1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* no break */ deliberate_fall_through 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( pParse->db->mallocFailed ) return WRC_Abort; 792 if( p->pSub ){ 793 int i; 794 for(i=0; i<p->pSub->nExpr; i++){ 795 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 796 iCol = i; 797 break; 798 } 799 } 800 } 801 if( iCol<0 ){ 802 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 803 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 804 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 805 } 806 if( p->pSub ){ 807 int f = pExpr->flags & EP_Collate; 808 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 809 ExprSetProperty(pExpr, EP_Static); 810 sqlite3ExprDelete(pParse->db, pExpr); 811 ExprClearProperty(pExpr, EP_Static); 812 memset(pExpr, 0, sizeof(Expr)); 813 814 pExpr->op = TK_COLUMN; 815 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 816 pExpr->iTable = p->pWin->iEphCsr; 817 pExpr->y.pTab = p->pTab; 818 pExpr->flags = f; 819 } 820 if( pParse->db->mallocFailed ) return WRC_Abort; 821 break; 822 } 823 824 default: /* no-op */ 825 break; 826 } 827 828 return WRC_Continue; 829 } 830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 831 struct WindowRewrite *p = pWalker->u.pRewrite; 832 Select *pSave = p->pSubSelect; 833 if( pSave==pSelect ){ 834 return WRC_Continue; 835 }else{ 836 p->pSubSelect = pSelect; 837 sqlite3WalkSelect(pWalker, pSelect); 838 p->pSubSelect = pSave; 839 } 840 return WRC_Prune; 841 } 842 843 844 /* 845 ** Iterate through each expression in expression-list pEList. For each: 846 ** 847 ** * TK_COLUMN, 848 ** * aggregate function, or 849 ** * window function with a Window object that is not a member of the 850 ** Window list passed as the second argument (pWin). 851 ** 852 ** Append the node to output expression-list (*ppSub). And replace it 853 ** with a TK_COLUMN that reads the (N-1)th element of table 854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 855 ** appending the new one. 856 */ 857 static void selectWindowRewriteEList( 858 Parse *pParse, 859 Window *pWin, 860 SrcList *pSrc, 861 ExprList *pEList, /* Rewrite expressions in this list */ 862 Table *pTab, 863 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 864 ){ 865 Walker sWalker; 866 WindowRewrite sRewrite; 867 868 assert( pWin!=0 ); 869 memset(&sWalker, 0, sizeof(Walker)); 870 memset(&sRewrite, 0, sizeof(WindowRewrite)); 871 872 sRewrite.pSub = *ppSub; 873 sRewrite.pWin = pWin; 874 sRewrite.pSrc = pSrc; 875 sRewrite.pTab = pTab; 876 877 sWalker.pParse = pParse; 878 sWalker.xExprCallback = selectWindowRewriteExprCb; 879 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 880 sWalker.u.pRewrite = &sRewrite; 881 882 (void)sqlite3WalkExprList(&sWalker, pEList); 883 884 *ppSub = sRewrite.pSub; 885 } 886 887 /* 888 ** Append a copy of each expression in expression-list pAppend to 889 ** expression list pList. Return a pointer to the result list. 890 */ 891 static ExprList *exprListAppendList( 892 Parse *pParse, /* Parsing context */ 893 ExprList *pList, /* List to which to append. Might be NULL */ 894 ExprList *pAppend, /* List of values to append. Might be NULL */ 895 int bIntToNull 896 ){ 897 if( pAppend ){ 898 int i; 899 int nInit = pList ? pList->nExpr : 0; 900 for(i=0; i<pAppend->nExpr; i++){ 901 sqlite3 *db = pParse->db; 902 Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); 903 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 904 if( db->mallocFailed ){ 905 sqlite3ExprDelete(db, pDup); 906 break; 907 } 908 if( bIntToNull ){ 909 int iDummy; 910 Expr *pSub; 911 pSub = sqlite3ExprSkipCollateAndLikely(pDup); 912 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 913 pSub->op = TK_NULL; 914 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 915 pSub->u.zToken = 0; 916 } 917 } 918 pList = sqlite3ExprListAppend(pParse, pList, pDup); 919 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 920 } 921 } 922 return pList; 923 } 924 925 /* 926 ** When rewriting a query, if the new subquery in the FROM clause 927 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 928 ** then we have to increase the Expr->op2 values of those nodes 929 ** due to the extra subquery layer that was added. 930 ** 931 ** See also the incrAggDepth() routine in resolve.c 932 */ 933 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 934 if( pExpr->op==TK_AGG_FUNCTION 935 && pExpr->op2>=pWalker->walkerDepth 936 ){ 937 pExpr->op2++; 938 } 939 return WRC_Continue; 940 } 941 942 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){ 943 if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){ 944 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 945 sqlite3ErrorMsg(pWalker->pParse, 946 "misuse of aggregate: %s()", pExpr->u.zToken); 947 } 948 return WRC_Continue; 949 } 950 951 /* 952 ** If the SELECT statement passed as the second argument does not invoke 953 ** any SQL window functions, this function is a no-op. Otherwise, it 954 ** rewrites the SELECT statement so that window function xStep functions 955 ** are invoked in the correct order as described under "SELECT REWRITING" 956 ** at the top of this file. 957 */ 958 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 959 int rc = SQLITE_OK; 960 if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) ){ 961 Vdbe *v = sqlite3GetVdbe(pParse); 962 sqlite3 *db = pParse->db; 963 Select *pSub = 0; /* The subquery */ 964 SrcList *pSrc = p->pSrc; 965 Expr *pWhere = p->pWhere; 966 ExprList *pGroupBy = p->pGroupBy; 967 Expr *pHaving = p->pHaving; 968 ExprList *pSort = 0; 969 970 ExprList *pSublist = 0; /* Expression list for sub-query */ 971 Window *pMWin = p->pWin; /* Main window object */ 972 Window *pWin; /* Window object iterator */ 973 Table *pTab; 974 Walker w; 975 976 u32 selFlags = p->selFlags; 977 978 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 979 if( pTab==0 ){ 980 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 981 } 982 sqlite3AggInfoPersistWalkerInit(&w, pParse); 983 sqlite3WalkSelect(&w, p); 984 if( (p->selFlags & SF_Aggregate)==0 ){ 985 w.xExprCallback = disallowAggregatesInOrderByCb; 986 w.xSelectCallback = 0; 987 sqlite3WalkExprList(&w, p->pOrderBy); 988 } 989 990 p->pSrc = 0; 991 p->pWhere = 0; 992 p->pGroupBy = 0; 993 p->pHaving = 0; 994 p->selFlags &= ~SF_Aggregate; 995 p->selFlags |= SF_WinRewrite; 996 997 /* Create the ORDER BY clause for the sub-select. This is the concatenation 998 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 999 ** redundant, remove the ORDER BY from the parent SELECT. */ 1000 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 1001 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 1002 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 1003 int nSave = pSort->nExpr; 1004 pSort->nExpr = p->pOrderBy->nExpr; 1005 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 1006 sqlite3ExprListDelete(db, p->pOrderBy); 1007 p->pOrderBy = 0; 1008 } 1009 pSort->nExpr = nSave; 1010 } 1011 1012 /* Assign a cursor number for the ephemeral table used to buffer rows. 1013 ** The OpenEphemeral instruction is coded later, after it is known how 1014 ** many columns the table will have. */ 1015 pMWin->iEphCsr = pParse->nTab++; 1016 pParse->nTab += 3; 1017 1018 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 1019 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1020 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1021 1022 /* Append the PARTITION BY and ORDER BY expressions to the to the 1023 ** sub-select expression list. They are required to figure out where 1024 ** boundaries for partitions and sets of peer rows lie. */ 1025 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1026 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1027 1028 /* Append the arguments passed to each window function to the 1029 ** sub-select expression list. Also allocate two registers for each 1030 ** window function - one for the accumulator, another for interim 1031 ** results. */ 1032 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1033 ExprList *pArgs; 1034 assert( ExprUseXList(pWin->pOwner) ); 1035 pArgs = pWin->pOwner->x.pList; 1036 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1037 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1038 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1039 pWin->bExprArgs = 1; 1040 }else{ 1041 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1042 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1043 } 1044 if( pWin->pFilter ){ 1045 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1046 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1047 } 1048 pWin->regAccum = ++pParse->nMem; 1049 pWin->regResult = ++pParse->nMem; 1050 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1051 } 1052 1053 /* If there is no ORDER BY or PARTITION BY clause, and the window 1054 ** function accepts zero arguments, and there are no other columns 1055 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1056 ** that pSublist is still NULL here. Add a constant expression here to 1057 ** keep everything legal in this case. 1058 */ 1059 if( pSublist==0 ){ 1060 pSublist = sqlite3ExprListAppend(pParse, 0, 1061 sqlite3Expr(db, TK_INTEGER, "0") 1062 ); 1063 } 1064 1065 pSub = sqlite3SelectNew( 1066 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1067 ); 1068 SELECTTRACE(1,pParse,pSub, 1069 ("New window-function subquery in FROM clause of (%u/%p)\n", 1070 p->selId, p)); 1071 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1072 assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside 1073 ** of sqlite3DbMallocRawNN() called from 1074 ** sqlite3SrcListAppend() */ 1075 if( p->pSrc ){ 1076 Table *pTab2; 1077 p->pSrc->a[0].pSelect = pSub; 1078 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1079 pSub->selFlags |= SF_Expanded|SF_OrderByReqd; 1080 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1081 pSub->selFlags |= (selFlags & SF_Aggregate); 1082 if( pTab2==0 ){ 1083 /* Might actually be some other kind of error, but in that case 1084 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1085 ** the correct error message regardless. */ 1086 rc = SQLITE_NOMEM; 1087 }else{ 1088 memcpy(pTab, pTab2, sizeof(Table)); 1089 pTab->tabFlags |= TF_Ephemeral; 1090 p->pSrc->a[0].pTab = pTab; 1091 pTab = pTab2; 1092 memset(&w, 0, sizeof(w)); 1093 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1094 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1095 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1096 sqlite3WalkSelect(&w, pSub); 1097 } 1098 }else{ 1099 sqlite3SelectDelete(db, pSub); 1100 } 1101 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1102 sqlite3DbFree(db, pTab); 1103 } 1104 1105 if( rc ){ 1106 if( pParse->nErr==0 ){ 1107 assert( pParse->db->mallocFailed ); 1108 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1109 } 1110 } 1111 return rc; 1112 } 1113 1114 /* 1115 ** Unlink the Window object from the Select to which it is attached, 1116 ** if it is attached. 1117 */ 1118 void sqlite3WindowUnlinkFromSelect(Window *p){ 1119 if( p->ppThis ){ 1120 *p->ppThis = p->pNextWin; 1121 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1122 p->ppThis = 0; 1123 } 1124 } 1125 1126 /* 1127 ** Free the Window object passed as the second argument. 1128 */ 1129 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1130 if( p ){ 1131 sqlite3WindowUnlinkFromSelect(p); 1132 sqlite3ExprDelete(db, p->pFilter); 1133 sqlite3ExprListDelete(db, p->pPartition); 1134 sqlite3ExprListDelete(db, p->pOrderBy); 1135 sqlite3ExprDelete(db, p->pEnd); 1136 sqlite3ExprDelete(db, p->pStart); 1137 sqlite3DbFree(db, p->zName); 1138 sqlite3DbFree(db, p->zBase); 1139 sqlite3DbFree(db, p); 1140 } 1141 } 1142 1143 /* 1144 ** Free the linked list of Window objects starting at the second argument. 1145 */ 1146 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1147 while( p ){ 1148 Window *pNext = p->pNextWin; 1149 sqlite3WindowDelete(db, p); 1150 p = pNext; 1151 } 1152 } 1153 1154 /* 1155 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1156 ** value should be a non-negative integer. If the value is not a 1157 ** constant, change it to NULL. The fact that it is then a non-negative 1158 ** integer will be caught later. But it is important not to leave 1159 ** variable values in the expression tree. 1160 */ 1161 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1162 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1163 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1164 sqlite3ExprDelete(pParse->db, pExpr); 1165 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1166 } 1167 return pExpr; 1168 } 1169 1170 /* 1171 ** Allocate and return a new Window object describing a Window Definition. 1172 */ 1173 Window *sqlite3WindowAlloc( 1174 Parse *pParse, /* Parsing context */ 1175 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1176 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1177 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1178 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1179 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1180 u8 eExclude /* EXCLUDE clause */ 1181 ){ 1182 Window *pWin = 0; 1183 int bImplicitFrame = 0; 1184 1185 /* Parser assures the following: */ 1186 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1187 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1188 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1189 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1190 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1191 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1192 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1193 1194 if( eType==0 ){ 1195 bImplicitFrame = 1; 1196 eType = TK_RANGE; 1197 } 1198 1199 /* Additionally, the 1200 ** starting boundary type may not occur earlier in the following list than 1201 ** the ending boundary type: 1202 ** 1203 ** UNBOUNDED PRECEDING 1204 ** <expr> PRECEDING 1205 ** CURRENT ROW 1206 ** <expr> FOLLOWING 1207 ** UNBOUNDED FOLLOWING 1208 ** 1209 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1210 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1211 ** frame boundary. 1212 */ 1213 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1214 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1215 ){ 1216 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1217 goto windowAllocErr; 1218 } 1219 1220 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1221 if( pWin==0 ) goto windowAllocErr; 1222 pWin->eFrmType = eType; 1223 pWin->eStart = eStart; 1224 pWin->eEnd = eEnd; 1225 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1226 eExclude = TK_NO; 1227 } 1228 pWin->eExclude = eExclude; 1229 pWin->bImplicitFrame = bImplicitFrame; 1230 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1231 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1232 return pWin; 1233 1234 windowAllocErr: 1235 sqlite3ExprDelete(pParse->db, pEnd); 1236 sqlite3ExprDelete(pParse->db, pStart); 1237 return 0; 1238 } 1239 1240 /* 1241 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1242 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1243 ** equivalent nul-terminated string. 1244 */ 1245 Window *sqlite3WindowAssemble( 1246 Parse *pParse, 1247 Window *pWin, 1248 ExprList *pPartition, 1249 ExprList *pOrderBy, 1250 Token *pBase 1251 ){ 1252 if( pWin ){ 1253 pWin->pPartition = pPartition; 1254 pWin->pOrderBy = pOrderBy; 1255 if( pBase ){ 1256 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1257 } 1258 }else{ 1259 sqlite3ExprListDelete(pParse->db, pPartition); 1260 sqlite3ExprListDelete(pParse->db, pOrderBy); 1261 } 1262 return pWin; 1263 } 1264 1265 /* 1266 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1267 ** is the base window. Earlier windows from the same WINDOW clause are 1268 ** stored in the linked list starting at pWin->pNextWin. This function 1269 ** either updates *pWin according to the base specification, or else 1270 ** leaves an error in pParse. 1271 */ 1272 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1273 if( pWin->zBase ){ 1274 sqlite3 *db = pParse->db; 1275 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1276 if( pExist ){ 1277 const char *zErr = 0; 1278 /* Check for errors */ 1279 if( pWin->pPartition ){ 1280 zErr = "PARTITION clause"; 1281 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1282 zErr = "ORDER BY clause"; 1283 }else if( pExist->bImplicitFrame==0 ){ 1284 zErr = "frame specification"; 1285 } 1286 if( zErr ){ 1287 sqlite3ErrorMsg(pParse, 1288 "cannot override %s of window: %s", zErr, pWin->zBase 1289 ); 1290 }else{ 1291 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1292 if( pExist->pOrderBy ){ 1293 assert( pWin->pOrderBy==0 ); 1294 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1295 } 1296 sqlite3DbFree(db, pWin->zBase); 1297 pWin->zBase = 0; 1298 } 1299 } 1300 } 1301 } 1302 1303 /* 1304 ** Attach window object pWin to expression p. 1305 */ 1306 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1307 if( p ){ 1308 assert( p->op==TK_FUNCTION ); 1309 assert( pWin ); 1310 p->y.pWin = pWin; 1311 ExprSetProperty(p, EP_WinFunc); 1312 pWin->pOwner = p; 1313 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1314 sqlite3ErrorMsg(pParse, 1315 "DISTINCT is not supported for window functions" 1316 ); 1317 } 1318 }else{ 1319 sqlite3WindowDelete(pParse->db, pWin); 1320 } 1321 } 1322 1323 /* 1324 ** Possibly link window pWin into the list at pSel->pWin (window functions 1325 ** to be processed as part of SELECT statement pSel). The window is linked 1326 ** in if either (a) there are no other windows already linked to this 1327 ** SELECT, or (b) the windows already linked use a compatible window frame. 1328 */ 1329 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1330 if( pSel ){ 1331 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ 1332 pWin->pNextWin = pSel->pWin; 1333 if( pSel->pWin ){ 1334 pSel->pWin->ppThis = &pWin->pNextWin; 1335 } 1336 pSel->pWin = pWin; 1337 pWin->ppThis = &pSel->pWin; 1338 }else{ 1339 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ 1340 pSel->selFlags |= SF_MultiPart; 1341 } 1342 } 1343 } 1344 } 1345 1346 /* 1347 ** Return 0 if the two window objects are identical, 1 if they are 1348 ** different, or 2 if it cannot be determined if the objects are identical 1349 ** or not. Identical window objects can be processed in a single scan. 1350 */ 1351 int sqlite3WindowCompare( 1352 const Parse *pParse, 1353 const Window *p1, 1354 const Window *p2, 1355 int bFilter 1356 ){ 1357 int res; 1358 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1359 if( p1->eFrmType!=p2->eFrmType ) return 1; 1360 if( p1->eStart!=p2->eStart ) return 1; 1361 if( p1->eEnd!=p2->eEnd ) return 1; 1362 if( p1->eExclude!=p2->eExclude ) return 1; 1363 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1364 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1365 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1366 return res; 1367 } 1368 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1369 return res; 1370 } 1371 if( bFilter ){ 1372 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1373 return res; 1374 } 1375 } 1376 return 0; 1377 } 1378 1379 1380 /* 1381 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1382 ** to begin iterating through the sub-query results. It is used to allocate 1383 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1384 */ 1385 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1386 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1387 Window *pMWin = pSelect->pWin; 1388 Window *pWin; 1389 Vdbe *v = sqlite3GetVdbe(pParse); 1390 1391 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1392 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1393 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1394 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1395 1396 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1397 ** said registers to NULL. */ 1398 if( pMWin->pPartition ){ 1399 int nExpr = pMWin->pPartition->nExpr; 1400 pMWin->regPart = pParse->nMem+1; 1401 pParse->nMem += nExpr; 1402 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1403 } 1404 1405 pMWin->regOne = ++pParse->nMem; 1406 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1407 1408 if( pMWin->eExclude ){ 1409 pMWin->regStartRowid = ++pParse->nMem; 1410 pMWin->regEndRowid = ++pParse->nMem; 1411 pMWin->csrApp = pParse->nTab++; 1412 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1413 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1414 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1415 return; 1416 } 1417 1418 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1419 FuncDef *p = pWin->pFunc; 1420 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1421 /* The inline versions of min() and max() require a single ephemeral 1422 ** table and 3 registers. The registers are used as follows: 1423 ** 1424 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1425 ** regApp+1: integer value used to ensure keys are unique 1426 ** regApp+2: output of MakeRecord 1427 */ 1428 ExprList *pList; 1429 KeyInfo *pKeyInfo; 1430 assert( ExprUseXList(pWin->pOwner) ); 1431 pList = pWin->pOwner->x.pList; 1432 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1433 pWin->csrApp = pParse->nTab++; 1434 pWin->regApp = pParse->nMem+1; 1435 pParse->nMem += 3; 1436 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1437 assert( pKeyInfo->aSortFlags[0]==0 ); 1438 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1439 } 1440 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1441 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1442 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1443 } 1444 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1445 /* Allocate two registers at pWin->regApp. These will be used to 1446 ** store the start and end index of the current frame. */ 1447 pWin->regApp = pParse->nMem+1; 1448 pWin->csrApp = pParse->nTab++; 1449 pParse->nMem += 2; 1450 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1451 } 1452 else if( p->zName==leadName || p->zName==lagName ){ 1453 pWin->csrApp = pParse->nTab++; 1454 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1455 } 1456 } 1457 } 1458 1459 #define WINDOW_STARTING_INT 0 1460 #define WINDOW_ENDING_INT 1 1461 #define WINDOW_NTH_VALUE_INT 2 1462 #define WINDOW_STARTING_NUM 3 1463 #define WINDOW_ENDING_NUM 4 1464 1465 /* 1466 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1467 ** value of the second argument to nth_value() (eCond==2) has just been 1468 ** evaluated and the result left in register reg. This function generates VM 1469 ** code to check that the value is a non-negative integer and throws an 1470 ** exception if it is not. 1471 */ 1472 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1473 static const char *azErr[] = { 1474 "frame starting offset must be a non-negative integer", 1475 "frame ending offset must be a non-negative integer", 1476 "second argument to nth_value must be a positive integer", 1477 "frame starting offset must be a non-negative number", 1478 "frame ending offset must be a non-negative number", 1479 }; 1480 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1481 Vdbe *v = sqlite3GetVdbe(pParse); 1482 int regZero = sqlite3GetTempReg(pParse); 1483 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1484 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1485 if( eCond>=WINDOW_STARTING_NUM ){ 1486 int regString = sqlite3GetTempReg(pParse); 1487 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1488 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1489 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1490 VdbeCoverage(v); 1491 assert( eCond==3 || eCond==4 ); 1492 VdbeCoverageIf(v, eCond==3); 1493 VdbeCoverageIf(v, eCond==4); 1494 }else{ 1495 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1496 VdbeCoverage(v); 1497 assert( eCond==0 || eCond==1 || eCond==2 ); 1498 VdbeCoverageIf(v, eCond==0); 1499 VdbeCoverageIf(v, eCond==1); 1500 VdbeCoverageIf(v, eCond==2); 1501 } 1502 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1503 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); 1504 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1505 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1506 VdbeCoverageNeverNullIf(v, eCond==2); 1507 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1508 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1509 sqlite3MayAbort(pParse); 1510 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1511 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1512 sqlite3ReleaseTempReg(pParse, regZero); 1513 } 1514 1515 /* 1516 ** Return the number of arguments passed to the window-function associated 1517 ** with the object passed as the only argument to this function. 1518 */ 1519 static int windowArgCount(Window *pWin){ 1520 const ExprList *pList; 1521 assert( ExprUseXList(pWin->pOwner) ); 1522 pList = pWin->pOwner->x.pList; 1523 return (pList ? pList->nExpr : 0); 1524 } 1525 1526 typedef struct WindowCodeArg WindowCodeArg; 1527 typedef struct WindowCsrAndReg WindowCsrAndReg; 1528 1529 /* 1530 ** See comments above struct WindowCodeArg. 1531 */ 1532 struct WindowCsrAndReg { 1533 int csr; /* Cursor number */ 1534 int reg; /* First in array of peer values */ 1535 }; 1536 1537 /* 1538 ** A single instance of this structure is allocated on the stack by 1539 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1540 ** routines. This is to reduce the number of arguments required by each 1541 ** helper function. 1542 ** 1543 ** regArg: 1544 ** Each window function requires an accumulator register (just as an 1545 ** ordinary aggregate function does). This variable is set to the first 1546 ** in an array of accumulator registers - one for each window function 1547 ** in the WindowCodeArg.pMWin list. 1548 ** 1549 ** eDelete: 1550 ** The window functions implementation sometimes caches the input rows 1551 ** that it processes in a temporary table. If it is not zero, this 1552 ** variable indicates when rows may be removed from the temp table (in 1553 ** order to reduce memory requirements - it would always be safe just 1554 ** to leave them there). Possible values for eDelete are: 1555 ** 1556 ** WINDOW_RETURN_ROW: 1557 ** An input row can be discarded after it is returned to the caller. 1558 ** 1559 ** WINDOW_AGGINVERSE: 1560 ** An input row can be discarded after the window functions xInverse() 1561 ** callbacks have been invoked in it. 1562 ** 1563 ** WINDOW_AGGSTEP: 1564 ** An input row can be discarded after the window functions xStep() 1565 ** callbacks have been invoked in it. 1566 ** 1567 ** start,current,end 1568 ** Consider a window-frame similar to the following: 1569 ** 1570 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1571 ** 1572 ** The windows functions implmentation caches the input rows in a temp 1573 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1574 ** aggressively removes rows once they are no longer required, but that's 1575 ** a mere detail). It keeps three cursors open on the temp table. One 1576 ** (current) that points to the next row to return to the query engine 1577 ** once its window function values have been calculated. Another (end) 1578 ** points to the next row to call the xStep() method of each window function 1579 ** on (so that it is 2 groups ahead of current). And a third (start) that 1580 ** points to the next row to call the xInverse() method of each window 1581 ** function on. 1582 ** 1583 ** Each cursor (start, current and end) consists of a VDBE cursor 1584 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1585 ** WindowCodeArg.reg) that always contains a copy of the peer values 1586 ** read from the corresponding cursor. 1587 ** 1588 ** Depending on the window-frame in question, all three cursors may not 1589 ** be required. In this case both WindowCodeArg.csr and reg are set to 1590 ** 0. 1591 */ 1592 struct WindowCodeArg { 1593 Parse *pParse; /* Parse context */ 1594 Window *pMWin; /* First in list of functions being processed */ 1595 Vdbe *pVdbe; /* VDBE object */ 1596 int addrGosub; /* OP_Gosub to this address to return one row */ 1597 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1598 int regArg; /* First in array of accumulator registers */ 1599 int eDelete; /* See above */ 1600 int regRowid; 1601 1602 WindowCsrAndReg start; 1603 WindowCsrAndReg current; 1604 WindowCsrAndReg end; 1605 }; 1606 1607 /* 1608 ** Generate VM code to read the window frames peer values from cursor csr into 1609 ** an array of registers starting at reg. 1610 */ 1611 static void windowReadPeerValues( 1612 WindowCodeArg *p, 1613 int csr, 1614 int reg 1615 ){ 1616 Window *pMWin = p->pMWin; 1617 ExprList *pOrderBy = pMWin->pOrderBy; 1618 if( pOrderBy ){ 1619 Vdbe *v = sqlite3GetVdbe(p->pParse); 1620 ExprList *pPart = pMWin->pPartition; 1621 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1622 int i; 1623 for(i=0; i<pOrderBy->nExpr; i++){ 1624 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1625 } 1626 } 1627 } 1628 1629 /* 1630 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1631 ** xInverse (if bInverse is non-zero) for each window function in the 1632 ** linked list starting at pMWin. Or, for built-in window functions 1633 ** that do not use the standard function API, generate the required 1634 ** inline VM code. 1635 ** 1636 ** If argument csr is greater than or equal to 0, then argument reg is 1637 ** the first register in an array of registers guaranteed to be large 1638 ** enough to hold the array of arguments for each function. In this case 1639 ** the arguments are extracted from the current row of csr into the 1640 ** array of registers before invoking OP_AggStep or OP_AggInverse 1641 ** 1642 ** Or, if csr is less than zero, then the array of registers at reg is 1643 ** already populated with all columns from the current row of the sub-query. 1644 ** 1645 ** If argument regPartSize is non-zero, then it is a register containing the 1646 ** number of rows in the current partition. 1647 */ 1648 static void windowAggStep( 1649 WindowCodeArg *p, 1650 Window *pMWin, /* Linked list of window functions */ 1651 int csr, /* Read arguments from this cursor */ 1652 int bInverse, /* True to invoke xInverse instead of xStep */ 1653 int reg /* Array of registers */ 1654 ){ 1655 Parse *pParse = p->pParse; 1656 Vdbe *v = sqlite3GetVdbe(pParse); 1657 Window *pWin; 1658 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1659 FuncDef *pFunc = pWin->pFunc; 1660 int regArg; 1661 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1662 int i; 1663 1664 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1665 1666 /* All OVER clauses in the same window function aggregate step must 1667 ** be the same. */ 1668 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1669 1670 for(i=0; i<nArg; i++){ 1671 if( i!=1 || pFunc->zName!=nth_valueName ){ 1672 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1673 }else{ 1674 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1675 } 1676 } 1677 regArg = reg; 1678 1679 if( pMWin->regStartRowid==0 1680 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1681 && (pWin->eStart!=TK_UNBOUNDED) 1682 ){ 1683 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1684 VdbeCoverage(v); 1685 if( bInverse==0 ){ 1686 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1687 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1688 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1689 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1690 }else{ 1691 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1692 VdbeCoverageNeverTaken(v); 1693 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1694 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1695 } 1696 sqlite3VdbeJumpHere(v, addrIsNull); 1697 }else if( pWin->regApp ){ 1698 assert( pFunc->zName==nth_valueName 1699 || pFunc->zName==first_valueName 1700 ); 1701 assert( bInverse==0 || bInverse==1 ); 1702 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1703 }else if( pFunc->xSFunc!=noopStepFunc ){ 1704 int addrIf = 0; 1705 if( pWin->pFilter ){ 1706 int regTmp; 1707 assert( ExprUseXList(pWin->pOwner) ); 1708 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1709 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1710 regTmp = sqlite3GetTempReg(pParse); 1711 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1712 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1713 VdbeCoverage(v); 1714 sqlite3ReleaseTempReg(pParse, regTmp); 1715 } 1716 1717 if( pWin->bExprArgs ){ 1718 int iOp = sqlite3VdbeCurrentAddr(v); 1719 int iEnd; 1720 1721 assert( ExprUseXList(pWin->pOwner) ); 1722 nArg = pWin->pOwner->x.pList->nExpr; 1723 regArg = sqlite3GetTempRange(pParse, nArg); 1724 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1725 1726 for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){ 1727 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp); 1728 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1729 pOp->p1 = csr; 1730 } 1731 } 1732 } 1733 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1734 CollSeq *pColl; 1735 assert( nArg>0 ); 1736 assert( ExprUseXList(pWin->pOwner) ); 1737 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1738 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1739 } 1740 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1741 bInverse, regArg, pWin->regAccum); 1742 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1743 sqlite3VdbeChangeP5(v, (u8)nArg); 1744 if( pWin->bExprArgs ){ 1745 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1746 } 1747 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1748 } 1749 } 1750 } 1751 1752 /* 1753 ** Values that may be passed as the second argument to windowCodeOp(). 1754 */ 1755 #define WINDOW_RETURN_ROW 1 1756 #define WINDOW_AGGINVERSE 2 1757 #define WINDOW_AGGSTEP 3 1758 1759 /* 1760 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1761 ** (bFin==1) for each window function in the linked list starting at 1762 ** pMWin. Or, for built-in window-functions that do not use the standard 1763 ** API, generate the equivalent VM code. 1764 */ 1765 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1766 Parse *pParse = p->pParse; 1767 Window *pMWin = p->pMWin; 1768 Vdbe *v = sqlite3GetVdbe(pParse); 1769 Window *pWin; 1770 1771 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1772 if( pMWin->regStartRowid==0 1773 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1774 && (pWin->eStart!=TK_UNBOUNDED) 1775 ){ 1776 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1777 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1778 VdbeCoverage(v); 1779 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1780 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1781 }else if( pWin->regApp ){ 1782 assert( pMWin->regStartRowid==0 ); 1783 }else{ 1784 int nArg = windowArgCount(pWin); 1785 if( bFin ){ 1786 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1787 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1788 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1789 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1790 }else{ 1791 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1792 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1793 } 1794 } 1795 } 1796 } 1797 1798 /* 1799 ** Generate code to calculate the current values of all window functions in the 1800 ** p->pMWin list by doing a full scan of the current window frame. Store the 1801 ** results in the Window.regResult registers, ready to return the upper 1802 ** layer. 1803 */ 1804 static void windowFullScan(WindowCodeArg *p){ 1805 Window *pWin; 1806 Parse *pParse = p->pParse; 1807 Window *pMWin = p->pMWin; 1808 Vdbe *v = p->pVdbe; 1809 1810 int regCRowid = 0; /* Current rowid value */ 1811 int regCPeer = 0; /* Current peer values */ 1812 int regRowid = 0; /* AggStep rowid value */ 1813 int regPeer = 0; /* AggStep peer values */ 1814 1815 int nPeer; 1816 int lblNext; 1817 int lblBrk; 1818 int addrNext; 1819 int csr; 1820 1821 VdbeModuleComment((v, "windowFullScan begin")); 1822 1823 assert( pMWin!=0 ); 1824 csr = pMWin->csrApp; 1825 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1826 1827 lblNext = sqlite3VdbeMakeLabel(pParse); 1828 lblBrk = sqlite3VdbeMakeLabel(pParse); 1829 1830 regCRowid = sqlite3GetTempReg(pParse); 1831 regRowid = sqlite3GetTempReg(pParse); 1832 if( nPeer ){ 1833 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1834 regPeer = sqlite3GetTempRange(pParse, nPeer); 1835 } 1836 1837 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1838 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1839 1840 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1841 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1842 } 1843 1844 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1845 VdbeCoverage(v); 1846 addrNext = sqlite3VdbeCurrentAddr(v); 1847 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1848 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1849 VdbeCoverageNeverNull(v); 1850 1851 if( pMWin->eExclude==TK_CURRENT ){ 1852 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1853 VdbeCoverageNeverNull(v); 1854 }else if( pMWin->eExclude!=TK_NO ){ 1855 int addr; 1856 int addrEq = 0; 1857 KeyInfo *pKeyInfo = 0; 1858 1859 if( pMWin->pOrderBy ){ 1860 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1861 } 1862 if( pMWin->eExclude==TK_TIES ){ 1863 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1864 VdbeCoverageNeverNull(v); 1865 } 1866 if( pKeyInfo ){ 1867 windowReadPeerValues(p, csr, regPeer); 1868 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1869 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1870 addr = sqlite3VdbeCurrentAddr(v)+1; 1871 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1872 VdbeCoverageEqNe(v); 1873 }else{ 1874 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1875 } 1876 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1877 } 1878 1879 windowAggStep(p, pMWin, csr, 0, p->regArg); 1880 1881 sqlite3VdbeResolveLabel(v, lblNext); 1882 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1883 VdbeCoverage(v); 1884 sqlite3VdbeJumpHere(v, addrNext-1); 1885 sqlite3VdbeJumpHere(v, addrNext+1); 1886 sqlite3ReleaseTempReg(pParse, regRowid); 1887 sqlite3ReleaseTempReg(pParse, regCRowid); 1888 if( nPeer ){ 1889 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1890 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1891 } 1892 1893 windowAggFinal(p, 1); 1894 VdbeModuleComment((v, "windowFullScan end")); 1895 } 1896 1897 /* 1898 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1899 ** return the current row of Window.iEphCsr. If all window functions are 1900 ** aggregate window functions that use the standard API, a single 1901 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1902 ** for per-row processing is only generated for the following built-in window 1903 ** functions: 1904 ** 1905 ** nth_value() 1906 ** first_value() 1907 ** lag() 1908 ** lead() 1909 */ 1910 static void windowReturnOneRow(WindowCodeArg *p){ 1911 Window *pMWin = p->pMWin; 1912 Vdbe *v = p->pVdbe; 1913 1914 if( pMWin->regStartRowid ){ 1915 windowFullScan(p); 1916 }else{ 1917 Parse *pParse = p->pParse; 1918 Window *pWin; 1919 1920 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1921 FuncDef *pFunc = pWin->pFunc; 1922 assert( ExprUseXList(pWin->pOwner) ); 1923 if( pFunc->zName==nth_valueName 1924 || pFunc->zName==first_valueName 1925 ){ 1926 int csr = pWin->csrApp; 1927 int lbl = sqlite3VdbeMakeLabel(pParse); 1928 int tmpReg = sqlite3GetTempReg(pParse); 1929 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1930 1931 if( pFunc->zName==nth_valueName ){ 1932 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1933 windowCheckValue(pParse, tmpReg, 2); 1934 }else{ 1935 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1936 } 1937 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1938 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1939 VdbeCoverageNeverNull(v); 1940 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1941 VdbeCoverageNeverTaken(v); 1942 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1943 sqlite3VdbeResolveLabel(v, lbl); 1944 sqlite3ReleaseTempReg(pParse, tmpReg); 1945 } 1946 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1947 int nArg = pWin->pOwner->x.pList->nExpr; 1948 int csr = pWin->csrApp; 1949 int lbl = sqlite3VdbeMakeLabel(pParse); 1950 int tmpReg = sqlite3GetTempReg(pParse); 1951 int iEph = pMWin->iEphCsr; 1952 1953 if( nArg<3 ){ 1954 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1955 }else{ 1956 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1957 } 1958 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1959 if( nArg<2 ){ 1960 int val = (pFunc->zName==leadName ? 1 : -1); 1961 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1962 }else{ 1963 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1964 int tmpReg2 = sqlite3GetTempReg(pParse); 1965 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1966 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1967 sqlite3ReleaseTempReg(pParse, tmpReg2); 1968 } 1969 1970 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1971 VdbeCoverage(v); 1972 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1973 sqlite3VdbeResolveLabel(v, lbl); 1974 sqlite3ReleaseTempReg(pParse, tmpReg); 1975 } 1976 } 1977 } 1978 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1979 } 1980 1981 /* 1982 ** Generate code to set the accumulator register for each window function 1983 ** in the linked list passed as the second argument to NULL. And perform 1984 ** any equivalent initialization required by any built-in window functions 1985 ** in the list. 1986 */ 1987 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1988 Vdbe *v = sqlite3GetVdbe(pParse); 1989 int regArg; 1990 int nArg = 0; 1991 Window *pWin; 1992 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1993 FuncDef *pFunc = pWin->pFunc; 1994 assert( pWin->regAccum ); 1995 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1996 nArg = MAX(nArg, windowArgCount(pWin)); 1997 if( pMWin->regStartRowid==0 ){ 1998 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1999 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 2000 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 2001 } 2002 2003 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 2004 assert( pWin->eStart!=TK_UNBOUNDED ); 2005 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 2006 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 2007 } 2008 } 2009 } 2010 regArg = pParse->nMem+1; 2011 pParse->nMem += nArg; 2012 return regArg; 2013 } 2014 2015 /* 2016 ** Return true if the current frame should be cached in the ephemeral table, 2017 ** even if there are no xInverse() calls required. 2018 */ 2019 static int windowCacheFrame(Window *pMWin){ 2020 Window *pWin; 2021 if( pMWin->regStartRowid ) return 1; 2022 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 2023 FuncDef *pFunc = pWin->pFunc; 2024 if( (pFunc->zName==nth_valueName) 2025 || (pFunc->zName==first_valueName) 2026 || (pFunc->zName==leadName) 2027 || (pFunc->zName==lagName) 2028 ){ 2029 return 1; 2030 } 2031 } 2032 return 0; 2033 } 2034 2035 /* 2036 ** regOld and regNew are each the first register in an array of size 2037 ** pOrderBy->nExpr. This function generates code to compare the two 2038 ** arrays of registers using the collation sequences and other comparison 2039 ** parameters specified by pOrderBy. 2040 ** 2041 ** If the two arrays are not equal, the contents of regNew is copied to 2042 ** regOld and control falls through. Otherwise, if the contents of the arrays 2043 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2044 */ 2045 static void windowIfNewPeer( 2046 Parse *pParse, 2047 ExprList *pOrderBy, 2048 int regNew, /* First in array of new values */ 2049 int regOld, /* First in array of old values */ 2050 int addr /* Jump here */ 2051 ){ 2052 Vdbe *v = sqlite3GetVdbe(pParse); 2053 if( pOrderBy ){ 2054 int nVal = pOrderBy->nExpr; 2055 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2056 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2057 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2058 sqlite3VdbeAddOp3(v, OP_Jump, 2059 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2060 ); 2061 VdbeCoverageEqNe(v); 2062 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2063 }else{ 2064 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2065 } 2066 } 2067 2068 /* 2069 ** This function is called as part of generating VM programs for RANGE 2070 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2071 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2072 ** code equivalent to: 2073 ** 2074 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2075 ** 2076 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2077 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2078 ** 2079 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2080 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2081 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2082 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2083 ** is OP_Ge, the generated code is equivalent to: 2084 ** 2085 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2086 ** 2087 ** A special type of arithmetic is used such that if csr1.peerVal is not 2088 ** a numeric type (real or integer), then the result of the addition 2089 ** or subtraction is a a copy of csr1.peerVal. 2090 */ 2091 static void windowCodeRangeTest( 2092 WindowCodeArg *p, 2093 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2094 int csr1, /* Cursor number for cursor 1 */ 2095 int regVal, /* Register containing non-negative number */ 2096 int csr2, /* Cursor number for cursor 2 */ 2097 int lbl /* Jump destination if condition is true */ 2098 ){ 2099 Parse *pParse = p->pParse; 2100 Vdbe *v = sqlite3GetVdbe(pParse); 2101 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2102 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2103 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2104 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2105 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2106 int addrGe; /* Jump destination */ 2107 int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ 2108 CollSeq *pColl; 2109 2110 /* Read the peer-value from each cursor into a register */ 2111 windowReadPeerValues(p, csr1, reg1); 2112 windowReadPeerValues(p, csr2, reg2); 2113 2114 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2115 assert( pOrderBy && pOrderBy->nExpr==1 ); 2116 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2117 switch( op ){ 2118 case OP_Ge: op = OP_Le; break; 2119 case OP_Gt: op = OP_Lt; break; 2120 default: assert( op==OP_Le ); op = OP_Ge; break; 2121 } 2122 arith = OP_Subtract; 2123 } 2124 2125 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2126 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2127 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2128 )); 2129 2130 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2131 ** consider NULL values to be larger than all other values, instead of 2132 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2133 ** (and adding that capability causes a performance regression), so 2134 ** instead if the BIGNULL flag is set then cases where either reg1 or 2135 ** reg2 are NULL are handled separately in the following block. The code 2136 ** generated is equivalent to: 2137 ** 2138 ** if( reg1 IS NULL ){ 2139 ** if( op==OP_Ge ) goto lbl; 2140 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2141 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2142 ** }else if( reg2 IS NULL ){ 2143 ** if( op==OP_Le ) goto lbl; 2144 ** } 2145 ** 2146 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2147 ** not taken, control jumps over the comparison operator coded below this 2148 ** block. */ 2149 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2150 /* This block runs if reg1 contains a NULL. */ 2151 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2152 switch( op ){ 2153 case OP_Ge: 2154 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2155 break; 2156 case OP_Gt: 2157 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2158 VdbeCoverage(v); 2159 break; 2160 case OP_Le: 2161 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2162 VdbeCoverage(v); 2163 break; 2164 default: assert( op==OP_Lt ); /* no-op */ break; 2165 } 2166 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 2167 2168 /* This block runs if reg1 is not NULL, but reg2 is. */ 2169 sqlite3VdbeJumpHere(v, addr); 2170 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2171 if( op==OP_Gt || op==OP_Ge ){ 2172 sqlite3VdbeChangeP2(v, -1, addrDone); 2173 } 2174 } 2175 2176 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2177 ** This block adds (or subtracts for DESC) the numeric value in regVal 2178 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2179 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2180 ** 2181 ** if( reg1>='' ) goto addrGe; 2182 ** reg1 = reg1 +/- regVal 2183 ** addrGe: 2184 ** 2185 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2186 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2187 ** then the arithmetic is performed, but since adding or subtracting from 2188 ** NULL is always NULL anyway, this case is handled as required too. */ 2189 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2190 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2191 VdbeCoverage(v); 2192 if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ 2193 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2194 } 2195 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2196 sqlite3VdbeJumpHere(v, addrGe); 2197 2198 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2199 ** control skips over this test if the BIGNULL flag is set and either 2200 ** reg1 or reg2 contain a NULL value. */ 2201 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2202 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); 2203 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); 2204 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2205 sqlite3VdbeResolveLabel(v, addrDone); 2206 2207 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2208 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2209 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2210 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2211 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2212 sqlite3ReleaseTempReg(pParse, reg1); 2213 sqlite3ReleaseTempReg(pParse, reg2); 2214 2215 VdbeModuleComment((v, "CodeRangeTest: end")); 2216 } 2217 2218 /* 2219 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2220 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2221 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2222 ** details. 2223 */ 2224 static int windowCodeOp( 2225 WindowCodeArg *p, /* Context object */ 2226 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2227 int regCountdown, /* Register for OP_IfPos countdown */ 2228 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2229 ){ 2230 int csr, reg; 2231 Parse *pParse = p->pParse; 2232 Window *pMWin = p->pMWin; 2233 int ret = 0; 2234 Vdbe *v = p->pVdbe; 2235 int addrContinue = 0; 2236 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2237 2238 int lblDone = sqlite3VdbeMakeLabel(pParse); 2239 int addrNextRange = 0; 2240 2241 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2242 ** starts with UNBOUNDED PRECEDING. */ 2243 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2244 assert( regCountdown==0 && jumpOnEof==0 ); 2245 return 0; 2246 } 2247 2248 if( regCountdown>0 ){ 2249 if( pMWin->eFrmType==TK_RANGE ){ 2250 addrNextRange = sqlite3VdbeCurrentAddr(v); 2251 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2252 if( op==WINDOW_AGGINVERSE ){ 2253 if( pMWin->eStart==TK_FOLLOWING ){ 2254 windowCodeRangeTest( 2255 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2256 ); 2257 }else{ 2258 windowCodeRangeTest( 2259 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2260 ); 2261 } 2262 }else{ 2263 windowCodeRangeTest( 2264 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2265 ); 2266 } 2267 }else{ 2268 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2269 VdbeCoverage(v); 2270 } 2271 } 2272 2273 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2274 windowAggFinal(p, 0); 2275 } 2276 addrContinue = sqlite3VdbeCurrentAddr(v); 2277 2278 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2279 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2280 ** start cursor does not advance past the end cursor within the 2281 ** temporary table. It otherwise might, if (a>b). Also ensure that, 2282 ** if the input cursor is still finding new rows, that the end 2283 ** cursor does not go past it to EOF. */ 2284 if( pMWin->eStart==pMWin->eEnd && regCountdown 2285 && pMWin->eFrmType==TK_RANGE 2286 ){ 2287 int regRowid1 = sqlite3GetTempReg(pParse); 2288 int regRowid2 = sqlite3GetTempReg(pParse); 2289 if( op==WINDOW_AGGINVERSE ){ 2290 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2291 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2292 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2293 VdbeCoverage(v); 2294 }else if( p->regRowid ){ 2295 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1); 2296 sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1); 2297 VdbeCoverageNeverNull(v); 2298 } 2299 sqlite3ReleaseTempReg(pParse, regRowid1); 2300 sqlite3ReleaseTempReg(pParse, regRowid2); 2301 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2302 } 2303 2304 switch( op ){ 2305 case WINDOW_RETURN_ROW: 2306 csr = p->current.csr; 2307 reg = p->current.reg; 2308 windowReturnOneRow(p); 2309 break; 2310 2311 case WINDOW_AGGINVERSE: 2312 csr = p->start.csr; 2313 reg = p->start.reg; 2314 if( pMWin->regStartRowid ){ 2315 assert( pMWin->regEndRowid ); 2316 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2317 }else{ 2318 windowAggStep(p, pMWin, csr, 1, p->regArg); 2319 } 2320 break; 2321 2322 default: 2323 assert( op==WINDOW_AGGSTEP ); 2324 csr = p->end.csr; 2325 reg = p->end.reg; 2326 if( pMWin->regStartRowid ){ 2327 assert( pMWin->regEndRowid ); 2328 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2329 }else{ 2330 windowAggStep(p, pMWin, csr, 0, p->regArg); 2331 } 2332 break; 2333 } 2334 2335 if( op==p->eDelete ){ 2336 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2337 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2338 } 2339 2340 if( jumpOnEof ){ 2341 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2342 VdbeCoverage(v); 2343 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2344 }else{ 2345 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2346 VdbeCoverage(v); 2347 if( bPeer ){ 2348 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2349 } 2350 } 2351 2352 if( bPeer ){ 2353 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2354 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2355 windowReadPeerValues(p, csr, regTmp); 2356 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2357 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2358 } 2359 2360 if( addrNextRange ){ 2361 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2362 } 2363 sqlite3VdbeResolveLabel(v, lblDone); 2364 return ret; 2365 } 2366 2367 2368 /* 2369 ** Allocate and return a duplicate of the Window object indicated by the 2370 ** third argument. Set the Window.pOwner field of the new object to 2371 ** pOwner. 2372 */ 2373 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2374 Window *pNew = 0; 2375 if( ALWAYS(p) ){ 2376 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2377 if( pNew ){ 2378 pNew->zName = sqlite3DbStrDup(db, p->zName); 2379 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2380 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2381 pNew->pFunc = p->pFunc; 2382 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2383 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2384 pNew->eFrmType = p->eFrmType; 2385 pNew->eEnd = p->eEnd; 2386 pNew->eStart = p->eStart; 2387 pNew->eExclude = p->eExclude; 2388 pNew->regResult = p->regResult; 2389 pNew->regAccum = p->regAccum; 2390 pNew->iArgCol = p->iArgCol; 2391 pNew->iEphCsr = p->iEphCsr; 2392 pNew->bExprArgs = p->bExprArgs; 2393 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2394 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2395 pNew->pOwner = pOwner; 2396 pNew->bImplicitFrame = p->bImplicitFrame; 2397 } 2398 } 2399 return pNew; 2400 } 2401 2402 /* 2403 ** Return a copy of the linked list of Window objects passed as the 2404 ** second argument. 2405 */ 2406 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2407 Window *pWin; 2408 Window *pRet = 0; 2409 Window **pp = &pRet; 2410 2411 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2412 *pp = sqlite3WindowDup(db, 0, pWin); 2413 if( *pp==0 ) break; 2414 pp = &((*pp)->pNextWin); 2415 } 2416 2417 return pRet; 2418 } 2419 2420 /* 2421 ** Return true if it can be determined at compile time that expression 2422 ** pExpr evaluates to a value that, when cast to an integer, is greater 2423 ** than zero. False otherwise. 2424 ** 2425 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2426 ** flag and returns zero. 2427 */ 2428 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2429 int ret = 0; 2430 sqlite3 *db = pParse->db; 2431 sqlite3_value *pVal = 0; 2432 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2433 if( pVal && sqlite3_value_int(pVal)>0 ){ 2434 ret = 1; 2435 } 2436 sqlite3ValueFree(pVal); 2437 return ret; 2438 } 2439 2440 /* 2441 ** sqlite3WhereBegin() has already been called for the SELECT statement 2442 ** passed as the second argument when this function is invoked. It generates 2443 ** code to populate the Window.regResult register for each window function 2444 ** and invoke the sub-routine at instruction addrGosub once for each row. 2445 ** sqlite3WhereEnd() is always called before returning. 2446 ** 2447 ** This function handles several different types of window frames, which 2448 ** require slightly different processing. The following pseudo code is 2449 ** used to implement window frames of the form: 2450 ** 2451 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2452 ** 2453 ** Other window frame types use variants of the following: 2454 ** 2455 ** ... loop started by sqlite3WhereBegin() ... 2456 ** if( new partition ){ 2457 ** Gosub flush 2458 ** } 2459 ** Insert new row into eph table. 2460 ** 2461 ** if( first row of partition ){ 2462 ** // Rewind three cursors, all open on the eph table. 2463 ** Rewind(csrEnd); 2464 ** Rewind(csrStart); 2465 ** Rewind(csrCurrent); 2466 ** 2467 ** regEnd = <expr2> // FOLLOWING expression 2468 ** regStart = <expr1> // PRECEDING expression 2469 ** }else{ 2470 ** // First time this branch is taken, the eph table contains two 2471 ** // rows. The first row in the partition, which all three cursors 2472 ** // currently point to, and the following row. 2473 ** AGGSTEP 2474 ** if( (regEnd--)<=0 ){ 2475 ** RETURN_ROW 2476 ** if( (regStart--)<=0 ){ 2477 ** AGGINVERSE 2478 ** } 2479 ** } 2480 ** } 2481 ** } 2482 ** flush: 2483 ** AGGSTEP 2484 ** while( 1 ){ 2485 ** RETURN ROW 2486 ** if( csrCurrent is EOF ) break; 2487 ** if( (regStart--)<=0 ){ 2488 ** AggInverse(csrStart) 2489 ** Next(csrStart) 2490 ** } 2491 ** } 2492 ** 2493 ** The pseudo-code above uses the following shorthand: 2494 ** 2495 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2496 ** with arguments read from the current row of cursor csrEnd, then 2497 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2498 ** 2499 ** RETURN_ROW: return a row to the caller based on the contents of the 2500 ** current row of csrCurrent and the current state of all 2501 ** aggregates. Then step cursor csrCurrent forward one row. 2502 ** 2503 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2504 ** functions with arguments read from the current row of cursor 2505 ** csrStart. Then step csrStart forward one row. 2506 ** 2507 ** There are two other ROWS window frames that are handled significantly 2508 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2509 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2510 ** cases because they change the order in which the three cursors (csrStart, 2511 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2512 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2513 ** three. 2514 ** 2515 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2516 ** 2517 ** ... loop started by sqlite3WhereBegin() ... 2518 ** if( new partition ){ 2519 ** Gosub flush 2520 ** } 2521 ** Insert new row into eph table. 2522 ** if( first row of partition ){ 2523 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2524 ** regEnd = <expr2> 2525 ** regStart = <expr1> 2526 ** }else{ 2527 ** if( (regEnd--)<=0 ){ 2528 ** AGGSTEP 2529 ** } 2530 ** RETURN_ROW 2531 ** if( (regStart--)<=0 ){ 2532 ** AGGINVERSE 2533 ** } 2534 ** } 2535 ** } 2536 ** flush: 2537 ** if( (regEnd--)<=0 ){ 2538 ** AGGSTEP 2539 ** } 2540 ** RETURN_ROW 2541 ** 2542 ** 2543 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2544 ** 2545 ** ... loop started by sqlite3WhereBegin() ... 2546 ** if( new partition ){ 2547 ** Gosub flush 2548 ** } 2549 ** Insert new row into eph table. 2550 ** if( first row of partition ){ 2551 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2552 ** regEnd = <expr2> 2553 ** regStart = regEnd - <expr1> 2554 ** }else{ 2555 ** AGGSTEP 2556 ** if( (regEnd--)<=0 ){ 2557 ** RETURN_ROW 2558 ** } 2559 ** if( (regStart--)<=0 ){ 2560 ** AGGINVERSE 2561 ** } 2562 ** } 2563 ** } 2564 ** flush: 2565 ** AGGSTEP 2566 ** while( 1 ){ 2567 ** if( (regEnd--)<=0 ){ 2568 ** RETURN_ROW 2569 ** if( eof ) break; 2570 ** } 2571 ** if( (regStart--)<=0 ){ 2572 ** AGGINVERSE 2573 ** if( eof ) break 2574 ** } 2575 ** } 2576 ** while( !eof csrCurrent ){ 2577 ** RETURN_ROW 2578 ** } 2579 ** 2580 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2581 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2582 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2583 ** This is optimized of course - branches that will never be taken and 2584 ** conditions that are always true are omitted from the VM code. The only 2585 ** exceptional case is: 2586 ** 2587 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2588 ** 2589 ** ... loop started by sqlite3WhereBegin() ... 2590 ** if( new partition ){ 2591 ** Gosub flush 2592 ** } 2593 ** Insert new row into eph table. 2594 ** if( first row of partition ){ 2595 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2596 ** regStart = <expr1> 2597 ** }else{ 2598 ** AGGSTEP 2599 ** } 2600 ** } 2601 ** flush: 2602 ** AGGSTEP 2603 ** while( 1 ){ 2604 ** if( (regStart--)<=0 ){ 2605 ** AGGINVERSE 2606 ** if( eof ) break 2607 ** } 2608 ** RETURN_ROW 2609 ** } 2610 ** while( !eof csrCurrent ){ 2611 ** RETURN_ROW 2612 ** } 2613 ** 2614 ** Also requiring special handling are the cases: 2615 ** 2616 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2617 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2618 ** 2619 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2620 ** To handle this case, the pseudo-code programs depicted above are modified 2621 ** slightly to be: 2622 ** 2623 ** ... loop started by sqlite3WhereBegin() ... 2624 ** if( new partition ){ 2625 ** Gosub flush 2626 ** } 2627 ** Insert new row into eph table. 2628 ** if( first row of partition ){ 2629 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2630 ** regEnd = <expr2> 2631 ** regStart = <expr1> 2632 ** if( regEnd < regStart ){ 2633 ** RETURN_ROW 2634 ** delete eph table contents 2635 ** continue 2636 ** } 2637 ** ... 2638 ** 2639 ** The new "continue" statement in the above jumps to the next iteration 2640 ** of the outer loop - the one started by sqlite3WhereBegin(). 2641 ** 2642 ** The various GROUPS cases are implemented using the same patterns as 2643 ** ROWS. The VM code is modified slightly so that: 2644 ** 2645 ** 1. The else branch in the main loop is only taken if the row just 2646 ** added to the ephemeral table is the start of a new group. In 2647 ** other words, it becomes: 2648 ** 2649 ** ... loop started by sqlite3WhereBegin() ... 2650 ** if( new partition ){ 2651 ** Gosub flush 2652 ** } 2653 ** Insert new row into eph table. 2654 ** if( first row of partition ){ 2655 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2656 ** regEnd = <expr2> 2657 ** regStart = <expr1> 2658 ** }else if( new group ){ 2659 ** ... 2660 ** } 2661 ** } 2662 ** 2663 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2664 ** AGGINVERSE step processes the current row of the relevant cursor and 2665 ** all subsequent rows belonging to the same group. 2666 ** 2667 ** RANGE window frames are a little different again. As for GROUPS, the 2668 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2669 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2670 ** basic cases: 2671 ** 2672 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2673 ** 2674 ** ... loop started by sqlite3WhereBegin() ... 2675 ** if( new partition ){ 2676 ** Gosub flush 2677 ** } 2678 ** Insert new row into eph table. 2679 ** if( first row of partition ){ 2680 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2681 ** regEnd = <expr2> 2682 ** regStart = <expr1> 2683 ** }else{ 2684 ** AGGSTEP 2685 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2686 ** RETURN_ROW 2687 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2688 ** AGGINVERSE 2689 ** } 2690 ** } 2691 ** } 2692 ** } 2693 ** flush: 2694 ** AGGSTEP 2695 ** while( 1 ){ 2696 ** RETURN ROW 2697 ** if( csrCurrent is EOF ) break; 2698 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2699 ** AGGINVERSE 2700 ** } 2701 ** } 2702 ** } 2703 ** 2704 ** In the above notation, "csr.key" means the current value of the ORDER BY 2705 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2706 ** or <expr PRECEDING) read from cursor csr. 2707 ** 2708 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2709 ** 2710 ** ... loop started by sqlite3WhereBegin() ... 2711 ** if( new partition ){ 2712 ** Gosub flush 2713 ** } 2714 ** Insert new row into eph table. 2715 ** if( first row of partition ){ 2716 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2717 ** regEnd = <expr2> 2718 ** regStart = <expr1> 2719 ** }else{ 2720 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2721 ** AGGSTEP 2722 ** } 2723 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2724 ** AGGINVERSE 2725 ** } 2726 ** RETURN_ROW 2727 ** } 2728 ** } 2729 ** flush: 2730 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2731 ** AGGSTEP 2732 ** } 2733 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2734 ** AGGINVERSE 2735 ** } 2736 ** RETURN_ROW 2737 ** 2738 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2739 ** 2740 ** ... loop started by sqlite3WhereBegin() ... 2741 ** if( new partition ){ 2742 ** Gosub flush 2743 ** } 2744 ** Insert new row into eph table. 2745 ** if( first row of partition ){ 2746 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2747 ** regEnd = <expr2> 2748 ** regStart = <expr1> 2749 ** }else{ 2750 ** AGGSTEP 2751 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2752 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2753 ** AGGINVERSE 2754 ** } 2755 ** RETURN_ROW 2756 ** } 2757 ** } 2758 ** } 2759 ** flush: 2760 ** AGGSTEP 2761 ** while( 1 ){ 2762 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2763 ** AGGINVERSE 2764 ** if( eof ) break "while( 1 )" loop. 2765 ** } 2766 ** RETURN_ROW 2767 ** } 2768 ** while( !eof csrCurrent ){ 2769 ** RETURN_ROW 2770 ** } 2771 ** 2772 ** The text above leaves out many details. Refer to the code and comments 2773 ** below for a more complete picture. 2774 */ 2775 void sqlite3WindowCodeStep( 2776 Parse *pParse, /* Parse context */ 2777 Select *p, /* Rewritten SELECT statement */ 2778 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2779 int regGosub, /* Register for OP_Gosub */ 2780 int addrGosub /* OP_Gosub here to return each row */ 2781 ){ 2782 Window *pMWin = p->pWin; 2783 ExprList *pOrderBy = pMWin->pOrderBy; 2784 Vdbe *v = sqlite3GetVdbe(pParse); 2785 int csrWrite; /* Cursor used to write to eph. table */ 2786 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2787 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2788 int iInput; /* To iterate through sub cols */ 2789 int addrNe; /* Address of OP_Ne */ 2790 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2791 int addrInteger = 0; /* Address of OP_Integer */ 2792 int addrEmpty; /* Address of OP_Rewind in flush: */ 2793 int regNew; /* Array of registers holding new input row */ 2794 int regRecord; /* regNew array in record form */ 2795 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2796 int regPeer = 0; /* Peer values for current row */ 2797 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2798 WindowCodeArg s; /* Context object for sub-routines */ 2799 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2800 int regStart = 0; /* Value of <expr> PRECEDING */ 2801 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2802 2803 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2804 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2805 ); 2806 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2807 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2808 ); 2809 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2810 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2811 || pMWin->eExclude==TK_NO 2812 ); 2813 2814 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2815 2816 /* Fill in the context object */ 2817 memset(&s, 0, sizeof(WindowCodeArg)); 2818 s.pParse = pParse; 2819 s.pMWin = pMWin; 2820 s.pVdbe = v; 2821 s.regGosub = regGosub; 2822 s.addrGosub = addrGosub; 2823 s.current.csr = pMWin->iEphCsr; 2824 csrWrite = s.current.csr+1; 2825 s.start.csr = s.current.csr+2; 2826 s.end.csr = s.current.csr+3; 2827 2828 /* Figure out when rows may be deleted from the ephemeral table. There 2829 ** are four options - they may never be deleted (eDelete==0), they may 2830 ** be deleted as soon as they are no longer part of the window frame 2831 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2832 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2833 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2834 switch( pMWin->eStart ){ 2835 case TK_FOLLOWING: 2836 if( pMWin->eFrmType!=TK_RANGE 2837 && windowExprGtZero(pParse, pMWin->pStart) 2838 ){ 2839 s.eDelete = WINDOW_RETURN_ROW; 2840 } 2841 break; 2842 case TK_UNBOUNDED: 2843 if( windowCacheFrame(pMWin)==0 ){ 2844 if( pMWin->eEnd==TK_PRECEDING ){ 2845 if( pMWin->eFrmType!=TK_RANGE 2846 && windowExprGtZero(pParse, pMWin->pEnd) 2847 ){ 2848 s.eDelete = WINDOW_AGGSTEP; 2849 } 2850 }else{ 2851 s.eDelete = WINDOW_RETURN_ROW; 2852 } 2853 } 2854 break; 2855 default: 2856 s.eDelete = WINDOW_AGGINVERSE; 2857 break; 2858 } 2859 2860 /* Allocate registers for the array of values from the sub-query, the 2861 ** samve values in record form, and the rowid used to insert said record 2862 ** into the ephemeral table. */ 2863 regNew = pParse->nMem+1; 2864 pParse->nMem += nInput; 2865 regRecord = ++pParse->nMem; 2866 s.regRowid = ++pParse->nMem; 2867 2868 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2869 ** clause, allocate registers to store the results of evaluating each 2870 ** <expr>. */ 2871 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2872 regStart = ++pParse->nMem; 2873 } 2874 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2875 regEnd = ++pParse->nMem; 2876 } 2877 2878 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2879 ** registers to store copies of the ORDER BY expressions (peer values) 2880 ** for the main loop, and for each cursor (start, current and end). */ 2881 if( pMWin->eFrmType!=TK_ROWS ){ 2882 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2883 regNewPeer = regNew + pMWin->nBufferCol; 2884 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2885 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2886 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2887 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2888 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2889 } 2890 2891 /* Load the column values for the row returned by the sub-select 2892 ** into an array of registers starting at regNew. Assemble them into 2893 ** a record in register regRecord. */ 2894 for(iInput=0; iInput<nInput; iInput++){ 2895 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2896 } 2897 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2898 2899 /* An input row has just been read into an array of registers starting 2900 ** at regNew. If the window has a PARTITION clause, this block generates 2901 ** VM code to check if the input row is the start of a new partition. 2902 ** If so, it does an OP_Gosub to an address to be filled in later. The 2903 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2904 if( pMWin->pPartition ){ 2905 int addr; 2906 ExprList *pPart = pMWin->pPartition; 2907 int nPart = pPart->nExpr; 2908 int regNewPart = regNew + pMWin->nBufferCol; 2909 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2910 2911 regFlushPart = ++pParse->nMem; 2912 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2913 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2914 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2915 VdbeCoverageEqNe(v); 2916 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2917 VdbeComment((v, "call flush_partition")); 2918 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2919 } 2920 2921 /* Insert the new row into the ephemeral table */ 2922 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid); 2923 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid); 2924 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid); 2925 VdbeCoverageNeverNull(v); 2926 2927 /* This block is run for the first row of each partition */ 2928 s.regArg = windowInitAccum(pParse, pMWin); 2929 2930 if( regStart ){ 2931 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2932 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2933 } 2934 if( regEnd ){ 2935 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2936 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2937 } 2938 2939 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2940 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2941 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2942 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2943 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2944 windowAggFinal(&s, 0); 2945 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2946 VdbeCoverageNeverTaken(v); 2947 windowReturnOneRow(&s); 2948 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2949 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2950 sqlite3VdbeJumpHere(v, addrGe); 2951 } 2952 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2953 assert( pMWin->eEnd==TK_FOLLOWING ); 2954 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2955 } 2956 2957 if( pMWin->eStart!=TK_UNBOUNDED ){ 2958 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2959 VdbeCoverageNeverTaken(v); 2960 } 2961 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2962 VdbeCoverageNeverTaken(v); 2963 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2964 VdbeCoverageNeverTaken(v); 2965 if( regPeer && pOrderBy ){ 2966 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2967 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2968 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2969 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2970 } 2971 2972 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2973 2974 sqlite3VdbeJumpHere(v, addrNe); 2975 2976 /* Beginning of the block executed for the second and subsequent rows. */ 2977 if( regPeer ){ 2978 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2979 } 2980 if( pMWin->eStart==TK_FOLLOWING ){ 2981 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2982 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2983 if( pMWin->eFrmType==TK_RANGE ){ 2984 int lbl = sqlite3VdbeMakeLabel(pParse); 2985 int addrNext = sqlite3VdbeCurrentAddr(v); 2986 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2987 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2988 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2989 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2990 sqlite3VdbeResolveLabel(v, lbl); 2991 }else{ 2992 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2993 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2994 } 2995 } 2996 }else 2997 if( pMWin->eEnd==TK_PRECEDING ){ 2998 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2999 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3000 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3001 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3002 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3003 }else{ 3004 int addr = 0; 3005 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3006 if( pMWin->eEnd!=TK_UNBOUNDED ){ 3007 if( pMWin->eFrmType==TK_RANGE ){ 3008 int lbl = 0; 3009 addr = sqlite3VdbeCurrentAddr(v); 3010 if( regEnd ){ 3011 lbl = sqlite3VdbeMakeLabel(pParse); 3012 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 3013 } 3014 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3015 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3016 if( regEnd ){ 3017 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 3018 sqlite3VdbeResolveLabel(v, lbl); 3019 } 3020 }else{ 3021 if( regEnd ){ 3022 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 3023 VdbeCoverage(v); 3024 } 3025 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3026 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3027 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 3028 } 3029 } 3030 } 3031 3032 /* End of the main input loop */ 3033 sqlite3VdbeResolveLabel(v, lblWhereEnd); 3034 sqlite3WhereEnd(pWInfo); 3035 3036 /* Fall through */ 3037 if( pMWin->pPartition ){ 3038 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 3039 sqlite3VdbeJumpHere(v, addrGosubFlush); 3040 } 3041 3042 s.regRowid = 0; 3043 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 3044 VdbeCoverage(v); 3045 if( pMWin->eEnd==TK_PRECEDING ){ 3046 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 3047 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3048 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3049 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3050 }else if( pMWin->eStart==TK_FOLLOWING ){ 3051 int addrStart; 3052 int addrBreak1; 3053 int addrBreak2; 3054 int addrBreak3; 3055 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3056 if( pMWin->eFrmType==TK_RANGE ){ 3057 addrStart = sqlite3VdbeCurrentAddr(v); 3058 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3059 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3060 }else 3061 if( pMWin->eEnd==TK_UNBOUNDED ){ 3062 addrStart = sqlite3VdbeCurrentAddr(v); 3063 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3064 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3065 }else{ 3066 assert( pMWin->eEnd==TK_FOLLOWING ); 3067 addrStart = sqlite3VdbeCurrentAddr(v); 3068 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3069 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3070 } 3071 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3072 sqlite3VdbeJumpHere(v, addrBreak2); 3073 addrStart = sqlite3VdbeCurrentAddr(v); 3074 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3075 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3076 sqlite3VdbeJumpHere(v, addrBreak1); 3077 sqlite3VdbeJumpHere(v, addrBreak3); 3078 }else{ 3079 int addrBreak; 3080 int addrStart; 3081 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3082 addrStart = sqlite3VdbeCurrentAddr(v); 3083 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3084 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3085 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3086 sqlite3VdbeJumpHere(v, addrBreak); 3087 } 3088 sqlite3VdbeJumpHere(v, addrEmpty); 3089 3090 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3091 if( pMWin->pPartition ){ 3092 if( pMWin->regStartRowid ){ 3093 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3094 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3095 } 3096 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3097 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3098 } 3099 } 3100 3101 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3102