xref: /sqlite-3.40.0/src/window.c (revision a8e41eca)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* Fall through.  */
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( p->pSub ){
792         int i;
793         for(i=0; i<p->pSub->nExpr; i++){
794           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795             iCol = i;
796             break;
797           }
798         }
799       }
800       if( iCol<0 ){
801         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
803         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
804       }
805       if( p->pSub ){
806         assert( ExprHasProperty(pExpr, EP_Static)==0 );
807         ExprSetProperty(pExpr, EP_Static);
808         sqlite3ExprDelete(pParse->db, pExpr);
809         ExprClearProperty(pExpr, EP_Static);
810         memset(pExpr, 0, sizeof(Expr));
811 
812         pExpr->op = TK_COLUMN;
813         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
814         pExpr->iTable = p->pWin->iEphCsr;
815         pExpr->y.pTab = p->pTab;
816       }
817       if( pParse->db->mallocFailed ) return WRC_Abort;
818       break;
819     }
820 
821     default: /* no-op */
822       break;
823   }
824 
825   return WRC_Continue;
826 }
827 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
828   struct WindowRewrite *p = pWalker->u.pRewrite;
829   Select *pSave = p->pSubSelect;
830   if( pSave==pSelect ){
831     return WRC_Continue;
832   }else{
833     p->pSubSelect = pSelect;
834     sqlite3WalkSelect(pWalker, pSelect);
835     p->pSubSelect = pSave;
836   }
837   return WRC_Prune;
838 }
839 
840 
841 /*
842 ** Iterate through each expression in expression-list pEList. For each:
843 **
844 **   * TK_COLUMN,
845 **   * aggregate function, or
846 **   * window function with a Window object that is not a member of the
847 **     Window list passed as the second argument (pWin).
848 **
849 ** Append the node to output expression-list (*ppSub). And replace it
850 ** with a TK_COLUMN that reads the (N-1)th element of table
851 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
852 ** appending the new one.
853 */
854 static void selectWindowRewriteEList(
855   Parse *pParse,
856   Window *pWin,
857   SrcList *pSrc,
858   ExprList *pEList,               /* Rewrite expressions in this list */
859   Table *pTab,
860   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
861 ){
862   Walker sWalker;
863   WindowRewrite sRewrite;
864 
865   assert( pWin!=0 );
866   memset(&sWalker, 0, sizeof(Walker));
867   memset(&sRewrite, 0, sizeof(WindowRewrite));
868 
869   sRewrite.pSub = *ppSub;
870   sRewrite.pWin = pWin;
871   sRewrite.pSrc = pSrc;
872   sRewrite.pTab = pTab;
873 
874   sWalker.pParse = pParse;
875   sWalker.xExprCallback = selectWindowRewriteExprCb;
876   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
877   sWalker.u.pRewrite = &sRewrite;
878 
879   (void)sqlite3WalkExprList(&sWalker, pEList);
880 
881   *ppSub = sRewrite.pSub;
882 }
883 
884 /*
885 ** Append a copy of each expression in expression-list pAppend to
886 ** expression list pList. Return a pointer to the result list.
887 */
888 static ExprList *exprListAppendList(
889   Parse *pParse,          /* Parsing context */
890   ExprList *pList,        /* List to which to append. Might be NULL */
891   ExprList *pAppend,      /* List of values to append. Might be NULL */
892   int bIntToNull
893 ){
894   if( pAppend ){
895     int i;
896     int nInit = pList ? pList->nExpr : 0;
897     for(i=0; i<pAppend->nExpr; i++){
898       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
899       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
900       if( bIntToNull && pDup ){
901         int iDummy;
902         Expr *pSub;
903         for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){
904           assert( pSub );
905         }
906         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
907           pSub->op = TK_NULL;
908           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
909           pSub->u.zToken = 0;
910         }
911       }
912       pList = sqlite3ExprListAppend(pParse, pList, pDup);
913       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
914     }
915   }
916   return pList;
917 }
918 
919 /*
920 ** If the SELECT statement passed as the second argument does not invoke
921 ** any SQL window functions, this function is a no-op. Otherwise, it
922 ** rewrites the SELECT statement so that window function xStep functions
923 ** are invoked in the correct order as described under "SELECT REWRITING"
924 ** at the top of this file.
925 */
926 int sqlite3WindowRewrite(Parse *pParse, Select *p){
927   int rc = SQLITE_OK;
928   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
929     Vdbe *v = sqlite3GetVdbe(pParse);
930     sqlite3 *db = pParse->db;
931     Select *pSub = 0;             /* The subquery */
932     SrcList *pSrc = p->pSrc;
933     Expr *pWhere = p->pWhere;
934     ExprList *pGroupBy = p->pGroupBy;
935     Expr *pHaving = p->pHaving;
936     ExprList *pSort = 0;
937 
938     ExprList *pSublist = 0;       /* Expression list for sub-query */
939     Window *pMWin = p->pWin;      /* Master window object */
940     Window *pWin;                 /* Window object iterator */
941     Table *pTab;
942     u32 selFlags = p->selFlags;
943 
944     pTab = sqlite3DbMallocZero(db, sizeof(Table));
945     if( pTab==0 ){
946       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
947     }
948 
949     p->pSrc = 0;
950     p->pWhere = 0;
951     p->pGroupBy = 0;
952     p->pHaving = 0;
953     p->selFlags &= ~SF_Aggregate;
954     p->selFlags |= SF_WinRewrite;
955 
956     /* Create the ORDER BY clause for the sub-select. This is the concatenation
957     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
958     ** redundant, remove the ORDER BY from the parent SELECT.  */
959     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
960     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
961     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
962       int nSave = pSort->nExpr;
963       pSort->nExpr = p->pOrderBy->nExpr;
964       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
965         sqlite3ExprListDelete(db, p->pOrderBy);
966         p->pOrderBy = 0;
967       }
968       pSort->nExpr = nSave;
969     }
970 
971     /* Assign a cursor number for the ephemeral table used to buffer rows.
972     ** The OpenEphemeral instruction is coded later, after it is known how
973     ** many columns the table will have.  */
974     pMWin->iEphCsr = pParse->nTab++;
975     pParse->nTab += 3;
976 
977     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
978     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
979     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
980 
981     /* Append the PARTITION BY and ORDER BY expressions to the to the
982     ** sub-select expression list. They are required to figure out where
983     ** boundaries for partitions and sets of peer rows lie.  */
984     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
985     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
986 
987     /* Append the arguments passed to each window function to the
988     ** sub-select expression list. Also allocate two registers for each
989     ** window function - one for the accumulator, another for interim
990     ** results.  */
991     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
992       ExprList *pArgs = pWin->pOwner->x.pList;
993       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
994         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
995         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
996         pWin->bExprArgs = 1;
997       }else{
998         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
999         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1000       }
1001       if( pWin->pFilter ){
1002         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1003         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1004       }
1005       pWin->regAccum = ++pParse->nMem;
1006       pWin->regResult = ++pParse->nMem;
1007       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1008     }
1009 
1010     /* If there is no ORDER BY or PARTITION BY clause, and the window
1011     ** function accepts zero arguments, and there are no other columns
1012     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1013     ** that pSublist is still NULL here. Add a constant expression here to
1014     ** keep everything legal in this case.
1015     */
1016     if( pSublist==0 ){
1017       pSublist = sqlite3ExprListAppend(pParse, 0,
1018         sqlite3Expr(db, TK_INTEGER, "0")
1019       );
1020     }
1021 
1022     pSub = sqlite3SelectNew(
1023         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1024     );
1025     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1026     if( p->pSrc ){
1027       Table *pTab2;
1028       p->pSrc->a[0].pSelect = pSub;
1029       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1030       pSub->selFlags |= SF_Expanded;
1031       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1032       pSub->selFlags |= (selFlags & SF_Aggregate);
1033       if( pTab2==0 ){
1034         /* Might actually be some other kind of error, but in that case
1035         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1036         ** the correct error message regardless. */
1037         rc = SQLITE_NOMEM;
1038       }else{
1039         memcpy(pTab, pTab2, sizeof(Table));
1040         pTab->tabFlags |= TF_Ephemeral;
1041         p->pSrc->a[0].pTab = pTab;
1042         pTab = pTab2;
1043       }
1044     }else{
1045       sqlite3SelectDelete(db, pSub);
1046     }
1047     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1048     sqlite3DbFree(db, pTab);
1049   }
1050 
1051   if( rc ){
1052     if( pParse->nErr==0 ){
1053       assert( pParse->db->mallocFailed );
1054       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1055     }
1056     sqlite3SelectReset(pParse, p);
1057   }
1058   return rc;
1059 }
1060 
1061 /*
1062 ** Unlink the Window object from the Select to which it is attached,
1063 ** if it is attached.
1064 */
1065 void sqlite3WindowUnlinkFromSelect(Window *p){
1066   if( p->ppThis ){
1067     *p->ppThis = p->pNextWin;
1068     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1069     p->ppThis = 0;
1070   }
1071 }
1072 
1073 /*
1074 ** Free the Window object passed as the second argument.
1075 */
1076 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1077   if( p ){
1078     sqlite3WindowUnlinkFromSelect(p);
1079     sqlite3ExprDelete(db, p->pFilter);
1080     sqlite3ExprListDelete(db, p->pPartition);
1081     sqlite3ExprListDelete(db, p->pOrderBy);
1082     sqlite3ExprDelete(db, p->pEnd);
1083     sqlite3ExprDelete(db, p->pStart);
1084     sqlite3DbFree(db, p->zName);
1085     sqlite3DbFree(db, p->zBase);
1086     sqlite3DbFree(db, p);
1087   }
1088 }
1089 
1090 /*
1091 ** Free the linked list of Window objects starting at the second argument.
1092 */
1093 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1094   while( p ){
1095     Window *pNext = p->pNextWin;
1096     sqlite3WindowDelete(db, p);
1097     p = pNext;
1098   }
1099 }
1100 
1101 /*
1102 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1103 ** value should be a non-negative integer.  If the value is not a
1104 ** constant, change it to NULL.  The fact that it is then a non-negative
1105 ** integer will be caught later.  But it is important not to leave
1106 ** variable values in the expression tree.
1107 */
1108 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1109   if( 0==sqlite3ExprIsConstant(pExpr) ){
1110     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1111     sqlite3ExprDelete(pParse->db, pExpr);
1112     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1113   }
1114   return pExpr;
1115 }
1116 
1117 /*
1118 ** Allocate and return a new Window object describing a Window Definition.
1119 */
1120 Window *sqlite3WindowAlloc(
1121   Parse *pParse,    /* Parsing context */
1122   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1123   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1124   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1125   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1126   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1127   u8 eExclude       /* EXCLUDE clause */
1128 ){
1129   Window *pWin = 0;
1130   int bImplicitFrame = 0;
1131 
1132   /* Parser assures the following: */
1133   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1134   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1135            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1136   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1137            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1138   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1139   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1140 
1141   if( eType==0 ){
1142     bImplicitFrame = 1;
1143     eType = TK_RANGE;
1144   }
1145 
1146   /* Additionally, the
1147   ** starting boundary type may not occur earlier in the following list than
1148   ** the ending boundary type:
1149   **
1150   **   UNBOUNDED PRECEDING
1151   **   <expr> PRECEDING
1152   **   CURRENT ROW
1153   **   <expr> FOLLOWING
1154   **   UNBOUNDED FOLLOWING
1155   **
1156   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1157   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1158   ** frame boundary.
1159   */
1160   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1161    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1162   ){
1163     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1164     goto windowAllocErr;
1165   }
1166 
1167   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1168   if( pWin==0 ) goto windowAllocErr;
1169   pWin->eFrmType = eType;
1170   pWin->eStart = eStart;
1171   pWin->eEnd = eEnd;
1172   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1173     eExclude = TK_NO;
1174   }
1175   pWin->eExclude = eExclude;
1176   pWin->bImplicitFrame = bImplicitFrame;
1177   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1178   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1179   return pWin;
1180 
1181 windowAllocErr:
1182   sqlite3ExprDelete(pParse->db, pEnd);
1183   sqlite3ExprDelete(pParse->db, pStart);
1184   return 0;
1185 }
1186 
1187 /*
1188 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1189 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1190 ** equivalent nul-terminated string.
1191 */
1192 Window *sqlite3WindowAssemble(
1193   Parse *pParse,
1194   Window *pWin,
1195   ExprList *pPartition,
1196   ExprList *pOrderBy,
1197   Token *pBase
1198 ){
1199   if( pWin ){
1200     pWin->pPartition = pPartition;
1201     pWin->pOrderBy = pOrderBy;
1202     if( pBase ){
1203       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1204     }
1205   }else{
1206     sqlite3ExprListDelete(pParse->db, pPartition);
1207     sqlite3ExprListDelete(pParse->db, pOrderBy);
1208   }
1209   return pWin;
1210 }
1211 
1212 /*
1213 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1214 ** is the base window. Earlier windows from the same WINDOW clause are
1215 ** stored in the linked list starting at pWin->pNextWin. This function
1216 ** either updates *pWin according to the base specification, or else
1217 ** leaves an error in pParse.
1218 */
1219 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1220   if( pWin->zBase ){
1221     sqlite3 *db = pParse->db;
1222     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1223     if( pExist ){
1224       const char *zErr = 0;
1225       /* Check for errors */
1226       if( pWin->pPartition ){
1227         zErr = "PARTITION clause";
1228       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1229         zErr = "ORDER BY clause";
1230       }else if( pExist->bImplicitFrame==0 ){
1231         zErr = "frame specification";
1232       }
1233       if( zErr ){
1234         sqlite3ErrorMsg(pParse,
1235             "cannot override %s of window: %s", zErr, pWin->zBase
1236         );
1237       }else{
1238         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1239         if( pExist->pOrderBy ){
1240           assert( pWin->pOrderBy==0 );
1241           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1242         }
1243         sqlite3DbFree(db, pWin->zBase);
1244         pWin->zBase = 0;
1245       }
1246     }
1247   }
1248 }
1249 
1250 /*
1251 ** Attach window object pWin to expression p.
1252 */
1253 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1254   if( p ){
1255     assert( p->op==TK_FUNCTION );
1256     assert( pWin );
1257     p->y.pWin = pWin;
1258     ExprSetProperty(p, EP_WinFunc);
1259     pWin->pOwner = p;
1260     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1261       sqlite3ErrorMsg(pParse,
1262           "DISTINCT is not supported for window functions"
1263       );
1264     }
1265   }else{
1266     sqlite3WindowDelete(pParse->db, pWin);
1267   }
1268 }
1269 
1270 /*
1271 ** Possibly link window pWin into the list at pSel->pWin (window functions
1272 ** to be processed as part of SELECT statement pSel). The window is linked
1273 ** in if either (a) there are no other windows already linked to this
1274 ** SELECT, or (b) the windows already linked use a compatible window frame.
1275 */
1276 void sqlite3WindowLink(Select *pSel, Window *pWin){
1277   if( pSel!=0
1278    && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0))
1279   ){
1280     pWin->pNextWin = pSel->pWin;
1281     if( pSel->pWin ){
1282       pSel->pWin->ppThis = &pWin->pNextWin;
1283     }
1284     pSel->pWin = pWin;
1285     pWin->ppThis = &pSel->pWin;
1286   }
1287 }
1288 
1289 /*
1290 ** Return 0 if the two window objects are identical, 1 if they are
1291 ** different, or 2 if it cannot be determined if the objects are identical
1292 ** or not. Identical window objects can be processed in a single scan.
1293 */
1294 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1295   int res;
1296   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1297   if( p1->eFrmType!=p2->eFrmType ) return 1;
1298   if( p1->eStart!=p2->eStart ) return 1;
1299   if( p1->eEnd!=p2->eEnd ) return 1;
1300   if( p1->eExclude!=p2->eExclude ) return 1;
1301   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1302   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1303   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1304     return res;
1305   }
1306   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1307     return res;
1308   }
1309   if( bFilter ){
1310     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1311       return res;
1312     }
1313   }
1314   return 0;
1315 }
1316 
1317 
1318 /*
1319 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1320 ** to begin iterating through the sub-query results. It is used to allocate
1321 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1322 */
1323 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1324   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1325   Window *pMWin = pSelect->pWin;
1326   Window *pWin;
1327   Vdbe *v = sqlite3GetVdbe(pParse);
1328 
1329   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1330   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1331   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1332   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1333 
1334   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1335   ** said registers to NULL.  */
1336   if( pMWin->pPartition ){
1337     int nExpr = pMWin->pPartition->nExpr;
1338     pMWin->regPart = pParse->nMem+1;
1339     pParse->nMem += nExpr;
1340     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1341   }
1342 
1343   pMWin->regOne = ++pParse->nMem;
1344   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1345 
1346   if( pMWin->eExclude ){
1347     pMWin->regStartRowid = ++pParse->nMem;
1348     pMWin->regEndRowid = ++pParse->nMem;
1349     pMWin->csrApp = pParse->nTab++;
1350     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1351     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1352     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1353     return;
1354   }
1355 
1356   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1357     FuncDef *p = pWin->pFunc;
1358     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1359       /* The inline versions of min() and max() require a single ephemeral
1360       ** table and 3 registers. The registers are used as follows:
1361       **
1362       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1363       **   regApp+1: integer value used to ensure keys are unique
1364       **   regApp+2: output of MakeRecord
1365       */
1366       ExprList *pList = pWin->pOwner->x.pList;
1367       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1368       pWin->csrApp = pParse->nTab++;
1369       pWin->regApp = pParse->nMem+1;
1370       pParse->nMem += 3;
1371       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1372         assert( pKeyInfo->aSortFlags[0]==0 );
1373         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1374       }
1375       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1376       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1377       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1378     }
1379     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1380       /* Allocate two registers at pWin->regApp. These will be used to
1381       ** store the start and end index of the current frame.  */
1382       pWin->regApp = pParse->nMem+1;
1383       pWin->csrApp = pParse->nTab++;
1384       pParse->nMem += 2;
1385       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1386     }
1387     else if( p->zName==leadName || p->zName==lagName ){
1388       pWin->csrApp = pParse->nTab++;
1389       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1390     }
1391   }
1392 }
1393 
1394 #define WINDOW_STARTING_INT  0
1395 #define WINDOW_ENDING_INT    1
1396 #define WINDOW_NTH_VALUE_INT 2
1397 #define WINDOW_STARTING_NUM  3
1398 #define WINDOW_ENDING_NUM    4
1399 
1400 /*
1401 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1402 ** value of the second argument to nth_value() (eCond==2) has just been
1403 ** evaluated and the result left in register reg. This function generates VM
1404 ** code to check that the value is a non-negative integer and throws an
1405 ** exception if it is not.
1406 */
1407 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1408   static const char *azErr[] = {
1409     "frame starting offset must be a non-negative integer",
1410     "frame ending offset must be a non-negative integer",
1411     "second argument to nth_value must be a positive integer",
1412     "frame starting offset must be a non-negative number",
1413     "frame ending offset must be a non-negative number",
1414   };
1415   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1416   Vdbe *v = sqlite3GetVdbe(pParse);
1417   int regZero = sqlite3GetTempReg(pParse);
1418   assert( eCond>=0 && eCond<ArraySize(azErr) );
1419   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1420   if( eCond>=WINDOW_STARTING_NUM ){
1421     int regString = sqlite3GetTempReg(pParse);
1422     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1423     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1424     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1425     VdbeCoverage(v);
1426     assert( eCond==3 || eCond==4 );
1427     VdbeCoverageIf(v, eCond==3);
1428     VdbeCoverageIf(v, eCond==4);
1429   }else{
1430     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1431     VdbeCoverage(v);
1432     assert( eCond==0 || eCond==1 || eCond==2 );
1433     VdbeCoverageIf(v, eCond==0);
1434     VdbeCoverageIf(v, eCond==1);
1435     VdbeCoverageIf(v, eCond==2);
1436   }
1437   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1438   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1439   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1440   VdbeCoverageNeverNullIf(v, eCond==2);
1441   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1442   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1443   sqlite3MayAbort(pParse);
1444   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1445   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1446   sqlite3ReleaseTempReg(pParse, regZero);
1447 }
1448 
1449 /*
1450 ** Return the number of arguments passed to the window-function associated
1451 ** with the object passed as the only argument to this function.
1452 */
1453 static int windowArgCount(Window *pWin){
1454   ExprList *pList = pWin->pOwner->x.pList;
1455   return (pList ? pList->nExpr : 0);
1456 }
1457 
1458 typedef struct WindowCodeArg WindowCodeArg;
1459 typedef struct WindowCsrAndReg WindowCsrAndReg;
1460 
1461 /*
1462 ** See comments above struct WindowCodeArg.
1463 */
1464 struct WindowCsrAndReg {
1465   int csr;                        /* Cursor number */
1466   int reg;                        /* First in array of peer values */
1467 };
1468 
1469 /*
1470 ** A single instance of this structure is allocated on the stack by
1471 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1472 ** routines. This is to reduce the number of arguments required by each
1473 ** helper function.
1474 **
1475 ** regArg:
1476 **   Each window function requires an accumulator register (just as an
1477 **   ordinary aggregate function does). This variable is set to the first
1478 **   in an array of accumulator registers - one for each window function
1479 **   in the WindowCodeArg.pMWin list.
1480 **
1481 ** eDelete:
1482 **   The window functions implementation sometimes caches the input rows
1483 **   that it processes in a temporary table. If it is not zero, this
1484 **   variable indicates when rows may be removed from the temp table (in
1485 **   order to reduce memory requirements - it would always be safe just
1486 **   to leave them there). Possible values for eDelete are:
1487 **
1488 **      WINDOW_RETURN_ROW:
1489 **        An input row can be discarded after it is returned to the caller.
1490 **
1491 **      WINDOW_AGGINVERSE:
1492 **        An input row can be discarded after the window functions xInverse()
1493 **        callbacks have been invoked in it.
1494 **
1495 **      WINDOW_AGGSTEP:
1496 **        An input row can be discarded after the window functions xStep()
1497 **        callbacks have been invoked in it.
1498 **
1499 ** start,current,end
1500 **   Consider a window-frame similar to the following:
1501 **
1502 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1503 **
1504 **   The windows functions implmentation caches the input rows in a temp
1505 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1506 **   aggressively removes rows once they are no longer required, but that's
1507 **   a mere detail). It keeps three cursors open on the temp table. One
1508 **   (current) that points to the next row to return to the query engine
1509 **   once its window function values have been calculated. Another (end)
1510 **   points to the next row to call the xStep() method of each window function
1511 **   on (so that it is 2 groups ahead of current). And a third (start) that
1512 **   points to the next row to call the xInverse() method of each window
1513 **   function on.
1514 **
1515 **   Each cursor (start, current and end) consists of a VDBE cursor
1516 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1517 **   WindowCodeArg.reg) that always contains a copy of the peer values
1518 **   read from the corresponding cursor.
1519 **
1520 **   Depending on the window-frame in question, all three cursors may not
1521 **   be required. In this case both WindowCodeArg.csr and reg are set to
1522 **   0.
1523 */
1524 struct WindowCodeArg {
1525   Parse *pParse;             /* Parse context */
1526   Window *pMWin;             /* First in list of functions being processed */
1527   Vdbe *pVdbe;               /* VDBE object */
1528   int addrGosub;             /* OP_Gosub to this address to return one row */
1529   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1530   int regArg;                /* First in array of accumulator registers */
1531   int eDelete;               /* See above */
1532 
1533   WindowCsrAndReg start;
1534   WindowCsrAndReg current;
1535   WindowCsrAndReg end;
1536 };
1537 
1538 /*
1539 ** Generate VM code to read the window frames peer values from cursor csr into
1540 ** an array of registers starting at reg.
1541 */
1542 static void windowReadPeerValues(
1543   WindowCodeArg *p,
1544   int csr,
1545   int reg
1546 ){
1547   Window *pMWin = p->pMWin;
1548   ExprList *pOrderBy = pMWin->pOrderBy;
1549   if( pOrderBy ){
1550     Vdbe *v = sqlite3GetVdbe(p->pParse);
1551     ExprList *pPart = pMWin->pPartition;
1552     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1553     int i;
1554     for(i=0; i<pOrderBy->nExpr; i++){
1555       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1556     }
1557   }
1558 }
1559 
1560 /*
1561 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1562 ** xInverse (if bInverse is non-zero) for each window function in the
1563 ** linked list starting at pMWin. Or, for built-in window functions
1564 ** that do not use the standard function API, generate the required
1565 ** inline VM code.
1566 **
1567 ** If argument csr is greater than or equal to 0, then argument reg is
1568 ** the first register in an array of registers guaranteed to be large
1569 ** enough to hold the array of arguments for each function. In this case
1570 ** the arguments are extracted from the current row of csr into the
1571 ** array of registers before invoking OP_AggStep or OP_AggInverse
1572 **
1573 ** Or, if csr is less than zero, then the array of registers at reg is
1574 ** already populated with all columns from the current row of the sub-query.
1575 **
1576 ** If argument regPartSize is non-zero, then it is a register containing the
1577 ** number of rows in the current partition.
1578 */
1579 static void windowAggStep(
1580   WindowCodeArg *p,
1581   Window *pMWin,                  /* Linked list of window functions */
1582   int csr,                        /* Read arguments from this cursor */
1583   int bInverse,                   /* True to invoke xInverse instead of xStep */
1584   int reg                         /* Array of registers */
1585 ){
1586   Parse *pParse = p->pParse;
1587   Vdbe *v = sqlite3GetVdbe(pParse);
1588   Window *pWin;
1589   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1590     FuncDef *pFunc = pWin->pFunc;
1591     int regArg;
1592     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1593     int i;
1594 
1595     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1596 
1597     /* All OVER clauses in the same window function aggregate step must
1598     ** be the same. */
1599     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1600 
1601     for(i=0; i<nArg; i++){
1602       if( i!=1 || pFunc->zName!=nth_valueName ){
1603         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1604       }else{
1605         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1606       }
1607     }
1608     regArg = reg;
1609 
1610     if( pMWin->regStartRowid==0
1611      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1612      && (pWin->eStart!=TK_UNBOUNDED)
1613     ){
1614       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1615       VdbeCoverage(v);
1616       if( bInverse==0 ){
1617         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1618         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1619         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1620         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1621       }else{
1622         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1623         VdbeCoverageNeverTaken(v);
1624         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1625         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1626       }
1627       sqlite3VdbeJumpHere(v, addrIsNull);
1628     }else if( pWin->regApp ){
1629       assert( pFunc->zName==nth_valueName
1630            || pFunc->zName==first_valueName
1631       );
1632       assert( bInverse==0 || bInverse==1 );
1633       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1634     }else if( pFunc->xSFunc!=noopStepFunc ){
1635       int addrIf = 0;
1636       if( pWin->pFilter ){
1637         int regTmp;
1638         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1639         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1640         regTmp = sqlite3GetTempReg(pParse);
1641         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1642         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1643         VdbeCoverage(v);
1644         sqlite3ReleaseTempReg(pParse, regTmp);
1645       }
1646 
1647       if( pWin->bExprArgs ){
1648         int iStart = sqlite3VdbeCurrentAddr(v);
1649         VdbeOp *pOp, *pEnd;
1650 
1651         nArg = pWin->pOwner->x.pList->nExpr;
1652         regArg = sqlite3GetTempRange(pParse, nArg);
1653         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1654 
1655         pEnd = sqlite3VdbeGetOp(v, -1);
1656         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1657           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1658             pOp->p1 = csr;
1659           }
1660         }
1661       }
1662       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1663         CollSeq *pColl;
1664         assert( nArg>0 );
1665         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1666         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1667       }
1668       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1669                         bInverse, regArg, pWin->regAccum);
1670       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1671       sqlite3VdbeChangeP5(v, (u8)nArg);
1672       if( pWin->bExprArgs ){
1673         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1674       }
1675       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1676     }
1677   }
1678 }
1679 
1680 /*
1681 ** Values that may be passed as the second argument to windowCodeOp().
1682 */
1683 #define WINDOW_RETURN_ROW 1
1684 #define WINDOW_AGGINVERSE 2
1685 #define WINDOW_AGGSTEP    3
1686 
1687 /*
1688 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1689 ** (bFin==1) for each window function in the linked list starting at
1690 ** pMWin. Or, for built-in window-functions that do not use the standard
1691 ** API, generate the equivalent VM code.
1692 */
1693 static void windowAggFinal(WindowCodeArg *p, int bFin){
1694   Parse *pParse = p->pParse;
1695   Window *pMWin = p->pMWin;
1696   Vdbe *v = sqlite3GetVdbe(pParse);
1697   Window *pWin;
1698 
1699   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1700     if( pMWin->regStartRowid==0
1701      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1702      && (pWin->eStart!=TK_UNBOUNDED)
1703     ){
1704       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1705       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1706       VdbeCoverage(v);
1707       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1708       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1709     }else if( pWin->regApp ){
1710       assert( pMWin->regStartRowid==0 );
1711     }else{
1712       int nArg = windowArgCount(pWin);
1713       if( bFin ){
1714         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1715         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1716         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1717         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1718       }else{
1719         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1720         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1721       }
1722     }
1723   }
1724 }
1725 
1726 /*
1727 ** Generate code to calculate the current values of all window functions in the
1728 ** p->pMWin list by doing a full scan of the current window frame. Store the
1729 ** results in the Window.regResult registers, ready to return the upper
1730 ** layer.
1731 */
1732 static void windowFullScan(WindowCodeArg *p){
1733   Window *pWin;
1734   Parse *pParse = p->pParse;
1735   Window *pMWin = p->pMWin;
1736   Vdbe *v = p->pVdbe;
1737 
1738   int regCRowid = 0;              /* Current rowid value */
1739   int regCPeer = 0;               /* Current peer values */
1740   int regRowid = 0;               /* AggStep rowid value */
1741   int regPeer = 0;                /* AggStep peer values */
1742 
1743   int nPeer;
1744   int lblNext;
1745   int lblBrk;
1746   int addrNext;
1747   int csr;
1748 
1749   VdbeModuleComment((v, "windowFullScan begin"));
1750 
1751   assert( pMWin!=0 );
1752   csr = pMWin->csrApp;
1753   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1754 
1755   lblNext = sqlite3VdbeMakeLabel(pParse);
1756   lblBrk = sqlite3VdbeMakeLabel(pParse);
1757 
1758   regCRowid = sqlite3GetTempReg(pParse);
1759   regRowid = sqlite3GetTempReg(pParse);
1760   if( nPeer ){
1761     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1762     regPeer = sqlite3GetTempRange(pParse, nPeer);
1763   }
1764 
1765   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1766   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1767 
1768   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1769     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1770   }
1771 
1772   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1773   VdbeCoverage(v);
1774   addrNext = sqlite3VdbeCurrentAddr(v);
1775   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1776   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1777   VdbeCoverageNeverNull(v);
1778 
1779   if( pMWin->eExclude==TK_CURRENT ){
1780     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1781     VdbeCoverageNeverNull(v);
1782   }else if( pMWin->eExclude!=TK_NO ){
1783     int addr;
1784     int addrEq = 0;
1785     KeyInfo *pKeyInfo = 0;
1786 
1787     if( pMWin->pOrderBy ){
1788       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1789     }
1790     if( pMWin->eExclude==TK_TIES ){
1791       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1792       VdbeCoverageNeverNull(v);
1793     }
1794     if( pKeyInfo ){
1795       windowReadPeerValues(p, csr, regPeer);
1796       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1797       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1798       addr = sqlite3VdbeCurrentAddr(v)+1;
1799       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1800       VdbeCoverageEqNe(v);
1801     }else{
1802       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1803     }
1804     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1805   }
1806 
1807   windowAggStep(p, pMWin, csr, 0, p->regArg);
1808 
1809   sqlite3VdbeResolveLabel(v, lblNext);
1810   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1811   VdbeCoverage(v);
1812   sqlite3VdbeJumpHere(v, addrNext-1);
1813   sqlite3VdbeJumpHere(v, addrNext+1);
1814   sqlite3ReleaseTempReg(pParse, regRowid);
1815   sqlite3ReleaseTempReg(pParse, regCRowid);
1816   if( nPeer ){
1817     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1818     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1819   }
1820 
1821   windowAggFinal(p, 1);
1822   VdbeModuleComment((v, "windowFullScan end"));
1823 }
1824 
1825 /*
1826 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1827 ** return the current row of Window.iEphCsr. If all window functions are
1828 ** aggregate window functions that use the standard API, a single
1829 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1830 ** for per-row processing is only generated for the following built-in window
1831 ** functions:
1832 **
1833 **   nth_value()
1834 **   first_value()
1835 **   lag()
1836 **   lead()
1837 */
1838 static void windowReturnOneRow(WindowCodeArg *p){
1839   Window *pMWin = p->pMWin;
1840   Vdbe *v = p->pVdbe;
1841 
1842   if( pMWin->regStartRowid ){
1843     windowFullScan(p);
1844   }else{
1845     Parse *pParse = p->pParse;
1846     Window *pWin;
1847 
1848     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1849       FuncDef *pFunc = pWin->pFunc;
1850       if( pFunc->zName==nth_valueName
1851        || pFunc->zName==first_valueName
1852       ){
1853         int csr = pWin->csrApp;
1854         int lbl = sqlite3VdbeMakeLabel(pParse);
1855         int tmpReg = sqlite3GetTempReg(pParse);
1856         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1857 
1858         if( pFunc->zName==nth_valueName ){
1859           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1860           windowCheckValue(pParse, tmpReg, 2);
1861         }else{
1862           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1863         }
1864         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1865         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1866         VdbeCoverageNeverNull(v);
1867         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1868         VdbeCoverageNeverTaken(v);
1869         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1870         sqlite3VdbeResolveLabel(v, lbl);
1871         sqlite3ReleaseTempReg(pParse, tmpReg);
1872       }
1873       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1874         int nArg = pWin->pOwner->x.pList->nExpr;
1875         int csr = pWin->csrApp;
1876         int lbl = sqlite3VdbeMakeLabel(pParse);
1877         int tmpReg = sqlite3GetTempReg(pParse);
1878         int iEph = pMWin->iEphCsr;
1879 
1880         if( nArg<3 ){
1881           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1882         }else{
1883           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1884         }
1885         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1886         if( nArg<2 ){
1887           int val = (pFunc->zName==leadName ? 1 : -1);
1888           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1889         }else{
1890           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1891           int tmpReg2 = sqlite3GetTempReg(pParse);
1892           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1893           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1894           sqlite3ReleaseTempReg(pParse, tmpReg2);
1895         }
1896 
1897         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1898         VdbeCoverage(v);
1899         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1900         sqlite3VdbeResolveLabel(v, lbl);
1901         sqlite3ReleaseTempReg(pParse, tmpReg);
1902       }
1903     }
1904   }
1905   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1906 }
1907 
1908 /*
1909 ** Generate code to set the accumulator register for each window function
1910 ** in the linked list passed as the second argument to NULL. And perform
1911 ** any equivalent initialization required by any built-in window functions
1912 ** in the list.
1913 */
1914 static int windowInitAccum(Parse *pParse, Window *pMWin){
1915   Vdbe *v = sqlite3GetVdbe(pParse);
1916   int regArg;
1917   int nArg = 0;
1918   Window *pWin;
1919   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1920     FuncDef *pFunc = pWin->pFunc;
1921     assert( pWin->regAccum );
1922     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1923     nArg = MAX(nArg, windowArgCount(pWin));
1924     if( pMWin->regStartRowid==0 ){
1925       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1926         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1927         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1928       }
1929 
1930       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1931         assert( pWin->eStart!=TK_UNBOUNDED );
1932         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1933         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1934       }
1935     }
1936   }
1937   regArg = pParse->nMem+1;
1938   pParse->nMem += nArg;
1939   return regArg;
1940 }
1941 
1942 /*
1943 ** Return true if the current frame should be cached in the ephemeral table,
1944 ** even if there are no xInverse() calls required.
1945 */
1946 static int windowCacheFrame(Window *pMWin){
1947   Window *pWin;
1948   if( pMWin->regStartRowid ) return 1;
1949   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1950     FuncDef *pFunc = pWin->pFunc;
1951     if( (pFunc->zName==nth_valueName)
1952      || (pFunc->zName==first_valueName)
1953      || (pFunc->zName==leadName)
1954      || (pFunc->zName==lagName)
1955     ){
1956       return 1;
1957     }
1958   }
1959   return 0;
1960 }
1961 
1962 /*
1963 ** regOld and regNew are each the first register in an array of size
1964 ** pOrderBy->nExpr. This function generates code to compare the two
1965 ** arrays of registers using the collation sequences and other comparison
1966 ** parameters specified by pOrderBy.
1967 **
1968 ** If the two arrays are not equal, the contents of regNew is copied to
1969 ** regOld and control falls through. Otherwise, if the contents of the arrays
1970 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
1971 */
1972 static void windowIfNewPeer(
1973   Parse *pParse,
1974   ExprList *pOrderBy,
1975   int regNew,                     /* First in array of new values */
1976   int regOld,                     /* First in array of old values */
1977   int addr                        /* Jump here */
1978 ){
1979   Vdbe *v = sqlite3GetVdbe(pParse);
1980   if( pOrderBy ){
1981     int nVal = pOrderBy->nExpr;
1982     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
1983     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
1984     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1985     sqlite3VdbeAddOp3(v, OP_Jump,
1986       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
1987     );
1988     VdbeCoverageEqNe(v);
1989     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
1990   }else{
1991     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
1992   }
1993 }
1994 
1995 /*
1996 ** This function is called as part of generating VM programs for RANGE
1997 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
1998 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
1999 ** code equivalent to:
2000 **
2001 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2002 **
2003 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2004 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2005 **
2006 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2007 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2008 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2009 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2010 ** is OP_Ge, the generated code is equivalent to:
2011 **
2012 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2013 **
2014 ** A special type of arithmetic is used such that if csr1.peerVal is not
2015 ** a numeric type (real or integer), then the result of the addition addition
2016 ** or subtraction is a a copy of csr1.peerVal.
2017 */
2018 static void windowCodeRangeTest(
2019   WindowCodeArg *p,
2020   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2021   int csr1,                       /* Cursor number for cursor 1 */
2022   int regVal,                     /* Register containing non-negative number */
2023   int csr2,                       /* Cursor number for cursor 2 */
2024   int lbl                         /* Jump destination if condition is true */
2025 ){
2026   Parse *pParse = p->pParse;
2027   Vdbe *v = sqlite3GetVdbe(pParse);
2028   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2029   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2030   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2031   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2032   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2033   int addrGe;                               /* Jump destination */
2034 
2035   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2036   assert( pOrderBy && pOrderBy->nExpr==1 );
2037   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2038     switch( op ){
2039       case OP_Ge: op = OP_Le; break;
2040       case OP_Gt: op = OP_Lt; break;
2041       default: assert( op==OP_Le ); op = OP_Ge; break;
2042     }
2043     arith = OP_Subtract;
2044   }
2045 
2046   /* Read the peer-value from each cursor into a register */
2047   windowReadPeerValues(p, csr1, reg1);
2048   windowReadPeerValues(p, csr2, reg2);
2049 
2050   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2051       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2052       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2053   ));
2054 
2055   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2056   ** This block adds (or subtracts for DESC) the numeric value in regVal
2057   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2058   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2059   **
2060   **   if( reg1>='' ) goto addrGe;
2061   **   reg1 = reg1 +/- regVal
2062   **   addrGe:
2063   **
2064   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2065   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2066   ** then the arithmetic is performed, but since adding or subtracting from
2067   ** NULL is always NULL anyway, this case is handled as required too.  */
2068   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2069   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2070   VdbeCoverage(v);
2071   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2072   sqlite3VdbeJumpHere(v, addrGe);
2073 
2074   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2075   ** consider NULL values to be larger than all other values, instead of
2076   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2077   ** (and adding that capability causes a performance regression), so
2078   ** instead if the BIGNULL flag is set then cases where either reg1 or
2079   ** reg2 are NULL are handled separately in the following block. The code
2080   ** generated is equivalent to:
2081   **
2082   **   if( reg1 IS NULL ){
2083   **     if( op==OP_Ge ) goto lbl;
2084   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2085   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2086   **   }else if( reg2 IS NULL ){
2087   **     if( op==OP_Le ) goto lbl;
2088   **   }
2089   **
2090   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2091   ** not taken, control jumps over the comparison operator coded below this
2092   ** block.  */
2093   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2094     /* This block runs if reg1 contains a NULL. */
2095     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2096     switch( op ){
2097       case OP_Ge:
2098         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2099         break;
2100       case OP_Gt:
2101         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2102         VdbeCoverage(v);
2103         break;
2104       case OP_Le:
2105         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2106         VdbeCoverage(v);
2107         break;
2108       default: assert( op==OP_Lt ); /* no-op */ break;
2109     }
2110     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2111 
2112     /* This block runs if reg1 is not NULL, but reg2 is. */
2113     sqlite3VdbeJumpHere(v, addr);
2114     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2115     if( op==OP_Gt || op==OP_Ge ){
2116       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2117     }
2118   }
2119 
2120   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2121   ** control skips over this test if the BIGNULL flag is set and either
2122   ** reg1 or reg2 contain a NULL value.  */
2123   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2124   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2125 
2126   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2127   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2128   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2129   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2130   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2131   sqlite3ReleaseTempReg(pParse, reg1);
2132   sqlite3ReleaseTempReg(pParse, reg2);
2133 
2134   VdbeModuleComment((v, "CodeRangeTest: end"));
2135 }
2136 
2137 /*
2138 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2139 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2140 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2141 ** details.
2142 */
2143 static int windowCodeOp(
2144  WindowCodeArg *p,                /* Context object */
2145  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2146  int regCountdown,                /* Register for OP_IfPos countdown */
2147  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2148 ){
2149   int csr, reg;
2150   Parse *pParse = p->pParse;
2151   Window *pMWin = p->pMWin;
2152   int ret = 0;
2153   Vdbe *v = p->pVdbe;
2154   int addrContinue = 0;
2155   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2156 
2157   int lblDone = sqlite3VdbeMakeLabel(pParse);
2158   int addrNextRange = 0;
2159 
2160   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2161   ** starts with UNBOUNDED PRECEDING. */
2162   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2163     assert( regCountdown==0 && jumpOnEof==0 );
2164     return 0;
2165   }
2166 
2167   if( regCountdown>0 ){
2168     if( pMWin->eFrmType==TK_RANGE ){
2169       addrNextRange = sqlite3VdbeCurrentAddr(v);
2170       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2171       if( op==WINDOW_AGGINVERSE ){
2172         if( pMWin->eStart==TK_FOLLOWING ){
2173           windowCodeRangeTest(
2174               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2175           );
2176         }else{
2177           windowCodeRangeTest(
2178               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2179           );
2180         }
2181       }else{
2182         windowCodeRangeTest(
2183             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2184         );
2185       }
2186     }else{
2187       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2188       VdbeCoverage(v);
2189     }
2190   }
2191 
2192   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2193     windowAggFinal(p, 0);
2194   }
2195   addrContinue = sqlite3VdbeCurrentAddr(v);
2196 
2197   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2198   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2199   ** start cursor does not advance past the end cursor within the
2200   ** temporary table. It otherwise might, if (a>b).  */
2201   if( pMWin->eStart==pMWin->eEnd && regCountdown
2202    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2203   ){
2204     int regRowid1 = sqlite3GetTempReg(pParse);
2205     int regRowid2 = sqlite3GetTempReg(pParse);
2206     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2207     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2208     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2209     VdbeCoverage(v);
2210     sqlite3ReleaseTempReg(pParse, regRowid1);
2211     sqlite3ReleaseTempReg(pParse, regRowid2);
2212     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2213   }
2214 
2215   switch( op ){
2216     case WINDOW_RETURN_ROW:
2217       csr = p->current.csr;
2218       reg = p->current.reg;
2219       windowReturnOneRow(p);
2220       break;
2221 
2222     case WINDOW_AGGINVERSE:
2223       csr = p->start.csr;
2224       reg = p->start.reg;
2225       if( pMWin->regStartRowid ){
2226         assert( pMWin->regEndRowid );
2227         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2228       }else{
2229         windowAggStep(p, pMWin, csr, 1, p->regArg);
2230       }
2231       break;
2232 
2233     default:
2234       assert( op==WINDOW_AGGSTEP );
2235       csr = p->end.csr;
2236       reg = p->end.reg;
2237       if( pMWin->regStartRowid ){
2238         assert( pMWin->regEndRowid );
2239         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2240       }else{
2241         windowAggStep(p, pMWin, csr, 0, p->regArg);
2242       }
2243       break;
2244   }
2245 
2246   if( op==p->eDelete ){
2247     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2248     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2249   }
2250 
2251   if( jumpOnEof ){
2252     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2253     VdbeCoverage(v);
2254     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2255   }else{
2256     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2257     VdbeCoverage(v);
2258     if( bPeer ){
2259       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2260     }
2261   }
2262 
2263   if( bPeer ){
2264     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2265     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2266     windowReadPeerValues(p, csr, regTmp);
2267     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2268     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2269   }
2270 
2271   if( addrNextRange ){
2272     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2273   }
2274   sqlite3VdbeResolveLabel(v, lblDone);
2275   return ret;
2276 }
2277 
2278 
2279 /*
2280 ** Allocate and return a duplicate of the Window object indicated by the
2281 ** third argument. Set the Window.pOwner field of the new object to
2282 ** pOwner.
2283 */
2284 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2285   Window *pNew = 0;
2286   if( ALWAYS(p) ){
2287     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2288     if( pNew ){
2289       pNew->zName = sqlite3DbStrDup(db, p->zName);
2290       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2291       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2292       pNew->pFunc = p->pFunc;
2293       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2294       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2295       pNew->eFrmType = p->eFrmType;
2296       pNew->eEnd = p->eEnd;
2297       pNew->eStart = p->eStart;
2298       pNew->eExclude = p->eExclude;
2299       pNew->regResult = p->regResult;
2300       pNew->regAccum = p->regAccum;
2301       pNew->iArgCol = p->iArgCol;
2302       pNew->iEphCsr = p->iEphCsr;
2303       pNew->bExprArgs = p->bExprArgs;
2304       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2305       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2306       pNew->pOwner = pOwner;
2307       pNew->bImplicitFrame = p->bImplicitFrame;
2308     }
2309   }
2310   return pNew;
2311 }
2312 
2313 /*
2314 ** Return a copy of the linked list of Window objects passed as the
2315 ** second argument.
2316 */
2317 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2318   Window *pWin;
2319   Window *pRet = 0;
2320   Window **pp = &pRet;
2321 
2322   for(pWin=p; pWin; pWin=pWin->pNextWin){
2323     *pp = sqlite3WindowDup(db, 0, pWin);
2324     if( *pp==0 ) break;
2325     pp = &((*pp)->pNextWin);
2326   }
2327 
2328   return pRet;
2329 }
2330 
2331 /*
2332 ** Return true if it can be determined at compile time that expression
2333 ** pExpr evaluates to a value that, when cast to an integer, is greater
2334 ** than zero. False otherwise.
2335 **
2336 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2337 ** flag and returns zero.
2338 */
2339 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2340   int ret = 0;
2341   sqlite3 *db = pParse->db;
2342   sqlite3_value *pVal = 0;
2343   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2344   if( pVal && sqlite3_value_int(pVal)>0 ){
2345     ret = 1;
2346   }
2347   sqlite3ValueFree(pVal);
2348   return ret;
2349 }
2350 
2351 /*
2352 ** sqlite3WhereBegin() has already been called for the SELECT statement
2353 ** passed as the second argument when this function is invoked. It generates
2354 ** code to populate the Window.regResult register for each window function
2355 ** and invoke the sub-routine at instruction addrGosub once for each row.
2356 ** sqlite3WhereEnd() is always called before returning.
2357 **
2358 ** This function handles several different types of window frames, which
2359 ** require slightly different processing. The following pseudo code is
2360 ** used to implement window frames of the form:
2361 **
2362 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2363 **
2364 ** Other window frame types use variants of the following:
2365 **
2366 **     ... loop started by sqlite3WhereBegin() ...
2367 **       if( new partition ){
2368 **         Gosub flush
2369 **       }
2370 **       Insert new row into eph table.
2371 **
2372 **       if( first row of partition ){
2373 **         // Rewind three cursors, all open on the eph table.
2374 **         Rewind(csrEnd);
2375 **         Rewind(csrStart);
2376 **         Rewind(csrCurrent);
2377 **
2378 **         regEnd = <expr2>          // FOLLOWING expression
2379 **         regStart = <expr1>        // PRECEDING expression
2380 **       }else{
2381 **         // First time this branch is taken, the eph table contains two
2382 **         // rows. The first row in the partition, which all three cursors
2383 **         // currently point to, and the following row.
2384 **         AGGSTEP
2385 **         if( (regEnd--)<=0 ){
2386 **           RETURN_ROW
2387 **           if( (regStart--)<=0 ){
2388 **             AGGINVERSE
2389 **           }
2390 **         }
2391 **       }
2392 **     }
2393 **     flush:
2394 **       AGGSTEP
2395 **       while( 1 ){
2396 **         RETURN ROW
2397 **         if( csrCurrent is EOF ) break;
2398 **         if( (regStart--)<=0 ){
2399 **           AggInverse(csrStart)
2400 **           Next(csrStart)
2401 **         }
2402 **       }
2403 **
2404 ** The pseudo-code above uses the following shorthand:
2405 **
2406 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2407 **               with arguments read from the current row of cursor csrEnd, then
2408 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2409 **
2410 **   RETURN_ROW: return a row to the caller based on the contents of the
2411 **               current row of csrCurrent and the current state of all
2412 **               aggregates. Then step cursor csrCurrent forward one row.
2413 **
2414 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2415 **               functions with arguments read from the current row of cursor
2416 **               csrStart. Then step csrStart forward one row.
2417 **
2418 ** There are two other ROWS window frames that are handled significantly
2419 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2420 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2421 ** cases because they change the order in which the three cursors (csrStart,
2422 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2423 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2424 ** three.
2425 **
2426 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2427 **
2428 **     ... loop started by sqlite3WhereBegin() ...
2429 **       if( new partition ){
2430 **         Gosub flush
2431 **       }
2432 **       Insert new row into eph table.
2433 **       if( first row of partition ){
2434 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2435 **         regEnd = <expr2>
2436 **         regStart = <expr1>
2437 **       }else{
2438 **         if( (regEnd--)<=0 ){
2439 **           AGGSTEP
2440 **         }
2441 **         RETURN_ROW
2442 **         if( (regStart--)<=0 ){
2443 **           AGGINVERSE
2444 **         }
2445 **       }
2446 **     }
2447 **     flush:
2448 **       if( (regEnd--)<=0 ){
2449 **         AGGSTEP
2450 **       }
2451 **       RETURN_ROW
2452 **
2453 **
2454 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2455 **
2456 **     ... loop started by sqlite3WhereBegin() ...
2457 **     if( new partition ){
2458 **       Gosub flush
2459 **     }
2460 **     Insert new row into eph table.
2461 **     if( first row of partition ){
2462 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2463 **       regEnd = <expr2>
2464 **       regStart = regEnd - <expr1>
2465 **     }else{
2466 **       AGGSTEP
2467 **       if( (regEnd--)<=0 ){
2468 **         RETURN_ROW
2469 **       }
2470 **       if( (regStart--)<=0 ){
2471 **         AGGINVERSE
2472 **       }
2473 **     }
2474 **   }
2475 **   flush:
2476 **     AGGSTEP
2477 **     while( 1 ){
2478 **       if( (regEnd--)<=0 ){
2479 **         RETURN_ROW
2480 **         if( eof ) break;
2481 **       }
2482 **       if( (regStart--)<=0 ){
2483 **         AGGINVERSE
2484 **         if( eof ) break
2485 **       }
2486 **     }
2487 **     while( !eof csrCurrent ){
2488 **       RETURN_ROW
2489 **     }
2490 **
2491 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2492 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2493 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2494 ** This is optimized of course - branches that will never be taken and
2495 ** conditions that are always true are omitted from the VM code. The only
2496 ** exceptional case is:
2497 **
2498 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2499 **
2500 **     ... loop started by sqlite3WhereBegin() ...
2501 **     if( new partition ){
2502 **       Gosub flush
2503 **     }
2504 **     Insert new row into eph table.
2505 **     if( first row of partition ){
2506 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2507 **       regStart = <expr1>
2508 **     }else{
2509 **       AGGSTEP
2510 **     }
2511 **   }
2512 **   flush:
2513 **     AGGSTEP
2514 **     while( 1 ){
2515 **       if( (regStart--)<=0 ){
2516 **         AGGINVERSE
2517 **         if( eof ) break
2518 **       }
2519 **       RETURN_ROW
2520 **     }
2521 **     while( !eof csrCurrent ){
2522 **       RETURN_ROW
2523 **     }
2524 **
2525 ** Also requiring special handling are the cases:
2526 **
2527 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2528 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2529 **
2530 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2531 ** To handle this case, the pseudo-code programs depicted above are modified
2532 ** slightly to be:
2533 **
2534 **     ... loop started by sqlite3WhereBegin() ...
2535 **     if( new partition ){
2536 **       Gosub flush
2537 **     }
2538 **     Insert new row into eph table.
2539 **     if( first row of partition ){
2540 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2541 **       regEnd = <expr2>
2542 **       regStart = <expr1>
2543 **       if( regEnd < regStart ){
2544 **         RETURN_ROW
2545 **         delete eph table contents
2546 **         continue
2547 **       }
2548 **     ...
2549 **
2550 ** The new "continue" statement in the above jumps to the next iteration
2551 ** of the outer loop - the one started by sqlite3WhereBegin().
2552 **
2553 ** The various GROUPS cases are implemented using the same patterns as
2554 ** ROWS. The VM code is modified slightly so that:
2555 **
2556 **   1. The else branch in the main loop is only taken if the row just
2557 **      added to the ephemeral table is the start of a new group. In
2558 **      other words, it becomes:
2559 **
2560 **         ... loop started by sqlite3WhereBegin() ...
2561 **         if( new partition ){
2562 **           Gosub flush
2563 **         }
2564 **         Insert new row into eph table.
2565 **         if( first row of partition ){
2566 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2567 **           regEnd = <expr2>
2568 **           regStart = <expr1>
2569 **         }else if( new group ){
2570 **           ...
2571 **         }
2572 **       }
2573 **
2574 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2575 **      AGGINVERSE step processes the current row of the relevant cursor and
2576 **      all subsequent rows belonging to the same group.
2577 **
2578 ** RANGE window frames are a little different again. As for GROUPS, the
2579 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2580 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2581 ** basic cases:
2582 **
2583 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2584 **
2585 **     ... loop started by sqlite3WhereBegin() ...
2586 **       if( new partition ){
2587 **         Gosub flush
2588 **       }
2589 **       Insert new row into eph table.
2590 **       if( first row of partition ){
2591 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2592 **         regEnd = <expr2>
2593 **         regStart = <expr1>
2594 **       }else{
2595 **         AGGSTEP
2596 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2597 **           RETURN_ROW
2598 **           while( csrStart.key + regStart) < csrCurrent.key ){
2599 **             AGGINVERSE
2600 **           }
2601 **         }
2602 **       }
2603 **     }
2604 **     flush:
2605 **       AGGSTEP
2606 **       while( 1 ){
2607 **         RETURN ROW
2608 **         if( csrCurrent is EOF ) break;
2609 **           while( csrStart.key + regStart) < csrCurrent.key ){
2610 **             AGGINVERSE
2611 **           }
2612 **         }
2613 **       }
2614 **
2615 ** In the above notation, "csr.key" means the current value of the ORDER BY
2616 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2617 ** or <expr PRECEDING) read from cursor csr.
2618 **
2619 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2620 **
2621 **     ... loop started by sqlite3WhereBegin() ...
2622 **       if( new partition ){
2623 **         Gosub flush
2624 **       }
2625 **       Insert new row into eph table.
2626 **       if( first row of partition ){
2627 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2628 **         regEnd = <expr2>
2629 **         regStart = <expr1>
2630 **       }else{
2631 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2632 **           AGGSTEP
2633 **         }
2634 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2635 **           AGGINVERSE
2636 **         }
2637 **         RETURN_ROW
2638 **       }
2639 **     }
2640 **     flush:
2641 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2642 **         AGGSTEP
2643 **       }
2644 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2645 **         AGGINVERSE
2646 **       }
2647 **       RETURN_ROW
2648 **
2649 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2650 **
2651 **     ... loop started by sqlite3WhereBegin() ...
2652 **       if( new partition ){
2653 **         Gosub flush
2654 **       }
2655 **       Insert new row into eph table.
2656 **       if( first row of partition ){
2657 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2658 **         regEnd = <expr2>
2659 **         regStart = <expr1>
2660 **       }else{
2661 **         AGGSTEP
2662 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2663 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2664 **             AGGINVERSE
2665 **           }
2666 **           RETURN_ROW
2667 **         }
2668 **       }
2669 **     }
2670 **     flush:
2671 **       AGGSTEP
2672 **       while( 1 ){
2673 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2674 **           AGGINVERSE
2675 **           if( eof ) break "while( 1 )" loop.
2676 **         }
2677 **         RETURN_ROW
2678 **       }
2679 **       while( !eof csrCurrent ){
2680 **         RETURN_ROW
2681 **       }
2682 **
2683 ** The text above leaves out many details. Refer to the code and comments
2684 ** below for a more complete picture.
2685 */
2686 void sqlite3WindowCodeStep(
2687   Parse *pParse,                  /* Parse context */
2688   Select *p,                      /* Rewritten SELECT statement */
2689   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2690   int regGosub,                   /* Register for OP_Gosub */
2691   int addrGosub                   /* OP_Gosub here to return each row */
2692 ){
2693   Window *pMWin = p->pWin;
2694   ExprList *pOrderBy = pMWin->pOrderBy;
2695   Vdbe *v = sqlite3GetVdbe(pParse);
2696   int csrWrite;                   /* Cursor used to write to eph. table */
2697   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2698   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2699   int iInput;                               /* To iterate through sub cols */
2700   int addrNe;                     /* Address of OP_Ne */
2701   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2702   int addrInteger = 0;            /* Address of OP_Integer */
2703   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2704   int regNew;                     /* Array of registers holding new input row */
2705   int regRecord;                  /* regNew array in record form */
2706   int regRowid;                   /* Rowid for regRecord in eph table */
2707   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2708   int regPeer = 0;                /* Peer values for current row */
2709   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2710   WindowCodeArg s;                /* Context object for sub-routines */
2711   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2712   int regStart = 0;               /* Value of <expr> PRECEDING */
2713   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2714 
2715   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2716        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2717   );
2718   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2719        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2720   );
2721   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2722        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2723        || pMWin->eExclude==TK_NO
2724   );
2725 
2726   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2727 
2728   /* Fill in the context object */
2729   memset(&s, 0, sizeof(WindowCodeArg));
2730   s.pParse = pParse;
2731   s.pMWin = pMWin;
2732   s.pVdbe = v;
2733   s.regGosub = regGosub;
2734   s.addrGosub = addrGosub;
2735   s.current.csr = pMWin->iEphCsr;
2736   csrWrite = s.current.csr+1;
2737   s.start.csr = s.current.csr+2;
2738   s.end.csr = s.current.csr+3;
2739 
2740   /* Figure out when rows may be deleted from the ephemeral table. There
2741   ** are four options - they may never be deleted (eDelete==0), they may
2742   ** be deleted as soon as they are no longer part of the window frame
2743   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2744   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2745   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2746   switch( pMWin->eStart ){
2747     case TK_FOLLOWING:
2748       if( pMWin->eFrmType!=TK_RANGE
2749        && windowExprGtZero(pParse, pMWin->pStart)
2750       ){
2751         s.eDelete = WINDOW_RETURN_ROW;
2752       }
2753       break;
2754     case TK_UNBOUNDED:
2755       if( windowCacheFrame(pMWin)==0 ){
2756         if( pMWin->eEnd==TK_PRECEDING ){
2757           if( pMWin->eFrmType!=TK_RANGE
2758            && windowExprGtZero(pParse, pMWin->pEnd)
2759           ){
2760             s.eDelete = WINDOW_AGGSTEP;
2761           }
2762         }else{
2763           s.eDelete = WINDOW_RETURN_ROW;
2764         }
2765       }
2766       break;
2767     default:
2768       s.eDelete = WINDOW_AGGINVERSE;
2769       break;
2770   }
2771 
2772   /* Allocate registers for the array of values from the sub-query, the
2773   ** samve values in record form, and the rowid used to insert said record
2774   ** into the ephemeral table.  */
2775   regNew = pParse->nMem+1;
2776   pParse->nMem += nInput;
2777   regRecord = ++pParse->nMem;
2778   regRowid = ++pParse->nMem;
2779 
2780   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2781   ** clause, allocate registers to store the results of evaluating each
2782   ** <expr>.  */
2783   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2784     regStart = ++pParse->nMem;
2785   }
2786   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2787     regEnd = ++pParse->nMem;
2788   }
2789 
2790   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2791   ** registers to store copies of the ORDER BY expressions (peer values)
2792   ** for the main loop, and for each cursor (start, current and end). */
2793   if( pMWin->eFrmType!=TK_ROWS ){
2794     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2795     regNewPeer = regNew + pMWin->nBufferCol;
2796     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2797     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2798     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2799     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2800     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2801   }
2802 
2803   /* Load the column values for the row returned by the sub-select
2804   ** into an array of registers starting at regNew. Assemble them into
2805   ** a record in register regRecord. */
2806   for(iInput=0; iInput<nInput; iInput++){
2807     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2808   }
2809   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2810 
2811   /* An input row has just been read into an array of registers starting
2812   ** at regNew. If the window has a PARTITION clause, this block generates
2813   ** VM code to check if the input row is the start of a new partition.
2814   ** If so, it does an OP_Gosub to an address to be filled in later. The
2815   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2816   if( pMWin->pPartition ){
2817     int addr;
2818     ExprList *pPart = pMWin->pPartition;
2819     int nPart = pPart->nExpr;
2820     int regNewPart = regNew + pMWin->nBufferCol;
2821     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2822 
2823     regFlushPart = ++pParse->nMem;
2824     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2825     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2826     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2827     VdbeCoverageEqNe(v);
2828     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2829     VdbeComment((v, "call flush_partition"));
2830     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2831   }
2832 
2833   /* Insert the new row into the ephemeral table */
2834   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2835   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2836   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2837   VdbeCoverageNeverNull(v);
2838 
2839   /* This block is run for the first row of each partition */
2840   s.regArg = windowInitAccum(pParse, pMWin);
2841 
2842   if( regStart ){
2843     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2844     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2845   }
2846   if( regEnd ){
2847     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2848     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2849   }
2850 
2851   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2852     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2853     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2854     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2855     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2856     windowAggFinal(&s, 0);
2857     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2858     VdbeCoverageNeverTaken(v);
2859     windowReturnOneRow(&s);
2860     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2861     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2862     sqlite3VdbeJumpHere(v, addrGe);
2863   }
2864   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2865     assert( pMWin->eEnd==TK_FOLLOWING );
2866     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2867   }
2868 
2869   if( pMWin->eStart!=TK_UNBOUNDED ){
2870     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2871     VdbeCoverageNeverTaken(v);
2872   }
2873   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2874   VdbeCoverageNeverTaken(v);
2875   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2876   VdbeCoverageNeverTaken(v);
2877   if( regPeer && pOrderBy ){
2878     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2879     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2880     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2881     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2882   }
2883 
2884   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2885 
2886   sqlite3VdbeJumpHere(v, addrNe);
2887 
2888   /* Beginning of the block executed for the second and subsequent rows. */
2889   if( regPeer ){
2890     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2891   }
2892   if( pMWin->eStart==TK_FOLLOWING ){
2893     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2894     if( pMWin->eEnd!=TK_UNBOUNDED ){
2895       if( pMWin->eFrmType==TK_RANGE ){
2896         int lbl = sqlite3VdbeMakeLabel(pParse);
2897         int addrNext = sqlite3VdbeCurrentAddr(v);
2898         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2899         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2900         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2901         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2902         sqlite3VdbeResolveLabel(v, lbl);
2903       }else{
2904         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2905         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2906       }
2907     }
2908   }else
2909   if( pMWin->eEnd==TK_PRECEDING ){
2910     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2911     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2912     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2913     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2914     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2915   }else{
2916     int addr = 0;
2917     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2918     if( pMWin->eEnd!=TK_UNBOUNDED ){
2919       if( pMWin->eFrmType==TK_RANGE ){
2920         int lbl = 0;
2921         addr = sqlite3VdbeCurrentAddr(v);
2922         if( regEnd ){
2923           lbl = sqlite3VdbeMakeLabel(pParse);
2924           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2925         }
2926         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2927         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2928         if( regEnd ){
2929           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2930           sqlite3VdbeResolveLabel(v, lbl);
2931         }
2932       }else{
2933         if( regEnd ){
2934           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2935           VdbeCoverage(v);
2936         }
2937         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2938         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2939         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2940       }
2941     }
2942   }
2943 
2944   /* End of the main input loop */
2945   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2946   sqlite3WhereEnd(pWInfo);
2947 
2948   /* Fall through */
2949   if( pMWin->pPartition ){
2950     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2951     sqlite3VdbeJumpHere(v, addrGosubFlush);
2952   }
2953 
2954   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2955   VdbeCoverage(v);
2956   if( pMWin->eEnd==TK_PRECEDING ){
2957     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2958     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2959     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2960     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2961   }else if( pMWin->eStart==TK_FOLLOWING ){
2962     int addrStart;
2963     int addrBreak1;
2964     int addrBreak2;
2965     int addrBreak3;
2966     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2967     if( pMWin->eFrmType==TK_RANGE ){
2968       addrStart = sqlite3VdbeCurrentAddr(v);
2969       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2970       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2971     }else
2972     if( pMWin->eEnd==TK_UNBOUNDED ){
2973       addrStart = sqlite3VdbeCurrentAddr(v);
2974       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
2975       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
2976     }else{
2977       assert( pMWin->eEnd==TK_FOLLOWING );
2978       addrStart = sqlite3VdbeCurrentAddr(v);
2979       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
2980       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2981     }
2982     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2983     sqlite3VdbeJumpHere(v, addrBreak2);
2984     addrStart = sqlite3VdbeCurrentAddr(v);
2985     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2986     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2987     sqlite3VdbeJumpHere(v, addrBreak1);
2988     sqlite3VdbeJumpHere(v, addrBreak3);
2989   }else{
2990     int addrBreak;
2991     int addrStart;
2992     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2993     addrStart = sqlite3VdbeCurrentAddr(v);
2994     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2995     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2996     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2997     sqlite3VdbeJumpHere(v, addrBreak);
2998   }
2999   sqlite3VdbeJumpHere(v, addrEmpty);
3000 
3001   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3002   if( pMWin->pPartition ){
3003     if( pMWin->regStartRowid ){
3004       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3005       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3006     }
3007     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3008     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3009   }
3010 }
3011 
3012 #endif /* SQLITE_OMIT_WINDOWFUNC */
3013