xref: /sqlite-3.40.0/src/window.c (revision b0c4ef71)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* Fall through.  */
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( p->pSub ){
792         int i;
793         for(i=0; i<p->pSub->nExpr; i++){
794           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795             iCol = i;
796             break;
797           }
798         }
799       }
800       if( iCol<0 ){
801         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
803         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
804       }
805       if( p->pSub ){
806         assert( ExprHasProperty(pExpr, EP_Static)==0 );
807         ExprSetProperty(pExpr, EP_Static);
808         sqlite3ExprDelete(pParse->db, pExpr);
809         ExprClearProperty(pExpr, EP_Static);
810         memset(pExpr, 0, sizeof(Expr));
811 
812         pExpr->op = TK_COLUMN;
813         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
814         pExpr->iTable = p->pWin->iEphCsr;
815         pExpr->y.pTab = p->pTab;
816       }
817       if( pParse->db->mallocFailed ) return WRC_Abort;
818       break;
819     }
820 
821     default: /* no-op */
822       break;
823   }
824 
825   return WRC_Continue;
826 }
827 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
828   struct WindowRewrite *p = pWalker->u.pRewrite;
829   Select *pSave = p->pSubSelect;
830   if( pSave==pSelect ){
831     return WRC_Continue;
832   }else{
833     p->pSubSelect = pSelect;
834     sqlite3WalkSelect(pWalker, pSelect);
835     p->pSubSelect = pSave;
836   }
837   return WRC_Prune;
838 }
839 
840 
841 /*
842 ** Iterate through each expression in expression-list pEList. For each:
843 **
844 **   * TK_COLUMN,
845 **   * aggregate function, or
846 **   * window function with a Window object that is not a member of the
847 **     Window list passed as the second argument (pWin).
848 **
849 ** Append the node to output expression-list (*ppSub). And replace it
850 ** with a TK_COLUMN that reads the (N-1)th element of table
851 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
852 ** appending the new one.
853 */
854 static void selectWindowRewriteEList(
855   Parse *pParse,
856   Window *pWin,
857   SrcList *pSrc,
858   ExprList *pEList,               /* Rewrite expressions in this list */
859   Table *pTab,
860   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
861 ){
862   Walker sWalker;
863   WindowRewrite sRewrite;
864 
865   assert( pWin!=0 );
866   memset(&sWalker, 0, sizeof(Walker));
867   memset(&sRewrite, 0, sizeof(WindowRewrite));
868 
869   sRewrite.pSub = *ppSub;
870   sRewrite.pWin = pWin;
871   sRewrite.pSrc = pSrc;
872   sRewrite.pTab = pTab;
873 
874   sWalker.pParse = pParse;
875   sWalker.xExprCallback = selectWindowRewriteExprCb;
876   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
877   sWalker.u.pRewrite = &sRewrite;
878 
879   (void)sqlite3WalkExprList(&sWalker, pEList);
880 
881   *ppSub = sRewrite.pSub;
882 }
883 
884 /*
885 ** Append a copy of each expression in expression-list pAppend to
886 ** expression list pList. Return a pointer to the result list.
887 */
888 static ExprList *exprListAppendList(
889   Parse *pParse,          /* Parsing context */
890   ExprList *pList,        /* List to which to append. Might be NULL */
891   ExprList *pAppend,      /* List of values to append. Might be NULL */
892   int bIntToNull
893 ){
894   if( pAppend ){
895     int i;
896     int nInit = pList ? pList->nExpr : 0;
897     for(i=0; i<pAppend->nExpr; i++){
898       int iDummy;
899       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
900       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
901       if( bIntToNull && pDup && sqlite3ExprIsInteger(pDup, &iDummy) ){
902         pDup->op = TK_NULL;
903         pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
904         pDup->u.zToken = 0;
905       }
906       pList = sqlite3ExprListAppend(pParse, pList, pDup);
907       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
908     }
909   }
910   return pList;
911 }
912 
913 /*
914 ** If the SELECT statement passed as the second argument does not invoke
915 ** any SQL window functions, this function is a no-op. Otherwise, it
916 ** rewrites the SELECT statement so that window function xStep functions
917 ** are invoked in the correct order as described under "SELECT REWRITING"
918 ** at the top of this file.
919 */
920 int sqlite3WindowRewrite(Parse *pParse, Select *p){
921   int rc = SQLITE_OK;
922   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
923     Vdbe *v = sqlite3GetVdbe(pParse);
924     sqlite3 *db = pParse->db;
925     Select *pSub = 0;             /* The subquery */
926     SrcList *pSrc = p->pSrc;
927     Expr *pWhere = p->pWhere;
928     ExprList *pGroupBy = p->pGroupBy;
929     Expr *pHaving = p->pHaving;
930     ExprList *pSort = 0;
931 
932     ExprList *pSublist = 0;       /* Expression list for sub-query */
933     Window *pMWin = p->pWin;      /* Master window object */
934     Window *pWin;                 /* Window object iterator */
935     Table *pTab;
936 
937     pTab = sqlite3DbMallocZero(db, sizeof(Table));
938     if( pTab==0 ){
939       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
940     }
941 
942     p->pSrc = 0;
943     p->pWhere = 0;
944     p->pGroupBy = 0;
945     p->pHaving = 0;
946     p->selFlags &= ~SF_Aggregate;
947     p->selFlags |= SF_WinRewrite;
948 
949     /* Create the ORDER BY clause for the sub-select. This is the concatenation
950     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
951     ** redundant, remove the ORDER BY from the parent SELECT.  */
952     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
953     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
954     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
955       int nSave = pSort->nExpr;
956       pSort->nExpr = p->pOrderBy->nExpr;
957       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
958         sqlite3ExprListDelete(db, p->pOrderBy);
959         p->pOrderBy = 0;
960       }
961       pSort->nExpr = nSave;
962     }
963 
964     /* Assign a cursor number for the ephemeral table used to buffer rows.
965     ** The OpenEphemeral instruction is coded later, after it is known how
966     ** many columns the table will have.  */
967     pMWin->iEphCsr = pParse->nTab++;
968     pParse->nTab += 3;
969 
970     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
971     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
972     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
973 
974     /* Append the PARTITION BY and ORDER BY expressions to the to the
975     ** sub-select expression list. They are required to figure out where
976     ** boundaries for partitions and sets of peer rows lie.  */
977     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
978     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
979 
980     /* Append the arguments passed to each window function to the
981     ** sub-select expression list. Also allocate two registers for each
982     ** window function - one for the accumulator, another for interim
983     ** results.  */
984     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
985       ExprList *pArgs = pWin->pOwner->x.pList;
986       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
987         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
988         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
989         pWin->bExprArgs = 1;
990       }else{
991         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
992         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
993       }
994       if( pWin->pFilter ){
995         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
996         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
997       }
998       pWin->regAccum = ++pParse->nMem;
999       pWin->regResult = ++pParse->nMem;
1000       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1001     }
1002 
1003     /* If there is no ORDER BY or PARTITION BY clause, and the window
1004     ** function accepts zero arguments, and there are no other columns
1005     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1006     ** that pSublist is still NULL here. Add a constant expression here to
1007     ** keep everything legal in this case.
1008     */
1009     if( pSublist==0 ){
1010       pSublist = sqlite3ExprListAppend(pParse, 0,
1011         sqlite3Expr(db, TK_INTEGER, "0")
1012       );
1013     }
1014 
1015     pSub = sqlite3SelectNew(
1016         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1017     );
1018     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1019     if( p->pSrc ){
1020       Table *pTab2;
1021       p->pSrc->a[0].pSelect = pSub;
1022       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1023       pSub->selFlags |= SF_Expanded;
1024       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1025       if( pTab2==0 ){
1026         /* Might actually be some other kind of error, but in that case
1027         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1028         ** the correct error message regardless. */
1029         rc = SQLITE_NOMEM;
1030       }else{
1031         memcpy(pTab, pTab2, sizeof(Table));
1032         pTab->tabFlags |= TF_Ephemeral;
1033         p->pSrc->a[0].pTab = pTab;
1034         pTab = pTab2;
1035       }
1036     }else{
1037       sqlite3SelectDelete(db, pSub);
1038     }
1039     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1040     sqlite3DbFree(db, pTab);
1041   }
1042 
1043   if( rc ){
1044     if( pParse->nErr==0 ){
1045       assert( pParse->db->mallocFailed );
1046       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1047     }
1048     sqlite3SelectReset(pParse, p);
1049   }
1050   return rc;
1051 }
1052 
1053 /*
1054 ** Unlink the Window object from the Select to which it is attached,
1055 ** if it is attached.
1056 */
1057 void sqlite3WindowUnlinkFromSelect(Window *p){
1058   if( p->ppThis ){
1059     *p->ppThis = p->pNextWin;
1060     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1061     p->ppThis = 0;
1062   }
1063 }
1064 
1065 /*
1066 ** Free the Window object passed as the second argument.
1067 */
1068 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1069   if( p ){
1070     sqlite3WindowUnlinkFromSelect(p);
1071     sqlite3ExprDelete(db, p->pFilter);
1072     sqlite3ExprListDelete(db, p->pPartition);
1073     sqlite3ExprListDelete(db, p->pOrderBy);
1074     sqlite3ExprDelete(db, p->pEnd);
1075     sqlite3ExprDelete(db, p->pStart);
1076     sqlite3DbFree(db, p->zName);
1077     sqlite3DbFree(db, p->zBase);
1078     sqlite3DbFree(db, p);
1079   }
1080 }
1081 
1082 /*
1083 ** Free the linked list of Window objects starting at the second argument.
1084 */
1085 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1086   while( p ){
1087     Window *pNext = p->pNextWin;
1088     sqlite3WindowDelete(db, p);
1089     p = pNext;
1090   }
1091 }
1092 
1093 /*
1094 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1095 ** value should be a non-negative integer.  If the value is not a
1096 ** constant, change it to NULL.  The fact that it is then a non-negative
1097 ** integer will be caught later.  But it is important not to leave
1098 ** variable values in the expression tree.
1099 */
1100 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1101   if( 0==sqlite3ExprIsConstant(pExpr) ){
1102     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1103     sqlite3ExprDelete(pParse->db, pExpr);
1104     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1105   }
1106   return pExpr;
1107 }
1108 
1109 /*
1110 ** Allocate and return a new Window object describing a Window Definition.
1111 */
1112 Window *sqlite3WindowAlloc(
1113   Parse *pParse,    /* Parsing context */
1114   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1115   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1116   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1117   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1118   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1119   u8 eExclude       /* EXCLUDE clause */
1120 ){
1121   Window *pWin = 0;
1122   int bImplicitFrame = 0;
1123 
1124   /* Parser assures the following: */
1125   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1126   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1127            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1128   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1129            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1130   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1131   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1132 
1133   if( eType==0 ){
1134     bImplicitFrame = 1;
1135     eType = TK_RANGE;
1136   }
1137 
1138   /* Additionally, the
1139   ** starting boundary type may not occur earlier in the following list than
1140   ** the ending boundary type:
1141   **
1142   **   UNBOUNDED PRECEDING
1143   **   <expr> PRECEDING
1144   **   CURRENT ROW
1145   **   <expr> FOLLOWING
1146   **   UNBOUNDED FOLLOWING
1147   **
1148   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1149   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1150   ** frame boundary.
1151   */
1152   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1153    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1154   ){
1155     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1156     goto windowAllocErr;
1157   }
1158 
1159   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1160   if( pWin==0 ) goto windowAllocErr;
1161   pWin->eFrmType = eType;
1162   pWin->eStart = eStart;
1163   pWin->eEnd = eEnd;
1164   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1165     eExclude = TK_NO;
1166   }
1167   pWin->eExclude = eExclude;
1168   pWin->bImplicitFrame = bImplicitFrame;
1169   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1170   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1171   return pWin;
1172 
1173 windowAllocErr:
1174   sqlite3ExprDelete(pParse->db, pEnd);
1175   sqlite3ExprDelete(pParse->db, pStart);
1176   return 0;
1177 }
1178 
1179 /*
1180 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1181 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1182 ** equivalent nul-terminated string.
1183 */
1184 Window *sqlite3WindowAssemble(
1185   Parse *pParse,
1186   Window *pWin,
1187   ExprList *pPartition,
1188   ExprList *pOrderBy,
1189   Token *pBase
1190 ){
1191   if( pWin ){
1192     pWin->pPartition = pPartition;
1193     pWin->pOrderBy = pOrderBy;
1194     if( pBase ){
1195       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1196     }
1197   }else{
1198     sqlite3ExprListDelete(pParse->db, pPartition);
1199     sqlite3ExprListDelete(pParse->db, pOrderBy);
1200   }
1201   return pWin;
1202 }
1203 
1204 /*
1205 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1206 ** is the base window. Earlier windows from the same WINDOW clause are
1207 ** stored in the linked list starting at pWin->pNextWin. This function
1208 ** either updates *pWin according to the base specification, or else
1209 ** leaves an error in pParse.
1210 */
1211 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1212   if( pWin->zBase ){
1213     sqlite3 *db = pParse->db;
1214     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1215     if( pExist ){
1216       const char *zErr = 0;
1217       /* Check for errors */
1218       if( pWin->pPartition ){
1219         zErr = "PARTITION clause";
1220       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1221         zErr = "ORDER BY clause";
1222       }else if( pExist->bImplicitFrame==0 ){
1223         zErr = "frame specification";
1224       }
1225       if( zErr ){
1226         sqlite3ErrorMsg(pParse,
1227             "cannot override %s of window: %s", zErr, pWin->zBase
1228         );
1229       }else{
1230         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1231         if( pExist->pOrderBy ){
1232           assert( pWin->pOrderBy==0 );
1233           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1234         }
1235         sqlite3DbFree(db, pWin->zBase);
1236         pWin->zBase = 0;
1237       }
1238     }
1239   }
1240 }
1241 
1242 /*
1243 ** Attach window object pWin to expression p.
1244 */
1245 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1246   if( p ){
1247     assert( p->op==TK_FUNCTION );
1248     assert( pWin );
1249     p->y.pWin = pWin;
1250     ExprSetProperty(p, EP_WinFunc);
1251     pWin->pOwner = p;
1252     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1253       sqlite3ErrorMsg(pParse,
1254           "DISTINCT is not supported for window functions"
1255       );
1256     }
1257   }else{
1258     sqlite3WindowDelete(pParse->db, pWin);
1259   }
1260 }
1261 
1262 /*
1263 ** Possibly link window pWin into the list at pSel->pWin (window functions
1264 ** to be processed as part of SELECT statement pSel). The window is linked
1265 ** in if either (a) there are no other windows already linked to this
1266 ** SELECT, or (b) the windows already linked use a compatible window frame.
1267 */
1268 void sqlite3WindowLink(Select *pSel, Window *pWin){
1269   if( pSel!=0
1270    && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0))
1271   ){
1272     pWin->pNextWin = pSel->pWin;
1273     if( pSel->pWin ){
1274       pSel->pWin->ppThis = &pWin->pNextWin;
1275     }
1276     pSel->pWin = pWin;
1277     pWin->ppThis = &pSel->pWin;
1278   }
1279 }
1280 
1281 /*
1282 ** Return 0 if the two window objects are identical, or non-zero otherwise.
1283 ** Identical window objects can be processed in a single scan.
1284 */
1285 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1286   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1287   if( p1->eFrmType!=p2->eFrmType ) return 1;
1288   if( p1->eStart!=p2->eStart ) return 1;
1289   if( p1->eEnd!=p2->eEnd ) return 1;
1290   if( p1->eExclude!=p2->eExclude ) return 1;
1291   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1292   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1293   if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1;
1294   if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1;
1295   if( bFilter ){
1296     if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1;
1297   }
1298   return 0;
1299 }
1300 
1301 
1302 /*
1303 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1304 ** to begin iterating through the sub-query results. It is used to allocate
1305 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1306 */
1307 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1308   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1309   Window *pMWin = pSelect->pWin;
1310   Window *pWin;
1311   Vdbe *v = sqlite3GetVdbe(pParse);
1312 
1313   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1314   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1315   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1316   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1317 
1318   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1319   ** said registers to NULL.  */
1320   if( pMWin->pPartition ){
1321     int nExpr = pMWin->pPartition->nExpr;
1322     pMWin->regPart = pParse->nMem+1;
1323     pParse->nMem += nExpr;
1324     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1325   }
1326 
1327   pMWin->regOne = ++pParse->nMem;
1328   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1329 
1330   if( pMWin->eExclude ){
1331     pMWin->regStartRowid = ++pParse->nMem;
1332     pMWin->regEndRowid = ++pParse->nMem;
1333     pMWin->csrApp = pParse->nTab++;
1334     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1335     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1336     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1337     return;
1338   }
1339 
1340   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1341     FuncDef *p = pWin->pFunc;
1342     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1343       /* The inline versions of min() and max() require a single ephemeral
1344       ** table and 3 registers. The registers are used as follows:
1345       **
1346       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1347       **   regApp+1: integer value used to ensure keys are unique
1348       **   regApp+2: output of MakeRecord
1349       */
1350       ExprList *pList = pWin->pOwner->x.pList;
1351       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1352       pWin->csrApp = pParse->nTab++;
1353       pWin->regApp = pParse->nMem+1;
1354       pParse->nMem += 3;
1355       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1356         assert( pKeyInfo->aSortFlags[0]==0 );
1357         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1358       }
1359       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1360       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1361       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1362     }
1363     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1364       /* Allocate two registers at pWin->regApp. These will be used to
1365       ** store the start and end index of the current frame.  */
1366       pWin->regApp = pParse->nMem+1;
1367       pWin->csrApp = pParse->nTab++;
1368       pParse->nMem += 2;
1369       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1370     }
1371     else if( p->zName==leadName || p->zName==lagName ){
1372       pWin->csrApp = pParse->nTab++;
1373       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1374     }
1375   }
1376 }
1377 
1378 #define WINDOW_STARTING_INT  0
1379 #define WINDOW_ENDING_INT    1
1380 #define WINDOW_NTH_VALUE_INT 2
1381 #define WINDOW_STARTING_NUM  3
1382 #define WINDOW_ENDING_NUM    4
1383 
1384 /*
1385 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1386 ** value of the second argument to nth_value() (eCond==2) has just been
1387 ** evaluated and the result left in register reg. This function generates VM
1388 ** code to check that the value is a non-negative integer and throws an
1389 ** exception if it is not.
1390 */
1391 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1392   static const char *azErr[] = {
1393     "frame starting offset must be a non-negative integer",
1394     "frame ending offset must be a non-negative integer",
1395     "second argument to nth_value must be a positive integer",
1396     "frame starting offset must be a non-negative number",
1397     "frame ending offset must be a non-negative number",
1398   };
1399   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1400   Vdbe *v = sqlite3GetVdbe(pParse);
1401   int regZero = sqlite3GetTempReg(pParse);
1402   assert( eCond>=0 && eCond<ArraySize(azErr) );
1403   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1404   if( eCond>=WINDOW_STARTING_NUM ){
1405     int regString = sqlite3GetTempReg(pParse);
1406     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1407     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1408     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1409     VdbeCoverage(v);
1410     assert( eCond==3 || eCond==4 );
1411     VdbeCoverageIf(v, eCond==3);
1412     VdbeCoverageIf(v, eCond==4);
1413   }else{
1414     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1415     VdbeCoverage(v);
1416     assert( eCond==0 || eCond==1 || eCond==2 );
1417     VdbeCoverageIf(v, eCond==0);
1418     VdbeCoverageIf(v, eCond==1);
1419     VdbeCoverageIf(v, eCond==2);
1420   }
1421   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1422   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1423   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1424   VdbeCoverageNeverNullIf(v, eCond==2);
1425   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1426   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1427   sqlite3MayAbort(pParse);
1428   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1429   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1430   sqlite3ReleaseTempReg(pParse, regZero);
1431 }
1432 
1433 /*
1434 ** Return the number of arguments passed to the window-function associated
1435 ** with the object passed as the only argument to this function.
1436 */
1437 static int windowArgCount(Window *pWin){
1438   ExprList *pList = pWin->pOwner->x.pList;
1439   return (pList ? pList->nExpr : 0);
1440 }
1441 
1442 typedef struct WindowCodeArg WindowCodeArg;
1443 typedef struct WindowCsrAndReg WindowCsrAndReg;
1444 
1445 /*
1446 ** See comments above struct WindowCodeArg.
1447 */
1448 struct WindowCsrAndReg {
1449   int csr;                        /* Cursor number */
1450   int reg;                        /* First in array of peer values */
1451 };
1452 
1453 /*
1454 ** A single instance of this structure is allocated on the stack by
1455 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1456 ** routines. This is to reduce the number of arguments required by each
1457 ** helper function.
1458 **
1459 ** regArg:
1460 **   Each window function requires an accumulator register (just as an
1461 **   ordinary aggregate function does). This variable is set to the first
1462 **   in an array of accumulator registers - one for each window function
1463 **   in the WindowCodeArg.pMWin list.
1464 **
1465 ** eDelete:
1466 **   The window functions implementation sometimes caches the input rows
1467 **   that it processes in a temporary table. If it is not zero, this
1468 **   variable indicates when rows may be removed from the temp table (in
1469 **   order to reduce memory requirements - it would always be safe just
1470 **   to leave them there). Possible values for eDelete are:
1471 **
1472 **      WINDOW_RETURN_ROW:
1473 **        An input row can be discarded after it is returned to the caller.
1474 **
1475 **      WINDOW_AGGINVERSE:
1476 **        An input row can be discarded after the window functions xInverse()
1477 **        callbacks have been invoked in it.
1478 **
1479 **      WINDOW_AGGSTEP:
1480 **        An input row can be discarded after the window functions xStep()
1481 **        callbacks have been invoked in it.
1482 **
1483 ** start,current,end
1484 **   Consider a window-frame similar to the following:
1485 **
1486 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1487 **
1488 **   The windows functions implmentation caches the input rows in a temp
1489 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1490 **   aggressively removes rows once they are no longer required, but that's
1491 **   a mere detail). It keeps three cursors open on the temp table. One
1492 **   (current) that points to the next row to return to the query engine
1493 **   once its window function values have been calculated. Another (end)
1494 **   points to the next row to call the xStep() method of each window function
1495 **   on (so that it is 2 groups ahead of current). And a third (start) that
1496 **   points to the next row to call the xInverse() method of each window
1497 **   function on.
1498 **
1499 **   Each cursor (start, current and end) consists of a VDBE cursor
1500 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1501 **   WindowCodeArg.reg) that always contains a copy of the peer values
1502 **   read from the corresponding cursor.
1503 **
1504 **   Depending on the window-frame in question, all three cursors may not
1505 **   be required. In this case both WindowCodeArg.csr and reg are set to
1506 **   0.
1507 */
1508 struct WindowCodeArg {
1509   Parse *pParse;             /* Parse context */
1510   Window *pMWin;             /* First in list of functions being processed */
1511   Vdbe *pVdbe;               /* VDBE object */
1512   int addrGosub;             /* OP_Gosub to this address to return one row */
1513   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1514   int regArg;                /* First in array of accumulator registers */
1515   int eDelete;               /* See above */
1516 
1517   WindowCsrAndReg start;
1518   WindowCsrAndReg current;
1519   WindowCsrAndReg end;
1520 };
1521 
1522 /*
1523 ** Generate VM code to read the window frames peer values from cursor csr into
1524 ** an array of registers starting at reg.
1525 */
1526 static void windowReadPeerValues(
1527   WindowCodeArg *p,
1528   int csr,
1529   int reg
1530 ){
1531   Window *pMWin = p->pMWin;
1532   ExprList *pOrderBy = pMWin->pOrderBy;
1533   if( pOrderBy ){
1534     Vdbe *v = sqlite3GetVdbe(p->pParse);
1535     ExprList *pPart = pMWin->pPartition;
1536     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1537     int i;
1538     for(i=0; i<pOrderBy->nExpr; i++){
1539       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1540     }
1541   }
1542 }
1543 
1544 /*
1545 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1546 ** xInverse (if bInverse is non-zero) for each window function in the
1547 ** linked list starting at pMWin. Or, for built-in window functions
1548 ** that do not use the standard function API, generate the required
1549 ** inline VM code.
1550 **
1551 ** If argument csr is greater than or equal to 0, then argument reg is
1552 ** the first register in an array of registers guaranteed to be large
1553 ** enough to hold the array of arguments for each function. In this case
1554 ** the arguments are extracted from the current row of csr into the
1555 ** array of registers before invoking OP_AggStep or OP_AggInverse
1556 **
1557 ** Or, if csr is less than zero, then the array of registers at reg is
1558 ** already populated with all columns from the current row of the sub-query.
1559 **
1560 ** If argument regPartSize is non-zero, then it is a register containing the
1561 ** number of rows in the current partition.
1562 */
1563 static void windowAggStep(
1564   WindowCodeArg *p,
1565   Window *pMWin,                  /* Linked list of window functions */
1566   int csr,                        /* Read arguments from this cursor */
1567   int bInverse,                   /* True to invoke xInverse instead of xStep */
1568   int reg                         /* Array of registers */
1569 ){
1570   Parse *pParse = p->pParse;
1571   Vdbe *v = sqlite3GetVdbe(pParse);
1572   Window *pWin;
1573   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1574     FuncDef *pFunc = pWin->pFunc;
1575     int regArg;
1576     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1577     int i;
1578 
1579     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1580 
1581     /* All OVER clauses in the same window function aggregate step must
1582     ** be the same. */
1583     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)==0 );
1584 
1585     for(i=0; i<nArg; i++){
1586       if( i!=1 || pFunc->zName!=nth_valueName ){
1587         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1588       }else{
1589         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1590       }
1591     }
1592     regArg = reg;
1593 
1594     if( pMWin->regStartRowid==0
1595      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1596      && (pWin->eStart!=TK_UNBOUNDED)
1597     ){
1598       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1599       VdbeCoverage(v);
1600       if( bInverse==0 ){
1601         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1602         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1603         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1604         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1605       }else{
1606         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1607         VdbeCoverageNeverTaken(v);
1608         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1609         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1610       }
1611       sqlite3VdbeJumpHere(v, addrIsNull);
1612     }else if( pWin->regApp ){
1613       assert( pFunc->zName==nth_valueName
1614            || pFunc->zName==first_valueName
1615       );
1616       assert( bInverse==0 || bInverse==1 );
1617       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1618     }else if( pFunc->xSFunc!=noopStepFunc ){
1619       int addrIf = 0;
1620       if( pWin->pFilter ){
1621         int regTmp;
1622         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1623         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1624         regTmp = sqlite3GetTempReg(pParse);
1625         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1626         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1627         VdbeCoverage(v);
1628         sqlite3ReleaseTempReg(pParse, regTmp);
1629       }
1630 
1631       if( pWin->bExprArgs ){
1632         int iStart = sqlite3VdbeCurrentAddr(v);
1633         VdbeOp *pOp, *pEnd;
1634 
1635         nArg = pWin->pOwner->x.pList->nExpr;
1636         regArg = sqlite3GetTempRange(pParse, nArg);
1637         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1638 
1639         pEnd = sqlite3VdbeGetOp(v, -1);
1640         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1641           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1642             pOp->p1 = csr;
1643           }
1644         }
1645       }
1646       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1647         CollSeq *pColl;
1648         assert( nArg>0 );
1649         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1650         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1651       }
1652       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1653                         bInverse, regArg, pWin->regAccum);
1654       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1655       sqlite3VdbeChangeP5(v, (u8)nArg);
1656       if( pWin->bExprArgs ){
1657         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1658       }
1659       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1660     }
1661   }
1662 }
1663 
1664 /*
1665 ** Values that may be passed as the second argument to windowCodeOp().
1666 */
1667 #define WINDOW_RETURN_ROW 1
1668 #define WINDOW_AGGINVERSE 2
1669 #define WINDOW_AGGSTEP    3
1670 
1671 /*
1672 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1673 ** (bFin==1) for each window function in the linked list starting at
1674 ** pMWin. Or, for built-in window-functions that do not use the standard
1675 ** API, generate the equivalent VM code.
1676 */
1677 static void windowAggFinal(WindowCodeArg *p, int bFin){
1678   Parse *pParse = p->pParse;
1679   Window *pMWin = p->pMWin;
1680   Vdbe *v = sqlite3GetVdbe(pParse);
1681   Window *pWin;
1682 
1683   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1684     if( pMWin->regStartRowid==0
1685      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1686      && (pWin->eStart!=TK_UNBOUNDED)
1687     ){
1688       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1689       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1690       VdbeCoverage(v);
1691       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1692       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1693     }else if( pWin->regApp ){
1694       assert( pMWin->regStartRowid==0 );
1695     }else{
1696       int nArg = windowArgCount(pWin);
1697       if( bFin ){
1698         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1699         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1700         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1701         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1702       }else{
1703         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1704         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1705       }
1706     }
1707   }
1708 }
1709 
1710 /*
1711 ** Generate code to calculate the current values of all window functions in the
1712 ** p->pMWin list by doing a full scan of the current window frame. Store the
1713 ** results in the Window.regResult registers, ready to return the upper
1714 ** layer.
1715 */
1716 static void windowFullScan(WindowCodeArg *p){
1717   Window *pWin;
1718   Parse *pParse = p->pParse;
1719   Window *pMWin = p->pMWin;
1720   Vdbe *v = p->pVdbe;
1721 
1722   int regCRowid = 0;              /* Current rowid value */
1723   int regCPeer = 0;               /* Current peer values */
1724   int regRowid = 0;               /* AggStep rowid value */
1725   int regPeer = 0;                /* AggStep peer values */
1726 
1727   int nPeer;
1728   int lblNext;
1729   int lblBrk;
1730   int addrNext;
1731   int csr;
1732 
1733   VdbeModuleComment((v, "windowFullScan begin"));
1734 
1735   assert( pMWin!=0 );
1736   csr = pMWin->csrApp;
1737   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1738 
1739   lblNext = sqlite3VdbeMakeLabel(pParse);
1740   lblBrk = sqlite3VdbeMakeLabel(pParse);
1741 
1742   regCRowid = sqlite3GetTempReg(pParse);
1743   regRowid = sqlite3GetTempReg(pParse);
1744   if( nPeer ){
1745     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1746     regPeer = sqlite3GetTempRange(pParse, nPeer);
1747   }
1748 
1749   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1750   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1751 
1752   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1753     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1754   }
1755 
1756   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1757   VdbeCoverage(v);
1758   addrNext = sqlite3VdbeCurrentAddr(v);
1759   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1760   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1761   VdbeCoverageNeverNull(v);
1762 
1763   if( pMWin->eExclude==TK_CURRENT ){
1764     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1765     VdbeCoverageNeverNull(v);
1766   }else if( pMWin->eExclude!=TK_NO ){
1767     int addr;
1768     int addrEq = 0;
1769     KeyInfo *pKeyInfo = 0;
1770 
1771     if( pMWin->pOrderBy ){
1772       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1773     }
1774     if( pMWin->eExclude==TK_TIES ){
1775       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1776       VdbeCoverageNeverNull(v);
1777     }
1778     if( pKeyInfo ){
1779       windowReadPeerValues(p, csr, regPeer);
1780       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1781       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1782       addr = sqlite3VdbeCurrentAddr(v)+1;
1783       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1784       VdbeCoverageEqNe(v);
1785     }else{
1786       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1787     }
1788     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1789   }
1790 
1791   windowAggStep(p, pMWin, csr, 0, p->regArg);
1792 
1793   sqlite3VdbeResolveLabel(v, lblNext);
1794   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1795   VdbeCoverage(v);
1796   sqlite3VdbeJumpHere(v, addrNext-1);
1797   sqlite3VdbeJumpHere(v, addrNext+1);
1798   sqlite3ReleaseTempReg(pParse, regRowid);
1799   sqlite3ReleaseTempReg(pParse, regCRowid);
1800   if( nPeer ){
1801     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1802     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1803   }
1804 
1805   windowAggFinal(p, 1);
1806   VdbeModuleComment((v, "windowFullScan end"));
1807 }
1808 
1809 /*
1810 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1811 ** return the current row of Window.iEphCsr. If all window functions are
1812 ** aggregate window functions that use the standard API, a single
1813 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1814 ** for per-row processing is only generated for the following built-in window
1815 ** functions:
1816 **
1817 **   nth_value()
1818 **   first_value()
1819 **   lag()
1820 **   lead()
1821 */
1822 static void windowReturnOneRow(WindowCodeArg *p){
1823   Window *pMWin = p->pMWin;
1824   Vdbe *v = p->pVdbe;
1825 
1826   if( pMWin->regStartRowid ){
1827     windowFullScan(p);
1828   }else{
1829     Parse *pParse = p->pParse;
1830     Window *pWin;
1831 
1832     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1833       FuncDef *pFunc = pWin->pFunc;
1834       if( pFunc->zName==nth_valueName
1835        || pFunc->zName==first_valueName
1836       ){
1837         int csr = pWin->csrApp;
1838         int lbl = sqlite3VdbeMakeLabel(pParse);
1839         int tmpReg = sqlite3GetTempReg(pParse);
1840         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1841 
1842         if( pFunc->zName==nth_valueName ){
1843           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1844           windowCheckValue(pParse, tmpReg, 2);
1845         }else{
1846           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1847         }
1848         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1849         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1850         VdbeCoverageNeverNull(v);
1851         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1852         VdbeCoverageNeverTaken(v);
1853         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1854         sqlite3VdbeResolveLabel(v, lbl);
1855         sqlite3ReleaseTempReg(pParse, tmpReg);
1856       }
1857       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1858         int nArg = pWin->pOwner->x.pList->nExpr;
1859         int csr = pWin->csrApp;
1860         int lbl = sqlite3VdbeMakeLabel(pParse);
1861         int tmpReg = sqlite3GetTempReg(pParse);
1862         int iEph = pMWin->iEphCsr;
1863 
1864         if( nArg<3 ){
1865           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1866         }else{
1867           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1868         }
1869         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1870         if( nArg<2 ){
1871           int val = (pFunc->zName==leadName ? 1 : -1);
1872           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1873         }else{
1874           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1875           int tmpReg2 = sqlite3GetTempReg(pParse);
1876           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1877           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1878           sqlite3ReleaseTempReg(pParse, tmpReg2);
1879         }
1880 
1881         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1882         VdbeCoverage(v);
1883         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1884         sqlite3VdbeResolveLabel(v, lbl);
1885         sqlite3ReleaseTempReg(pParse, tmpReg);
1886       }
1887     }
1888   }
1889   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1890 }
1891 
1892 /*
1893 ** Generate code to set the accumulator register for each window function
1894 ** in the linked list passed as the second argument to NULL. And perform
1895 ** any equivalent initialization required by any built-in window functions
1896 ** in the list.
1897 */
1898 static int windowInitAccum(Parse *pParse, Window *pMWin){
1899   Vdbe *v = sqlite3GetVdbe(pParse);
1900   int regArg;
1901   int nArg = 0;
1902   Window *pWin;
1903   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1904     FuncDef *pFunc = pWin->pFunc;
1905     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1906     nArg = MAX(nArg, windowArgCount(pWin));
1907     if( pMWin->regStartRowid==0 ){
1908       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1909         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1910         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1911       }
1912 
1913       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1914         assert( pWin->eStart!=TK_UNBOUNDED );
1915         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1916         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1917       }
1918     }
1919   }
1920   regArg = pParse->nMem+1;
1921   pParse->nMem += nArg;
1922   return regArg;
1923 }
1924 
1925 /*
1926 ** Return true if the current frame should be cached in the ephemeral table,
1927 ** even if there are no xInverse() calls required.
1928 */
1929 static int windowCacheFrame(Window *pMWin){
1930   Window *pWin;
1931   if( pMWin->regStartRowid ) return 1;
1932   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1933     FuncDef *pFunc = pWin->pFunc;
1934     if( (pFunc->zName==nth_valueName)
1935      || (pFunc->zName==first_valueName)
1936      || (pFunc->zName==leadName)
1937      || (pFunc->zName==lagName)
1938     ){
1939       return 1;
1940     }
1941   }
1942   return 0;
1943 }
1944 
1945 /*
1946 ** regOld and regNew are each the first register in an array of size
1947 ** pOrderBy->nExpr. This function generates code to compare the two
1948 ** arrays of registers using the collation sequences and other comparison
1949 ** parameters specified by pOrderBy.
1950 **
1951 ** If the two arrays are not equal, the contents of regNew is copied to
1952 ** regOld and control falls through. Otherwise, if the contents of the arrays
1953 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
1954 */
1955 static void windowIfNewPeer(
1956   Parse *pParse,
1957   ExprList *pOrderBy,
1958   int regNew,                     /* First in array of new values */
1959   int regOld,                     /* First in array of old values */
1960   int addr                        /* Jump here */
1961 ){
1962   Vdbe *v = sqlite3GetVdbe(pParse);
1963   if( pOrderBy ){
1964     int nVal = pOrderBy->nExpr;
1965     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
1966     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
1967     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1968     sqlite3VdbeAddOp3(v, OP_Jump,
1969       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
1970     );
1971     VdbeCoverageEqNe(v);
1972     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
1973   }else{
1974     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
1975   }
1976 }
1977 
1978 /*
1979 ** This function is called as part of generating VM programs for RANGE
1980 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
1981 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
1982 ** code equivalent to:
1983 **
1984 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
1985 **
1986 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
1987 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
1988 **
1989 ** If the sort-order for the ORDER BY term in the window is DESC, then the
1990 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
1991 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
1992 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
1993 ** is OP_Ge, the generated code is equivalent to:
1994 **
1995 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
1996 **
1997 ** A special type of arithmetic is used such that if csr1.peerVal is not
1998 ** a numeric type (real or integer), then the result of the addition addition
1999 ** or subtraction is a a copy of csr1.peerVal.
2000 */
2001 static void windowCodeRangeTest(
2002   WindowCodeArg *p,
2003   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2004   int csr1,                       /* Cursor number for cursor 1 */
2005   int regVal,                     /* Register containing non-negative number */
2006   int csr2,                       /* Cursor number for cursor 2 */
2007   int lbl                         /* Jump destination if condition is true */
2008 ){
2009   Parse *pParse = p->pParse;
2010   Vdbe *v = sqlite3GetVdbe(pParse);
2011   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2012   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2013   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2014   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2015   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2016   int addrGe;                               /* Jump destination */
2017 
2018   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2019   assert( pOrderBy && pOrderBy->nExpr==1 );
2020   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2021     switch( op ){
2022       case OP_Ge: op = OP_Le; break;
2023       case OP_Gt: op = OP_Lt; break;
2024       default: assert( op==OP_Le ); op = OP_Ge; break;
2025     }
2026     arith = OP_Subtract;
2027   }
2028 
2029   /* Read the peer-value from each cursor into a register */
2030   windowReadPeerValues(p, csr1, reg1);
2031   windowReadPeerValues(p, csr2, reg2);
2032 
2033   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2034       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2035       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2036   ));
2037 
2038   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2039   ** This block adds (or subtracts for DESC) the numeric value in regVal
2040   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2041   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2042   **
2043   **   if( reg1>='' ) goto addrGe;
2044   **   reg1 = reg1 +/- regVal
2045   **   addrGe:
2046   **
2047   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2048   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2049   ** then the arithmetic is performed, but since adding or subtracting from
2050   ** NULL is always NULL anyway, this case is handled as required too.  */
2051   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2052   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2053   VdbeCoverage(v);
2054   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2055   sqlite3VdbeJumpHere(v, addrGe);
2056 
2057   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2058   ** consider NULL values to be larger than all other values, instead of
2059   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2060   ** (and adding that capability causes a performance regression), so
2061   ** instead if the BIGNULL flag is set then cases where either reg1 or
2062   ** reg2 are NULL are handled separately in the following block. The code
2063   ** generated is equivalent to:
2064   **
2065   **   if( reg1 IS NULL ){
2066   **     if( op==OP_Ge ) goto lbl;
2067   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2068   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2069   **   }else if( reg2 IS NULL ){
2070   **     if( op==OP_Le ) goto lbl;
2071   **   }
2072   **
2073   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2074   ** not taken, control jumps over the comparison operator coded below this
2075   ** block.  */
2076   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2077     /* This block runs if reg1 contains a NULL. */
2078     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2079     switch( op ){
2080       case OP_Ge:
2081         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2082         break;
2083       case OP_Gt:
2084         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2085         VdbeCoverage(v);
2086         break;
2087       case OP_Le:
2088         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2089         VdbeCoverage(v);
2090         break;
2091       default: assert( op==OP_Lt ); /* no-op */ break;
2092     }
2093     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2094 
2095     /* This block runs if reg1 is not NULL, but reg2 is. */
2096     sqlite3VdbeJumpHere(v, addr);
2097     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2098     if( op==OP_Gt || op==OP_Ge ){
2099       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2100     }
2101   }
2102 
2103   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2104   ** control skips over this test if the BIGNULL flag is set and either
2105   ** reg1 or reg2 contain a NULL value.  */
2106   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2107   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2108 
2109   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2110   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2111   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2112   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2113   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2114   sqlite3ReleaseTempReg(pParse, reg1);
2115   sqlite3ReleaseTempReg(pParse, reg2);
2116 
2117   VdbeModuleComment((v, "CodeRangeTest: end"));
2118 }
2119 
2120 /*
2121 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2122 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2123 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2124 ** details.
2125 */
2126 static int windowCodeOp(
2127  WindowCodeArg *p,                /* Context object */
2128  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2129  int regCountdown,                /* Register for OP_IfPos countdown */
2130  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2131 ){
2132   int csr, reg;
2133   Parse *pParse = p->pParse;
2134   Window *pMWin = p->pMWin;
2135   int ret = 0;
2136   Vdbe *v = p->pVdbe;
2137   int addrContinue = 0;
2138   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2139 
2140   int lblDone = sqlite3VdbeMakeLabel(pParse);
2141   int addrNextRange = 0;
2142 
2143   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2144   ** starts with UNBOUNDED PRECEDING. */
2145   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2146     assert( regCountdown==0 && jumpOnEof==0 );
2147     return 0;
2148   }
2149 
2150   if( regCountdown>0 ){
2151     if( pMWin->eFrmType==TK_RANGE ){
2152       addrNextRange = sqlite3VdbeCurrentAddr(v);
2153       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2154       if( op==WINDOW_AGGINVERSE ){
2155         if( pMWin->eStart==TK_FOLLOWING ){
2156           windowCodeRangeTest(
2157               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2158           );
2159         }else{
2160           windowCodeRangeTest(
2161               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2162           );
2163         }
2164       }else{
2165         windowCodeRangeTest(
2166             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2167         );
2168       }
2169     }else{
2170       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2171       VdbeCoverage(v);
2172     }
2173   }
2174 
2175   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2176     windowAggFinal(p, 0);
2177   }
2178   addrContinue = sqlite3VdbeCurrentAddr(v);
2179 
2180   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2181   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2182   ** start cursor does not advance past the end cursor within the
2183   ** temporary table. It otherwise might, if (a>b).  */
2184   if( pMWin->eStart==pMWin->eEnd && regCountdown
2185    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2186   ){
2187     int regRowid1 = sqlite3GetTempReg(pParse);
2188     int regRowid2 = sqlite3GetTempReg(pParse);
2189     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2190     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2191     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2192     VdbeCoverage(v);
2193     sqlite3ReleaseTempReg(pParse, regRowid1);
2194     sqlite3ReleaseTempReg(pParse, regRowid2);
2195     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2196   }
2197 
2198   switch( op ){
2199     case WINDOW_RETURN_ROW:
2200       csr = p->current.csr;
2201       reg = p->current.reg;
2202       windowReturnOneRow(p);
2203       break;
2204 
2205     case WINDOW_AGGINVERSE:
2206       csr = p->start.csr;
2207       reg = p->start.reg;
2208       if( pMWin->regStartRowid ){
2209         assert( pMWin->regEndRowid );
2210         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2211       }else{
2212         windowAggStep(p, pMWin, csr, 1, p->regArg);
2213       }
2214       break;
2215 
2216     default:
2217       assert( op==WINDOW_AGGSTEP );
2218       csr = p->end.csr;
2219       reg = p->end.reg;
2220       if( pMWin->regStartRowid ){
2221         assert( pMWin->regEndRowid );
2222         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2223       }else{
2224         windowAggStep(p, pMWin, csr, 0, p->regArg);
2225       }
2226       break;
2227   }
2228 
2229   if( op==p->eDelete ){
2230     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2231     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2232   }
2233 
2234   if( jumpOnEof ){
2235     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2236     VdbeCoverage(v);
2237     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2238   }else{
2239     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2240     VdbeCoverage(v);
2241     if( bPeer ){
2242       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2243     }
2244   }
2245 
2246   if( bPeer ){
2247     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2248     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2249     windowReadPeerValues(p, csr, regTmp);
2250     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2251     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2252   }
2253 
2254   if( addrNextRange ){
2255     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2256   }
2257   sqlite3VdbeResolveLabel(v, lblDone);
2258   return ret;
2259 }
2260 
2261 
2262 /*
2263 ** Allocate and return a duplicate of the Window object indicated by the
2264 ** third argument. Set the Window.pOwner field of the new object to
2265 ** pOwner.
2266 */
2267 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2268   Window *pNew = 0;
2269   if( ALWAYS(p) ){
2270     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2271     if( pNew ){
2272       pNew->zName = sqlite3DbStrDup(db, p->zName);
2273       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2274       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2275       pNew->pFunc = p->pFunc;
2276       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2277       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2278       pNew->eFrmType = p->eFrmType;
2279       pNew->eEnd = p->eEnd;
2280       pNew->eStart = p->eStart;
2281       pNew->eExclude = p->eExclude;
2282       pNew->regResult = p->regResult;
2283       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2284       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2285       pNew->pOwner = pOwner;
2286       pNew->bImplicitFrame = p->bImplicitFrame;
2287     }
2288   }
2289   return pNew;
2290 }
2291 
2292 /*
2293 ** Return a copy of the linked list of Window objects passed as the
2294 ** second argument.
2295 */
2296 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2297   Window *pWin;
2298   Window *pRet = 0;
2299   Window **pp = &pRet;
2300 
2301   for(pWin=p; pWin; pWin=pWin->pNextWin){
2302     *pp = sqlite3WindowDup(db, 0, pWin);
2303     if( *pp==0 ) break;
2304     pp = &((*pp)->pNextWin);
2305   }
2306 
2307   return pRet;
2308 }
2309 
2310 /*
2311 ** Return true if it can be determined at compile time that expression
2312 ** pExpr evaluates to a value that, when cast to an integer, is greater
2313 ** than zero. False otherwise.
2314 **
2315 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2316 ** flag and returns zero.
2317 */
2318 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2319   int ret = 0;
2320   sqlite3 *db = pParse->db;
2321   sqlite3_value *pVal = 0;
2322   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2323   if( pVal && sqlite3_value_int(pVal)>0 ){
2324     ret = 1;
2325   }
2326   sqlite3ValueFree(pVal);
2327   return ret;
2328 }
2329 
2330 /*
2331 ** sqlite3WhereBegin() has already been called for the SELECT statement
2332 ** passed as the second argument when this function is invoked. It generates
2333 ** code to populate the Window.regResult register for each window function
2334 ** and invoke the sub-routine at instruction addrGosub once for each row.
2335 ** sqlite3WhereEnd() is always called before returning.
2336 **
2337 ** This function handles several different types of window frames, which
2338 ** require slightly different processing. The following pseudo code is
2339 ** used to implement window frames of the form:
2340 **
2341 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2342 **
2343 ** Other window frame types use variants of the following:
2344 **
2345 **     ... loop started by sqlite3WhereBegin() ...
2346 **       if( new partition ){
2347 **         Gosub flush
2348 **       }
2349 **       Insert new row into eph table.
2350 **
2351 **       if( first row of partition ){
2352 **         // Rewind three cursors, all open on the eph table.
2353 **         Rewind(csrEnd);
2354 **         Rewind(csrStart);
2355 **         Rewind(csrCurrent);
2356 **
2357 **         regEnd = <expr2>          // FOLLOWING expression
2358 **         regStart = <expr1>        // PRECEDING expression
2359 **       }else{
2360 **         // First time this branch is taken, the eph table contains two
2361 **         // rows. The first row in the partition, which all three cursors
2362 **         // currently point to, and the following row.
2363 **         AGGSTEP
2364 **         if( (regEnd--)<=0 ){
2365 **           RETURN_ROW
2366 **           if( (regStart--)<=0 ){
2367 **             AGGINVERSE
2368 **           }
2369 **         }
2370 **       }
2371 **     }
2372 **     flush:
2373 **       AGGSTEP
2374 **       while( 1 ){
2375 **         RETURN ROW
2376 **         if( csrCurrent is EOF ) break;
2377 **         if( (regStart--)<=0 ){
2378 **           AggInverse(csrStart)
2379 **           Next(csrStart)
2380 **         }
2381 **       }
2382 **
2383 ** The pseudo-code above uses the following shorthand:
2384 **
2385 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2386 **               with arguments read from the current row of cursor csrEnd, then
2387 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2388 **
2389 **   RETURN_ROW: return a row to the caller based on the contents of the
2390 **               current row of csrCurrent and the current state of all
2391 **               aggregates. Then step cursor csrCurrent forward one row.
2392 **
2393 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2394 **               functions with arguments read from the current row of cursor
2395 **               csrStart. Then step csrStart forward one row.
2396 **
2397 ** There are two other ROWS window frames that are handled significantly
2398 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2399 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2400 ** cases because they change the order in which the three cursors (csrStart,
2401 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2402 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2403 ** three.
2404 **
2405 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2406 **
2407 **     ... loop started by sqlite3WhereBegin() ...
2408 **       if( new partition ){
2409 **         Gosub flush
2410 **       }
2411 **       Insert new row into eph table.
2412 **       if( first row of partition ){
2413 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2414 **         regEnd = <expr2>
2415 **         regStart = <expr1>
2416 **       }else{
2417 **         if( (regEnd--)<=0 ){
2418 **           AGGSTEP
2419 **         }
2420 **         RETURN_ROW
2421 **         if( (regStart--)<=0 ){
2422 **           AGGINVERSE
2423 **         }
2424 **       }
2425 **     }
2426 **     flush:
2427 **       if( (regEnd--)<=0 ){
2428 **         AGGSTEP
2429 **       }
2430 **       RETURN_ROW
2431 **
2432 **
2433 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2434 **
2435 **     ... loop started by sqlite3WhereBegin() ...
2436 **     if( new partition ){
2437 **       Gosub flush
2438 **     }
2439 **     Insert new row into eph table.
2440 **     if( first row of partition ){
2441 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2442 **       regEnd = <expr2>
2443 **       regStart = regEnd - <expr1>
2444 **     }else{
2445 **       AGGSTEP
2446 **       if( (regEnd--)<=0 ){
2447 **         RETURN_ROW
2448 **       }
2449 **       if( (regStart--)<=0 ){
2450 **         AGGINVERSE
2451 **       }
2452 **     }
2453 **   }
2454 **   flush:
2455 **     AGGSTEP
2456 **     while( 1 ){
2457 **       if( (regEnd--)<=0 ){
2458 **         RETURN_ROW
2459 **         if( eof ) break;
2460 **       }
2461 **       if( (regStart--)<=0 ){
2462 **         AGGINVERSE
2463 **         if( eof ) break
2464 **       }
2465 **     }
2466 **     while( !eof csrCurrent ){
2467 **       RETURN_ROW
2468 **     }
2469 **
2470 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2471 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2472 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2473 ** This is optimized of course - branches that will never be taken and
2474 ** conditions that are always true are omitted from the VM code. The only
2475 ** exceptional case is:
2476 **
2477 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2478 **
2479 **     ... loop started by sqlite3WhereBegin() ...
2480 **     if( new partition ){
2481 **       Gosub flush
2482 **     }
2483 **     Insert new row into eph table.
2484 **     if( first row of partition ){
2485 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2486 **       regStart = <expr1>
2487 **     }else{
2488 **       AGGSTEP
2489 **     }
2490 **   }
2491 **   flush:
2492 **     AGGSTEP
2493 **     while( 1 ){
2494 **       if( (regStart--)<=0 ){
2495 **         AGGINVERSE
2496 **         if( eof ) break
2497 **       }
2498 **       RETURN_ROW
2499 **     }
2500 **     while( !eof csrCurrent ){
2501 **       RETURN_ROW
2502 **     }
2503 **
2504 ** Also requiring special handling are the cases:
2505 **
2506 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2507 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2508 **
2509 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2510 ** To handle this case, the pseudo-code programs depicted above are modified
2511 ** slightly to be:
2512 **
2513 **     ... loop started by sqlite3WhereBegin() ...
2514 **     if( new partition ){
2515 **       Gosub flush
2516 **     }
2517 **     Insert new row into eph table.
2518 **     if( first row of partition ){
2519 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2520 **       regEnd = <expr2>
2521 **       regStart = <expr1>
2522 **       if( regEnd < regStart ){
2523 **         RETURN_ROW
2524 **         delete eph table contents
2525 **         continue
2526 **       }
2527 **     ...
2528 **
2529 ** The new "continue" statement in the above jumps to the next iteration
2530 ** of the outer loop - the one started by sqlite3WhereBegin().
2531 **
2532 ** The various GROUPS cases are implemented using the same patterns as
2533 ** ROWS. The VM code is modified slightly so that:
2534 **
2535 **   1. The else branch in the main loop is only taken if the row just
2536 **      added to the ephemeral table is the start of a new group. In
2537 **      other words, it becomes:
2538 **
2539 **         ... loop started by sqlite3WhereBegin() ...
2540 **         if( new partition ){
2541 **           Gosub flush
2542 **         }
2543 **         Insert new row into eph table.
2544 **         if( first row of partition ){
2545 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2546 **           regEnd = <expr2>
2547 **           regStart = <expr1>
2548 **         }else if( new group ){
2549 **           ...
2550 **         }
2551 **       }
2552 **
2553 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2554 **      AGGINVERSE step processes the current row of the relevant cursor and
2555 **      all subsequent rows belonging to the same group.
2556 **
2557 ** RANGE window frames are a little different again. As for GROUPS, the
2558 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2559 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2560 ** basic cases:
2561 **
2562 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2563 **
2564 **     ... loop started by sqlite3WhereBegin() ...
2565 **       if( new partition ){
2566 **         Gosub flush
2567 **       }
2568 **       Insert new row into eph table.
2569 **       if( first row of partition ){
2570 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2571 **         regEnd = <expr2>
2572 **         regStart = <expr1>
2573 **       }else{
2574 **         AGGSTEP
2575 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2576 **           RETURN_ROW
2577 **           while( csrStart.key + regStart) < csrCurrent.key ){
2578 **             AGGINVERSE
2579 **           }
2580 **         }
2581 **       }
2582 **     }
2583 **     flush:
2584 **       AGGSTEP
2585 **       while( 1 ){
2586 **         RETURN ROW
2587 **         if( csrCurrent is EOF ) break;
2588 **           while( csrStart.key + regStart) < csrCurrent.key ){
2589 **             AGGINVERSE
2590 **           }
2591 **         }
2592 **       }
2593 **
2594 ** In the above notation, "csr.key" means the current value of the ORDER BY
2595 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2596 ** or <expr PRECEDING) read from cursor csr.
2597 **
2598 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2599 **
2600 **     ... loop started by sqlite3WhereBegin() ...
2601 **       if( new partition ){
2602 **         Gosub flush
2603 **       }
2604 **       Insert new row into eph table.
2605 **       if( first row of partition ){
2606 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2607 **         regEnd = <expr2>
2608 **         regStart = <expr1>
2609 **       }else{
2610 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2611 **           AGGSTEP
2612 **         }
2613 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2614 **           AGGINVERSE
2615 **         }
2616 **         RETURN_ROW
2617 **       }
2618 **     }
2619 **     flush:
2620 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2621 **         AGGSTEP
2622 **       }
2623 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2624 **         AGGINVERSE
2625 **       }
2626 **       RETURN_ROW
2627 **
2628 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2629 **
2630 **     ... loop started by sqlite3WhereBegin() ...
2631 **       if( new partition ){
2632 **         Gosub flush
2633 **       }
2634 **       Insert new row into eph table.
2635 **       if( first row of partition ){
2636 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2637 **         regEnd = <expr2>
2638 **         regStart = <expr1>
2639 **       }else{
2640 **         AGGSTEP
2641 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2642 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2643 **             AGGINVERSE
2644 **           }
2645 **           RETURN_ROW
2646 **         }
2647 **       }
2648 **     }
2649 **     flush:
2650 **       AGGSTEP
2651 **       while( 1 ){
2652 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2653 **           AGGINVERSE
2654 **           if( eof ) break "while( 1 )" loop.
2655 **         }
2656 **         RETURN_ROW
2657 **       }
2658 **       while( !eof csrCurrent ){
2659 **         RETURN_ROW
2660 **       }
2661 **
2662 ** The text above leaves out many details. Refer to the code and comments
2663 ** below for a more complete picture.
2664 */
2665 void sqlite3WindowCodeStep(
2666   Parse *pParse,                  /* Parse context */
2667   Select *p,                      /* Rewritten SELECT statement */
2668   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2669   int regGosub,                   /* Register for OP_Gosub */
2670   int addrGosub                   /* OP_Gosub here to return each row */
2671 ){
2672   Window *pMWin = p->pWin;
2673   ExprList *pOrderBy = pMWin->pOrderBy;
2674   Vdbe *v = sqlite3GetVdbe(pParse);
2675   int csrWrite;                   /* Cursor used to write to eph. table */
2676   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2677   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2678   int iInput;                               /* To iterate through sub cols */
2679   int addrNe;                     /* Address of OP_Ne */
2680   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2681   int addrInteger = 0;            /* Address of OP_Integer */
2682   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2683   int regNew;                     /* Array of registers holding new input row */
2684   int regRecord;                  /* regNew array in record form */
2685   int regRowid;                   /* Rowid for regRecord in eph table */
2686   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2687   int regPeer = 0;                /* Peer values for current row */
2688   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2689   WindowCodeArg s;                /* Context object for sub-routines */
2690   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2691   int regStart = 0;               /* Value of <expr> PRECEDING */
2692   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2693 
2694   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2695        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2696   );
2697   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2698        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2699   );
2700   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2701        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2702        || pMWin->eExclude==TK_NO
2703   );
2704 
2705   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2706 
2707   /* Fill in the context object */
2708   memset(&s, 0, sizeof(WindowCodeArg));
2709   s.pParse = pParse;
2710   s.pMWin = pMWin;
2711   s.pVdbe = v;
2712   s.regGosub = regGosub;
2713   s.addrGosub = addrGosub;
2714   s.current.csr = pMWin->iEphCsr;
2715   csrWrite = s.current.csr+1;
2716   s.start.csr = s.current.csr+2;
2717   s.end.csr = s.current.csr+3;
2718 
2719   /* Figure out when rows may be deleted from the ephemeral table. There
2720   ** are four options - they may never be deleted (eDelete==0), they may
2721   ** be deleted as soon as they are no longer part of the window frame
2722   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2723   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2724   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2725   switch( pMWin->eStart ){
2726     case TK_FOLLOWING:
2727       if( pMWin->eFrmType!=TK_RANGE
2728        && windowExprGtZero(pParse, pMWin->pStart)
2729       ){
2730         s.eDelete = WINDOW_RETURN_ROW;
2731       }
2732       break;
2733     case TK_UNBOUNDED:
2734       if( windowCacheFrame(pMWin)==0 ){
2735         if( pMWin->eEnd==TK_PRECEDING ){
2736           if( pMWin->eFrmType!=TK_RANGE
2737            && windowExprGtZero(pParse, pMWin->pEnd)
2738           ){
2739             s.eDelete = WINDOW_AGGSTEP;
2740           }
2741         }else{
2742           s.eDelete = WINDOW_RETURN_ROW;
2743         }
2744       }
2745       break;
2746     default:
2747       s.eDelete = WINDOW_AGGINVERSE;
2748       break;
2749   }
2750 
2751   /* Allocate registers for the array of values from the sub-query, the
2752   ** samve values in record form, and the rowid used to insert said record
2753   ** into the ephemeral table.  */
2754   regNew = pParse->nMem+1;
2755   pParse->nMem += nInput;
2756   regRecord = ++pParse->nMem;
2757   regRowid = ++pParse->nMem;
2758 
2759   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2760   ** clause, allocate registers to store the results of evaluating each
2761   ** <expr>.  */
2762   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2763     regStart = ++pParse->nMem;
2764   }
2765   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2766     regEnd = ++pParse->nMem;
2767   }
2768 
2769   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2770   ** registers to store copies of the ORDER BY expressions (peer values)
2771   ** for the main loop, and for each cursor (start, current and end). */
2772   if( pMWin->eFrmType!=TK_ROWS ){
2773     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2774     regNewPeer = regNew + pMWin->nBufferCol;
2775     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2776     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2777     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2778     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2779     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2780   }
2781 
2782   /* Load the column values for the row returned by the sub-select
2783   ** into an array of registers starting at regNew. Assemble them into
2784   ** a record in register regRecord. */
2785   for(iInput=0; iInput<nInput; iInput++){
2786     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2787   }
2788   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2789 
2790   /* An input row has just been read into an array of registers starting
2791   ** at regNew. If the window has a PARTITION clause, this block generates
2792   ** VM code to check if the input row is the start of a new partition.
2793   ** If so, it does an OP_Gosub to an address to be filled in later. The
2794   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2795   if( pMWin->pPartition ){
2796     int addr;
2797     ExprList *pPart = pMWin->pPartition;
2798     int nPart = pPart->nExpr;
2799     int regNewPart = regNew + pMWin->nBufferCol;
2800     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2801 
2802     regFlushPart = ++pParse->nMem;
2803     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2804     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2805     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2806     VdbeCoverageEqNe(v);
2807     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2808     VdbeComment((v, "call flush_partition"));
2809     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2810   }
2811 
2812   /* Insert the new row into the ephemeral table */
2813   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2814   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2815   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2816   VdbeCoverageNeverNull(v);
2817 
2818   /* This block is run for the first row of each partition */
2819   s.regArg = windowInitAccum(pParse, pMWin);
2820 
2821   if( regStart ){
2822     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2823     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2824   }
2825   if( regEnd ){
2826     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2827     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2828   }
2829 
2830   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2831     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2832     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2833     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2834     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2835     windowAggFinal(&s, 0);
2836     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2837     VdbeCoverageNeverTaken(v);
2838     windowReturnOneRow(&s);
2839     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2840     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2841     sqlite3VdbeJumpHere(v, addrGe);
2842   }
2843   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2844     assert( pMWin->eEnd==TK_FOLLOWING );
2845     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2846   }
2847 
2848   if( pMWin->eStart!=TK_UNBOUNDED ){
2849     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2850     VdbeCoverageNeverTaken(v);
2851   }
2852   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2853   VdbeCoverageNeverTaken(v);
2854   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2855   VdbeCoverageNeverTaken(v);
2856   if( regPeer && pOrderBy ){
2857     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2858     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2859     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2860     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2861   }
2862 
2863   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2864 
2865   sqlite3VdbeJumpHere(v, addrNe);
2866 
2867   /* Beginning of the block executed for the second and subsequent rows. */
2868   if( regPeer ){
2869     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2870   }
2871   if( pMWin->eStart==TK_FOLLOWING ){
2872     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2873     if( pMWin->eEnd!=TK_UNBOUNDED ){
2874       if( pMWin->eFrmType==TK_RANGE ){
2875         int lbl = sqlite3VdbeMakeLabel(pParse);
2876         int addrNext = sqlite3VdbeCurrentAddr(v);
2877         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2878         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2879         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2880         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2881         sqlite3VdbeResolveLabel(v, lbl);
2882       }else{
2883         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2884         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2885       }
2886     }
2887   }else
2888   if( pMWin->eEnd==TK_PRECEDING ){
2889     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2890     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2891     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2892     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2893     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2894   }else{
2895     int addr = 0;
2896     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2897     if( pMWin->eEnd!=TK_UNBOUNDED ){
2898       if( pMWin->eFrmType==TK_RANGE ){
2899         int lbl = 0;
2900         addr = sqlite3VdbeCurrentAddr(v);
2901         if( regEnd ){
2902           lbl = sqlite3VdbeMakeLabel(pParse);
2903           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2904         }
2905         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2906         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2907         if( regEnd ){
2908           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2909           sqlite3VdbeResolveLabel(v, lbl);
2910         }
2911       }else{
2912         if( regEnd ){
2913           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2914           VdbeCoverage(v);
2915         }
2916         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2917         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2918         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2919       }
2920     }
2921   }
2922 
2923   /* End of the main input loop */
2924   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2925   sqlite3WhereEnd(pWInfo);
2926 
2927   /* Fall through */
2928   if( pMWin->pPartition ){
2929     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2930     sqlite3VdbeJumpHere(v, addrGosubFlush);
2931   }
2932 
2933   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2934   VdbeCoverage(v);
2935   if( pMWin->eEnd==TK_PRECEDING ){
2936     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2937     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2938     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2939     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2940   }else if( pMWin->eStart==TK_FOLLOWING ){
2941     int addrStart;
2942     int addrBreak1;
2943     int addrBreak2;
2944     int addrBreak3;
2945     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2946     if( pMWin->eFrmType==TK_RANGE ){
2947       addrStart = sqlite3VdbeCurrentAddr(v);
2948       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2949       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2950     }else
2951     if( pMWin->eEnd==TK_UNBOUNDED ){
2952       addrStart = sqlite3VdbeCurrentAddr(v);
2953       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
2954       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
2955     }else{
2956       assert( pMWin->eEnd==TK_FOLLOWING );
2957       addrStart = sqlite3VdbeCurrentAddr(v);
2958       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
2959       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2960     }
2961     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2962     sqlite3VdbeJumpHere(v, addrBreak2);
2963     addrStart = sqlite3VdbeCurrentAddr(v);
2964     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2965     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2966     sqlite3VdbeJumpHere(v, addrBreak1);
2967     sqlite3VdbeJumpHere(v, addrBreak3);
2968   }else{
2969     int addrBreak;
2970     int addrStart;
2971     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2972     addrStart = sqlite3VdbeCurrentAddr(v);
2973     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2974     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2975     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2976     sqlite3VdbeJumpHere(v, addrBreak);
2977   }
2978   sqlite3VdbeJumpHere(v, addrEmpty);
2979 
2980   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2981   if( pMWin->pPartition ){
2982     if( pMWin->regStartRowid ){
2983       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
2984       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
2985     }
2986     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
2987     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
2988   }
2989 }
2990 
2991 #endif /* SQLITE_OMIT_WINDOWFUNC */
2992