xref: /sqlite-3.40.0/src/window.c (revision af94adf0)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* Fall through.  */
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
791       p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
792       if( p->pSub ){
793         assert( ExprHasProperty(pExpr, EP_Static)==0 );
794         ExprSetProperty(pExpr, EP_Static);
795         sqlite3ExprDelete(pParse->db, pExpr);
796         ExprClearProperty(pExpr, EP_Static);
797         memset(pExpr, 0, sizeof(Expr));
798 
799         pExpr->op = TK_COLUMN;
800         pExpr->iColumn = p->pSub->nExpr-1;
801         pExpr->iTable = p->pWin->iEphCsr;
802         pExpr->y.pTab = p->pTab;
803       }
804 
805       break;
806     }
807 
808     default: /* no-op */
809       break;
810   }
811 
812   return WRC_Continue;
813 }
814 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
815   struct WindowRewrite *p = pWalker->u.pRewrite;
816   Select *pSave = p->pSubSelect;
817   if( pSave==pSelect ){
818     return WRC_Continue;
819   }else{
820     p->pSubSelect = pSelect;
821     sqlite3WalkSelect(pWalker, pSelect);
822     p->pSubSelect = pSave;
823   }
824   return WRC_Prune;
825 }
826 
827 
828 /*
829 ** Iterate through each expression in expression-list pEList. For each:
830 **
831 **   * TK_COLUMN,
832 **   * aggregate function, or
833 **   * window function with a Window object that is not a member of the
834 **     Window list passed as the second argument (pWin).
835 **
836 ** Append the node to output expression-list (*ppSub). And replace it
837 ** with a TK_COLUMN that reads the (N-1)th element of table
838 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
839 ** appending the new one.
840 */
841 static void selectWindowRewriteEList(
842   Parse *pParse,
843   Window *pWin,
844   SrcList *pSrc,
845   ExprList *pEList,               /* Rewrite expressions in this list */
846   Table *pTab,
847   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
848 ){
849   Walker sWalker;
850   WindowRewrite sRewrite;
851 
852   assert( pWin!=0 );
853   memset(&sWalker, 0, sizeof(Walker));
854   memset(&sRewrite, 0, sizeof(WindowRewrite));
855 
856   sRewrite.pSub = *ppSub;
857   sRewrite.pWin = pWin;
858   sRewrite.pSrc = pSrc;
859   sRewrite.pTab = pTab;
860 
861   sWalker.pParse = pParse;
862   sWalker.xExprCallback = selectWindowRewriteExprCb;
863   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
864   sWalker.u.pRewrite = &sRewrite;
865 
866   (void)sqlite3WalkExprList(&sWalker, pEList);
867 
868   *ppSub = sRewrite.pSub;
869 }
870 
871 /*
872 ** Append a copy of each expression in expression-list pAppend to
873 ** expression list pList. Return a pointer to the result list.
874 */
875 static ExprList *exprListAppendList(
876   Parse *pParse,          /* Parsing context */
877   ExprList *pList,        /* List to which to append. Might be NULL */
878   ExprList *pAppend,      /* List of values to append. Might be NULL */
879   int bIntToNull
880 ){
881   if( pAppend ){
882     int i;
883     int nInit = pList ? pList->nExpr : 0;
884     for(i=0; i<pAppend->nExpr; i++){
885       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
886       if( bIntToNull && pDup && pDup->op==TK_INTEGER ){
887         pDup->op = TK_NULL;
888         pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
889       }
890       pList = sqlite3ExprListAppend(pParse, pList, pDup);
891       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
892     }
893   }
894   return pList;
895 }
896 
897 /*
898 ** If the SELECT statement passed as the second argument does not invoke
899 ** any SQL window functions, this function is a no-op. Otherwise, it
900 ** rewrites the SELECT statement so that window function xStep functions
901 ** are invoked in the correct order as described under "SELECT REWRITING"
902 ** at the top of this file.
903 */
904 int sqlite3WindowRewrite(Parse *pParse, Select *p){
905   int rc = SQLITE_OK;
906   if( p->pWin && p->pPrior==0 ){
907     Vdbe *v = sqlite3GetVdbe(pParse);
908     sqlite3 *db = pParse->db;
909     Select *pSub = 0;             /* The subquery */
910     SrcList *pSrc = p->pSrc;
911     Expr *pWhere = p->pWhere;
912     ExprList *pGroupBy = p->pGroupBy;
913     Expr *pHaving = p->pHaving;
914     ExprList *pSort = 0;
915 
916     ExprList *pSublist = 0;       /* Expression list for sub-query */
917     Window *pMWin = p->pWin;      /* Master window object */
918     Window *pWin;                 /* Window object iterator */
919     Table *pTab;
920 
921     pTab = sqlite3DbMallocZero(db, sizeof(Table));
922     if( pTab==0 ){
923       return SQLITE_NOMEM;
924     }
925 
926     p->pSrc = 0;
927     p->pWhere = 0;
928     p->pGroupBy = 0;
929     p->pHaving = 0;
930     p->selFlags &= ~SF_Aggregate;
931 
932     /* Create the ORDER BY clause for the sub-select. This is the concatenation
933     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
934     ** redundant, remove the ORDER BY from the parent SELECT.  */
935     pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0);
936     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
937     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
938       int nSave = pSort->nExpr;
939       pSort->nExpr = p->pOrderBy->nExpr;
940       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
941         sqlite3ExprListDelete(db, p->pOrderBy);
942         p->pOrderBy = 0;
943       }
944       pSort->nExpr = nSave;
945     }
946 
947     /* Assign a cursor number for the ephemeral table used to buffer rows.
948     ** The OpenEphemeral instruction is coded later, after it is known how
949     ** many columns the table will have.  */
950     pMWin->iEphCsr = pParse->nTab++;
951     pParse->nTab += 3;
952 
953     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
954     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
955     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
956 
957     /* Append the PARTITION BY and ORDER BY expressions to the to the
958     ** sub-select expression list. They are required to figure out where
959     ** boundaries for partitions and sets of peer rows lie.  */
960     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
961     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
962 
963     /* Append the arguments passed to each window function to the
964     ** sub-select expression list. Also allocate two registers for each
965     ** window function - one for the accumulator, another for interim
966     ** results.  */
967     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
968       ExprList *pArgs = pWin->pOwner->x.pList;
969       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
970         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
971         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
972         pWin->bExprArgs = 1;
973       }else{
974         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
975         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
976       }
977       if( pWin->pFilter ){
978         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
979         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
980       }
981       pWin->regAccum = ++pParse->nMem;
982       pWin->regResult = ++pParse->nMem;
983       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
984     }
985 
986     /* If there is no ORDER BY or PARTITION BY clause, and the window
987     ** function accepts zero arguments, and there are no other columns
988     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
989     ** that pSublist is still NULL here. Add a constant expression here to
990     ** keep everything legal in this case.
991     */
992     if( pSublist==0 ){
993       pSublist = sqlite3ExprListAppend(pParse, 0,
994         sqlite3Expr(db, TK_INTEGER, "0")
995       );
996     }
997 
998     pSub = sqlite3SelectNew(
999         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1000     );
1001     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1002     if( p->pSrc ){
1003       Table *pTab2;
1004       p->pSrc->a[0].pSelect = pSub;
1005       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1006       pSub->selFlags |= SF_Expanded;
1007       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1008       if( pTab2==0 ){
1009         rc = SQLITE_NOMEM;
1010       }else{
1011         memcpy(pTab, pTab2, sizeof(Table));
1012         pTab->tabFlags |= TF_Ephemeral;
1013         p->pSrc->a[0].pTab = pTab;
1014         pTab = pTab2;
1015       }
1016       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr);
1017       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1018       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1019       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1020     }else{
1021       sqlite3SelectDelete(db, pSub);
1022     }
1023     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1024     sqlite3DbFree(db, pTab);
1025   }
1026 
1027   return rc;
1028 }
1029 
1030 /*
1031 ** Unlink the Window object from the Select to which it is attached,
1032 ** if it is attached.
1033 */
1034 void sqlite3WindowUnlinkFromSelect(Window *p){
1035   if( p->ppThis ){
1036     *p->ppThis = p->pNextWin;
1037     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1038     p->ppThis = 0;
1039   }
1040 }
1041 
1042 /*
1043 ** Free the Window object passed as the second argument.
1044 */
1045 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1046   if( p ){
1047     sqlite3WindowUnlinkFromSelect(p);
1048     sqlite3ExprDelete(db, p->pFilter);
1049     sqlite3ExprListDelete(db, p->pPartition);
1050     sqlite3ExprListDelete(db, p->pOrderBy);
1051     sqlite3ExprDelete(db, p->pEnd);
1052     sqlite3ExprDelete(db, p->pStart);
1053     sqlite3DbFree(db, p->zName);
1054     sqlite3DbFree(db, p->zBase);
1055     sqlite3DbFree(db, p);
1056   }
1057 }
1058 
1059 /*
1060 ** Free the linked list of Window objects starting at the second argument.
1061 */
1062 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1063   while( p ){
1064     Window *pNext = p->pNextWin;
1065     sqlite3WindowDelete(db, p);
1066     p = pNext;
1067   }
1068 }
1069 
1070 /*
1071 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1072 ** value should be a non-negative integer.  If the value is not a
1073 ** constant, change it to NULL.  The fact that it is then a non-negative
1074 ** integer will be caught later.  But it is important not to leave
1075 ** variable values in the expression tree.
1076 */
1077 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1078   if( 0==sqlite3ExprIsConstant(pExpr) ){
1079     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1080     sqlite3ExprDelete(pParse->db, pExpr);
1081     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1082   }
1083   return pExpr;
1084 }
1085 
1086 /*
1087 ** Allocate and return a new Window object describing a Window Definition.
1088 */
1089 Window *sqlite3WindowAlloc(
1090   Parse *pParse,    /* Parsing context */
1091   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1092   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1093   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1094   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1095   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1096   u8 eExclude       /* EXCLUDE clause */
1097 ){
1098   Window *pWin = 0;
1099   int bImplicitFrame = 0;
1100 
1101   /* Parser assures the following: */
1102   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1103   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1104            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1105   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1106            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1107   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1108   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1109 
1110   if( eType==0 ){
1111     bImplicitFrame = 1;
1112     eType = TK_RANGE;
1113   }
1114 
1115   /* Additionally, the
1116   ** starting boundary type may not occur earlier in the following list than
1117   ** the ending boundary type:
1118   **
1119   **   UNBOUNDED PRECEDING
1120   **   <expr> PRECEDING
1121   **   CURRENT ROW
1122   **   <expr> FOLLOWING
1123   **   UNBOUNDED FOLLOWING
1124   **
1125   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1126   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1127   ** frame boundary.
1128   */
1129   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1130    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1131   ){
1132     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1133     goto windowAllocErr;
1134   }
1135 
1136   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1137   if( pWin==0 ) goto windowAllocErr;
1138   pWin->eFrmType = eType;
1139   pWin->eStart = eStart;
1140   pWin->eEnd = eEnd;
1141   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1142     eExclude = TK_NO;
1143   }
1144   pWin->eExclude = eExclude;
1145   pWin->bImplicitFrame = bImplicitFrame;
1146   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1147   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1148   return pWin;
1149 
1150 windowAllocErr:
1151   sqlite3ExprDelete(pParse->db, pEnd);
1152   sqlite3ExprDelete(pParse->db, pStart);
1153   return 0;
1154 }
1155 
1156 /*
1157 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1158 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1159 ** equivalent nul-terminated string.
1160 */
1161 Window *sqlite3WindowAssemble(
1162   Parse *pParse,
1163   Window *pWin,
1164   ExprList *pPartition,
1165   ExprList *pOrderBy,
1166   Token *pBase
1167 ){
1168   if( pWin ){
1169     pWin->pPartition = pPartition;
1170     pWin->pOrderBy = pOrderBy;
1171     if( pBase ){
1172       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1173     }
1174   }else{
1175     sqlite3ExprListDelete(pParse->db, pPartition);
1176     sqlite3ExprListDelete(pParse->db, pOrderBy);
1177   }
1178   return pWin;
1179 }
1180 
1181 /*
1182 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1183 ** is the base window. Earlier windows from the same WINDOW clause are
1184 ** stored in the linked list starting at pWin->pNextWin. This function
1185 ** either updates *pWin according to the base specification, or else
1186 ** leaves an error in pParse.
1187 */
1188 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1189   if( pWin->zBase ){
1190     sqlite3 *db = pParse->db;
1191     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1192     if( pExist ){
1193       const char *zErr = 0;
1194       /* Check for errors */
1195       if( pWin->pPartition ){
1196         zErr = "PARTITION clause";
1197       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1198         zErr = "ORDER BY clause";
1199       }else if( pExist->bImplicitFrame==0 ){
1200         zErr = "frame specification";
1201       }
1202       if( zErr ){
1203         sqlite3ErrorMsg(pParse,
1204             "cannot override %s of window: %s", zErr, pWin->zBase
1205         );
1206       }else{
1207         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1208         if( pExist->pOrderBy ){
1209           assert( pWin->pOrderBy==0 );
1210           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1211         }
1212         sqlite3DbFree(db, pWin->zBase);
1213         pWin->zBase = 0;
1214       }
1215     }
1216   }
1217 }
1218 
1219 /*
1220 ** Attach window object pWin to expression p.
1221 */
1222 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1223   if( p ){
1224     assert( p->op==TK_FUNCTION );
1225     assert( pWin );
1226     p->y.pWin = pWin;
1227     ExprSetProperty(p, EP_WinFunc);
1228     pWin->pOwner = p;
1229     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1230       sqlite3ErrorMsg(pParse,
1231           "DISTINCT is not supported for window functions"
1232       );
1233     }
1234   }else{
1235     sqlite3WindowDelete(pParse->db, pWin);
1236   }
1237 }
1238 
1239 /*
1240 ** Possibly link window pWin into the list at pSel->pWin (window functions
1241 ** to be processed as part of SELECT statement pSel). The window is linked
1242 ** in if either (a) there are no other windows already linked to this
1243 ** SELECT, or (b) the windows already linked use a compatible window frame.
1244 */
1245 void sqlite3WindowLink(Select *pSel, Window *pWin){
1246   if( 0==pSel->pWin
1247    || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0)
1248   ){
1249     pWin->pNextWin = pSel->pWin;
1250     if( pSel->pWin ){
1251       pSel->pWin->ppThis = &pWin->pNextWin;
1252     }
1253     pSel->pWin = pWin;
1254     pWin->ppThis = &pSel->pWin;
1255   }
1256 }
1257 
1258 /*
1259 ** Return 0 if the two window objects are identical, or non-zero otherwise.
1260 ** Identical window objects can be processed in a single scan.
1261 */
1262 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1263   if( p1->eFrmType!=p2->eFrmType ) return 1;
1264   if( p1->eStart!=p2->eStart ) return 1;
1265   if( p1->eEnd!=p2->eEnd ) return 1;
1266   if( p1->eExclude!=p2->eExclude ) return 1;
1267   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1268   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1269   if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1;
1270   if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1;
1271   if( bFilter ){
1272     if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1;
1273   }
1274   return 0;
1275 }
1276 
1277 
1278 /*
1279 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1280 ** to begin iterating through the sub-query results. It is used to allocate
1281 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1282 */
1283 void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){
1284   Window *pWin;
1285   Vdbe *v = sqlite3GetVdbe(pParse);
1286 
1287   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1288   ** said registers to NULL.  */
1289   if( pMWin->pPartition ){
1290     int nExpr = pMWin->pPartition->nExpr;
1291     pMWin->regPart = pParse->nMem+1;
1292     pParse->nMem += nExpr;
1293     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1294   }
1295 
1296   pMWin->regOne = ++pParse->nMem;
1297   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1298 
1299   if( pMWin->eExclude ){
1300     pMWin->regStartRowid = ++pParse->nMem;
1301     pMWin->regEndRowid = ++pParse->nMem;
1302     pMWin->csrApp = pParse->nTab++;
1303     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1304     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1305     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1306     return;
1307   }
1308 
1309   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1310     FuncDef *p = pWin->pFunc;
1311     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1312       /* The inline versions of min() and max() require a single ephemeral
1313       ** table and 3 registers. The registers are used as follows:
1314       **
1315       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1316       **   regApp+1: integer value used to ensure keys are unique
1317       **   regApp+2: output of MakeRecord
1318       */
1319       ExprList *pList = pWin->pOwner->x.pList;
1320       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1321       pWin->csrApp = pParse->nTab++;
1322       pWin->regApp = pParse->nMem+1;
1323       pParse->nMem += 3;
1324       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1325         assert( pKeyInfo->aSortFlags[0]==0 );
1326         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1327       }
1328       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1329       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1330       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1331     }
1332     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1333       /* Allocate two registers at pWin->regApp. These will be used to
1334       ** store the start and end index of the current frame.  */
1335       pWin->regApp = pParse->nMem+1;
1336       pWin->csrApp = pParse->nTab++;
1337       pParse->nMem += 2;
1338       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1339     }
1340     else if( p->zName==leadName || p->zName==lagName ){
1341       pWin->csrApp = pParse->nTab++;
1342       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1343     }
1344   }
1345 }
1346 
1347 #define WINDOW_STARTING_INT  0
1348 #define WINDOW_ENDING_INT    1
1349 #define WINDOW_NTH_VALUE_INT 2
1350 #define WINDOW_STARTING_NUM  3
1351 #define WINDOW_ENDING_NUM    4
1352 
1353 /*
1354 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1355 ** value of the second argument to nth_value() (eCond==2) has just been
1356 ** evaluated and the result left in register reg. This function generates VM
1357 ** code to check that the value is a non-negative integer and throws an
1358 ** exception if it is not.
1359 */
1360 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1361   static const char *azErr[] = {
1362     "frame starting offset must be a non-negative integer",
1363     "frame ending offset must be a non-negative integer",
1364     "second argument to nth_value must be a positive integer",
1365     "frame starting offset must be a non-negative number",
1366     "frame ending offset must be a non-negative number",
1367   };
1368   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1369   Vdbe *v = sqlite3GetVdbe(pParse);
1370   int regZero = sqlite3GetTempReg(pParse);
1371   assert( eCond>=0 && eCond<ArraySize(azErr) );
1372   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1373   if( eCond>=WINDOW_STARTING_NUM ){
1374     int regString = sqlite3GetTempReg(pParse);
1375     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1376     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1377     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1378     VdbeCoverage(v);
1379     assert( eCond==3 || eCond==4 );
1380     VdbeCoverageIf(v, eCond==3);
1381     VdbeCoverageIf(v, eCond==4);
1382   }else{
1383     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1384     VdbeCoverage(v);
1385     assert( eCond==0 || eCond==1 || eCond==2 );
1386     VdbeCoverageIf(v, eCond==0);
1387     VdbeCoverageIf(v, eCond==1);
1388     VdbeCoverageIf(v, eCond==2);
1389   }
1390   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1391   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1392   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1393   VdbeCoverageNeverNullIf(v, eCond==2);
1394   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1395   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1396   sqlite3MayAbort(pParse);
1397   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1398   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1399   sqlite3ReleaseTempReg(pParse, regZero);
1400 }
1401 
1402 /*
1403 ** Return the number of arguments passed to the window-function associated
1404 ** with the object passed as the only argument to this function.
1405 */
1406 static int windowArgCount(Window *pWin){
1407   ExprList *pList = pWin->pOwner->x.pList;
1408   return (pList ? pList->nExpr : 0);
1409 }
1410 
1411 typedef struct WindowCodeArg WindowCodeArg;
1412 typedef struct WindowCsrAndReg WindowCsrAndReg;
1413 
1414 /*
1415 ** See comments above struct WindowCodeArg.
1416 */
1417 struct WindowCsrAndReg {
1418   int csr;                        /* Cursor number */
1419   int reg;                        /* First in array of peer values */
1420 };
1421 
1422 /*
1423 ** A single instance of this structure is allocated on the stack by
1424 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1425 ** routines. This is to reduce the number of arguments required by each
1426 ** helper function.
1427 **
1428 ** regArg:
1429 **   Each window function requires an accumulator register (just as an
1430 **   ordinary aggregate function does). This variable is set to the first
1431 **   in an array of accumulator registers - one for each window function
1432 **   in the WindowCodeArg.pMWin list.
1433 **
1434 ** eDelete:
1435 **   The window functions implementation sometimes caches the input rows
1436 **   that it processes in a temporary table. If it is not zero, this
1437 **   variable indicates when rows may be removed from the temp table (in
1438 **   order to reduce memory requirements - it would always be safe just
1439 **   to leave them there). Possible values for eDelete are:
1440 **
1441 **      WINDOW_RETURN_ROW:
1442 **        An input row can be discarded after it is returned to the caller.
1443 **
1444 **      WINDOW_AGGINVERSE:
1445 **        An input row can be discarded after the window functions xInverse()
1446 **        callbacks have been invoked in it.
1447 **
1448 **      WINDOW_AGGSTEP:
1449 **        An input row can be discarded after the window functions xStep()
1450 **        callbacks have been invoked in it.
1451 **
1452 ** start,current,end
1453 **   Consider a window-frame similar to the following:
1454 **
1455 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1456 **
1457 **   The windows functions implmentation caches the input rows in a temp
1458 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1459 **   aggressively removes rows once they are no longer required, but that's
1460 **   a mere detail). It keeps three cursors open on the temp table. One
1461 **   (current) that points to the next row to return to the query engine
1462 **   once its window function values have been calculated. Another (end)
1463 **   points to the next row to call the xStep() method of each window function
1464 **   on (so that it is 2 groups ahead of current). And a third (start) that
1465 **   points to the next row to call the xInverse() method of each window
1466 **   function on.
1467 **
1468 **   Each cursor (start, current and end) consists of a VDBE cursor
1469 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1470 **   WindowCodeArg.reg) that always contains a copy of the peer values
1471 **   read from the corresponding cursor.
1472 **
1473 **   Depending on the window-frame in question, all three cursors may not
1474 **   be required. In this case both WindowCodeArg.csr and reg are set to
1475 **   0.
1476 */
1477 struct WindowCodeArg {
1478   Parse *pParse;             /* Parse context */
1479   Window *pMWin;             /* First in list of functions being processed */
1480   Vdbe *pVdbe;               /* VDBE object */
1481   int addrGosub;             /* OP_Gosub to this address to return one row */
1482   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1483   int regArg;                /* First in array of accumulator registers */
1484   int eDelete;               /* See above */
1485 
1486   WindowCsrAndReg start;
1487   WindowCsrAndReg current;
1488   WindowCsrAndReg end;
1489 };
1490 
1491 /*
1492 ** Generate VM code to read the window frames peer values from cursor csr into
1493 ** an array of registers starting at reg.
1494 */
1495 static void windowReadPeerValues(
1496   WindowCodeArg *p,
1497   int csr,
1498   int reg
1499 ){
1500   Window *pMWin = p->pMWin;
1501   ExprList *pOrderBy = pMWin->pOrderBy;
1502   if( pOrderBy ){
1503     Vdbe *v = sqlite3GetVdbe(p->pParse);
1504     ExprList *pPart = pMWin->pPartition;
1505     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1506     int i;
1507     for(i=0; i<pOrderBy->nExpr; i++){
1508       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1509     }
1510   }
1511 }
1512 
1513 /*
1514 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1515 ** xInverse (if bInverse is non-zero) for each window function in the
1516 ** linked list starting at pMWin. Or, for built-in window functions
1517 ** that do not use the standard function API, generate the required
1518 ** inline VM code.
1519 **
1520 ** If argument csr is greater than or equal to 0, then argument reg is
1521 ** the first register in an array of registers guaranteed to be large
1522 ** enough to hold the array of arguments for each function. In this case
1523 ** the arguments are extracted from the current row of csr into the
1524 ** array of registers before invoking OP_AggStep or OP_AggInverse
1525 **
1526 ** Or, if csr is less than zero, then the array of registers at reg is
1527 ** already populated with all columns from the current row of the sub-query.
1528 **
1529 ** If argument regPartSize is non-zero, then it is a register containing the
1530 ** number of rows in the current partition.
1531 */
1532 static void windowAggStep(
1533   WindowCodeArg *p,
1534   Window *pMWin,                  /* Linked list of window functions */
1535   int csr,                        /* Read arguments from this cursor */
1536   int bInverse,                   /* True to invoke xInverse instead of xStep */
1537   int reg                         /* Array of registers */
1538 ){
1539   Parse *pParse = p->pParse;
1540   Vdbe *v = sqlite3GetVdbe(pParse);
1541   Window *pWin;
1542   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1543     FuncDef *pFunc = pWin->pFunc;
1544     int regArg;
1545     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1546     int i;
1547 
1548     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1549 
1550     /* All OVER clauses in the same window function aggregate step must
1551     ** be the same. */
1552     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)==0 );
1553 
1554     for(i=0; i<nArg; i++){
1555       if( i!=1 || pFunc->zName!=nth_valueName ){
1556         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1557       }else{
1558         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1559       }
1560     }
1561     regArg = reg;
1562 
1563     if( pMWin->regStartRowid==0
1564      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1565      && (pWin->eStart!=TK_UNBOUNDED)
1566     ){
1567       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1568       VdbeCoverage(v);
1569       if( bInverse==0 ){
1570         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1571         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1572         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1573         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1574       }else{
1575         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1576         VdbeCoverageNeverTaken(v);
1577         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1578         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1579       }
1580       sqlite3VdbeJumpHere(v, addrIsNull);
1581     }else if( pWin->regApp ){
1582       assert( pFunc->zName==nth_valueName
1583            || pFunc->zName==first_valueName
1584       );
1585       assert( bInverse==0 || bInverse==1 );
1586       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1587     }else if( pFunc->xSFunc!=noopStepFunc ){
1588       int addrIf = 0;
1589       if( pWin->pFilter ){
1590         int regTmp;
1591         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1592         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1593         regTmp = sqlite3GetTempReg(pParse);
1594         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1595         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1596         VdbeCoverage(v);
1597         sqlite3ReleaseTempReg(pParse, regTmp);
1598       }
1599 
1600       if( pWin->bExprArgs ){
1601         int iStart = sqlite3VdbeCurrentAddr(v);
1602         VdbeOp *pOp, *pEnd;
1603 
1604         nArg = pWin->pOwner->x.pList->nExpr;
1605         regArg = sqlite3GetTempRange(pParse, nArg);
1606         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1607 
1608         pEnd = sqlite3VdbeGetOp(v, -1);
1609         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1610           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1611             pOp->p1 = csr;
1612           }
1613         }
1614       }
1615       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1616         CollSeq *pColl;
1617         assert( nArg>0 );
1618         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1619         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1620       }
1621       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1622                         bInverse, regArg, pWin->regAccum);
1623       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1624       sqlite3VdbeChangeP5(v, (u8)nArg);
1625       if( pWin->bExprArgs ){
1626         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1627       }
1628       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1629     }
1630   }
1631 }
1632 
1633 /*
1634 ** Values that may be passed as the second argument to windowCodeOp().
1635 */
1636 #define WINDOW_RETURN_ROW 1
1637 #define WINDOW_AGGINVERSE 2
1638 #define WINDOW_AGGSTEP    3
1639 
1640 /*
1641 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1642 ** (bFin==1) for each window function in the linked list starting at
1643 ** pMWin. Or, for built-in window-functions that do not use the standard
1644 ** API, generate the equivalent VM code.
1645 */
1646 static void windowAggFinal(WindowCodeArg *p, int bFin){
1647   Parse *pParse = p->pParse;
1648   Window *pMWin = p->pMWin;
1649   Vdbe *v = sqlite3GetVdbe(pParse);
1650   Window *pWin;
1651 
1652   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1653     if( pMWin->regStartRowid==0
1654      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1655      && (pWin->eStart!=TK_UNBOUNDED)
1656     ){
1657       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1658       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1659       VdbeCoverage(v);
1660       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1661       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1662     }else if( pWin->regApp ){
1663       assert( pMWin->regStartRowid==0 );
1664     }else{
1665       int nArg = windowArgCount(pWin);
1666       if( bFin ){
1667         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1668         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1669         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1670         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1671       }else{
1672         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1673         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1674       }
1675     }
1676   }
1677 }
1678 
1679 /*
1680 ** Generate code to calculate the current values of all window functions in the
1681 ** p->pMWin list by doing a full scan of the current window frame. Store the
1682 ** results in the Window.regResult registers, ready to return the upper
1683 ** layer.
1684 */
1685 static void windowFullScan(WindowCodeArg *p){
1686   Window *pWin;
1687   Parse *pParse = p->pParse;
1688   Window *pMWin = p->pMWin;
1689   Vdbe *v = p->pVdbe;
1690 
1691   int regCRowid = 0;              /* Current rowid value */
1692   int regCPeer = 0;               /* Current peer values */
1693   int regRowid = 0;               /* AggStep rowid value */
1694   int regPeer = 0;                /* AggStep peer values */
1695 
1696   int nPeer;
1697   int lblNext;
1698   int lblBrk;
1699   int addrNext;
1700   int csr;
1701 
1702   VdbeModuleComment((v, "windowFullScan begin"));
1703 
1704   assert( pMWin!=0 );
1705   csr = pMWin->csrApp;
1706   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1707 
1708   lblNext = sqlite3VdbeMakeLabel(pParse);
1709   lblBrk = sqlite3VdbeMakeLabel(pParse);
1710 
1711   regCRowid = sqlite3GetTempReg(pParse);
1712   regRowid = sqlite3GetTempReg(pParse);
1713   if( nPeer ){
1714     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1715     regPeer = sqlite3GetTempRange(pParse, nPeer);
1716   }
1717 
1718   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1719   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1720 
1721   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1722     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1723   }
1724 
1725   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1726   VdbeCoverage(v);
1727   addrNext = sqlite3VdbeCurrentAddr(v);
1728   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1729   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1730   VdbeCoverageNeverNull(v);
1731 
1732   if( pMWin->eExclude==TK_CURRENT ){
1733     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1734     VdbeCoverageNeverNull(v);
1735   }else if( pMWin->eExclude!=TK_NO ){
1736     int addr;
1737     int addrEq = 0;
1738     KeyInfo *pKeyInfo = 0;
1739 
1740     if( pMWin->pOrderBy ){
1741       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1742     }
1743     if( pMWin->eExclude==TK_TIES ){
1744       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1745       VdbeCoverageNeverNull(v);
1746     }
1747     if( pKeyInfo ){
1748       windowReadPeerValues(p, csr, regPeer);
1749       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1750       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1751       addr = sqlite3VdbeCurrentAddr(v)+1;
1752       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1753       VdbeCoverageEqNe(v);
1754     }else{
1755       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1756     }
1757     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1758   }
1759 
1760   windowAggStep(p, pMWin, csr, 0, p->regArg);
1761 
1762   sqlite3VdbeResolveLabel(v, lblNext);
1763   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1764   VdbeCoverage(v);
1765   sqlite3VdbeJumpHere(v, addrNext-1);
1766   sqlite3VdbeJumpHere(v, addrNext+1);
1767   sqlite3ReleaseTempReg(pParse, regRowid);
1768   sqlite3ReleaseTempReg(pParse, regCRowid);
1769   if( nPeer ){
1770     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1771     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1772   }
1773 
1774   windowAggFinal(p, 1);
1775   VdbeModuleComment((v, "windowFullScan end"));
1776 }
1777 
1778 /*
1779 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1780 ** return the current row of Window.iEphCsr. If all window functions are
1781 ** aggregate window functions that use the standard API, a single
1782 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1783 ** for per-row processing is only generated for the following built-in window
1784 ** functions:
1785 **
1786 **   nth_value()
1787 **   first_value()
1788 **   lag()
1789 **   lead()
1790 */
1791 static void windowReturnOneRow(WindowCodeArg *p){
1792   Window *pMWin = p->pMWin;
1793   Vdbe *v = p->pVdbe;
1794 
1795   if( pMWin->regStartRowid ){
1796     windowFullScan(p);
1797   }else{
1798     Parse *pParse = p->pParse;
1799     Window *pWin;
1800 
1801     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1802       FuncDef *pFunc = pWin->pFunc;
1803       if( pFunc->zName==nth_valueName
1804        || pFunc->zName==first_valueName
1805       ){
1806         int csr = pWin->csrApp;
1807         int lbl = sqlite3VdbeMakeLabel(pParse);
1808         int tmpReg = sqlite3GetTempReg(pParse);
1809         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1810 
1811         if( pFunc->zName==nth_valueName ){
1812           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1813           windowCheckValue(pParse, tmpReg, 2);
1814         }else{
1815           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1816         }
1817         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1818         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1819         VdbeCoverageNeverNull(v);
1820         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1821         VdbeCoverageNeverTaken(v);
1822         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1823         sqlite3VdbeResolveLabel(v, lbl);
1824         sqlite3ReleaseTempReg(pParse, tmpReg);
1825       }
1826       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1827         int nArg = pWin->pOwner->x.pList->nExpr;
1828         int csr = pWin->csrApp;
1829         int lbl = sqlite3VdbeMakeLabel(pParse);
1830         int tmpReg = sqlite3GetTempReg(pParse);
1831         int iEph = pMWin->iEphCsr;
1832 
1833         if( nArg<3 ){
1834           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1835         }else{
1836           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1837         }
1838         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1839         if( nArg<2 ){
1840           int val = (pFunc->zName==leadName ? 1 : -1);
1841           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1842         }else{
1843           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1844           int tmpReg2 = sqlite3GetTempReg(pParse);
1845           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1846           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1847           sqlite3ReleaseTempReg(pParse, tmpReg2);
1848         }
1849 
1850         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1851         VdbeCoverage(v);
1852         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1853         sqlite3VdbeResolveLabel(v, lbl);
1854         sqlite3ReleaseTempReg(pParse, tmpReg);
1855       }
1856     }
1857   }
1858   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1859 }
1860 
1861 /*
1862 ** Generate code to set the accumulator register for each window function
1863 ** in the linked list passed as the second argument to NULL. And perform
1864 ** any equivalent initialization required by any built-in window functions
1865 ** in the list.
1866 */
1867 static int windowInitAccum(Parse *pParse, Window *pMWin){
1868   Vdbe *v = sqlite3GetVdbe(pParse);
1869   int regArg;
1870   int nArg = 0;
1871   Window *pWin;
1872   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1873     FuncDef *pFunc = pWin->pFunc;
1874     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1875     nArg = MAX(nArg, windowArgCount(pWin));
1876     if( pMWin->regStartRowid==0 ){
1877       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1878         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1879         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1880       }
1881 
1882       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1883         assert( pWin->eStart!=TK_UNBOUNDED );
1884         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1885         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1886       }
1887     }
1888   }
1889   regArg = pParse->nMem+1;
1890   pParse->nMem += nArg;
1891   return regArg;
1892 }
1893 
1894 /*
1895 ** Return true if the current frame should be cached in the ephemeral table,
1896 ** even if there are no xInverse() calls required.
1897 */
1898 static int windowCacheFrame(Window *pMWin){
1899   Window *pWin;
1900   if( pMWin->regStartRowid ) return 1;
1901   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1902     FuncDef *pFunc = pWin->pFunc;
1903     if( (pFunc->zName==nth_valueName)
1904      || (pFunc->zName==first_valueName)
1905      || (pFunc->zName==leadName)
1906      || (pFunc->zName==lagName)
1907     ){
1908       return 1;
1909     }
1910   }
1911   return 0;
1912 }
1913 
1914 /*
1915 ** regOld and regNew are each the first register in an array of size
1916 ** pOrderBy->nExpr. This function generates code to compare the two
1917 ** arrays of registers using the collation sequences and other comparison
1918 ** parameters specified by pOrderBy.
1919 **
1920 ** If the two arrays are not equal, the contents of regNew is copied to
1921 ** regOld and control falls through. Otherwise, if the contents of the arrays
1922 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
1923 */
1924 static void windowIfNewPeer(
1925   Parse *pParse,
1926   ExprList *pOrderBy,
1927   int regNew,                     /* First in array of new values */
1928   int regOld,                     /* First in array of old values */
1929   int addr                        /* Jump here */
1930 ){
1931   Vdbe *v = sqlite3GetVdbe(pParse);
1932   if( pOrderBy ){
1933     int nVal = pOrderBy->nExpr;
1934     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
1935     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
1936     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1937     sqlite3VdbeAddOp3(v, OP_Jump,
1938       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
1939     );
1940     VdbeCoverageEqNe(v);
1941     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
1942   }else{
1943     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
1944   }
1945 }
1946 
1947 /*
1948 ** This function is called as part of generating VM programs for RANGE
1949 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
1950 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
1951 ** code equivalent to:
1952 **
1953 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
1954 **
1955 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
1956 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
1957 **
1958 ** If the sort-order for the ORDER BY term in the window is DESC, then the
1959 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
1960 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
1961 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
1962 ** is OP_Ge, the generated code is equivalent to:
1963 **
1964 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
1965 **
1966 ** A special type of arithmetic is used such that if csr1.peerVal is not
1967 ** a numeric type (real or integer), then the result of the addition addition
1968 ** or subtraction is a a copy of csr1.peerVal.
1969 */
1970 static void windowCodeRangeTest(
1971   WindowCodeArg *p,
1972   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
1973   int csr1,                       /* Cursor number for cursor 1 */
1974   int regVal,                     /* Register containing non-negative number */
1975   int csr2,                       /* Cursor number for cursor 2 */
1976   int lbl                         /* Jump destination if condition is true */
1977 ){
1978   Parse *pParse = p->pParse;
1979   Vdbe *v = sqlite3GetVdbe(pParse);
1980   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
1981   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
1982   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
1983   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
1984   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
1985   int addrGe;                               /* Jump destination */
1986 
1987   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
1988   assert( pOrderBy && pOrderBy->nExpr==1 );
1989   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
1990     switch( op ){
1991       case OP_Ge: op = OP_Le; break;
1992       case OP_Gt: op = OP_Lt; break;
1993       default: assert( op==OP_Le ); op = OP_Ge; break;
1994     }
1995     arith = OP_Subtract;
1996   }
1997 
1998   /* Read the peer-value from each cursor into a register */
1999   windowReadPeerValues(p, csr1, reg1);
2000   windowReadPeerValues(p, csr2, reg2);
2001 
2002   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2003       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2004       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2005   ));
2006 
2007   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2008   ** This block adds (or subtracts for DESC) the numeric value in regVal
2009   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2010   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2011   **
2012   **   if( reg1>='' ) goto addrGe;
2013   **   reg1 = reg1 +/- regVal
2014   **   addrGe:
2015   **
2016   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2017   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2018   ** then the arithmetic is performed, but since adding or subtracting from
2019   ** NULL is always NULL anyway, this case is handled as required too.  */
2020   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2021   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2022   VdbeCoverage(v);
2023   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2024   sqlite3VdbeJumpHere(v, addrGe);
2025 
2026   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2027   ** consider NULL values to be larger than all other values, instead of
2028   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2029   ** (and adding that capability causes a performance regression), so
2030   ** instead if the BIGNULL flag is set then cases where either reg1 or
2031   ** reg2 are NULL are handled separately in the following block. The code
2032   ** generated is equivalent to:
2033   **
2034   **   if( reg1 IS NULL ){
2035   **     if( op==OP_Ge ) goto lbl;
2036   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2037   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2038   **   }else if( reg2 IS NULL ){
2039   **     if( op==OP_Le ) goto lbl;
2040   **   }
2041   **
2042   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2043   ** not taken, control jumps over the comparison operator coded below this
2044   ** block.  */
2045   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2046     /* This block runs if reg1 contains a NULL. */
2047     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2048     switch( op ){
2049       case OP_Ge:
2050         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2051         break;
2052       case OP_Gt:
2053         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2054         VdbeCoverage(v);
2055         break;
2056       case OP_Le:
2057         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2058         VdbeCoverage(v);
2059         break;
2060       default: assert( op==OP_Lt ); /* no-op */ break;
2061     }
2062     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2063 
2064     /* This block runs if reg1 is not NULL, but reg2 is. */
2065     sqlite3VdbeJumpHere(v, addr);
2066     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2067     if( op==OP_Gt || op==OP_Ge ){
2068       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2069     }
2070   }
2071 
2072   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2073   ** control skips over this test if the BIGNULL flag is set and either
2074   ** reg1 or reg2 contain a NULL value.  */
2075   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2076   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2077 
2078   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2079   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2080   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2081   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2082   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2083   sqlite3ReleaseTempReg(pParse, reg1);
2084   sqlite3ReleaseTempReg(pParse, reg2);
2085 
2086   VdbeModuleComment((v, "CodeRangeTest: end"));
2087 }
2088 
2089 /*
2090 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2091 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2092 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2093 ** details.
2094 */
2095 static int windowCodeOp(
2096  WindowCodeArg *p,                /* Context object */
2097  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2098  int regCountdown,                /* Register for OP_IfPos countdown */
2099  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2100 ){
2101   int csr, reg;
2102   Parse *pParse = p->pParse;
2103   Window *pMWin = p->pMWin;
2104   int ret = 0;
2105   Vdbe *v = p->pVdbe;
2106   int addrContinue = 0;
2107   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2108 
2109   int lblDone = sqlite3VdbeMakeLabel(pParse);
2110   int addrNextRange = 0;
2111 
2112   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2113   ** starts with UNBOUNDED PRECEDING. */
2114   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2115     assert( regCountdown==0 && jumpOnEof==0 );
2116     return 0;
2117   }
2118 
2119   if( regCountdown>0 ){
2120     if( pMWin->eFrmType==TK_RANGE ){
2121       addrNextRange = sqlite3VdbeCurrentAddr(v);
2122       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2123       if( op==WINDOW_AGGINVERSE ){
2124         if( pMWin->eStart==TK_FOLLOWING ){
2125           windowCodeRangeTest(
2126               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2127           );
2128         }else{
2129           windowCodeRangeTest(
2130               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2131           );
2132         }
2133       }else{
2134         windowCodeRangeTest(
2135             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2136         );
2137       }
2138     }else{
2139       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2140       VdbeCoverage(v);
2141     }
2142   }
2143 
2144   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2145     windowAggFinal(p, 0);
2146   }
2147   addrContinue = sqlite3VdbeCurrentAddr(v);
2148 
2149   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2150   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2151   ** start cursor does not advance past the end cursor within the
2152   ** temporary table. It otherwise might, if (a>b).  */
2153   if( pMWin->eStart==pMWin->eEnd && regCountdown
2154    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2155   ){
2156     int regRowid1 = sqlite3GetTempReg(pParse);
2157     int regRowid2 = sqlite3GetTempReg(pParse);
2158     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2159     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2160     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2161     VdbeCoverage(v);
2162     sqlite3ReleaseTempReg(pParse, regRowid1);
2163     sqlite3ReleaseTempReg(pParse, regRowid2);
2164     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2165   }
2166 
2167   switch( op ){
2168     case WINDOW_RETURN_ROW:
2169       csr = p->current.csr;
2170       reg = p->current.reg;
2171       windowReturnOneRow(p);
2172       break;
2173 
2174     case WINDOW_AGGINVERSE:
2175       csr = p->start.csr;
2176       reg = p->start.reg;
2177       if( pMWin->regStartRowid ){
2178         assert( pMWin->regEndRowid );
2179         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2180       }else{
2181         windowAggStep(p, pMWin, csr, 1, p->regArg);
2182       }
2183       break;
2184 
2185     default:
2186       assert( op==WINDOW_AGGSTEP );
2187       csr = p->end.csr;
2188       reg = p->end.reg;
2189       if( pMWin->regStartRowid ){
2190         assert( pMWin->regEndRowid );
2191         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2192       }else{
2193         windowAggStep(p, pMWin, csr, 0, p->regArg);
2194       }
2195       break;
2196   }
2197 
2198   if( op==p->eDelete ){
2199     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2200     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2201   }
2202 
2203   if( jumpOnEof ){
2204     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2205     VdbeCoverage(v);
2206     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2207   }else{
2208     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2209     VdbeCoverage(v);
2210     if( bPeer ){
2211       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2212     }
2213   }
2214 
2215   if( bPeer ){
2216     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2217     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2218     windowReadPeerValues(p, csr, regTmp);
2219     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2220     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2221   }
2222 
2223   if( addrNextRange ){
2224     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2225   }
2226   sqlite3VdbeResolveLabel(v, lblDone);
2227   return ret;
2228 }
2229 
2230 
2231 /*
2232 ** Allocate and return a duplicate of the Window object indicated by the
2233 ** third argument. Set the Window.pOwner field of the new object to
2234 ** pOwner.
2235 */
2236 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2237   Window *pNew = 0;
2238   if( ALWAYS(p) ){
2239     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2240     if( pNew ){
2241       pNew->zName = sqlite3DbStrDup(db, p->zName);
2242       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2243       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2244       pNew->pFunc = p->pFunc;
2245       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2246       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2247       pNew->eFrmType = p->eFrmType;
2248       pNew->eEnd = p->eEnd;
2249       pNew->eStart = p->eStart;
2250       pNew->eExclude = p->eExclude;
2251       pNew->regResult = p->regResult;
2252       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2253       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2254       pNew->pOwner = pOwner;
2255       pNew->bImplicitFrame = p->bImplicitFrame;
2256     }
2257   }
2258   return pNew;
2259 }
2260 
2261 /*
2262 ** Return a copy of the linked list of Window objects passed as the
2263 ** second argument.
2264 */
2265 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2266   Window *pWin;
2267   Window *pRet = 0;
2268   Window **pp = &pRet;
2269 
2270   for(pWin=p; pWin; pWin=pWin->pNextWin){
2271     *pp = sqlite3WindowDup(db, 0, pWin);
2272     if( *pp==0 ) break;
2273     pp = &((*pp)->pNextWin);
2274   }
2275 
2276   return pRet;
2277 }
2278 
2279 /*
2280 ** Return true if it can be determined at compile time that expression
2281 ** pExpr evaluates to a value that, when cast to an integer, is greater
2282 ** than zero. False otherwise.
2283 **
2284 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2285 ** flag and returns zero.
2286 */
2287 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2288   int ret = 0;
2289   sqlite3 *db = pParse->db;
2290   sqlite3_value *pVal = 0;
2291   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2292   if( pVal && sqlite3_value_int(pVal)>0 ){
2293     ret = 1;
2294   }
2295   sqlite3ValueFree(pVal);
2296   return ret;
2297 }
2298 
2299 /*
2300 ** sqlite3WhereBegin() has already been called for the SELECT statement
2301 ** passed as the second argument when this function is invoked. It generates
2302 ** code to populate the Window.regResult register for each window function
2303 ** and invoke the sub-routine at instruction addrGosub once for each row.
2304 ** sqlite3WhereEnd() is always called before returning.
2305 **
2306 ** This function handles several different types of window frames, which
2307 ** require slightly different processing. The following pseudo code is
2308 ** used to implement window frames of the form:
2309 **
2310 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2311 **
2312 ** Other window frame types use variants of the following:
2313 **
2314 **     ... loop started by sqlite3WhereBegin() ...
2315 **       if( new partition ){
2316 **         Gosub flush
2317 **       }
2318 **       Insert new row into eph table.
2319 **
2320 **       if( first row of partition ){
2321 **         // Rewind three cursors, all open on the eph table.
2322 **         Rewind(csrEnd);
2323 **         Rewind(csrStart);
2324 **         Rewind(csrCurrent);
2325 **
2326 **         regEnd = <expr2>          // FOLLOWING expression
2327 **         regStart = <expr1>        // PRECEDING expression
2328 **       }else{
2329 **         // First time this branch is taken, the eph table contains two
2330 **         // rows. The first row in the partition, which all three cursors
2331 **         // currently point to, and the following row.
2332 **         AGGSTEP
2333 **         if( (regEnd--)<=0 ){
2334 **           RETURN_ROW
2335 **           if( (regStart--)<=0 ){
2336 **             AGGINVERSE
2337 **           }
2338 **         }
2339 **       }
2340 **     }
2341 **     flush:
2342 **       AGGSTEP
2343 **       while( 1 ){
2344 **         RETURN ROW
2345 **         if( csrCurrent is EOF ) break;
2346 **         if( (regStart--)<=0 ){
2347 **           AggInverse(csrStart)
2348 **           Next(csrStart)
2349 **         }
2350 **       }
2351 **
2352 ** The pseudo-code above uses the following shorthand:
2353 **
2354 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2355 **               with arguments read from the current row of cursor csrEnd, then
2356 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2357 **
2358 **   RETURN_ROW: return a row to the caller based on the contents of the
2359 **               current row of csrCurrent and the current state of all
2360 **               aggregates. Then step cursor csrCurrent forward one row.
2361 **
2362 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2363 **               functions with arguments read from the current row of cursor
2364 **               csrStart. Then step csrStart forward one row.
2365 **
2366 ** There are two other ROWS window frames that are handled significantly
2367 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2368 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2369 ** cases because they change the order in which the three cursors (csrStart,
2370 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2371 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2372 ** three.
2373 **
2374 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2375 **
2376 **     ... loop started by sqlite3WhereBegin() ...
2377 **       if( new partition ){
2378 **         Gosub flush
2379 **       }
2380 **       Insert new row into eph table.
2381 **       if( first row of partition ){
2382 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2383 **         regEnd = <expr2>
2384 **         regStart = <expr1>
2385 **       }else{
2386 **         if( (regEnd--)<=0 ){
2387 **           AGGSTEP
2388 **         }
2389 **         RETURN_ROW
2390 **         if( (regStart--)<=0 ){
2391 **           AGGINVERSE
2392 **         }
2393 **       }
2394 **     }
2395 **     flush:
2396 **       if( (regEnd--)<=0 ){
2397 **         AGGSTEP
2398 **       }
2399 **       RETURN_ROW
2400 **
2401 **
2402 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2403 **
2404 **     ... loop started by sqlite3WhereBegin() ...
2405 **     if( new partition ){
2406 **       Gosub flush
2407 **     }
2408 **     Insert new row into eph table.
2409 **     if( first row of partition ){
2410 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2411 **       regEnd = <expr2>
2412 **       regStart = regEnd - <expr1>
2413 **     }else{
2414 **       AGGSTEP
2415 **       if( (regEnd--)<=0 ){
2416 **         RETURN_ROW
2417 **       }
2418 **       if( (regStart--)<=0 ){
2419 **         AGGINVERSE
2420 **       }
2421 **     }
2422 **   }
2423 **   flush:
2424 **     AGGSTEP
2425 **     while( 1 ){
2426 **       if( (regEnd--)<=0 ){
2427 **         RETURN_ROW
2428 **         if( eof ) break;
2429 **       }
2430 **       if( (regStart--)<=0 ){
2431 **         AGGINVERSE
2432 **         if( eof ) break
2433 **       }
2434 **     }
2435 **     while( !eof csrCurrent ){
2436 **       RETURN_ROW
2437 **     }
2438 **
2439 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2440 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2441 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2442 ** This is optimized of course - branches that will never be taken and
2443 ** conditions that are always true are omitted from the VM code. The only
2444 ** exceptional case is:
2445 **
2446 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2447 **
2448 **     ... loop started by sqlite3WhereBegin() ...
2449 **     if( new partition ){
2450 **       Gosub flush
2451 **     }
2452 **     Insert new row into eph table.
2453 **     if( first row of partition ){
2454 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2455 **       regStart = <expr1>
2456 **     }else{
2457 **       AGGSTEP
2458 **     }
2459 **   }
2460 **   flush:
2461 **     AGGSTEP
2462 **     while( 1 ){
2463 **       if( (regStart--)<=0 ){
2464 **         AGGINVERSE
2465 **         if( eof ) break
2466 **       }
2467 **       RETURN_ROW
2468 **     }
2469 **     while( !eof csrCurrent ){
2470 **       RETURN_ROW
2471 **     }
2472 **
2473 ** Also requiring special handling are the cases:
2474 **
2475 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2476 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2477 **
2478 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2479 ** To handle this case, the pseudo-code programs depicted above are modified
2480 ** slightly to be:
2481 **
2482 **     ... loop started by sqlite3WhereBegin() ...
2483 **     if( new partition ){
2484 **       Gosub flush
2485 **     }
2486 **     Insert new row into eph table.
2487 **     if( first row of partition ){
2488 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2489 **       regEnd = <expr2>
2490 **       regStart = <expr1>
2491 **       if( regEnd < regStart ){
2492 **         RETURN_ROW
2493 **         delete eph table contents
2494 **         continue
2495 **       }
2496 **     ...
2497 **
2498 ** The new "continue" statement in the above jumps to the next iteration
2499 ** of the outer loop - the one started by sqlite3WhereBegin().
2500 **
2501 ** The various GROUPS cases are implemented using the same patterns as
2502 ** ROWS. The VM code is modified slightly so that:
2503 **
2504 **   1. The else branch in the main loop is only taken if the row just
2505 **      added to the ephemeral table is the start of a new group. In
2506 **      other words, it becomes:
2507 **
2508 **         ... loop started by sqlite3WhereBegin() ...
2509 **         if( new partition ){
2510 **           Gosub flush
2511 **         }
2512 **         Insert new row into eph table.
2513 **         if( first row of partition ){
2514 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2515 **           regEnd = <expr2>
2516 **           regStart = <expr1>
2517 **         }else if( new group ){
2518 **           ...
2519 **         }
2520 **       }
2521 **
2522 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2523 **      AGGINVERSE step processes the current row of the relevant cursor and
2524 **      all subsequent rows belonging to the same group.
2525 **
2526 ** RANGE window frames are a little different again. As for GROUPS, the
2527 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2528 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2529 ** basic cases:
2530 **
2531 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2532 **
2533 **     ... loop started by sqlite3WhereBegin() ...
2534 **       if( new partition ){
2535 **         Gosub flush
2536 **       }
2537 **       Insert new row into eph table.
2538 **       if( first row of partition ){
2539 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2540 **         regEnd = <expr2>
2541 **         regStart = <expr1>
2542 **       }else{
2543 **         AGGSTEP
2544 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2545 **           RETURN_ROW
2546 **           while( csrStart.key + regStart) < csrCurrent.key ){
2547 **             AGGINVERSE
2548 **           }
2549 **         }
2550 **       }
2551 **     }
2552 **     flush:
2553 **       AGGSTEP
2554 **       while( 1 ){
2555 **         RETURN ROW
2556 **         if( csrCurrent is EOF ) break;
2557 **           while( csrStart.key + regStart) < csrCurrent.key ){
2558 **             AGGINVERSE
2559 **           }
2560 **         }
2561 **       }
2562 **
2563 ** In the above notation, "csr.key" means the current value of the ORDER BY
2564 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2565 ** or <expr PRECEDING) read from cursor csr.
2566 **
2567 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2568 **
2569 **     ... loop started by sqlite3WhereBegin() ...
2570 **       if( new partition ){
2571 **         Gosub flush
2572 **       }
2573 **       Insert new row into eph table.
2574 **       if( first row of partition ){
2575 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2576 **         regEnd = <expr2>
2577 **         regStart = <expr1>
2578 **       }else{
2579 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2580 **           AGGSTEP
2581 **         }
2582 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2583 **           AGGINVERSE
2584 **         }
2585 **         RETURN_ROW
2586 **       }
2587 **     }
2588 **     flush:
2589 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2590 **         AGGSTEP
2591 **       }
2592 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2593 **         AGGINVERSE
2594 **       }
2595 **       RETURN_ROW
2596 **
2597 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2598 **
2599 **     ... loop started by sqlite3WhereBegin() ...
2600 **       if( new partition ){
2601 **         Gosub flush
2602 **       }
2603 **       Insert new row into eph table.
2604 **       if( first row of partition ){
2605 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2606 **         regEnd = <expr2>
2607 **         regStart = <expr1>
2608 **       }else{
2609 **         AGGSTEP
2610 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2611 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2612 **             AGGINVERSE
2613 **           }
2614 **           RETURN_ROW
2615 **         }
2616 **       }
2617 **     }
2618 **     flush:
2619 **       AGGSTEP
2620 **       while( 1 ){
2621 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2622 **           AGGINVERSE
2623 **           if( eof ) break "while( 1 )" loop.
2624 **         }
2625 **         RETURN_ROW
2626 **       }
2627 **       while( !eof csrCurrent ){
2628 **         RETURN_ROW
2629 **       }
2630 **
2631 ** The text above leaves out many details. Refer to the code and comments
2632 ** below for a more complete picture.
2633 */
2634 void sqlite3WindowCodeStep(
2635   Parse *pParse,                  /* Parse context */
2636   Select *p,                      /* Rewritten SELECT statement */
2637   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2638   int regGosub,                   /* Register for OP_Gosub */
2639   int addrGosub                   /* OP_Gosub here to return each row */
2640 ){
2641   Window *pMWin = p->pWin;
2642   ExprList *pOrderBy = pMWin->pOrderBy;
2643   Vdbe *v = sqlite3GetVdbe(pParse);
2644   int csrWrite;                   /* Cursor used to write to eph. table */
2645   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2646   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2647   int iInput;                               /* To iterate through sub cols */
2648   int addrNe;                     /* Address of OP_Ne */
2649   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2650   int addrInteger = 0;            /* Address of OP_Integer */
2651   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2652   int regNew;                     /* Array of registers holding new input row */
2653   int regRecord;                  /* regNew array in record form */
2654   int regRowid;                   /* Rowid for regRecord in eph table */
2655   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2656   int regPeer = 0;                /* Peer values for current row */
2657   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2658   WindowCodeArg s;                /* Context object for sub-routines */
2659   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2660   int regStart = 0;               /* Value of <expr> PRECEDING */
2661   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2662 
2663   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2664        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2665   );
2666   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2667        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2668   );
2669   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2670        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2671        || pMWin->eExclude==TK_NO
2672   );
2673 
2674   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2675 
2676   /* Fill in the context object */
2677   memset(&s, 0, sizeof(WindowCodeArg));
2678   s.pParse = pParse;
2679   s.pMWin = pMWin;
2680   s.pVdbe = v;
2681   s.regGosub = regGosub;
2682   s.addrGosub = addrGosub;
2683   s.current.csr = pMWin->iEphCsr;
2684   csrWrite = s.current.csr+1;
2685   s.start.csr = s.current.csr+2;
2686   s.end.csr = s.current.csr+3;
2687 
2688   /* Figure out when rows may be deleted from the ephemeral table. There
2689   ** are four options - they may never be deleted (eDelete==0), they may
2690   ** be deleted as soon as they are no longer part of the window frame
2691   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2692   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2693   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2694   switch( pMWin->eStart ){
2695     case TK_FOLLOWING:
2696       if( pMWin->eFrmType!=TK_RANGE
2697        && windowExprGtZero(pParse, pMWin->pStart)
2698       ){
2699         s.eDelete = WINDOW_RETURN_ROW;
2700       }
2701       break;
2702     case TK_UNBOUNDED:
2703       if( windowCacheFrame(pMWin)==0 ){
2704         if( pMWin->eEnd==TK_PRECEDING ){
2705           if( pMWin->eFrmType!=TK_RANGE
2706            && windowExprGtZero(pParse, pMWin->pEnd)
2707           ){
2708             s.eDelete = WINDOW_AGGSTEP;
2709           }
2710         }else{
2711           s.eDelete = WINDOW_RETURN_ROW;
2712         }
2713       }
2714       break;
2715     default:
2716       s.eDelete = WINDOW_AGGINVERSE;
2717       break;
2718   }
2719 
2720   /* Allocate registers for the array of values from the sub-query, the
2721   ** samve values in record form, and the rowid used to insert said record
2722   ** into the ephemeral table.  */
2723   regNew = pParse->nMem+1;
2724   pParse->nMem += nInput;
2725   regRecord = ++pParse->nMem;
2726   regRowid = ++pParse->nMem;
2727 
2728   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2729   ** clause, allocate registers to store the results of evaluating each
2730   ** <expr>.  */
2731   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2732     regStart = ++pParse->nMem;
2733   }
2734   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2735     regEnd = ++pParse->nMem;
2736   }
2737 
2738   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2739   ** registers to store copies of the ORDER BY expressions (peer values)
2740   ** for the main loop, and for each cursor (start, current and end). */
2741   if( pMWin->eFrmType!=TK_ROWS ){
2742     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2743     regNewPeer = regNew + pMWin->nBufferCol;
2744     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2745     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2746     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2747     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2748     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2749   }
2750 
2751   /* Load the column values for the row returned by the sub-select
2752   ** into an array of registers starting at regNew. Assemble them into
2753   ** a record in register regRecord. */
2754   for(iInput=0; iInput<nInput; iInput++){
2755     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2756   }
2757   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2758 
2759   /* An input row has just been read into an array of registers starting
2760   ** at regNew. If the window has a PARTITION clause, this block generates
2761   ** VM code to check if the input row is the start of a new partition.
2762   ** If so, it does an OP_Gosub to an address to be filled in later. The
2763   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2764   if( pMWin->pPartition ){
2765     int addr;
2766     ExprList *pPart = pMWin->pPartition;
2767     int nPart = pPart->nExpr;
2768     int regNewPart = regNew + pMWin->nBufferCol;
2769     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2770 
2771     regFlushPart = ++pParse->nMem;
2772     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2773     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2774     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2775     VdbeCoverageEqNe(v);
2776     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2777     VdbeComment((v, "call flush_partition"));
2778     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2779   }
2780 
2781   /* Insert the new row into the ephemeral table */
2782   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2783   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2784   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2785   VdbeCoverageNeverNull(v);
2786 
2787   /* This block is run for the first row of each partition */
2788   s.regArg = windowInitAccum(pParse, pMWin);
2789 
2790   if( regStart ){
2791     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2792     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2793   }
2794   if( regEnd ){
2795     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2796     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2797   }
2798 
2799   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2800     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2801     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2802     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2803     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2804     windowAggFinal(&s, 0);
2805     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2806     VdbeCoverageNeverTaken(v);
2807     windowReturnOneRow(&s);
2808     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2809     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2810     sqlite3VdbeJumpHere(v, addrGe);
2811   }
2812   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2813     assert( pMWin->eEnd==TK_FOLLOWING );
2814     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2815   }
2816 
2817   if( pMWin->eStart!=TK_UNBOUNDED ){
2818     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2819     VdbeCoverageNeverTaken(v);
2820   }
2821   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2822   VdbeCoverageNeverTaken(v);
2823   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2824   VdbeCoverageNeverTaken(v);
2825   if( regPeer && pOrderBy ){
2826     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2827     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2828     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2829     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2830   }
2831 
2832   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2833 
2834   sqlite3VdbeJumpHere(v, addrNe);
2835 
2836   /* Beginning of the block executed for the second and subsequent rows. */
2837   if( regPeer ){
2838     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2839   }
2840   if( pMWin->eStart==TK_FOLLOWING ){
2841     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2842     if( pMWin->eEnd!=TK_UNBOUNDED ){
2843       if( pMWin->eFrmType==TK_RANGE ){
2844         int lbl = sqlite3VdbeMakeLabel(pParse);
2845         int addrNext = sqlite3VdbeCurrentAddr(v);
2846         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2847         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2848         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2849         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2850         sqlite3VdbeResolveLabel(v, lbl);
2851       }else{
2852         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2853         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2854       }
2855     }
2856   }else
2857   if( pMWin->eEnd==TK_PRECEDING ){
2858     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2859     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2860     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2861     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2862     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2863   }else{
2864     int addr = 0;
2865     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2866     if( pMWin->eEnd!=TK_UNBOUNDED ){
2867       if( pMWin->eFrmType==TK_RANGE ){
2868         int lbl = 0;
2869         addr = sqlite3VdbeCurrentAddr(v);
2870         if( regEnd ){
2871           lbl = sqlite3VdbeMakeLabel(pParse);
2872           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2873         }
2874         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2875         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2876         if( regEnd ){
2877           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2878           sqlite3VdbeResolveLabel(v, lbl);
2879         }
2880       }else{
2881         if( regEnd ){
2882           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2883           VdbeCoverage(v);
2884         }
2885         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2886         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2887         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2888       }
2889     }
2890   }
2891 
2892   /* End of the main input loop */
2893   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2894   sqlite3WhereEnd(pWInfo);
2895 
2896   /* Fall through */
2897   if( pMWin->pPartition ){
2898     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2899     sqlite3VdbeJumpHere(v, addrGosubFlush);
2900   }
2901 
2902   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2903   VdbeCoverage(v);
2904   if( pMWin->eEnd==TK_PRECEDING ){
2905     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2906     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2907     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2908     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2909   }else if( pMWin->eStart==TK_FOLLOWING ){
2910     int addrStart;
2911     int addrBreak1;
2912     int addrBreak2;
2913     int addrBreak3;
2914     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2915     if( pMWin->eFrmType==TK_RANGE ){
2916       addrStart = sqlite3VdbeCurrentAddr(v);
2917       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2918       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2919     }else
2920     if( pMWin->eEnd==TK_UNBOUNDED ){
2921       addrStart = sqlite3VdbeCurrentAddr(v);
2922       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
2923       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
2924     }else{
2925       assert( pMWin->eEnd==TK_FOLLOWING );
2926       addrStart = sqlite3VdbeCurrentAddr(v);
2927       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
2928       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2929     }
2930     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2931     sqlite3VdbeJumpHere(v, addrBreak2);
2932     addrStart = sqlite3VdbeCurrentAddr(v);
2933     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2934     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2935     sqlite3VdbeJumpHere(v, addrBreak1);
2936     sqlite3VdbeJumpHere(v, addrBreak3);
2937   }else{
2938     int addrBreak;
2939     int addrStart;
2940     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2941     addrStart = sqlite3VdbeCurrentAddr(v);
2942     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2943     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2944     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2945     sqlite3VdbeJumpHere(v, addrBreak);
2946   }
2947   sqlite3VdbeJumpHere(v, addrEmpty);
2948 
2949   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2950   if( pMWin->pPartition ){
2951     if( pMWin->regStartRowid ){
2952       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
2953       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
2954     }
2955     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
2956     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
2957   }
2958 }
2959 
2960 #endif /* SQLITE_OMIT_WINDOWFUNC */
2961