
2800         s.eDelete = WINDOW_RETURN_ROW;
2801       }
2802       break;
2803     case TK_UNBOUNDED:
2804       if( windowCacheFrame(pMWin)==0 ){
2805         if( pMWin->eEnd==TK_PRECEDING ){
2806           if( pMWin->eFrmType!=TK_RANGE
2807            && windowExprGtZero(pParse, pMWin->pEnd)
2808           ){
2809             s.eDelete = WINDOW_AGGSTEP;
2810           }
2811         }else{
2812           s.eDelete = WINDOW_RETURN_ROW;
2813         }
2814       }
2815       break;
2816     default:
2817       s.eDelete = WINDOW_AGGINVERSE;
2818       break;
2819   }
2820 
2821   /* Allocate registers for the array of values from the sub-query, the
2822   ** samve values in record form, and the rowid used to insert said record
2823   ** into the ephemeral table.  */
2824   regNew = pParse->nMem+1;
2825   pParse->nMem += nInput;
2826   regRecord = ++pParse->nMem;
2827   regRowid = ++pParse->nMem;
2828 
2829   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2830   ** clause, allocate registers to store the results of evaluating each
2831   ** <expr>.  */
2832   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2833     regStart = ++pParse->nMem;
2834   }
2835   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2836     regEnd = ++pParse->nMem;
2837   }
2838 
2839   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2840   ** registers to store copies of the ORDER BY expressions (peer values)
2841   ** for the main loop, and for each cursor (start, current and end). */
2842   if( pMWin->eFrmType!=TK_ROWS ){
2843     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2844     regNewPeer = regNew + pMWin->nBufferCol;
2845     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2846     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2847     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2848     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2849     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2850   }
2851 
2852   /* Load the column values for the row returned by the sub-select
2853   ** into an array of registers starting at regNew. Assemble them into
2854   ** a record in register regRecord. */
2855   for(iInput=0; iInput<nInput; iInput++){
2856     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2857   }
2858   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2859 
2860   /* An input row has just been read into an array of registers starting
2861   ** at regNew. If the window has a PARTITION clause, this block generates
2862   ** VM code to check if the input row is the start of a new partition.
2863   ** If so, it does an OP_Gosub to an address to be filled in later. The
2864   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2865   if( pMWin->pPartition ){
2866     int addr;
2867     ExprList *pPart = pMWin->pPartition;
2868     int nPart = pPart->nExpr;
2869     int regNewPart = regNew + pMWin->nBufferCol;
2870     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2871 
2872     regFlushPart = ++pParse->nMem;
2873     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2874     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2875     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2876     VdbeCoverageEqNe(v);
2877     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2878     VdbeComment((v, "call flush_partition"));
2879     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2880   }
2881 
2882   /* Insert the new row into the ephemeral table */
2883   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2884   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2885   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2886   VdbeCoverageNeverNull(v);
2887 
2888   /* This block is run for the first row of each partition */
2889   s.regArg = windowInitAccum(pParse, pMWin);
2890 
2891   if( regStart ){
2892     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2893     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2894   }
2895   if( regEnd ){
2896     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2897     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2898   }
2899 
2900   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2901     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2902     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2903     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2904     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2905     windowAggFinal(&s, 0);
2906     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2907     VdbeCoverageNeverTaken(v);
2908     windowReturnOneRow(&s);
2909     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2910     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2911     sqlite3VdbeJumpHere(v, addrGe);
2912   }
2913   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2914     assert( pMWin->eEnd==TK_FOLLOWING );
2915     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2916   }
2917 
2918   if( pMWin->eStart!=TK_UNBOUNDED ){
2919     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2920     VdbeCoverageNeverTaken(v);
2921   }
2922   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2923   VdbeCoverageNeverTaken(v);
2924   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2925   VdbeCoverageNeverTaken(v);
2926   if( regPeer && pOrderBy ){
2927     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2928     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2929     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2930     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2931   }
2932 
2933   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2934 
2935   sqlite3VdbeJumpHere(v, addrNe);
2936 
2937   /* Beginning of the block executed for the second and subsequent rows. */
2938   if( regPeer ){
2939     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2940   }
2941   if( pMWin->eStart==TK_FOLLOWING ){
2942     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2943     if( pMWin->eEnd!=TK_UNBOUNDED ){
2944       if( pMWin->eFrmType==TK_RANGE ){
2945         int lbl = sqlite3VdbeMakeLabel(pParse);
2946         int addrNext = sqlite3VdbeCurrentAddr(v);
2947         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2948         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2949         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2950         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2951         sqlite3VdbeResolveLabel(v, lbl);
2952       }else{
2953         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2954         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2955       }
2956     }
2957   }else
2958   if( pMWin->eEnd==TK_PRECEDING ){
2959     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2960     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2961     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2962     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2963     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2964   }else{
2965     int addr = 0;
2966     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2967     if( pMWin->eEnd!=TK_UNBOUNDED ){
2968       if( pMWin->eFrmType==TK_RANGE ){
2969         int lbl = 0;
2970         addr = sqlite3VdbeCurrentAddr(v);
2971         if( regEnd ){
2972           lbl = sqlite3VdbeMakeLabel(pParse);
2973           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2974         }
2975         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2976         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2977         if( regEnd ){
2978           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2979           sqlite3VdbeResolveLabel(v, lbl);
2980         }
2981       }else{
2982         if( regEnd ){
2983           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2984           VdbeCoverage(v);
2985         }
2986         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2987         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2988         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2989       }
2990     }
2991   }
2992 
2993   /* End of the main input loop */
2994   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2995   sqlite3WhereEnd(pWInfo);
2996 
2997   /* Fall through */
2998   if( pMWin->pPartition ){
2999     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
3000     sqlite3VdbeJumpHere(v, addrGosubFlush);
3001   }
3002 
3003   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
3004   VdbeCoverage(v);
3005   if( pMWin->eEnd==TK_PRECEDING ){
3006     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
3007     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
3008     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3009     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3010   }else if( pMWin->eStart==TK_FOLLOWING ){
3011     int addrStart;
3012     int addrBreak1;
3013     int addrBreak2;
3014     int addrBreak3;
3015     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3016     if( pMWin->eFrmType==TK_RANGE ){
3017       addrStart = sqlite3VdbeCurrentAddr(v);
3018       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3019       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3020     }else
3021     if( pMWin->eEnd==TK_UNBOUNDED ){
3022       addrStart = sqlite3VdbeCurrentAddr(v);
3023       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3024       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3025     }else{
3026       assert( pMWin->eEnd==TK_FOLLOWING );
3027       addrStart = sqlite3VdbeCurrentAddr(v);
3028       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3029       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3030     }
3031     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3032     sqlite3VdbeJumpHere(v, addrBreak2);
3033     addrStart = sqlite3VdbeCurrentAddr(v);
3034     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3035     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3036     sqlite3VdbeJumpHere(v, addrBreak1);
3037     sqlite3VdbeJumpHere(v, addrBreak3);
3038   }else{
3039     int addrBreak;
3040     int addrStart;
3041     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3042     addrStart = sqlite3VdbeCurrentAddr(v);
3043     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3044     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3045     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3046     sqlite3VdbeJumpHere(v, addrBreak);
3047   }
3048   sqlite3VdbeJumpHere(v, addrEmpty);
3049 
3050   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3051   if( pMWin->pPartition ){
3052     if( pMWin->regStartRowid ){
3053       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3054       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3055     }
3056     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3057     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3058   }
3059 }
3060 
3061 #endif /* SQLITE_OMIT_WINDOWFUNC */
3062