1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* Fall through. */ 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( p->pSub ){ 792 int i; 793 for(i=0; i<p->pSub->nExpr; i++){ 794 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 795 iCol = i; 796 break; 797 } 798 } 799 } 800 if( iCol<0 ){ 801 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 802 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 803 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 804 } 805 if( p->pSub ){ 806 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 807 ExprSetProperty(pExpr, EP_Static); 808 sqlite3ExprDelete(pParse->db, pExpr); 809 ExprClearProperty(pExpr, EP_Static); 810 memset(pExpr, 0, sizeof(Expr)); 811 812 pExpr->op = TK_COLUMN; 813 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 814 pExpr->iTable = p->pWin->iEphCsr; 815 pExpr->y.pTab = p->pTab; 816 } 817 if( pParse->db->mallocFailed ) return WRC_Abort; 818 break; 819 } 820 821 default: /* no-op */ 822 break; 823 } 824 825 return WRC_Continue; 826 } 827 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 828 struct WindowRewrite *p = pWalker->u.pRewrite; 829 Select *pSave = p->pSubSelect; 830 if( pSave==pSelect ){ 831 return WRC_Continue; 832 }else{ 833 p->pSubSelect = pSelect; 834 sqlite3WalkSelect(pWalker, pSelect); 835 p->pSubSelect = pSave; 836 } 837 return WRC_Prune; 838 } 839 840 841 /* 842 ** Iterate through each expression in expression-list pEList. For each: 843 ** 844 ** * TK_COLUMN, 845 ** * aggregate function, or 846 ** * window function with a Window object that is not a member of the 847 ** Window list passed as the second argument (pWin). 848 ** 849 ** Append the node to output expression-list (*ppSub). And replace it 850 ** with a TK_COLUMN that reads the (N-1)th element of table 851 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 852 ** appending the new one. 853 */ 854 static void selectWindowRewriteEList( 855 Parse *pParse, 856 Window *pWin, 857 SrcList *pSrc, 858 ExprList *pEList, /* Rewrite expressions in this list */ 859 Table *pTab, 860 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 861 ){ 862 Walker sWalker; 863 WindowRewrite sRewrite; 864 865 assert( pWin!=0 ); 866 memset(&sWalker, 0, sizeof(Walker)); 867 memset(&sRewrite, 0, sizeof(WindowRewrite)); 868 869 sRewrite.pSub = *ppSub; 870 sRewrite.pWin = pWin; 871 sRewrite.pSrc = pSrc; 872 sRewrite.pTab = pTab; 873 874 sWalker.pParse = pParse; 875 sWalker.xExprCallback = selectWindowRewriteExprCb; 876 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 877 sWalker.u.pRewrite = &sRewrite; 878 879 (void)sqlite3WalkExprList(&sWalker, pEList); 880 881 *ppSub = sRewrite.pSub; 882 } 883 884 /* 885 ** Append a copy of each expression in expression-list pAppend to 886 ** expression list pList. Return a pointer to the result list. 887 */ 888 static ExprList *exprListAppendList( 889 Parse *pParse, /* Parsing context */ 890 ExprList *pList, /* List to which to append. Might be NULL */ 891 ExprList *pAppend, /* List of values to append. Might be NULL */ 892 int bIntToNull 893 ){ 894 if( pAppend ){ 895 int i; 896 int nInit = pList ? pList->nExpr : 0; 897 for(i=0; i<pAppend->nExpr; i++){ 898 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); 899 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 900 if( bIntToNull && pDup ){ 901 int iDummy; 902 Expr *pSub; 903 for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){ 904 assert( pSub ); 905 } 906 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 907 pSub->op = TK_NULL; 908 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 909 pSub->u.zToken = 0; 910 } 911 } 912 pList = sqlite3ExprListAppend(pParse, pList, pDup); 913 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 914 } 915 } 916 return pList; 917 } 918 919 /* 920 ** If the SELECT statement passed as the second argument does not invoke 921 ** any SQL window functions, this function is a no-op. Otherwise, it 922 ** rewrites the SELECT statement so that window function xStep functions 923 ** are invoked in the correct order as described under "SELECT REWRITING" 924 ** at the top of this file. 925 */ 926 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 927 int rc = SQLITE_OK; 928 if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){ 929 Vdbe *v = sqlite3GetVdbe(pParse); 930 sqlite3 *db = pParse->db; 931 Select *pSub = 0; /* The subquery */ 932 SrcList *pSrc = p->pSrc; 933 Expr *pWhere = p->pWhere; 934 ExprList *pGroupBy = p->pGroupBy; 935 Expr *pHaving = p->pHaving; 936 ExprList *pSort = 0; 937 938 ExprList *pSublist = 0; /* Expression list for sub-query */ 939 Window *pMWin = p->pWin; /* Master window object */ 940 Window *pWin; /* Window object iterator */ 941 Table *pTab; 942 u32 selFlags = p->selFlags; 943 944 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 945 if( pTab==0 ){ 946 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 947 } 948 949 p->pSrc = 0; 950 p->pWhere = 0; 951 p->pGroupBy = 0; 952 p->pHaving = 0; 953 p->selFlags &= ~SF_Aggregate; 954 p->selFlags |= SF_WinRewrite; 955 956 /* Create the ORDER BY clause for the sub-select. This is the concatenation 957 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 958 ** redundant, remove the ORDER BY from the parent SELECT. */ 959 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 960 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 961 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 962 int nSave = pSort->nExpr; 963 pSort->nExpr = p->pOrderBy->nExpr; 964 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 965 sqlite3ExprListDelete(db, p->pOrderBy); 966 p->pOrderBy = 0; 967 } 968 pSort->nExpr = nSave; 969 } 970 971 /* Assign a cursor number for the ephemeral table used to buffer rows. 972 ** The OpenEphemeral instruction is coded later, after it is known how 973 ** many columns the table will have. */ 974 pMWin->iEphCsr = pParse->nTab++; 975 pParse->nTab += 3; 976 977 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 978 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 979 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 980 981 /* Append the PARTITION BY and ORDER BY expressions to the to the 982 ** sub-select expression list. They are required to figure out where 983 ** boundaries for partitions and sets of peer rows lie. */ 984 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 985 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 986 987 /* Append the arguments passed to each window function to the 988 ** sub-select expression list. Also allocate two registers for each 989 ** window function - one for the accumulator, another for interim 990 ** results. */ 991 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 992 ExprList *pArgs = pWin->pOwner->x.pList; 993 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 994 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 995 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 996 pWin->bExprArgs = 1; 997 }else{ 998 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 999 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1000 } 1001 if( pWin->pFilter ){ 1002 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1003 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1004 } 1005 pWin->regAccum = ++pParse->nMem; 1006 pWin->regResult = ++pParse->nMem; 1007 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1008 } 1009 1010 /* If there is no ORDER BY or PARTITION BY clause, and the window 1011 ** function accepts zero arguments, and there are no other columns 1012 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1013 ** that pSublist is still NULL here. Add a constant expression here to 1014 ** keep everything legal in this case. 1015 */ 1016 if( pSublist==0 ){ 1017 pSublist = sqlite3ExprListAppend(pParse, 0, 1018 sqlite3Expr(db, TK_INTEGER, "0") 1019 ); 1020 } 1021 1022 pSub = sqlite3SelectNew( 1023 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1024 ); 1025 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1026 if( p->pSrc ){ 1027 Table *pTab2; 1028 p->pSrc->a[0].pSelect = pSub; 1029 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1030 pSub->selFlags |= SF_Expanded; 1031 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1032 pSub->selFlags |= (selFlags & SF_Aggregate); 1033 if( pTab2==0 ){ 1034 /* Might actually be some other kind of error, but in that case 1035 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1036 ** the correct error message regardless. */ 1037 rc = SQLITE_NOMEM; 1038 }else{ 1039 memcpy(pTab, pTab2, sizeof(Table)); 1040 pTab->tabFlags |= TF_Ephemeral; 1041 p->pSrc->a[0].pTab = pTab; 1042 pTab = pTab2; 1043 } 1044 }else{ 1045 sqlite3SelectDelete(db, pSub); 1046 } 1047 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1048 sqlite3DbFree(db, pTab); 1049 } 1050 1051 if( rc ){ 1052 if( pParse->nErr==0 ){ 1053 assert( pParse->db->mallocFailed ); 1054 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1055 } 1056 sqlite3SelectReset(pParse, p); 1057 } 1058 return rc; 1059 } 1060 1061 /* 1062 ** Unlink the Window object from the Select to which it is attached, 1063 ** if it is attached. 1064 */ 1065 void sqlite3WindowUnlinkFromSelect(Window *p){ 1066 if( p->ppThis ){ 1067 *p->ppThis = p->pNextWin; 1068 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1069 p->ppThis = 0; 1070 } 1071 } 1072 1073 /* 1074 ** Free the Window object passed as the second argument. 1075 */ 1076 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1077 if( p ){ 1078 sqlite3WindowUnlinkFromSelect(p); 1079 sqlite3ExprDelete(db, p->pFilter); 1080 sqlite3ExprListDelete(db, p->pPartition); 1081 sqlite3ExprListDelete(db, p->pOrderBy); 1082 sqlite3ExprDelete(db, p->pEnd); 1083 sqlite3ExprDelete(db, p->pStart); 1084 sqlite3DbFree(db, p->zName); 1085 sqlite3DbFree(db, p->zBase); 1086 sqlite3DbFree(db, p); 1087 } 1088 } 1089 1090 /* 1091 ** Free the linked list of Window objects starting at the second argument. 1092 */ 1093 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1094 while( p ){ 1095 Window *pNext = p->pNextWin; 1096 sqlite3WindowDelete(db, p); 1097 p = pNext; 1098 } 1099 } 1100 1101 /* 1102 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1103 ** value should be a non-negative integer. If the value is not a 1104 ** constant, change it to NULL. The fact that it is then a non-negative 1105 ** integer will be caught later. But it is important not to leave 1106 ** variable values in the expression tree. 1107 */ 1108 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1109 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1110 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1111 sqlite3ExprDelete(pParse->db, pExpr); 1112 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1113 } 1114 return pExpr; 1115 } 1116 1117 /* 1118 ** Allocate and return a new Window object describing a Window Definition. 1119 */ 1120 Window *sqlite3WindowAlloc( 1121 Parse *pParse, /* Parsing context */ 1122 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1123 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1124 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1125 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1126 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1127 u8 eExclude /* EXCLUDE clause */ 1128 ){ 1129 Window *pWin = 0; 1130 int bImplicitFrame = 0; 1131 1132 /* Parser assures the following: */ 1133 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1134 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1135 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1136 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1137 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1138 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1139 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1140 1141 if( eType==0 ){ 1142 bImplicitFrame = 1; 1143 eType = TK_RANGE; 1144 } 1145 1146 /* Additionally, the 1147 ** starting boundary type may not occur earlier in the following list than 1148 ** the ending boundary type: 1149 ** 1150 ** UNBOUNDED PRECEDING 1151 ** <expr> PRECEDING 1152 ** CURRENT ROW 1153 ** <expr> FOLLOWING 1154 ** UNBOUNDED FOLLOWING 1155 ** 1156 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1157 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1158 ** frame boundary. 1159 */ 1160 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1161 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1162 ){ 1163 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1164 goto windowAllocErr; 1165 } 1166 1167 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1168 if( pWin==0 ) goto windowAllocErr; 1169 pWin->eFrmType = eType; 1170 pWin->eStart = eStart; 1171 pWin->eEnd = eEnd; 1172 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1173 eExclude = TK_NO; 1174 } 1175 pWin->eExclude = eExclude; 1176 pWin->bImplicitFrame = bImplicitFrame; 1177 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1178 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1179 return pWin; 1180 1181 windowAllocErr: 1182 sqlite3ExprDelete(pParse->db, pEnd); 1183 sqlite3ExprDelete(pParse->db, pStart); 1184 return 0; 1185 } 1186 1187 /* 1188 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1189 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1190 ** equivalent nul-terminated string. 1191 */ 1192 Window *sqlite3WindowAssemble( 1193 Parse *pParse, 1194 Window *pWin, 1195 ExprList *pPartition, 1196 ExprList *pOrderBy, 1197 Token *pBase 1198 ){ 1199 if( pWin ){ 1200 pWin->pPartition = pPartition; 1201 pWin->pOrderBy = pOrderBy; 1202 if( pBase ){ 1203 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1204 } 1205 }else{ 1206 sqlite3ExprListDelete(pParse->db, pPartition); 1207 sqlite3ExprListDelete(pParse->db, pOrderBy); 1208 } 1209 return pWin; 1210 } 1211 1212 /* 1213 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1214 ** is the base window. Earlier windows from the same WINDOW clause are 1215 ** stored in the linked list starting at pWin->pNextWin. This function 1216 ** either updates *pWin according to the base specification, or else 1217 ** leaves an error in pParse. 1218 */ 1219 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1220 if( pWin->zBase ){ 1221 sqlite3 *db = pParse->db; 1222 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1223 if( pExist ){ 1224 const char *zErr = 0; 1225 /* Check for errors */ 1226 if( pWin->pPartition ){ 1227 zErr = "PARTITION clause"; 1228 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1229 zErr = "ORDER BY clause"; 1230 }else if( pExist->bImplicitFrame==0 ){ 1231 zErr = "frame specification"; 1232 } 1233 if( zErr ){ 1234 sqlite3ErrorMsg(pParse, 1235 "cannot override %s of window: %s", zErr, pWin->zBase 1236 ); 1237 }else{ 1238 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1239 if( pExist->pOrderBy ){ 1240 assert( pWin->pOrderBy==0 ); 1241 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1242 } 1243 sqlite3DbFree(db, pWin->zBase); 1244 pWin->zBase = 0; 1245 } 1246 } 1247 } 1248 } 1249 1250 /* 1251 ** Attach window object pWin to expression p. 1252 */ 1253 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1254 if( p ){ 1255 assert( p->op==TK_FUNCTION ); 1256 assert( pWin ); 1257 p->y.pWin = pWin; 1258 ExprSetProperty(p, EP_WinFunc); 1259 pWin->pOwner = p; 1260 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1261 sqlite3ErrorMsg(pParse, 1262 "DISTINCT is not supported for window functions" 1263 ); 1264 } 1265 }else{ 1266 sqlite3WindowDelete(pParse->db, pWin); 1267 } 1268 } 1269 1270 /* 1271 ** Possibly link window pWin into the list at pSel->pWin (window functions 1272 ** to be processed as part of SELECT statement pSel). The window is linked 1273 ** in if either (a) there are no other windows already linked to this 1274 ** SELECT, or (b) the windows already linked use a compatible window frame. 1275 */ 1276 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1277 if( pSel!=0 1278 && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0)) 1279 ){ 1280 pWin->pNextWin = pSel->pWin; 1281 if( pSel->pWin ){ 1282 pSel->pWin->ppThis = &pWin->pNextWin; 1283 } 1284 pSel->pWin = pWin; 1285 pWin->ppThis = &pSel->pWin; 1286 } 1287 } 1288 1289 /* 1290 ** Return 0 if the two window objects are identical, 1 if they are 1291 ** different, or 2 if it cannot be determined if the objects are identical 1292 ** or not. Identical window objects can be processed in a single scan. 1293 */ 1294 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1295 int res; 1296 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1297 if( p1->eFrmType!=p2->eFrmType ) return 1; 1298 if( p1->eStart!=p2->eStart ) return 1; 1299 if( p1->eEnd!=p2->eEnd ) return 1; 1300 if( p1->eExclude!=p2->eExclude ) return 1; 1301 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1302 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1303 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1304 return res; 1305 } 1306 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1307 return res; 1308 } 1309 if( bFilter ){ 1310 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1311 return res; 1312 } 1313 } 1314 return 0; 1315 } 1316 1317 1318 /* 1319 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1320 ** to begin iterating through the sub-query results. It is used to allocate 1321 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1322 */ 1323 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1324 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1325 Window *pMWin = pSelect->pWin; 1326 Window *pWin; 1327 Vdbe *v = sqlite3GetVdbe(pParse); 1328 1329 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1330 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1331 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1332 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1333 1334 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1335 ** said registers to NULL. */ 1336 if( pMWin->pPartition ){ 1337 int nExpr = pMWin->pPartition->nExpr; 1338 pMWin->regPart = pParse->nMem+1; 1339 pParse->nMem += nExpr; 1340 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1341 } 1342 1343 pMWin->regOne = ++pParse->nMem; 1344 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1345 1346 if( pMWin->eExclude ){ 1347 pMWin->regStartRowid = ++pParse->nMem; 1348 pMWin->regEndRowid = ++pParse->nMem; 1349 pMWin->csrApp = pParse->nTab++; 1350 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1351 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1352 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1353 return; 1354 } 1355 1356 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1357 FuncDef *p = pWin->pFunc; 1358 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1359 /* The inline versions of min() and max() require a single ephemeral 1360 ** table and 3 registers. The registers are used as follows: 1361 ** 1362 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1363 ** regApp+1: integer value used to ensure keys are unique 1364 ** regApp+2: output of MakeRecord 1365 */ 1366 ExprList *pList = pWin->pOwner->x.pList; 1367 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1368 pWin->csrApp = pParse->nTab++; 1369 pWin->regApp = pParse->nMem+1; 1370 pParse->nMem += 3; 1371 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1372 assert( pKeyInfo->aSortFlags[0]==0 ); 1373 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1374 } 1375 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1376 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1377 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1378 } 1379 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1380 /* Allocate two registers at pWin->regApp. These will be used to 1381 ** store the start and end index of the current frame. */ 1382 pWin->regApp = pParse->nMem+1; 1383 pWin->csrApp = pParse->nTab++; 1384 pParse->nMem += 2; 1385 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1386 } 1387 else if( p->zName==leadName || p->zName==lagName ){ 1388 pWin->csrApp = pParse->nTab++; 1389 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1390 } 1391 } 1392 } 1393 1394 #define WINDOW_STARTING_INT 0 1395 #define WINDOW_ENDING_INT 1 1396 #define WINDOW_NTH_VALUE_INT 2 1397 #define WINDOW_STARTING_NUM 3 1398 #define WINDOW_ENDING_NUM 4 1399 1400 /* 1401 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1402 ** value of the second argument to nth_value() (eCond==2) has just been 1403 ** evaluated and the result left in register reg. This function generates VM 1404 ** code to check that the value is a non-negative integer and throws an 1405 ** exception if it is not. 1406 */ 1407 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1408 static const char *azErr[] = { 1409 "frame starting offset must be a non-negative integer", 1410 "frame ending offset must be a non-negative integer", 1411 "second argument to nth_value must be a positive integer", 1412 "frame starting offset must be a non-negative number", 1413 "frame ending offset must be a non-negative number", 1414 }; 1415 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1416 Vdbe *v = sqlite3GetVdbe(pParse); 1417 int regZero = sqlite3GetTempReg(pParse); 1418 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1419 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1420 if( eCond>=WINDOW_STARTING_NUM ){ 1421 int regString = sqlite3GetTempReg(pParse); 1422 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1423 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1424 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1425 VdbeCoverage(v); 1426 assert( eCond==3 || eCond==4 ); 1427 VdbeCoverageIf(v, eCond==3); 1428 VdbeCoverageIf(v, eCond==4); 1429 }else{ 1430 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1431 VdbeCoverage(v); 1432 assert( eCond==0 || eCond==1 || eCond==2 ); 1433 VdbeCoverageIf(v, eCond==0); 1434 VdbeCoverageIf(v, eCond==1); 1435 VdbeCoverageIf(v, eCond==2); 1436 } 1437 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1438 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1439 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1440 VdbeCoverageNeverNullIf(v, eCond==2); 1441 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1442 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1443 sqlite3MayAbort(pParse); 1444 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1445 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1446 sqlite3ReleaseTempReg(pParse, regZero); 1447 } 1448 1449 /* 1450 ** Return the number of arguments passed to the window-function associated 1451 ** with the object passed as the only argument to this function. 1452 */ 1453 static int windowArgCount(Window *pWin){ 1454 ExprList *pList = pWin->pOwner->x.pList; 1455 return (pList ? pList->nExpr : 0); 1456 } 1457 1458 typedef struct WindowCodeArg WindowCodeArg; 1459 typedef struct WindowCsrAndReg WindowCsrAndReg; 1460 1461 /* 1462 ** See comments above struct WindowCodeArg. 1463 */ 1464 struct WindowCsrAndReg { 1465 int csr; /* Cursor number */ 1466 int reg; /* First in array of peer values */ 1467 }; 1468 1469 /* 1470 ** A single instance of this structure is allocated on the stack by 1471 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1472 ** routines. This is to reduce the number of arguments required by each 1473 ** helper function. 1474 ** 1475 ** regArg: 1476 ** Each window function requires an accumulator register (just as an 1477 ** ordinary aggregate function does). This variable is set to the first 1478 ** in an array of accumulator registers - one for each window function 1479 ** in the WindowCodeArg.pMWin list. 1480 ** 1481 ** eDelete: 1482 ** The window functions implementation sometimes caches the input rows 1483 ** that it processes in a temporary table. If it is not zero, this 1484 ** variable indicates when rows may be removed from the temp table (in 1485 ** order to reduce memory requirements - it would always be safe just 1486 ** to leave them there). Possible values for eDelete are: 1487 ** 1488 ** WINDOW_RETURN_ROW: 1489 ** An input row can be discarded after it is returned to the caller. 1490 ** 1491 ** WINDOW_AGGINVERSE: 1492 ** An input row can be discarded after the window functions xInverse() 1493 ** callbacks have been invoked in it. 1494 ** 1495 ** WINDOW_AGGSTEP: 1496 ** An input row can be discarded after the window functions xStep() 1497 ** callbacks have been invoked in it. 1498 ** 1499 ** start,current,end 1500 ** Consider a window-frame similar to the following: 1501 ** 1502 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1503 ** 1504 ** The windows functions implmentation caches the input rows in a temp 1505 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1506 ** aggressively removes rows once they are no longer required, but that's 1507 ** a mere detail). It keeps three cursors open on the temp table. One 1508 ** (current) that points to the next row to return to the query engine 1509 ** once its window function values have been calculated. Another (end) 1510 ** points to the next row to call the xStep() method of each window function 1511 ** on (so that it is 2 groups ahead of current). And a third (start) that 1512 ** points to the next row to call the xInverse() method of each window 1513 ** function on. 1514 ** 1515 ** Each cursor (start, current and end) consists of a VDBE cursor 1516 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1517 ** WindowCodeArg.reg) that always contains a copy of the peer values 1518 ** read from the corresponding cursor. 1519 ** 1520 ** Depending on the window-frame in question, all three cursors may not 1521 ** be required. In this case both WindowCodeArg.csr and reg are set to 1522 ** 0. 1523 */ 1524 struct WindowCodeArg { 1525 Parse *pParse; /* Parse context */ 1526 Window *pMWin; /* First in list of functions being processed */ 1527 Vdbe *pVdbe; /* VDBE object */ 1528 int addrGosub; /* OP_Gosub to this address to return one row */ 1529 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1530 int regArg; /* First in array of accumulator registers */ 1531 int eDelete; /* See above */ 1532 1533 WindowCsrAndReg start; 1534 WindowCsrAndReg current; 1535 WindowCsrAndReg end; 1536 }; 1537 1538 /* 1539 ** Generate VM code to read the window frames peer values from cursor csr into 1540 ** an array of registers starting at reg. 1541 */ 1542 static void windowReadPeerValues( 1543 WindowCodeArg *p, 1544 int csr, 1545 int reg 1546 ){ 1547 Window *pMWin = p->pMWin; 1548 ExprList *pOrderBy = pMWin->pOrderBy; 1549 if( pOrderBy ){ 1550 Vdbe *v = sqlite3GetVdbe(p->pParse); 1551 ExprList *pPart = pMWin->pPartition; 1552 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1553 int i; 1554 for(i=0; i<pOrderBy->nExpr; i++){ 1555 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1556 } 1557 } 1558 } 1559 1560 /* 1561 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1562 ** xInverse (if bInverse is non-zero) for each window function in the 1563 ** linked list starting at pMWin. Or, for built-in window functions 1564 ** that do not use the standard function API, generate the required 1565 ** inline VM code. 1566 ** 1567 ** If argument csr is greater than or equal to 0, then argument reg is 1568 ** the first register in an array of registers guaranteed to be large 1569 ** enough to hold the array of arguments for each function. In this case 1570 ** the arguments are extracted from the current row of csr into the 1571 ** array of registers before invoking OP_AggStep or OP_AggInverse 1572 ** 1573 ** Or, if csr is less than zero, then the array of registers at reg is 1574 ** already populated with all columns from the current row of the sub-query. 1575 ** 1576 ** If argument regPartSize is non-zero, then it is a register containing the 1577 ** number of rows in the current partition. 1578 */ 1579 static void windowAggStep( 1580 WindowCodeArg *p, 1581 Window *pMWin, /* Linked list of window functions */ 1582 int csr, /* Read arguments from this cursor */ 1583 int bInverse, /* True to invoke xInverse instead of xStep */ 1584 int reg /* Array of registers */ 1585 ){ 1586 Parse *pParse = p->pParse; 1587 Vdbe *v = sqlite3GetVdbe(pParse); 1588 Window *pWin; 1589 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1590 FuncDef *pFunc = pWin->pFunc; 1591 int regArg; 1592 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1593 int i; 1594 1595 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1596 1597 /* All OVER clauses in the same window function aggregate step must 1598 ** be the same. */ 1599 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1600 1601 for(i=0; i<nArg; i++){ 1602 if( i!=1 || pFunc->zName!=nth_valueName ){ 1603 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1604 }else{ 1605 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1606 } 1607 } 1608 regArg = reg; 1609 1610 if( pMWin->regStartRowid==0 1611 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1612 && (pWin->eStart!=TK_UNBOUNDED) 1613 ){ 1614 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1615 VdbeCoverage(v); 1616 if( bInverse==0 ){ 1617 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1618 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1619 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1620 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1621 }else{ 1622 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1623 VdbeCoverageNeverTaken(v); 1624 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1625 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1626 } 1627 sqlite3VdbeJumpHere(v, addrIsNull); 1628 }else if( pWin->regApp ){ 1629 assert( pFunc->zName==nth_valueName 1630 || pFunc->zName==first_valueName 1631 ); 1632 assert( bInverse==0 || bInverse==1 ); 1633 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1634 }else if( pFunc->xSFunc!=noopStepFunc ){ 1635 int addrIf = 0; 1636 if( pWin->pFilter ){ 1637 int regTmp; 1638 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1639 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1640 regTmp = sqlite3GetTempReg(pParse); 1641 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1642 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1643 VdbeCoverage(v); 1644 sqlite3ReleaseTempReg(pParse, regTmp); 1645 } 1646 1647 if( pWin->bExprArgs ){ 1648 int iStart = sqlite3VdbeCurrentAddr(v); 1649 VdbeOp *pOp, *pEnd; 1650 1651 nArg = pWin->pOwner->x.pList->nExpr; 1652 regArg = sqlite3GetTempRange(pParse, nArg); 1653 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1654 1655 pEnd = sqlite3VdbeGetOp(v, -1); 1656 for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){ 1657 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1658 pOp->p1 = csr; 1659 } 1660 } 1661 } 1662 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1663 CollSeq *pColl; 1664 assert( nArg>0 ); 1665 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1666 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1667 } 1668 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1669 bInverse, regArg, pWin->regAccum); 1670 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1671 sqlite3VdbeChangeP5(v, (u8)nArg); 1672 if( pWin->bExprArgs ){ 1673 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1674 } 1675 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1676 } 1677 } 1678 } 1679 1680 /* 1681 ** Values that may be passed as the second argument to windowCodeOp(). 1682 */ 1683 #define WINDOW_RETURN_ROW 1 1684 #define WINDOW_AGGINVERSE 2 1685 #define WINDOW_AGGSTEP 3 1686 1687 /* 1688 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1689 ** (bFin==1) for each window function in the linked list starting at 1690 ** pMWin. Or, for built-in window-functions that do not use the standard 1691 ** API, generate the equivalent VM code. 1692 */ 1693 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1694 Parse *pParse = p->pParse; 1695 Window *pMWin = p->pMWin; 1696 Vdbe *v = sqlite3GetVdbe(pParse); 1697 Window *pWin; 1698 1699 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1700 if( pMWin->regStartRowid==0 1701 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1702 && (pWin->eStart!=TK_UNBOUNDED) 1703 ){ 1704 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1705 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1706 VdbeCoverage(v); 1707 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1708 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1709 }else if( pWin->regApp ){ 1710 assert( pMWin->regStartRowid==0 ); 1711 }else{ 1712 int nArg = windowArgCount(pWin); 1713 if( bFin ){ 1714 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1715 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1716 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1717 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1718 }else{ 1719 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1720 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1721 } 1722 } 1723 } 1724 } 1725 1726 /* 1727 ** Generate code to calculate the current values of all window functions in the 1728 ** p->pMWin list by doing a full scan of the current window frame. Store the 1729 ** results in the Window.regResult registers, ready to return the upper 1730 ** layer. 1731 */ 1732 static void windowFullScan(WindowCodeArg *p){ 1733 Window *pWin; 1734 Parse *pParse = p->pParse; 1735 Window *pMWin = p->pMWin; 1736 Vdbe *v = p->pVdbe; 1737 1738 int regCRowid = 0; /* Current rowid value */ 1739 int regCPeer = 0; /* Current peer values */ 1740 int regRowid = 0; /* AggStep rowid value */ 1741 int regPeer = 0; /* AggStep peer values */ 1742 1743 int nPeer; 1744 int lblNext; 1745 int lblBrk; 1746 int addrNext; 1747 int csr; 1748 1749 VdbeModuleComment((v, "windowFullScan begin")); 1750 1751 assert( pMWin!=0 ); 1752 csr = pMWin->csrApp; 1753 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1754 1755 lblNext = sqlite3VdbeMakeLabel(pParse); 1756 lblBrk = sqlite3VdbeMakeLabel(pParse); 1757 1758 regCRowid = sqlite3GetTempReg(pParse); 1759 regRowid = sqlite3GetTempReg(pParse); 1760 if( nPeer ){ 1761 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1762 regPeer = sqlite3GetTempRange(pParse, nPeer); 1763 } 1764 1765 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1766 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1767 1768 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1769 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1770 } 1771 1772 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1773 VdbeCoverage(v); 1774 addrNext = sqlite3VdbeCurrentAddr(v); 1775 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1776 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1777 VdbeCoverageNeverNull(v); 1778 1779 if( pMWin->eExclude==TK_CURRENT ){ 1780 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1781 VdbeCoverageNeverNull(v); 1782 }else if( pMWin->eExclude!=TK_NO ){ 1783 int addr; 1784 int addrEq = 0; 1785 KeyInfo *pKeyInfo = 0; 1786 1787 if( pMWin->pOrderBy ){ 1788 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1789 } 1790 if( pMWin->eExclude==TK_TIES ){ 1791 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1792 VdbeCoverageNeverNull(v); 1793 } 1794 if( pKeyInfo ){ 1795 windowReadPeerValues(p, csr, regPeer); 1796 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1797 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1798 addr = sqlite3VdbeCurrentAddr(v)+1; 1799 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1800 VdbeCoverageEqNe(v); 1801 }else{ 1802 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1803 } 1804 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1805 } 1806 1807 windowAggStep(p, pMWin, csr, 0, p->regArg); 1808 1809 sqlite3VdbeResolveLabel(v, lblNext); 1810 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1811 VdbeCoverage(v); 1812 sqlite3VdbeJumpHere(v, addrNext-1); 1813 sqlite3VdbeJumpHere(v, addrNext+1); 1814 sqlite3ReleaseTempReg(pParse, regRowid); 1815 sqlite3ReleaseTempReg(pParse, regCRowid); 1816 if( nPeer ){ 1817 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1818 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1819 } 1820 1821 windowAggFinal(p, 1); 1822 VdbeModuleComment((v, "windowFullScan end")); 1823 } 1824 1825 /* 1826 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1827 ** return the current row of Window.iEphCsr. If all window functions are 1828 ** aggregate window functions that use the standard API, a single 1829 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1830 ** for per-row processing is only generated for the following built-in window 1831 ** functions: 1832 ** 1833 ** nth_value() 1834 ** first_value() 1835 ** lag() 1836 ** lead() 1837 */ 1838 static void windowReturnOneRow(WindowCodeArg *p){ 1839 Window *pMWin = p->pMWin; 1840 Vdbe *v = p->pVdbe; 1841 1842 if( pMWin->regStartRowid ){ 1843 windowFullScan(p); 1844 }else{ 1845 Parse *pParse = p->pParse; 1846 Window *pWin; 1847 1848 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1849 FuncDef *pFunc = pWin->pFunc; 1850 if( pFunc->zName==nth_valueName 1851 || pFunc->zName==first_valueName 1852 ){ 1853 int csr = pWin->csrApp; 1854 int lbl = sqlite3VdbeMakeLabel(pParse); 1855 int tmpReg = sqlite3GetTempReg(pParse); 1856 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1857 1858 if( pFunc->zName==nth_valueName ){ 1859 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1860 windowCheckValue(pParse, tmpReg, 2); 1861 }else{ 1862 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1863 } 1864 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1865 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1866 VdbeCoverageNeverNull(v); 1867 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1868 VdbeCoverageNeverTaken(v); 1869 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1870 sqlite3VdbeResolveLabel(v, lbl); 1871 sqlite3ReleaseTempReg(pParse, tmpReg); 1872 } 1873 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1874 int nArg = pWin->pOwner->x.pList->nExpr; 1875 int csr = pWin->csrApp; 1876 int lbl = sqlite3VdbeMakeLabel(pParse); 1877 int tmpReg = sqlite3GetTempReg(pParse); 1878 int iEph = pMWin->iEphCsr; 1879 1880 if( nArg<3 ){ 1881 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1882 }else{ 1883 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1884 } 1885 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1886 if( nArg<2 ){ 1887 int val = (pFunc->zName==leadName ? 1 : -1); 1888 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1889 }else{ 1890 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1891 int tmpReg2 = sqlite3GetTempReg(pParse); 1892 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1893 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1894 sqlite3ReleaseTempReg(pParse, tmpReg2); 1895 } 1896 1897 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1898 VdbeCoverage(v); 1899 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1900 sqlite3VdbeResolveLabel(v, lbl); 1901 sqlite3ReleaseTempReg(pParse, tmpReg); 1902 } 1903 } 1904 } 1905 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1906 } 1907 1908 /* 1909 ** Generate code to set the accumulator register for each window function 1910 ** in the linked list passed as the second argument to NULL. And perform 1911 ** any equivalent initialization required by any built-in window functions 1912 ** in the list. 1913 */ 1914 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1915 Vdbe *v = sqlite3GetVdbe(pParse); 1916 int regArg; 1917 int nArg = 0; 1918 Window *pWin; 1919 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1920 FuncDef *pFunc = pWin->pFunc; 1921 assert( pWin->regAccum ); 1922 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1923 nArg = MAX(nArg, windowArgCount(pWin)); 1924 if( pMWin->regStartRowid==0 ){ 1925 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1926 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1927 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1928 } 1929 1930 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1931 assert( pWin->eStart!=TK_UNBOUNDED ); 1932 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1933 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1934 } 1935 } 1936 } 1937 regArg = pParse->nMem+1; 1938 pParse->nMem += nArg; 1939 return regArg; 1940 } 1941 1942 /* 1943 ** Return true if the current frame should be cached in the ephemeral table, 1944 ** even if there are no xInverse() calls required. 1945 */ 1946 static int windowCacheFrame(Window *pMWin){ 1947 Window *pWin; 1948 if( pMWin->regStartRowid ) return 1; 1949 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1950 FuncDef *pFunc = pWin->pFunc; 1951 if( (pFunc->zName==nth_valueName) 1952 || (pFunc->zName==first_valueName) 1953 || (pFunc->zName==leadName) 1954 || (pFunc->zName==lagName) 1955 ){ 1956 return 1; 1957 } 1958 } 1959 return 0; 1960 } 1961 1962 /* 1963 ** regOld and regNew are each the first register in an array of size 1964 ** pOrderBy->nExpr. This function generates code to compare the two 1965 ** arrays of registers using the collation sequences and other comparison 1966 ** parameters specified by pOrderBy. 1967 ** 1968 ** If the two arrays are not equal, the contents of regNew is copied to 1969 ** regOld and control falls through. Otherwise, if the contents of the arrays 1970 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 1971 */ 1972 static void windowIfNewPeer( 1973 Parse *pParse, 1974 ExprList *pOrderBy, 1975 int regNew, /* First in array of new values */ 1976 int regOld, /* First in array of old values */ 1977 int addr /* Jump here */ 1978 ){ 1979 Vdbe *v = sqlite3GetVdbe(pParse); 1980 if( pOrderBy ){ 1981 int nVal = pOrderBy->nExpr; 1982 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 1983 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 1984 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1985 sqlite3VdbeAddOp3(v, OP_Jump, 1986 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 1987 ); 1988 VdbeCoverageEqNe(v); 1989 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 1990 }else{ 1991 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 1992 } 1993 } 1994 1995 /* 1996 ** This function is called as part of generating VM programs for RANGE 1997 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 1998 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 1999 ** code equivalent to: 2000 ** 2001 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2002 ** 2003 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2004 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2005 ** 2006 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2007 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2008 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2009 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2010 ** is OP_Ge, the generated code is equivalent to: 2011 ** 2012 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2013 ** 2014 ** A special type of arithmetic is used such that if csr1.peerVal is not 2015 ** a numeric type (real or integer), then the result of the addition addition 2016 ** or subtraction is a a copy of csr1.peerVal. 2017 */ 2018 static void windowCodeRangeTest( 2019 WindowCodeArg *p, 2020 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2021 int csr1, /* Cursor number for cursor 1 */ 2022 int regVal, /* Register containing non-negative number */ 2023 int csr2, /* Cursor number for cursor 2 */ 2024 int lbl /* Jump destination if condition is true */ 2025 ){ 2026 Parse *pParse = p->pParse; 2027 Vdbe *v = sqlite3GetVdbe(pParse); 2028 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2029 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2030 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2031 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2032 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2033 int addrGe; /* Jump destination */ 2034 2035 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2036 assert( pOrderBy && pOrderBy->nExpr==1 ); 2037 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2038 switch( op ){ 2039 case OP_Ge: op = OP_Le; break; 2040 case OP_Gt: op = OP_Lt; break; 2041 default: assert( op==OP_Le ); op = OP_Ge; break; 2042 } 2043 arith = OP_Subtract; 2044 } 2045 2046 /* Read the peer-value from each cursor into a register */ 2047 windowReadPeerValues(p, csr1, reg1); 2048 windowReadPeerValues(p, csr2, reg2); 2049 2050 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2051 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2052 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2053 )); 2054 2055 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2056 ** This block adds (or subtracts for DESC) the numeric value in regVal 2057 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2058 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2059 ** 2060 ** if( reg1>='' ) goto addrGe; 2061 ** reg1 = reg1 +/- regVal 2062 ** addrGe: 2063 ** 2064 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2065 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2066 ** then the arithmetic is performed, but since adding or subtracting from 2067 ** NULL is always NULL anyway, this case is handled as required too. */ 2068 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2069 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2070 VdbeCoverage(v); 2071 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2072 sqlite3VdbeJumpHere(v, addrGe); 2073 2074 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2075 ** consider NULL values to be larger than all other values, instead of 2076 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2077 ** (and adding that capability causes a performance regression), so 2078 ** instead if the BIGNULL flag is set then cases where either reg1 or 2079 ** reg2 are NULL are handled separately in the following block. The code 2080 ** generated is equivalent to: 2081 ** 2082 ** if( reg1 IS NULL ){ 2083 ** if( op==OP_Ge ) goto lbl; 2084 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2085 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2086 ** }else if( reg2 IS NULL ){ 2087 ** if( op==OP_Le ) goto lbl; 2088 ** } 2089 ** 2090 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2091 ** not taken, control jumps over the comparison operator coded below this 2092 ** block. */ 2093 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2094 /* This block runs if reg1 contains a NULL. */ 2095 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2096 switch( op ){ 2097 case OP_Ge: 2098 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2099 break; 2100 case OP_Gt: 2101 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2102 VdbeCoverage(v); 2103 break; 2104 case OP_Le: 2105 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2106 VdbeCoverage(v); 2107 break; 2108 default: assert( op==OP_Lt ); /* no-op */ break; 2109 } 2110 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 2111 2112 /* This block runs if reg1 is not NULL, but reg2 is. */ 2113 sqlite3VdbeJumpHere(v, addr); 2114 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2115 if( op==OP_Gt || op==OP_Ge ){ 2116 sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1); 2117 } 2118 } 2119 2120 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2121 ** control skips over this test if the BIGNULL flag is set and either 2122 ** reg1 or reg2 contain a NULL value. */ 2123 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2124 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2125 2126 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2127 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2128 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2129 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2130 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2131 sqlite3ReleaseTempReg(pParse, reg1); 2132 sqlite3ReleaseTempReg(pParse, reg2); 2133 2134 VdbeModuleComment((v, "CodeRangeTest: end")); 2135 } 2136 2137 /* 2138 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2139 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2140 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2141 ** details. 2142 */ 2143 static int windowCodeOp( 2144 WindowCodeArg *p, /* Context object */ 2145 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2146 int regCountdown, /* Register for OP_IfPos countdown */ 2147 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2148 ){ 2149 int csr, reg; 2150 Parse *pParse = p->pParse; 2151 Window *pMWin = p->pMWin; 2152 int ret = 0; 2153 Vdbe *v = p->pVdbe; 2154 int addrContinue = 0; 2155 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2156 2157 int lblDone = sqlite3VdbeMakeLabel(pParse); 2158 int addrNextRange = 0; 2159 2160 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2161 ** starts with UNBOUNDED PRECEDING. */ 2162 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2163 assert( regCountdown==0 && jumpOnEof==0 ); 2164 return 0; 2165 } 2166 2167 if( regCountdown>0 ){ 2168 if( pMWin->eFrmType==TK_RANGE ){ 2169 addrNextRange = sqlite3VdbeCurrentAddr(v); 2170 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2171 if( op==WINDOW_AGGINVERSE ){ 2172 if( pMWin->eStart==TK_FOLLOWING ){ 2173 windowCodeRangeTest( 2174 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2175 ); 2176 }else{ 2177 windowCodeRangeTest( 2178 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2179 ); 2180 } 2181 }else{ 2182 windowCodeRangeTest( 2183 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2184 ); 2185 } 2186 }else{ 2187 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2188 VdbeCoverage(v); 2189 } 2190 } 2191 2192 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2193 windowAggFinal(p, 0); 2194 } 2195 addrContinue = sqlite3VdbeCurrentAddr(v); 2196 2197 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2198 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2199 ** start cursor does not advance past the end cursor within the 2200 ** temporary table. It otherwise might, if (a>b). */ 2201 if( pMWin->eStart==pMWin->eEnd && regCountdown 2202 && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE 2203 ){ 2204 int regRowid1 = sqlite3GetTempReg(pParse); 2205 int regRowid2 = sqlite3GetTempReg(pParse); 2206 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2207 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2208 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2209 VdbeCoverage(v); 2210 sqlite3ReleaseTempReg(pParse, regRowid1); 2211 sqlite3ReleaseTempReg(pParse, regRowid2); 2212 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2213 } 2214 2215 switch( op ){ 2216 case WINDOW_RETURN_ROW: 2217 csr = p->current.csr; 2218 reg = p->current.reg; 2219 windowReturnOneRow(p); 2220 break; 2221 2222 case WINDOW_AGGINVERSE: 2223 csr = p->start.csr; 2224 reg = p->start.reg; 2225 if( pMWin->regStartRowid ){ 2226 assert( pMWin->regEndRowid ); 2227 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2228 }else{ 2229 windowAggStep(p, pMWin, csr, 1, p->regArg); 2230 } 2231 break; 2232 2233 default: 2234 assert( op==WINDOW_AGGSTEP ); 2235 csr = p->end.csr; 2236 reg = p->end.reg; 2237 if( pMWin->regStartRowid ){ 2238 assert( pMWin->regEndRowid ); 2239 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2240 }else{ 2241 windowAggStep(p, pMWin, csr, 0, p->regArg); 2242 } 2243 break; 2244 } 2245 2246 if( op==p->eDelete ){ 2247 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2248 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2249 } 2250 2251 if( jumpOnEof ){ 2252 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2253 VdbeCoverage(v); 2254 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2255 }else{ 2256 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2257 VdbeCoverage(v); 2258 if( bPeer ){ 2259 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2260 } 2261 } 2262 2263 if( bPeer ){ 2264 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2265 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2266 windowReadPeerValues(p, csr, regTmp); 2267 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2268 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2269 } 2270 2271 if( addrNextRange ){ 2272 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2273 } 2274 sqlite3VdbeResolveLabel(v, lblDone); 2275 return ret; 2276 } 2277 2278 2279 /* 2280 ** Allocate and return a duplicate of the Window object indicated by the 2281 ** third argument. Set the Window.pOwner field of the new object to 2282 ** pOwner. 2283 */ 2284 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2285 Window *pNew = 0; 2286 if( ALWAYS(p) ){ 2287 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2288 if( pNew ){ 2289 pNew->zName = sqlite3DbStrDup(db, p->zName); 2290 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2291 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2292 pNew->pFunc = p->pFunc; 2293 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2294 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2295 pNew->eFrmType = p->eFrmType; 2296 pNew->eEnd = p->eEnd; 2297 pNew->eStart = p->eStart; 2298 pNew->eExclude = p->eExclude; 2299 pNew->regResult = p->regResult; 2300 pNew->regAccum = p->regAccum; 2301 pNew->iArgCol = p->iArgCol; 2302 pNew->iEphCsr = p->iEphCsr; 2303 pNew->bExprArgs = p->bExprArgs; 2304 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2305 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2306 pNew->pOwner = pOwner; 2307 pNew->bImplicitFrame = p->bImplicitFrame; 2308 } 2309 } 2310 return pNew; 2311 } 2312 2313 /* 2314 ** Return a copy of the linked list of Window objects passed as the 2315 ** second argument. 2316 */ 2317 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2318 Window *pWin; 2319 Window *pRet = 0; 2320 Window **pp = &pRet; 2321 2322 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2323 *pp = sqlite3WindowDup(db, 0, pWin); 2324 if( *pp==0 ) break; 2325 pp = &((*pp)->pNextWin); 2326 } 2327 2328 return pRet; 2329 } 2330 2331 /* 2332 ** Return true if it can be determined at compile time that expression 2333 ** pExpr evaluates to a value that, when cast to an integer, is greater 2334 ** than zero. False otherwise. 2335 ** 2336 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2337 ** flag and returns zero. 2338 */ 2339 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2340 int ret = 0; 2341 sqlite3 *db = pParse->db; 2342 sqlite3_value *pVal = 0; 2343 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2344 if( pVal && sqlite3_value_int(pVal)>0 ){ 2345 ret = 1; 2346 } 2347 sqlite3ValueFree(pVal); 2348 return ret; 2349 } 2350 2351 /* 2352 ** sqlite3WhereBegin() has already been called for the SELECT statement 2353 ** passed as the second argument when this function is invoked. It generates 2354 ** code to populate the Window.regResult register for each window function 2355 ** and invoke the sub-routine at instruction addrGosub once for each row. 2356 ** sqlite3WhereEnd() is always called before returning. 2357 ** 2358 ** This function handles several different types of window frames, which 2359 ** require slightly different processing. The following pseudo code is 2360 ** used to implement window frames of the form: 2361 ** 2362 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2363 ** 2364 ** Other window frame types use variants of the following: 2365 ** 2366 ** ... loop started by sqlite3WhereBegin() ... 2367 ** if( new partition ){ 2368 ** Gosub flush 2369 ** } 2370 ** Insert new row into eph table. 2371 ** 2372 ** if( first row of partition ){ 2373 ** // Rewind three cursors, all open on the eph table. 2374 ** Rewind(csrEnd); 2375 ** Rewind(csrStart); 2376 ** Rewind(csrCurrent); 2377 ** 2378 ** regEnd = <expr2> // FOLLOWING expression 2379 ** regStart = <expr1> // PRECEDING expression 2380 ** }else{ 2381 ** // First time this branch is taken, the eph table contains two 2382 ** // rows. The first row in the partition, which all three cursors 2383 ** // currently point to, and the following row. 2384 ** AGGSTEP 2385 ** if( (regEnd--)<=0 ){ 2386 ** RETURN_ROW 2387 ** if( (regStart--)<=0 ){ 2388 ** AGGINVERSE 2389 ** } 2390 ** } 2391 ** } 2392 ** } 2393 ** flush: 2394 ** AGGSTEP 2395 ** while( 1 ){ 2396 ** RETURN ROW 2397 ** if( csrCurrent is EOF ) break; 2398 ** if( (regStart--)<=0 ){ 2399 ** AggInverse(csrStart) 2400 ** Next(csrStart) 2401 ** } 2402 ** } 2403 ** 2404 ** The pseudo-code above uses the following shorthand: 2405 ** 2406 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2407 ** with arguments read from the current row of cursor csrEnd, then 2408 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2409 ** 2410 ** RETURN_ROW: return a row to the caller based on the contents of the 2411 ** current row of csrCurrent and the current state of all 2412 ** aggregates. Then step cursor csrCurrent forward one row. 2413 ** 2414 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2415 ** functions with arguments read from the current row of cursor 2416 ** csrStart. Then step csrStart forward one row. 2417 ** 2418 ** There are two other ROWS window frames that are handled significantly 2419 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2420 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2421 ** cases because they change the order in which the three cursors (csrStart, 2422 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2423 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2424 ** three. 2425 ** 2426 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2427 ** 2428 ** ... loop started by sqlite3WhereBegin() ... 2429 ** if( new partition ){ 2430 ** Gosub flush 2431 ** } 2432 ** Insert new row into eph table. 2433 ** if( first row of partition ){ 2434 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2435 ** regEnd = <expr2> 2436 ** regStart = <expr1> 2437 ** }else{ 2438 ** if( (regEnd--)<=0 ){ 2439 ** AGGSTEP 2440 ** } 2441 ** RETURN_ROW 2442 ** if( (regStart--)<=0 ){ 2443 ** AGGINVERSE 2444 ** } 2445 ** } 2446 ** } 2447 ** flush: 2448 ** if( (regEnd--)<=0 ){ 2449 ** AGGSTEP 2450 ** } 2451 ** RETURN_ROW 2452 ** 2453 ** 2454 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2455 ** 2456 ** ... loop started by sqlite3WhereBegin() ... 2457 ** if( new partition ){ 2458 ** Gosub flush 2459 ** } 2460 ** Insert new row into eph table. 2461 ** if( first row of partition ){ 2462 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2463 ** regEnd = <expr2> 2464 ** regStart = regEnd - <expr1> 2465 ** }else{ 2466 ** AGGSTEP 2467 ** if( (regEnd--)<=0 ){ 2468 ** RETURN_ROW 2469 ** } 2470 ** if( (regStart--)<=0 ){ 2471 ** AGGINVERSE 2472 ** } 2473 ** } 2474 ** } 2475 ** flush: 2476 ** AGGSTEP 2477 ** while( 1 ){ 2478 ** if( (regEnd--)<=0 ){ 2479 ** RETURN_ROW 2480 ** if( eof ) break; 2481 ** } 2482 ** if( (regStart--)<=0 ){ 2483 ** AGGINVERSE 2484 ** if( eof ) break 2485 ** } 2486 ** } 2487 ** while( !eof csrCurrent ){ 2488 ** RETURN_ROW 2489 ** } 2490 ** 2491 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2492 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2493 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2494 ** This is optimized of course - branches that will never be taken and 2495 ** conditions that are always true are omitted from the VM code. The only 2496 ** exceptional case is: 2497 ** 2498 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2499 ** 2500 ** ... loop started by sqlite3WhereBegin() ... 2501 ** if( new partition ){ 2502 ** Gosub flush 2503 ** } 2504 ** Insert new row into eph table. 2505 ** if( first row of partition ){ 2506 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2507 ** regStart = <expr1> 2508 ** }else{ 2509 ** AGGSTEP 2510 ** } 2511 ** } 2512 ** flush: 2513 ** AGGSTEP 2514 ** while( 1 ){ 2515 ** if( (regStart--)<=0 ){ 2516 ** AGGINVERSE 2517 ** if( eof ) break 2518 ** } 2519 ** RETURN_ROW 2520 ** } 2521 ** while( !eof csrCurrent ){ 2522 ** RETURN_ROW 2523 ** } 2524 ** 2525 ** Also requiring special handling are the cases: 2526 ** 2527 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2528 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2529 ** 2530 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2531 ** To handle this case, the pseudo-code programs depicted above are modified 2532 ** slightly to be: 2533 ** 2534 ** ... loop started by sqlite3WhereBegin() ... 2535 ** if( new partition ){ 2536 ** Gosub flush 2537 ** } 2538 ** Insert new row into eph table. 2539 ** if( first row of partition ){ 2540 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2541 ** regEnd = <expr2> 2542 ** regStart = <expr1> 2543 ** if( regEnd < regStart ){ 2544 ** RETURN_ROW 2545 ** delete eph table contents 2546 ** continue 2547 ** } 2548 ** ... 2549 ** 2550 ** The new "continue" statement in the above jumps to the next iteration 2551 ** of the outer loop - the one started by sqlite3WhereBegin(). 2552 ** 2553 ** The various GROUPS cases are implemented using the same patterns as 2554 ** ROWS. The VM code is modified slightly so that: 2555 ** 2556 ** 1. The else branch in the main loop is only taken if the row just 2557 ** added to the ephemeral table is the start of a new group. In 2558 ** other words, it becomes: 2559 ** 2560 ** ... loop started by sqlite3WhereBegin() ... 2561 ** if( new partition ){ 2562 ** Gosub flush 2563 ** } 2564 ** Insert new row into eph table. 2565 ** if( first row of partition ){ 2566 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2567 ** regEnd = <expr2> 2568 ** regStart = <expr1> 2569 ** }else if( new group ){ 2570 ** ... 2571 ** } 2572 ** } 2573 ** 2574 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2575 ** AGGINVERSE step processes the current row of the relevant cursor and 2576 ** all subsequent rows belonging to the same group. 2577 ** 2578 ** RANGE window frames are a little different again. As for GROUPS, the 2579 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2580 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2581 ** basic cases: 2582 ** 2583 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2584 ** 2585 ** ... loop started by sqlite3WhereBegin() ... 2586 ** if( new partition ){ 2587 ** Gosub flush 2588 ** } 2589 ** Insert new row into eph table. 2590 ** if( first row of partition ){ 2591 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2592 ** regEnd = <expr2> 2593 ** regStart = <expr1> 2594 ** }else{ 2595 ** AGGSTEP 2596 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2597 ** RETURN_ROW 2598 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2599 ** AGGINVERSE 2600 ** } 2601 ** } 2602 ** } 2603 ** } 2604 ** flush: 2605 ** AGGSTEP 2606 ** while( 1 ){ 2607 ** RETURN ROW 2608 ** if( csrCurrent is EOF ) break; 2609 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2610 ** AGGINVERSE 2611 ** } 2612 ** } 2613 ** } 2614 ** 2615 ** In the above notation, "csr.key" means the current value of the ORDER BY 2616 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2617 ** or <expr PRECEDING) read from cursor csr. 2618 ** 2619 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2620 ** 2621 ** ... loop started by sqlite3WhereBegin() ... 2622 ** if( new partition ){ 2623 ** Gosub flush 2624 ** } 2625 ** Insert new row into eph table. 2626 ** if( first row of partition ){ 2627 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2628 ** regEnd = <expr2> 2629 ** regStart = <expr1> 2630 ** }else{ 2631 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2632 ** AGGSTEP 2633 ** } 2634 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2635 ** AGGINVERSE 2636 ** } 2637 ** RETURN_ROW 2638 ** } 2639 ** } 2640 ** flush: 2641 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2642 ** AGGSTEP 2643 ** } 2644 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2645 ** AGGINVERSE 2646 ** } 2647 ** RETURN_ROW 2648 ** 2649 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2650 ** 2651 ** ... loop started by sqlite3WhereBegin() ... 2652 ** if( new partition ){ 2653 ** Gosub flush 2654 ** } 2655 ** Insert new row into eph table. 2656 ** if( first row of partition ){ 2657 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2658 ** regEnd = <expr2> 2659 ** regStart = <expr1> 2660 ** }else{ 2661 ** AGGSTEP 2662 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2663 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2664 ** AGGINVERSE 2665 ** } 2666 ** RETURN_ROW 2667 ** } 2668 ** } 2669 ** } 2670 ** flush: 2671 ** AGGSTEP 2672 ** while( 1 ){ 2673 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2674 ** AGGINVERSE 2675 ** if( eof ) break "while( 1 )" loop. 2676 ** } 2677 ** RETURN_ROW 2678 ** } 2679 ** while( !eof csrCurrent ){ 2680 ** RETURN_ROW 2681 ** } 2682 ** 2683 ** The text above leaves out many details. Refer to the code and comments 2684 ** below for a more complete picture. 2685 */ 2686 void sqlite3WindowCodeStep( 2687 Parse *pParse, /* Parse context */ 2688 Select *p, /* Rewritten SELECT statement */ 2689 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2690 int regGosub, /* Register for OP_Gosub */ 2691 int addrGosub /* OP_Gosub here to return each row */ 2692 ){ 2693 Window *pMWin = p->pWin; 2694 ExprList *pOrderBy = pMWin->pOrderBy; 2695 Vdbe *v = sqlite3GetVdbe(pParse); 2696 int csrWrite; /* Cursor used to write to eph. table */ 2697 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2698 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2699 int iInput; /* To iterate through sub cols */ 2700 int addrNe; /* Address of OP_Ne */ 2701 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2702 int addrInteger = 0; /* Address of OP_Integer */ 2703 int addrEmpty; /* Address of OP_Rewind in flush: */ 2704 int regNew; /* Array of registers holding new input row */ 2705 int regRecord; /* regNew array in record form */ 2706 int regRowid; /* Rowid for regRecord in eph table */ 2707 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2708 int regPeer = 0; /* Peer values for current row */ 2709 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2710 WindowCodeArg s; /* Context object for sub-routines */ 2711 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2712 int regStart = 0; /* Value of <expr> PRECEDING */ 2713 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2714 2715 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2716 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2717 ); 2718 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2719 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2720 ); 2721 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2722 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2723 || pMWin->eExclude==TK_NO 2724 ); 2725 2726 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2727 2728 /* Fill in the context object */ 2729 memset(&s, 0, sizeof(WindowCodeArg)); 2730 s.pParse = pParse; 2731 s.pMWin = pMWin; 2732 s.pVdbe = v; 2733 s.regGosub = regGosub; 2734 s.addrGosub = addrGosub; 2735 s.current.csr = pMWin->iEphCsr; 2736 csrWrite = s.current.csr+1; 2737 s.start.csr = s.current.csr+2; 2738 s.end.csr = s.current.csr+3; 2739 2740 /* Figure out when rows may be deleted from the ephemeral table. There 2741 ** are four options - they may never be deleted (eDelete==0), they may 2742 ** be deleted as soon as they are no longer part of the window frame 2743 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2744 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2745 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2746 switch( pMWin->eStart ){ 2747 case TK_FOLLOWING: 2748 if( pMWin->eFrmType!=TK_RANGE 2749 && windowExprGtZero(pParse, pMWin->pStart) 2750 ){ 2751 s.eDelete = WINDOW_RETURN_ROW; 2752 } 2753 break; 2754 case TK_UNBOUNDED: 2755 if( windowCacheFrame(pMWin)==0 ){ 2756 if( pMWin->eEnd==TK_PRECEDING ){ 2757 if( pMWin->eFrmType!=TK_RANGE 2758 && windowExprGtZero(pParse, pMWin->pEnd) 2759 ){ 2760 s.eDelete = WINDOW_AGGSTEP; 2761 } 2762 }else{ 2763 s.eDelete = WINDOW_RETURN_ROW; 2764 } 2765 } 2766 break; 2767 default: 2768 s.eDelete = WINDOW_AGGINVERSE; 2769 break; 2770 } 2771 2772 /* Allocate registers for the array of values from the sub-query, the 2773 ** samve values in record form, and the rowid used to insert said record 2774 ** into the ephemeral table. */ 2775 regNew = pParse->nMem+1; 2776 pParse->nMem += nInput; 2777 regRecord = ++pParse->nMem; 2778 regRowid = ++pParse->nMem; 2779 2780 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2781 ** clause, allocate registers to store the results of evaluating each 2782 ** <expr>. */ 2783 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2784 regStart = ++pParse->nMem; 2785 } 2786 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2787 regEnd = ++pParse->nMem; 2788 } 2789 2790 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2791 ** registers to store copies of the ORDER BY expressions (peer values) 2792 ** for the main loop, and for each cursor (start, current and end). */ 2793 if( pMWin->eFrmType!=TK_ROWS ){ 2794 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2795 regNewPeer = regNew + pMWin->nBufferCol; 2796 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2797 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2798 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2799 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2800 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2801 } 2802 2803 /* Load the column values for the row returned by the sub-select 2804 ** into an array of registers starting at regNew. Assemble them into 2805 ** a record in register regRecord. */ 2806 for(iInput=0; iInput<nInput; iInput++){ 2807 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2808 } 2809 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2810 2811 /* An input row has just been read into an array of registers starting 2812 ** at regNew. If the window has a PARTITION clause, this block generates 2813 ** VM code to check if the input row is the start of a new partition. 2814 ** If so, it does an OP_Gosub to an address to be filled in later. The 2815 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2816 if( pMWin->pPartition ){ 2817 int addr; 2818 ExprList *pPart = pMWin->pPartition; 2819 int nPart = pPart->nExpr; 2820 int regNewPart = regNew + pMWin->nBufferCol; 2821 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2822 2823 regFlushPart = ++pParse->nMem; 2824 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2825 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2826 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2827 VdbeCoverageEqNe(v); 2828 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2829 VdbeComment((v, "call flush_partition")); 2830 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2831 } 2832 2833 /* Insert the new row into the ephemeral table */ 2834 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2835 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2836 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2837 VdbeCoverageNeverNull(v); 2838 2839 /* This block is run for the first row of each partition */ 2840 s.regArg = windowInitAccum(pParse, pMWin); 2841 2842 if( regStart ){ 2843 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2844 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2845 } 2846 if( regEnd ){ 2847 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2848 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2849 } 2850 2851 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2852 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2853 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2854 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2855 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2856 windowAggFinal(&s, 0); 2857 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2858 VdbeCoverageNeverTaken(v); 2859 windowReturnOneRow(&s); 2860 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2861 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2862 sqlite3VdbeJumpHere(v, addrGe); 2863 } 2864 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2865 assert( pMWin->eEnd==TK_FOLLOWING ); 2866 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2867 } 2868 2869 if( pMWin->eStart!=TK_UNBOUNDED ){ 2870 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2871 VdbeCoverageNeverTaken(v); 2872 } 2873 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2874 VdbeCoverageNeverTaken(v); 2875 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2876 VdbeCoverageNeverTaken(v); 2877 if( regPeer && pOrderBy ){ 2878 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2879 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2880 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2881 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2882 } 2883 2884 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2885 2886 sqlite3VdbeJumpHere(v, addrNe); 2887 2888 /* Beginning of the block executed for the second and subsequent rows. */ 2889 if( regPeer ){ 2890 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2891 } 2892 if( pMWin->eStart==TK_FOLLOWING ){ 2893 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2894 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2895 if( pMWin->eFrmType==TK_RANGE ){ 2896 int lbl = sqlite3VdbeMakeLabel(pParse); 2897 int addrNext = sqlite3VdbeCurrentAddr(v); 2898 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2899 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2900 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2901 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2902 sqlite3VdbeResolveLabel(v, lbl); 2903 }else{ 2904 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2905 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2906 } 2907 } 2908 }else 2909 if( pMWin->eEnd==TK_PRECEDING ){ 2910 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2911 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2912 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2913 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2914 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2915 }else{ 2916 int addr = 0; 2917 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2918 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2919 if( pMWin->eFrmType==TK_RANGE ){ 2920 int lbl = 0; 2921 addr = sqlite3VdbeCurrentAddr(v); 2922 if( regEnd ){ 2923 lbl = sqlite3VdbeMakeLabel(pParse); 2924 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2925 } 2926 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2927 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2928 if( regEnd ){ 2929 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2930 sqlite3VdbeResolveLabel(v, lbl); 2931 } 2932 }else{ 2933 if( regEnd ){ 2934 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2935 VdbeCoverage(v); 2936 } 2937 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2938 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2939 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2940 } 2941 } 2942 } 2943 2944 /* End of the main input loop */ 2945 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2946 sqlite3WhereEnd(pWInfo); 2947 2948 /* Fall through */ 2949 if( pMWin->pPartition ){ 2950 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2951 sqlite3VdbeJumpHere(v, addrGosubFlush); 2952 } 2953 2954 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2955 VdbeCoverage(v); 2956 if( pMWin->eEnd==TK_PRECEDING ){ 2957 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2958 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2959 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2960 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2961 }else if( pMWin->eStart==TK_FOLLOWING ){ 2962 int addrStart; 2963 int addrBreak1; 2964 int addrBreak2; 2965 int addrBreak3; 2966 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2967 if( pMWin->eFrmType==TK_RANGE ){ 2968 addrStart = sqlite3VdbeCurrentAddr(v); 2969 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2970 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2971 }else 2972 if( pMWin->eEnd==TK_UNBOUNDED ){ 2973 addrStart = sqlite3VdbeCurrentAddr(v); 2974 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 2975 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 2976 }else{ 2977 assert( pMWin->eEnd==TK_FOLLOWING ); 2978 addrStart = sqlite3VdbeCurrentAddr(v); 2979 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 2980 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2981 } 2982 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2983 sqlite3VdbeJumpHere(v, addrBreak2); 2984 addrStart = sqlite3VdbeCurrentAddr(v); 2985 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2986 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2987 sqlite3VdbeJumpHere(v, addrBreak1); 2988 sqlite3VdbeJumpHere(v, addrBreak3); 2989 }else{ 2990 int addrBreak; 2991 int addrStart; 2992 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2993 addrStart = sqlite3VdbeCurrentAddr(v); 2994 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2995 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2996 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2997 sqlite3VdbeJumpHere(v, addrBreak); 2998 } 2999 sqlite3VdbeJumpHere(v, addrEmpty); 3000 3001 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3002 if( pMWin->pPartition ){ 3003 if( pMWin->regStartRowid ){ 3004 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3005 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3006 } 3007 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3008 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3009 } 3010 } 3011 3012 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3013