1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* no break */ deliberate_fall_through 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( p->pSub ){ 792 int i; 793 for(i=0; i<p->pSub->nExpr; i++){ 794 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 795 iCol = i; 796 break; 797 } 798 } 799 } 800 if( iCol<0 ){ 801 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 802 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 803 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 804 } 805 if( p->pSub ){ 806 int f = pExpr->flags & EP_Collate; 807 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 808 ExprSetProperty(pExpr, EP_Static); 809 sqlite3ExprDelete(pParse->db, pExpr); 810 ExprClearProperty(pExpr, EP_Static); 811 memset(pExpr, 0, sizeof(Expr)); 812 813 pExpr->op = TK_COLUMN; 814 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 815 pExpr->iTable = p->pWin->iEphCsr; 816 pExpr->y.pTab = p->pTab; 817 pExpr->flags = f; 818 } 819 if( pParse->db->mallocFailed ) return WRC_Abort; 820 break; 821 } 822 823 default: /* no-op */ 824 break; 825 } 826 827 return WRC_Continue; 828 } 829 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 830 struct WindowRewrite *p = pWalker->u.pRewrite; 831 Select *pSave = p->pSubSelect; 832 if( pSave==pSelect ){ 833 return WRC_Continue; 834 }else{ 835 p->pSubSelect = pSelect; 836 sqlite3WalkSelect(pWalker, pSelect); 837 p->pSubSelect = pSave; 838 } 839 return WRC_Prune; 840 } 841 842 843 /* 844 ** Iterate through each expression in expression-list pEList. For each: 845 ** 846 ** * TK_COLUMN, 847 ** * aggregate function, or 848 ** * window function with a Window object that is not a member of the 849 ** Window list passed as the second argument (pWin). 850 ** 851 ** Append the node to output expression-list (*ppSub). And replace it 852 ** with a TK_COLUMN that reads the (N-1)th element of table 853 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 854 ** appending the new one. 855 */ 856 static void selectWindowRewriteEList( 857 Parse *pParse, 858 Window *pWin, 859 SrcList *pSrc, 860 ExprList *pEList, /* Rewrite expressions in this list */ 861 Table *pTab, 862 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 863 ){ 864 Walker sWalker; 865 WindowRewrite sRewrite; 866 867 assert( pWin!=0 ); 868 memset(&sWalker, 0, sizeof(Walker)); 869 memset(&sRewrite, 0, sizeof(WindowRewrite)); 870 871 sRewrite.pSub = *ppSub; 872 sRewrite.pWin = pWin; 873 sRewrite.pSrc = pSrc; 874 sRewrite.pTab = pTab; 875 876 sWalker.pParse = pParse; 877 sWalker.xExprCallback = selectWindowRewriteExprCb; 878 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 879 sWalker.u.pRewrite = &sRewrite; 880 881 (void)sqlite3WalkExprList(&sWalker, pEList); 882 883 *ppSub = sRewrite.pSub; 884 } 885 886 /* 887 ** Append a copy of each expression in expression-list pAppend to 888 ** expression list pList. Return a pointer to the result list. 889 */ 890 static ExprList *exprListAppendList( 891 Parse *pParse, /* Parsing context */ 892 ExprList *pList, /* List to which to append. Might be NULL */ 893 ExprList *pAppend, /* List of values to append. Might be NULL */ 894 int bIntToNull 895 ){ 896 if( pAppend ){ 897 int i; 898 int nInit = pList ? pList->nExpr : 0; 899 for(i=0; i<pAppend->nExpr; i++){ 900 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); 901 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 902 if( bIntToNull && pDup ){ 903 int iDummy; 904 Expr *pSub; 905 for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){ 906 assert( pSub ); 907 } 908 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 909 pSub->op = TK_NULL; 910 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 911 pSub->u.zToken = 0; 912 } 913 } 914 pList = sqlite3ExprListAppend(pParse, pList, pDup); 915 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 916 } 917 } 918 return pList; 919 } 920 921 /* 922 ** When rewriting a query, if the new subquery in the FROM clause 923 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 924 ** then we have to increase the Expr->op2 values of those nodes 925 ** due to the extra subquery layer that was added. 926 ** 927 ** See also the incrAggDepth() routine in resolve.c 928 */ 929 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 930 if( pExpr->op==TK_AGG_FUNCTION 931 && pExpr->op2>=pWalker->walkerDepth 932 ){ 933 pExpr->op2++; 934 } 935 return WRC_Continue; 936 } 937 938 /* 939 ** If the SELECT statement passed as the second argument does not invoke 940 ** any SQL window functions, this function is a no-op. Otherwise, it 941 ** rewrites the SELECT statement so that window function xStep functions 942 ** are invoked in the correct order as described under "SELECT REWRITING" 943 ** at the top of this file. 944 */ 945 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 946 int rc = SQLITE_OK; 947 if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){ 948 Vdbe *v = sqlite3GetVdbe(pParse); 949 sqlite3 *db = pParse->db; 950 Select *pSub = 0; /* The subquery */ 951 SrcList *pSrc = p->pSrc; 952 Expr *pWhere = p->pWhere; 953 ExprList *pGroupBy = p->pGroupBy; 954 Expr *pHaving = p->pHaving; 955 ExprList *pSort = 0; 956 957 ExprList *pSublist = 0; /* Expression list for sub-query */ 958 Window *pMWin = p->pWin; /* Main window object */ 959 Window *pWin; /* Window object iterator */ 960 Table *pTab; 961 Walker w; 962 963 u32 selFlags = p->selFlags; 964 965 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 966 if( pTab==0 ){ 967 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 968 } 969 sqlite3AggInfoPersistWalkerInit(&w, pParse); 970 sqlite3WalkSelect(&w, p); 971 972 p->pSrc = 0; 973 p->pWhere = 0; 974 p->pGroupBy = 0; 975 p->pHaving = 0; 976 p->selFlags &= ~SF_Aggregate; 977 p->selFlags |= SF_WinRewrite; 978 979 /* Create the ORDER BY clause for the sub-select. This is the concatenation 980 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 981 ** redundant, remove the ORDER BY from the parent SELECT. */ 982 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 983 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 984 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 985 int nSave = pSort->nExpr; 986 pSort->nExpr = p->pOrderBy->nExpr; 987 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 988 sqlite3ExprListDelete(db, p->pOrderBy); 989 p->pOrderBy = 0; 990 } 991 pSort->nExpr = nSave; 992 } 993 994 /* Assign a cursor number for the ephemeral table used to buffer rows. 995 ** The OpenEphemeral instruction is coded later, after it is known how 996 ** many columns the table will have. */ 997 pMWin->iEphCsr = pParse->nTab++; 998 pParse->nTab += 3; 999 1000 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 1001 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1002 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1003 1004 /* Append the PARTITION BY and ORDER BY expressions to the to the 1005 ** sub-select expression list. They are required to figure out where 1006 ** boundaries for partitions and sets of peer rows lie. */ 1007 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1008 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1009 1010 /* Append the arguments passed to each window function to the 1011 ** sub-select expression list. Also allocate two registers for each 1012 ** window function - one for the accumulator, another for interim 1013 ** results. */ 1014 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1015 ExprList *pArgs = pWin->pOwner->x.pList; 1016 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1017 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1018 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1019 pWin->bExprArgs = 1; 1020 }else{ 1021 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1022 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1023 } 1024 if( pWin->pFilter ){ 1025 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1026 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1027 } 1028 pWin->regAccum = ++pParse->nMem; 1029 pWin->regResult = ++pParse->nMem; 1030 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1031 } 1032 1033 /* If there is no ORDER BY or PARTITION BY clause, and the window 1034 ** function accepts zero arguments, and there are no other columns 1035 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1036 ** that pSublist is still NULL here. Add a constant expression here to 1037 ** keep everything legal in this case. 1038 */ 1039 if( pSublist==0 ){ 1040 pSublist = sqlite3ExprListAppend(pParse, 0, 1041 sqlite3Expr(db, TK_INTEGER, "0") 1042 ); 1043 } 1044 1045 pSub = sqlite3SelectNew( 1046 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1047 ); 1048 SELECTTRACE(1,pParse,pSub, 1049 ("New window-function subquery in FROM clause of (%u/%p)\n", 1050 p->selId, p)); 1051 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1052 if( p->pSrc ){ 1053 Table *pTab2; 1054 p->pSrc->a[0].pSelect = pSub; 1055 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1056 pSub->selFlags |= SF_Expanded; 1057 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1058 pSub->selFlags |= (selFlags & SF_Aggregate); 1059 if( pTab2==0 ){ 1060 /* Might actually be some other kind of error, but in that case 1061 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1062 ** the correct error message regardless. */ 1063 rc = SQLITE_NOMEM; 1064 }else{ 1065 memcpy(pTab, pTab2, sizeof(Table)); 1066 pTab->tabFlags |= TF_Ephemeral; 1067 p->pSrc->a[0].pTab = pTab; 1068 pTab = pTab2; 1069 memset(&w, 0, sizeof(w)); 1070 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1071 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1072 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1073 sqlite3WalkSelect(&w, pSub); 1074 } 1075 }else{ 1076 sqlite3SelectDelete(db, pSub); 1077 } 1078 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1079 sqlite3DbFree(db, pTab); 1080 } 1081 1082 if( rc ){ 1083 if( pParse->nErr==0 ){ 1084 assert( pParse->db->mallocFailed ); 1085 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1086 } 1087 } 1088 return rc; 1089 } 1090 1091 /* 1092 ** Unlink the Window object from the Select to which it is attached, 1093 ** if it is attached. 1094 */ 1095 void sqlite3WindowUnlinkFromSelect(Window *p){ 1096 if( p->ppThis ){ 1097 *p->ppThis = p->pNextWin; 1098 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1099 p->ppThis = 0; 1100 } 1101 } 1102 1103 /* 1104 ** Free the Window object passed as the second argument. 1105 */ 1106 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1107 if( p ){ 1108 sqlite3WindowUnlinkFromSelect(p); 1109 sqlite3ExprDelete(db, p->pFilter); 1110 sqlite3ExprListDelete(db, p->pPartition); 1111 sqlite3ExprListDelete(db, p->pOrderBy); 1112 sqlite3ExprDelete(db, p->pEnd); 1113 sqlite3ExprDelete(db, p->pStart); 1114 sqlite3DbFree(db, p->zName); 1115 sqlite3DbFree(db, p->zBase); 1116 sqlite3DbFree(db, p); 1117 } 1118 } 1119 1120 /* 1121 ** Free the linked list of Window objects starting at the second argument. 1122 */ 1123 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1124 while( p ){ 1125 Window *pNext = p->pNextWin; 1126 sqlite3WindowDelete(db, p); 1127 p = pNext; 1128 } 1129 } 1130 1131 /* 1132 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1133 ** value should be a non-negative integer. If the value is not a 1134 ** constant, change it to NULL. The fact that it is then a non-negative 1135 ** integer will be caught later. But it is important not to leave 1136 ** variable values in the expression tree. 1137 */ 1138 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1139 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1140 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1141 sqlite3ExprDelete(pParse->db, pExpr); 1142 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1143 } 1144 return pExpr; 1145 } 1146 1147 /* 1148 ** Allocate and return a new Window object describing a Window Definition. 1149 */ 1150 Window *sqlite3WindowAlloc( 1151 Parse *pParse, /* Parsing context */ 1152 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1153 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1154 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1155 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1156 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1157 u8 eExclude /* EXCLUDE clause */ 1158 ){ 1159 Window *pWin = 0; 1160 int bImplicitFrame = 0; 1161 1162 /* Parser assures the following: */ 1163 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1164 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1165 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1166 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1167 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1168 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1169 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1170 1171 if( eType==0 ){ 1172 bImplicitFrame = 1; 1173 eType = TK_RANGE; 1174 } 1175 1176 /* Additionally, the 1177 ** starting boundary type may not occur earlier in the following list than 1178 ** the ending boundary type: 1179 ** 1180 ** UNBOUNDED PRECEDING 1181 ** <expr> PRECEDING 1182 ** CURRENT ROW 1183 ** <expr> FOLLOWING 1184 ** UNBOUNDED FOLLOWING 1185 ** 1186 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1187 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1188 ** frame boundary. 1189 */ 1190 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1191 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1192 ){ 1193 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1194 goto windowAllocErr; 1195 } 1196 1197 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1198 if( pWin==0 ) goto windowAllocErr; 1199 pWin->eFrmType = eType; 1200 pWin->eStart = eStart; 1201 pWin->eEnd = eEnd; 1202 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1203 eExclude = TK_NO; 1204 } 1205 pWin->eExclude = eExclude; 1206 pWin->bImplicitFrame = bImplicitFrame; 1207 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1208 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1209 return pWin; 1210 1211 windowAllocErr: 1212 sqlite3ExprDelete(pParse->db, pEnd); 1213 sqlite3ExprDelete(pParse->db, pStart); 1214 return 0; 1215 } 1216 1217 /* 1218 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1219 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1220 ** equivalent nul-terminated string. 1221 */ 1222 Window *sqlite3WindowAssemble( 1223 Parse *pParse, 1224 Window *pWin, 1225 ExprList *pPartition, 1226 ExprList *pOrderBy, 1227 Token *pBase 1228 ){ 1229 if( pWin ){ 1230 pWin->pPartition = pPartition; 1231 pWin->pOrderBy = pOrderBy; 1232 if( pBase ){ 1233 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1234 } 1235 }else{ 1236 sqlite3ExprListDelete(pParse->db, pPartition); 1237 sqlite3ExprListDelete(pParse->db, pOrderBy); 1238 } 1239 return pWin; 1240 } 1241 1242 /* 1243 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1244 ** is the base window. Earlier windows from the same WINDOW clause are 1245 ** stored in the linked list starting at pWin->pNextWin. This function 1246 ** either updates *pWin according to the base specification, or else 1247 ** leaves an error in pParse. 1248 */ 1249 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1250 if( pWin->zBase ){ 1251 sqlite3 *db = pParse->db; 1252 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1253 if( pExist ){ 1254 const char *zErr = 0; 1255 /* Check for errors */ 1256 if( pWin->pPartition ){ 1257 zErr = "PARTITION clause"; 1258 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1259 zErr = "ORDER BY clause"; 1260 }else if( pExist->bImplicitFrame==0 ){ 1261 zErr = "frame specification"; 1262 } 1263 if( zErr ){ 1264 sqlite3ErrorMsg(pParse, 1265 "cannot override %s of window: %s", zErr, pWin->zBase 1266 ); 1267 }else{ 1268 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1269 if( pExist->pOrderBy ){ 1270 assert( pWin->pOrderBy==0 ); 1271 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1272 } 1273 sqlite3DbFree(db, pWin->zBase); 1274 pWin->zBase = 0; 1275 } 1276 } 1277 } 1278 } 1279 1280 /* 1281 ** Attach window object pWin to expression p. 1282 */ 1283 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1284 if( p ){ 1285 assert( p->op==TK_FUNCTION ); 1286 assert( pWin ); 1287 p->y.pWin = pWin; 1288 ExprSetProperty(p, EP_WinFunc); 1289 pWin->pOwner = p; 1290 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1291 sqlite3ErrorMsg(pParse, 1292 "DISTINCT is not supported for window functions" 1293 ); 1294 } 1295 }else{ 1296 sqlite3WindowDelete(pParse->db, pWin); 1297 } 1298 } 1299 1300 /* 1301 ** Possibly link window pWin into the list at pSel->pWin (window functions 1302 ** to be processed as part of SELECT statement pSel). The window is linked 1303 ** in if either (a) there are no other windows already linked to this 1304 ** SELECT, or (b) the windows already linked use a compatible window frame. 1305 */ 1306 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1307 if( pSel ){ 1308 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ 1309 pWin->pNextWin = pSel->pWin; 1310 if( pSel->pWin ){ 1311 pSel->pWin->ppThis = &pWin->pNextWin; 1312 } 1313 pSel->pWin = pWin; 1314 pWin->ppThis = &pSel->pWin; 1315 }else{ 1316 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ 1317 pSel->selFlags |= SF_MultiPart; 1318 } 1319 } 1320 } 1321 } 1322 1323 /* 1324 ** Return 0 if the two window objects are identical, 1 if they are 1325 ** different, or 2 if it cannot be determined if the objects are identical 1326 ** or not. Identical window objects can be processed in a single scan. 1327 */ 1328 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1329 int res; 1330 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1331 if( p1->eFrmType!=p2->eFrmType ) return 1; 1332 if( p1->eStart!=p2->eStart ) return 1; 1333 if( p1->eEnd!=p2->eEnd ) return 1; 1334 if( p1->eExclude!=p2->eExclude ) return 1; 1335 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1336 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1337 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1338 return res; 1339 } 1340 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1341 return res; 1342 } 1343 if( bFilter ){ 1344 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1345 return res; 1346 } 1347 } 1348 return 0; 1349 } 1350 1351 1352 /* 1353 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1354 ** to begin iterating through the sub-query results. It is used to allocate 1355 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1356 */ 1357 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1358 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1359 Window *pMWin = pSelect->pWin; 1360 Window *pWin; 1361 Vdbe *v = sqlite3GetVdbe(pParse); 1362 1363 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1364 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1365 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1366 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1367 1368 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1369 ** said registers to NULL. */ 1370 if( pMWin->pPartition ){ 1371 int nExpr = pMWin->pPartition->nExpr; 1372 pMWin->regPart = pParse->nMem+1; 1373 pParse->nMem += nExpr; 1374 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1375 } 1376 1377 pMWin->regOne = ++pParse->nMem; 1378 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1379 1380 if( pMWin->eExclude ){ 1381 pMWin->regStartRowid = ++pParse->nMem; 1382 pMWin->regEndRowid = ++pParse->nMem; 1383 pMWin->csrApp = pParse->nTab++; 1384 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1385 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1386 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1387 return; 1388 } 1389 1390 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1391 FuncDef *p = pWin->pFunc; 1392 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1393 /* The inline versions of min() and max() require a single ephemeral 1394 ** table and 3 registers. The registers are used as follows: 1395 ** 1396 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1397 ** regApp+1: integer value used to ensure keys are unique 1398 ** regApp+2: output of MakeRecord 1399 */ 1400 ExprList *pList = pWin->pOwner->x.pList; 1401 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1402 pWin->csrApp = pParse->nTab++; 1403 pWin->regApp = pParse->nMem+1; 1404 pParse->nMem += 3; 1405 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1406 assert( pKeyInfo->aSortFlags[0]==0 ); 1407 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1408 } 1409 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1410 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1411 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1412 } 1413 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1414 /* Allocate two registers at pWin->regApp. These will be used to 1415 ** store the start and end index of the current frame. */ 1416 pWin->regApp = pParse->nMem+1; 1417 pWin->csrApp = pParse->nTab++; 1418 pParse->nMem += 2; 1419 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1420 } 1421 else if( p->zName==leadName || p->zName==lagName ){ 1422 pWin->csrApp = pParse->nTab++; 1423 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1424 } 1425 } 1426 } 1427 1428 #define WINDOW_STARTING_INT 0 1429 #define WINDOW_ENDING_INT 1 1430 #define WINDOW_NTH_VALUE_INT 2 1431 #define WINDOW_STARTING_NUM 3 1432 #define WINDOW_ENDING_NUM 4 1433 1434 /* 1435 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1436 ** value of the second argument to nth_value() (eCond==2) has just been 1437 ** evaluated and the result left in register reg. This function generates VM 1438 ** code to check that the value is a non-negative integer and throws an 1439 ** exception if it is not. 1440 */ 1441 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1442 static const char *azErr[] = { 1443 "frame starting offset must be a non-negative integer", 1444 "frame ending offset must be a non-negative integer", 1445 "second argument to nth_value must be a positive integer", 1446 "frame starting offset must be a non-negative number", 1447 "frame ending offset must be a non-negative number", 1448 }; 1449 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1450 Vdbe *v = sqlite3GetVdbe(pParse); 1451 int regZero = sqlite3GetTempReg(pParse); 1452 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1453 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1454 if( eCond>=WINDOW_STARTING_NUM ){ 1455 int regString = sqlite3GetTempReg(pParse); 1456 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1457 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1458 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1459 VdbeCoverage(v); 1460 assert( eCond==3 || eCond==4 ); 1461 VdbeCoverageIf(v, eCond==3); 1462 VdbeCoverageIf(v, eCond==4); 1463 }else{ 1464 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1465 VdbeCoverage(v); 1466 assert( eCond==0 || eCond==1 || eCond==2 ); 1467 VdbeCoverageIf(v, eCond==0); 1468 VdbeCoverageIf(v, eCond==1); 1469 VdbeCoverageIf(v, eCond==2); 1470 } 1471 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1472 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1473 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1474 VdbeCoverageNeverNullIf(v, eCond==2); 1475 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1476 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1477 sqlite3MayAbort(pParse); 1478 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1479 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1480 sqlite3ReleaseTempReg(pParse, regZero); 1481 } 1482 1483 /* 1484 ** Return the number of arguments passed to the window-function associated 1485 ** with the object passed as the only argument to this function. 1486 */ 1487 static int windowArgCount(Window *pWin){ 1488 ExprList *pList = pWin->pOwner->x.pList; 1489 return (pList ? pList->nExpr : 0); 1490 } 1491 1492 typedef struct WindowCodeArg WindowCodeArg; 1493 typedef struct WindowCsrAndReg WindowCsrAndReg; 1494 1495 /* 1496 ** See comments above struct WindowCodeArg. 1497 */ 1498 struct WindowCsrAndReg { 1499 int csr; /* Cursor number */ 1500 int reg; /* First in array of peer values */ 1501 }; 1502 1503 /* 1504 ** A single instance of this structure is allocated on the stack by 1505 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1506 ** routines. This is to reduce the number of arguments required by each 1507 ** helper function. 1508 ** 1509 ** regArg: 1510 ** Each window function requires an accumulator register (just as an 1511 ** ordinary aggregate function does). This variable is set to the first 1512 ** in an array of accumulator registers - one for each window function 1513 ** in the WindowCodeArg.pMWin list. 1514 ** 1515 ** eDelete: 1516 ** The window functions implementation sometimes caches the input rows 1517 ** that it processes in a temporary table. If it is not zero, this 1518 ** variable indicates when rows may be removed from the temp table (in 1519 ** order to reduce memory requirements - it would always be safe just 1520 ** to leave them there). Possible values for eDelete are: 1521 ** 1522 ** WINDOW_RETURN_ROW: 1523 ** An input row can be discarded after it is returned to the caller. 1524 ** 1525 ** WINDOW_AGGINVERSE: 1526 ** An input row can be discarded after the window functions xInverse() 1527 ** callbacks have been invoked in it. 1528 ** 1529 ** WINDOW_AGGSTEP: 1530 ** An input row can be discarded after the window functions xStep() 1531 ** callbacks have been invoked in it. 1532 ** 1533 ** start,current,end 1534 ** Consider a window-frame similar to the following: 1535 ** 1536 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1537 ** 1538 ** The windows functions implmentation caches the input rows in a temp 1539 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1540 ** aggressively removes rows once they are no longer required, but that's 1541 ** a mere detail). It keeps three cursors open on the temp table. One 1542 ** (current) that points to the next row to return to the query engine 1543 ** once its window function values have been calculated. Another (end) 1544 ** points to the next row to call the xStep() method of each window function 1545 ** on (so that it is 2 groups ahead of current). And a third (start) that 1546 ** points to the next row to call the xInverse() method of each window 1547 ** function on. 1548 ** 1549 ** Each cursor (start, current and end) consists of a VDBE cursor 1550 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1551 ** WindowCodeArg.reg) that always contains a copy of the peer values 1552 ** read from the corresponding cursor. 1553 ** 1554 ** Depending on the window-frame in question, all three cursors may not 1555 ** be required. In this case both WindowCodeArg.csr and reg are set to 1556 ** 0. 1557 */ 1558 struct WindowCodeArg { 1559 Parse *pParse; /* Parse context */ 1560 Window *pMWin; /* First in list of functions being processed */ 1561 Vdbe *pVdbe; /* VDBE object */ 1562 int addrGosub; /* OP_Gosub to this address to return one row */ 1563 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1564 int regArg; /* First in array of accumulator registers */ 1565 int eDelete; /* See above */ 1566 1567 WindowCsrAndReg start; 1568 WindowCsrAndReg current; 1569 WindowCsrAndReg end; 1570 }; 1571 1572 /* 1573 ** Generate VM code to read the window frames peer values from cursor csr into 1574 ** an array of registers starting at reg. 1575 */ 1576 static void windowReadPeerValues( 1577 WindowCodeArg *p, 1578 int csr, 1579 int reg 1580 ){ 1581 Window *pMWin = p->pMWin; 1582 ExprList *pOrderBy = pMWin->pOrderBy; 1583 if( pOrderBy ){ 1584 Vdbe *v = sqlite3GetVdbe(p->pParse); 1585 ExprList *pPart = pMWin->pPartition; 1586 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1587 int i; 1588 for(i=0; i<pOrderBy->nExpr; i++){ 1589 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1590 } 1591 } 1592 } 1593 1594 /* 1595 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1596 ** xInverse (if bInverse is non-zero) for each window function in the 1597 ** linked list starting at pMWin. Or, for built-in window functions 1598 ** that do not use the standard function API, generate the required 1599 ** inline VM code. 1600 ** 1601 ** If argument csr is greater than or equal to 0, then argument reg is 1602 ** the first register in an array of registers guaranteed to be large 1603 ** enough to hold the array of arguments for each function. In this case 1604 ** the arguments are extracted from the current row of csr into the 1605 ** array of registers before invoking OP_AggStep or OP_AggInverse 1606 ** 1607 ** Or, if csr is less than zero, then the array of registers at reg is 1608 ** already populated with all columns from the current row of the sub-query. 1609 ** 1610 ** If argument regPartSize is non-zero, then it is a register containing the 1611 ** number of rows in the current partition. 1612 */ 1613 static void windowAggStep( 1614 WindowCodeArg *p, 1615 Window *pMWin, /* Linked list of window functions */ 1616 int csr, /* Read arguments from this cursor */ 1617 int bInverse, /* True to invoke xInverse instead of xStep */ 1618 int reg /* Array of registers */ 1619 ){ 1620 Parse *pParse = p->pParse; 1621 Vdbe *v = sqlite3GetVdbe(pParse); 1622 Window *pWin; 1623 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1624 FuncDef *pFunc = pWin->pFunc; 1625 int regArg; 1626 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1627 int i; 1628 1629 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1630 1631 /* All OVER clauses in the same window function aggregate step must 1632 ** be the same. */ 1633 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1634 1635 for(i=0; i<nArg; i++){ 1636 if( i!=1 || pFunc->zName!=nth_valueName ){ 1637 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1638 }else{ 1639 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1640 } 1641 } 1642 regArg = reg; 1643 1644 if( pMWin->regStartRowid==0 1645 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1646 && (pWin->eStart!=TK_UNBOUNDED) 1647 ){ 1648 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1649 VdbeCoverage(v); 1650 if( bInverse==0 ){ 1651 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1652 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1653 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1654 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1655 }else{ 1656 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1657 VdbeCoverageNeverTaken(v); 1658 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1659 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1660 } 1661 sqlite3VdbeJumpHere(v, addrIsNull); 1662 }else if( pWin->regApp ){ 1663 assert( pFunc->zName==nth_valueName 1664 || pFunc->zName==first_valueName 1665 ); 1666 assert( bInverse==0 || bInverse==1 ); 1667 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1668 }else if( pFunc->xSFunc!=noopStepFunc ){ 1669 int addrIf = 0; 1670 if( pWin->pFilter ){ 1671 int regTmp; 1672 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1673 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1674 regTmp = sqlite3GetTempReg(pParse); 1675 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1676 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1677 VdbeCoverage(v); 1678 sqlite3ReleaseTempReg(pParse, regTmp); 1679 } 1680 1681 if( pWin->bExprArgs ){ 1682 int iStart = sqlite3VdbeCurrentAddr(v); 1683 VdbeOp *pOp, *pEnd; 1684 1685 nArg = pWin->pOwner->x.pList->nExpr; 1686 regArg = sqlite3GetTempRange(pParse, nArg); 1687 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1688 1689 pEnd = sqlite3VdbeGetOp(v, -1); 1690 for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){ 1691 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1692 pOp->p1 = csr; 1693 } 1694 } 1695 } 1696 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1697 CollSeq *pColl; 1698 assert( nArg>0 ); 1699 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1700 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1701 } 1702 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1703 bInverse, regArg, pWin->regAccum); 1704 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1705 sqlite3VdbeChangeP5(v, (u8)nArg); 1706 if( pWin->bExprArgs ){ 1707 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1708 } 1709 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1710 } 1711 } 1712 } 1713 1714 /* 1715 ** Values that may be passed as the second argument to windowCodeOp(). 1716 */ 1717 #define WINDOW_RETURN_ROW 1 1718 #define WINDOW_AGGINVERSE 2 1719 #define WINDOW_AGGSTEP 3 1720 1721 /* 1722 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1723 ** (bFin==1) for each window function in the linked list starting at 1724 ** pMWin. Or, for built-in window-functions that do not use the standard 1725 ** API, generate the equivalent VM code. 1726 */ 1727 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1728 Parse *pParse = p->pParse; 1729 Window *pMWin = p->pMWin; 1730 Vdbe *v = sqlite3GetVdbe(pParse); 1731 Window *pWin; 1732 1733 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1734 if( pMWin->regStartRowid==0 1735 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1736 && (pWin->eStart!=TK_UNBOUNDED) 1737 ){ 1738 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1739 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1740 VdbeCoverage(v); 1741 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1742 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1743 }else if( pWin->regApp ){ 1744 assert( pMWin->regStartRowid==0 ); 1745 }else{ 1746 int nArg = windowArgCount(pWin); 1747 if( bFin ){ 1748 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1749 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1750 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1751 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1752 }else{ 1753 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1754 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1755 } 1756 } 1757 } 1758 } 1759 1760 /* 1761 ** Generate code to calculate the current values of all window functions in the 1762 ** p->pMWin list by doing a full scan of the current window frame. Store the 1763 ** results in the Window.regResult registers, ready to return the upper 1764 ** layer. 1765 */ 1766 static void windowFullScan(WindowCodeArg *p){ 1767 Window *pWin; 1768 Parse *pParse = p->pParse; 1769 Window *pMWin = p->pMWin; 1770 Vdbe *v = p->pVdbe; 1771 1772 int regCRowid = 0; /* Current rowid value */ 1773 int regCPeer = 0; /* Current peer values */ 1774 int regRowid = 0; /* AggStep rowid value */ 1775 int regPeer = 0; /* AggStep peer values */ 1776 1777 int nPeer; 1778 int lblNext; 1779 int lblBrk; 1780 int addrNext; 1781 int csr; 1782 1783 VdbeModuleComment((v, "windowFullScan begin")); 1784 1785 assert( pMWin!=0 ); 1786 csr = pMWin->csrApp; 1787 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1788 1789 lblNext = sqlite3VdbeMakeLabel(pParse); 1790 lblBrk = sqlite3VdbeMakeLabel(pParse); 1791 1792 regCRowid = sqlite3GetTempReg(pParse); 1793 regRowid = sqlite3GetTempReg(pParse); 1794 if( nPeer ){ 1795 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1796 regPeer = sqlite3GetTempRange(pParse, nPeer); 1797 } 1798 1799 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1800 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1801 1802 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1803 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1804 } 1805 1806 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1807 VdbeCoverage(v); 1808 addrNext = sqlite3VdbeCurrentAddr(v); 1809 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1810 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1811 VdbeCoverageNeverNull(v); 1812 1813 if( pMWin->eExclude==TK_CURRENT ){ 1814 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1815 VdbeCoverageNeverNull(v); 1816 }else if( pMWin->eExclude!=TK_NO ){ 1817 int addr; 1818 int addrEq = 0; 1819 KeyInfo *pKeyInfo = 0; 1820 1821 if( pMWin->pOrderBy ){ 1822 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1823 } 1824 if( pMWin->eExclude==TK_TIES ){ 1825 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1826 VdbeCoverageNeverNull(v); 1827 } 1828 if( pKeyInfo ){ 1829 windowReadPeerValues(p, csr, regPeer); 1830 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1831 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1832 addr = sqlite3VdbeCurrentAddr(v)+1; 1833 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1834 VdbeCoverageEqNe(v); 1835 }else{ 1836 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1837 } 1838 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1839 } 1840 1841 windowAggStep(p, pMWin, csr, 0, p->regArg); 1842 1843 sqlite3VdbeResolveLabel(v, lblNext); 1844 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1845 VdbeCoverage(v); 1846 sqlite3VdbeJumpHere(v, addrNext-1); 1847 sqlite3VdbeJumpHere(v, addrNext+1); 1848 sqlite3ReleaseTempReg(pParse, regRowid); 1849 sqlite3ReleaseTempReg(pParse, regCRowid); 1850 if( nPeer ){ 1851 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1852 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1853 } 1854 1855 windowAggFinal(p, 1); 1856 VdbeModuleComment((v, "windowFullScan end")); 1857 } 1858 1859 /* 1860 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1861 ** return the current row of Window.iEphCsr. If all window functions are 1862 ** aggregate window functions that use the standard API, a single 1863 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1864 ** for per-row processing is only generated for the following built-in window 1865 ** functions: 1866 ** 1867 ** nth_value() 1868 ** first_value() 1869 ** lag() 1870 ** lead() 1871 */ 1872 static void windowReturnOneRow(WindowCodeArg *p){ 1873 Window *pMWin = p->pMWin; 1874 Vdbe *v = p->pVdbe; 1875 1876 if( pMWin->regStartRowid ){ 1877 windowFullScan(p); 1878 }else{ 1879 Parse *pParse = p->pParse; 1880 Window *pWin; 1881 1882 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1883 FuncDef *pFunc = pWin->pFunc; 1884 if( pFunc->zName==nth_valueName 1885 || pFunc->zName==first_valueName 1886 ){ 1887 int csr = pWin->csrApp; 1888 int lbl = sqlite3VdbeMakeLabel(pParse); 1889 int tmpReg = sqlite3GetTempReg(pParse); 1890 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1891 1892 if( pFunc->zName==nth_valueName ){ 1893 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1894 windowCheckValue(pParse, tmpReg, 2); 1895 }else{ 1896 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1897 } 1898 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1899 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1900 VdbeCoverageNeverNull(v); 1901 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1902 VdbeCoverageNeverTaken(v); 1903 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1904 sqlite3VdbeResolveLabel(v, lbl); 1905 sqlite3ReleaseTempReg(pParse, tmpReg); 1906 } 1907 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1908 int nArg = pWin->pOwner->x.pList->nExpr; 1909 int csr = pWin->csrApp; 1910 int lbl = sqlite3VdbeMakeLabel(pParse); 1911 int tmpReg = sqlite3GetTempReg(pParse); 1912 int iEph = pMWin->iEphCsr; 1913 1914 if( nArg<3 ){ 1915 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1916 }else{ 1917 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1918 } 1919 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1920 if( nArg<2 ){ 1921 int val = (pFunc->zName==leadName ? 1 : -1); 1922 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1923 }else{ 1924 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1925 int tmpReg2 = sqlite3GetTempReg(pParse); 1926 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1927 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1928 sqlite3ReleaseTempReg(pParse, tmpReg2); 1929 } 1930 1931 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1932 VdbeCoverage(v); 1933 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1934 sqlite3VdbeResolveLabel(v, lbl); 1935 sqlite3ReleaseTempReg(pParse, tmpReg); 1936 } 1937 } 1938 } 1939 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1940 } 1941 1942 /* 1943 ** Generate code to set the accumulator register for each window function 1944 ** in the linked list passed as the second argument to NULL. And perform 1945 ** any equivalent initialization required by any built-in window functions 1946 ** in the list. 1947 */ 1948 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1949 Vdbe *v = sqlite3GetVdbe(pParse); 1950 int regArg; 1951 int nArg = 0; 1952 Window *pWin; 1953 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1954 FuncDef *pFunc = pWin->pFunc; 1955 assert( pWin->regAccum ); 1956 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1957 nArg = MAX(nArg, windowArgCount(pWin)); 1958 if( pMWin->regStartRowid==0 ){ 1959 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1960 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1961 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1962 } 1963 1964 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1965 assert( pWin->eStart!=TK_UNBOUNDED ); 1966 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1967 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1968 } 1969 } 1970 } 1971 regArg = pParse->nMem+1; 1972 pParse->nMem += nArg; 1973 return regArg; 1974 } 1975 1976 /* 1977 ** Return true if the current frame should be cached in the ephemeral table, 1978 ** even if there are no xInverse() calls required. 1979 */ 1980 static int windowCacheFrame(Window *pMWin){ 1981 Window *pWin; 1982 if( pMWin->regStartRowid ) return 1; 1983 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1984 FuncDef *pFunc = pWin->pFunc; 1985 if( (pFunc->zName==nth_valueName) 1986 || (pFunc->zName==first_valueName) 1987 || (pFunc->zName==leadName) 1988 || (pFunc->zName==lagName) 1989 ){ 1990 return 1; 1991 } 1992 } 1993 return 0; 1994 } 1995 1996 /* 1997 ** regOld and regNew are each the first register in an array of size 1998 ** pOrderBy->nExpr. This function generates code to compare the two 1999 ** arrays of registers using the collation sequences and other comparison 2000 ** parameters specified by pOrderBy. 2001 ** 2002 ** If the two arrays are not equal, the contents of regNew is copied to 2003 ** regOld and control falls through. Otherwise, if the contents of the arrays 2004 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2005 */ 2006 static void windowIfNewPeer( 2007 Parse *pParse, 2008 ExprList *pOrderBy, 2009 int regNew, /* First in array of new values */ 2010 int regOld, /* First in array of old values */ 2011 int addr /* Jump here */ 2012 ){ 2013 Vdbe *v = sqlite3GetVdbe(pParse); 2014 if( pOrderBy ){ 2015 int nVal = pOrderBy->nExpr; 2016 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2017 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2018 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2019 sqlite3VdbeAddOp3(v, OP_Jump, 2020 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2021 ); 2022 VdbeCoverageEqNe(v); 2023 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2024 }else{ 2025 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2026 } 2027 } 2028 2029 /* 2030 ** This function is called as part of generating VM programs for RANGE 2031 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2032 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2033 ** code equivalent to: 2034 ** 2035 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2036 ** 2037 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2038 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2039 ** 2040 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2041 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2042 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2043 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2044 ** is OP_Ge, the generated code is equivalent to: 2045 ** 2046 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2047 ** 2048 ** A special type of arithmetic is used such that if csr1.peerVal is not 2049 ** a numeric type (real or integer), then the result of the addition addition 2050 ** or subtraction is a a copy of csr1.peerVal. 2051 */ 2052 static void windowCodeRangeTest( 2053 WindowCodeArg *p, 2054 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2055 int csr1, /* Cursor number for cursor 1 */ 2056 int regVal, /* Register containing non-negative number */ 2057 int csr2, /* Cursor number for cursor 2 */ 2058 int lbl /* Jump destination if condition is true */ 2059 ){ 2060 Parse *pParse = p->pParse; 2061 Vdbe *v = sqlite3GetVdbe(pParse); 2062 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2063 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2064 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2065 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2066 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2067 int addrGe; /* Jump destination */ 2068 CollSeq *pColl; 2069 2070 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2071 assert( pOrderBy && pOrderBy->nExpr==1 ); 2072 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2073 switch( op ){ 2074 case OP_Ge: op = OP_Le; break; 2075 case OP_Gt: op = OP_Lt; break; 2076 default: assert( op==OP_Le ); op = OP_Ge; break; 2077 } 2078 arith = OP_Subtract; 2079 } 2080 2081 /* Read the peer-value from each cursor into a register */ 2082 windowReadPeerValues(p, csr1, reg1); 2083 windowReadPeerValues(p, csr2, reg2); 2084 2085 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2086 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2087 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2088 )); 2089 2090 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2091 ** This block adds (or subtracts for DESC) the numeric value in regVal 2092 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2093 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2094 ** 2095 ** if( reg1>='' ) goto addrGe; 2096 ** reg1 = reg1 +/- regVal 2097 ** addrGe: 2098 ** 2099 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2100 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2101 ** then the arithmetic is performed, but since adding or subtracting from 2102 ** NULL is always NULL anyway, this case is handled as required too. */ 2103 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2104 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2105 VdbeCoverage(v); 2106 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2107 sqlite3VdbeJumpHere(v, addrGe); 2108 2109 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2110 ** consider NULL values to be larger than all other values, instead of 2111 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2112 ** (and adding that capability causes a performance regression), so 2113 ** instead if the BIGNULL flag is set then cases where either reg1 or 2114 ** reg2 are NULL are handled separately in the following block. The code 2115 ** generated is equivalent to: 2116 ** 2117 ** if( reg1 IS NULL ){ 2118 ** if( op==OP_Ge ) goto lbl; 2119 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2120 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2121 ** }else if( reg2 IS NULL ){ 2122 ** if( op==OP_Le ) goto lbl; 2123 ** } 2124 ** 2125 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2126 ** not taken, control jumps over the comparison operator coded below this 2127 ** block. */ 2128 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2129 /* This block runs if reg1 contains a NULL. */ 2130 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2131 switch( op ){ 2132 case OP_Ge: 2133 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2134 break; 2135 case OP_Gt: 2136 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2137 VdbeCoverage(v); 2138 break; 2139 case OP_Le: 2140 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2141 VdbeCoverage(v); 2142 break; 2143 default: assert( op==OP_Lt ); /* no-op */ break; 2144 } 2145 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 2146 2147 /* This block runs if reg1 is not NULL, but reg2 is. */ 2148 sqlite3VdbeJumpHere(v, addr); 2149 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2150 if( op==OP_Gt || op==OP_Ge ){ 2151 sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1); 2152 } 2153 } 2154 2155 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2156 ** control skips over this test if the BIGNULL flag is set and either 2157 ** reg1 or reg2 contain a NULL value. */ 2158 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2159 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); 2160 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); 2161 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2162 2163 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2164 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2165 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2166 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2167 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2168 sqlite3ReleaseTempReg(pParse, reg1); 2169 sqlite3ReleaseTempReg(pParse, reg2); 2170 2171 VdbeModuleComment((v, "CodeRangeTest: end")); 2172 } 2173 2174 /* 2175 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2176 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2177 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2178 ** details. 2179 */ 2180 static int windowCodeOp( 2181 WindowCodeArg *p, /* Context object */ 2182 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2183 int regCountdown, /* Register for OP_IfPos countdown */ 2184 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2185 ){ 2186 int csr, reg; 2187 Parse *pParse = p->pParse; 2188 Window *pMWin = p->pMWin; 2189 int ret = 0; 2190 Vdbe *v = p->pVdbe; 2191 int addrContinue = 0; 2192 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2193 2194 int lblDone = sqlite3VdbeMakeLabel(pParse); 2195 int addrNextRange = 0; 2196 2197 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2198 ** starts with UNBOUNDED PRECEDING. */ 2199 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2200 assert( regCountdown==0 && jumpOnEof==0 ); 2201 return 0; 2202 } 2203 2204 if( regCountdown>0 ){ 2205 if( pMWin->eFrmType==TK_RANGE ){ 2206 addrNextRange = sqlite3VdbeCurrentAddr(v); 2207 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2208 if( op==WINDOW_AGGINVERSE ){ 2209 if( pMWin->eStart==TK_FOLLOWING ){ 2210 windowCodeRangeTest( 2211 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2212 ); 2213 }else{ 2214 windowCodeRangeTest( 2215 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2216 ); 2217 } 2218 }else{ 2219 windowCodeRangeTest( 2220 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2221 ); 2222 } 2223 }else{ 2224 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2225 VdbeCoverage(v); 2226 } 2227 } 2228 2229 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2230 windowAggFinal(p, 0); 2231 } 2232 addrContinue = sqlite3VdbeCurrentAddr(v); 2233 2234 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2235 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2236 ** start cursor does not advance past the end cursor within the 2237 ** temporary table. It otherwise might, if (a>b). */ 2238 if( pMWin->eStart==pMWin->eEnd && regCountdown 2239 && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE 2240 ){ 2241 int regRowid1 = sqlite3GetTempReg(pParse); 2242 int regRowid2 = sqlite3GetTempReg(pParse); 2243 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2244 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2245 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2246 VdbeCoverage(v); 2247 sqlite3ReleaseTempReg(pParse, regRowid1); 2248 sqlite3ReleaseTempReg(pParse, regRowid2); 2249 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2250 } 2251 2252 switch( op ){ 2253 case WINDOW_RETURN_ROW: 2254 csr = p->current.csr; 2255 reg = p->current.reg; 2256 windowReturnOneRow(p); 2257 break; 2258 2259 case WINDOW_AGGINVERSE: 2260 csr = p->start.csr; 2261 reg = p->start.reg; 2262 if( pMWin->regStartRowid ){ 2263 assert( pMWin->regEndRowid ); 2264 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2265 }else{ 2266 windowAggStep(p, pMWin, csr, 1, p->regArg); 2267 } 2268 break; 2269 2270 default: 2271 assert( op==WINDOW_AGGSTEP ); 2272 csr = p->end.csr; 2273 reg = p->end.reg; 2274 if( pMWin->regStartRowid ){ 2275 assert( pMWin->regEndRowid ); 2276 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2277 }else{ 2278 windowAggStep(p, pMWin, csr, 0, p->regArg); 2279 } 2280 break; 2281 } 2282 2283 if( op==p->eDelete ){ 2284 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2285 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2286 } 2287 2288 if( jumpOnEof ){ 2289 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2290 VdbeCoverage(v); 2291 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2292 }else{ 2293 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2294 VdbeCoverage(v); 2295 if( bPeer ){ 2296 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2297 } 2298 } 2299 2300 if( bPeer ){ 2301 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2302 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2303 windowReadPeerValues(p, csr, regTmp); 2304 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2305 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2306 } 2307 2308 if( addrNextRange ){ 2309 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2310 } 2311 sqlite3VdbeResolveLabel(v, lblDone); 2312 return ret; 2313 } 2314 2315 2316 /* 2317 ** Allocate and return a duplicate of the Window object indicated by the 2318 ** third argument. Set the Window.pOwner field of the new object to 2319 ** pOwner. 2320 */ 2321 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2322 Window *pNew = 0; 2323 if( ALWAYS(p) ){ 2324 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2325 if( pNew ){ 2326 pNew->zName = sqlite3DbStrDup(db, p->zName); 2327 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2328 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2329 pNew->pFunc = p->pFunc; 2330 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2331 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2332 pNew->eFrmType = p->eFrmType; 2333 pNew->eEnd = p->eEnd; 2334 pNew->eStart = p->eStart; 2335 pNew->eExclude = p->eExclude; 2336 pNew->regResult = p->regResult; 2337 pNew->regAccum = p->regAccum; 2338 pNew->iArgCol = p->iArgCol; 2339 pNew->iEphCsr = p->iEphCsr; 2340 pNew->bExprArgs = p->bExprArgs; 2341 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2342 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2343 pNew->pOwner = pOwner; 2344 pNew->bImplicitFrame = p->bImplicitFrame; 2345 } 2346 } 2347 return pNew; 2348 } 2349 2350 /* 2351 ** Return a copy of the linked list of Window objects passed as the 2352 ** second argument. 2353 */ 2354 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2355 Window *pWin; 2356 Window *pRet = 0; 2357 Window **pp = &pRet; 2358 2359 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2360 *pp = sqlite3WindowDup(db, 0, pWin); 2361 if( *pp==0 ) break; 2362 pp = &((*pp)->pNextWin); 2363 } 2364 2365 return pRet; 2366 } 2367 2368 /* 2369 ** Return true if it can be determined at compile time that expression 2370 ** pExpr evaluates to a value that, when cast to an integer, is greater 2371 ** than zero. False otherwise. 2372 ** 2373 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2374 ** flag and returns zero. 2375 */ 2376 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2377 int ret = 0; 2378 sqlite3 *db = pParse->db; 2379 sqlite3_value *pVal = 0; 2380 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2381 if( pVal && sqlite3_value_int(pVal)>0 ){ 2382 ret = 1; 2383 } 2384 sqlite3ValueFree(pVal); 2385 return ret; 2386 } 2387 2388 /* 2389 ** sqlite3WhereBegin() has already been called for the SELECT statement 2390 ** passed as the second argument when this function is invoked. It generates 2391 ** code to populate the Window.regResult register for each window function 2392 ** and invoke the sub-routine at instruction addrGosub once for each row. 2393 ** sqlite3WhereEnd() is always called before returning. 2394 ** 2395 ** This function handles several different types of window frames, which 2396 ** require slightly different processing. The following pseudo code is 2397 ** used to implement window frames of the form: 2398 ** 2399 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2400 ** 2401 ** Other window frame types use variants of the following: 2402 ** 2403 ** ... loop started by sqlite3WhereBegin() ... 2404 ** if( new partition ){ 2405 ** Gosub flush 2406 ** } 2407 ** Insert new row into eph table. 2408 ** 2409 ** if( first row of partition ){ 2410 ** // Rewind three cursors, all open on the eph table. 2411 ** Rewind(csrEnd); 2412 ** Rewind(csrStart); 2413 ** Rewind(csrCurrent); 2414 ** 2415 ** regEnd = <expr2> // FOLLOWING expression 2416 ** regStart = <expr1> // PRECEDING expression 2417 ** }else{ 2418 ** // First time this branch is taken, the eph table contains two 2419 ** // rows. The first row in the partition, which all three cursors 2420 ** // currently point to, and the following row. 2421 ** AGGSTEP 2422 ** if( (regEnd--)<=0 ){ 2423 ** RETURN_ROW 2424 ** if( (regStart--)<=0 ){ 2425 ** AGGINVERSE 2426 ** } 2427 ** } 2428 ** } 2429 ** } 2430 ** flush: 2431 ** AGGSTEP 2432 ** while( 1 ){ 2433 ** RETURN ROW 2434 ** if( csrCurrent is EOF ) break; 2435 ** if( (regStart--)<=0 ){ 2436 ** AggInverse(csrStart) 2437 ** Next(csrStart) 2438 ** } 2439 ** } 2440 ** 2441 ** The pseudo-code above uses the following shorthand: 2442 ** 2443 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2444 ** with arguments read from the current row of cursor csrEnd, then 2445 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2446 ** 2447 ** RETURN_ROW: return a row to the caller based on the contents of the 2448 ** current row of csrCurrent and the current state of all 2449 ** aggregates. Then step cursor csrCurrent forward one row. 2450 ** 2451 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2452 ** functions with arguments read from the current row of cursor 2453 ** csrStart. Then step csrStart forward one row. 2454 ** 2455 ** There are two other ROWS window frames that are handled significantly 2456 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2457 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2458 ** cases because they change the order in which the three cursors (csrStart, 2459 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2460 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2461 ** three. 2462 ** 2463 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2464 ** 2465 ** ... loop started by sqlite3WhereBegin() ... 2466 ** if( new partition ){ 2467 ** Gosub flush 2468 ** } 2469 ** Insert new row into eph table. 2470 ** if( first row of partition ){ 2471 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2472 ** regEnd = <expr2> 2473 ** regStart = <expr1> 2474 ** }else{ 2475 ** if( (regEnd--)<=0 ){ 2476 ** AGGSTEP 2477 ** } 2478 ** RETURN_ROW 2479 ** if( (regStart--)<=0 ){ 2480 ** AGGINVERSE 2481 ** } 2482 ** } 2483 ** } 2484 ** flush: 2485 ** if( (regEnd--)<=0 ){ 2486 ** AGGSTEP 2487 ** } 2488 ** RETURN_ROW 2489 ** 2490 ** 2491 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2492 ** 2493 ** ... loop started by sqlite3WhereBegin() ... 2494 ** if( new partition ){ 2495 ** Gosub flush 2496 ** } 2497 ** Insert new row into eph table. 2498 ** if( first row of partition ){ 2499 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2500 ** regEnd = <expr2> 2501 ** regStart = regEnd - <expr1> 2502 ** }else{ 2503 ** AGGSTEP 2504 ** if( (regEnd--)<=0 ){ 2505 ** RETURN_ROW 2506 ** } 2507 ** if( (regStart--)<=0 ){ 2508 ** AGGINVERSE 2509 ** } 2510 ** } 2511 ** } 2512 ** flush: 2513 ** AGGSTEP 2514 ** while( 1 ){ 2515 ** if( (regEnd--)<=0 ){ 2516 ** RETURN_ROW 2517 ** if( eof ) break; 2518 ** } 2519 ** if( (regStart--)<=0 ){ 2520 ** AGGINVERSE 2521 ** if( eof ) break 2522 ** } 2523 ** } 2524 ** while( !eof csrCurrent ){ 2525 ** RETURN_ROW 2526 ** } 2527 ** 2528 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2529 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2530 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2531 ** This is optimized of course - branches that will never be taken and 2532 ** conditions that are always true are omitted from the VM code. The only 2533 ** exceptional case is: 2534 ** 2535 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2536 ** 2537 ** ... loop started by sqlite3WhereBegin() ... 2538 ** if( new partition ){ 2539 ** Gosub flush 2540 ** } 2541 ** Insert new row into eph table. 2542 ** if( first row of partition ){ 2543 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2544 ** regStart = <expr1> 2545 ** }else{ 2546 ** AGGSTEP 2547 ** } 2548 ** } 2549 ** flush: 2550 ** AGGSTEP 2551 ** while( 1 ){ 2552 ** if( (regStart--)<=0 ){ 2553 ** AGGINVERSE 2554 ** if( eof ) break 2555 ** } 2556 ** RETURN_ROW 2557 ** } 2558 ** while( !eof csrCurrent ){ 2559 ** RETURN_ROW 2560 ** } 2561 ** 2562 ** Also requiring special handling are the cases: 2563 ** 2564 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2565 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2566 ** 2567 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2568 ** To handle this case, the pseudo-code programs depicted above are modified 2569 ** slightly to be: 2570 ** 2571 ** ... loop started by sqlite3WhereBegin() ... 2572 ** if( new partition ){ 2573 ** Gosub flush 2574 ** } 2575 ** Insert new row into eph table. 2576 ** if( first row of partition ){ 2577 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2578 ** regEnd = <expr2> 2579 ** regStart = <expr1> 2580 ** if( regEnd < regStart ){ 2581 ** RETURN_ROW 2582 ** delete eph table contents 2583 ** continue 2584 ** } 2585 ** ... 2586 ** 2587 ** The new "continue" statement in the above jumps to the next iteration 2588 ** of the outer loop - the one started by sqlite3WhereBegin(). 2589 ** 2590 ** The various GROUPS cases are implemented using the same patterns as 2591 ** ROWS. The VM code is modified slightly so that: 2592 ** 2593 ** 1. The else branch in the main loop is only taken if the row just 2594 ** added to the ephemeral table is the start of a new group. In 2595 ** other words, it becomes: 2596 ** 2597 ** ... loop started by sqlite3WhereBegin() ... 2598 ** if( new partition ){ 2599 ** Gosub flush 2600 ** } 2601 ** Insert new row into eph table. 2602 ** if( first row of partition ){ 2603 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2604 ** regEnd = <expr2> 2605 ** regStart = <expr1> 2606 ** }else if( new group ){ 2607 ** ... 2608 ** } 2609 ** } 2610 ** 2611 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2612 ** AGGINVERSE step processes the current row of the relevant cursor and 2613 ** all subsequent rows belonging to the same group. 2614 ** 2615 ** RANGE window frames are a little different again. As for GROUPS, the 2616 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2617 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2618 ** basic cases: 2619 ** 2620 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2621 ** 2622 ** ... loop started by sqlite3WhereBegin() ... 2623 ** if( new partition ){ 2624 ** Gosub flush 2625 ** } 2626 ** Insert new row into eph table. 2627 ** if( first row of partition ){ 2628 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2629 ** regEnd = <expr2> 2630 ** regStart = <expr1> 2631 ** }else{ 2632 ** AGGSTEP 2633 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2634 ** RETURN_ROW 2635 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2636 ** AGGINVERSE 2637 ** } 2638 ** } 2639 ** } 2640 ** } 2641 ** flush: 2642 ** AGGSTEP 2643 ** while( 1 ){ 2644 ** RETURN ROW 2645 ** if( csrCurrent is EOF ) break; 2646 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2647 ** AGGINVERSE 2648 ** } 2649 ** } 2650 ** } 2651 ** 2652 ** In the above notation, "csr.key" means the current value of the ORDER BY 2653 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2654 ** or <expr PRECEDING) read from cursor csr. 2655 ** 2656 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2657 ** 2658 ** ... loop started by sqlite3WhereBegin() ... 2659 ** if( new partition ){ 2660 ** Gosub flush 2661 ** } 2662 ** Insert new row into eph table. 2663 ** if( first row of partition ){ 2664 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2665 ** regEnd = <expr2> 2666 ** regStart = <expr1> 2667 ** }else{ 2668 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2669 ** AGGSTEP 2670 ** } 2671 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2672 ** AGGINVERSE 2673 ** } 2674 ** RETURN_ROW 2675 ** } 2676 ** } 2677 ** flush: 2678 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2679 ** AGGSTEP 2680 ** } 2681 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2682 ** AGGINVERSE 2683 ** } 2684 ** RETURN_ROW 2685 ** 2686 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2687 ** 2688 ** ... loop started by sqlite3WhereBegin() ... 2689 ** if( new partition ){ 2690 ** Gosub flush 2691 ** } 2692 ** Insert new row into eph table. 2693 ** if( first row of partition ){ 2694 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2695 ** regEnd = <expr2> 2696 ** regStart = <expr1> 2697 ** }else{ 2698 ** AGGSTEP 2699 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2700 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2701 ** AGGINVERSE 2702 ** } 2703 ** RETURN_ROW 2704 ** } 2705 ** } 2706 ** } 2707 ** flush: 2708 ** AGGSTEP 2709 ** while( 1 ){ 2710 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2711 ** AGGINVERSE 2712 ** if( eof ) break "while( 1 )" loop. 2713 ** } 2714 ** RETURN_ROW 2715 ** } 2716 ** while( !eof csrCurrent ){ 2717 ** RETURN_ROW 2718 ** } 2719 ** 2720 ** The text above leaves out many details. Refer to the code and comments 2721 ** below for a more complete picture. 2722 */ 2723 void sqlite3WindowCodeStep( 2724 Parse *pParse, /* Parse context */ 2725 Select *p, /* Rewritten SELECT statement */ 2726 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2727 int regGosub, /* Register for OP_Gosub */ 2728 int addrGosub /* OP_Gosub here to return each row */ 2729 ){ 2730 Window *pMWin = p->pWin; 2731 ExprList *pOrderBy = pMWin->pOrderBy; 2732 Vdbe *v = sqlite3GetVdbe(pParse); 2733 int csrWrite; /* Cursor used to write to eph. table */ 2734 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2735 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2736 int iInput; /* To iterate through sub cols */ 2737 int addrNe; /* Address of OP_Ne */ 2738 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2739 int addrInteger = 0; /* Address of OP_Integer */ 2740 int addrEmpty; /* Address of OP_Rewind in flush: */ 2741 int regNew; /* Array of registers holding new input row */ 2742 int regRecord; /* regNew array in record form */ 2743 int regRowid; /* Rowid for regRecord in eph table */ 2744 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2745 int regPeer = 0; /* Peer values for current row */ 2746 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2747 WindowCodeArg s; /* Context object for sub-routines */ 2748 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2749 int regStart = 0; /* Value of <expr> PRECEDING */ 2750 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2751 2752 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2753 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2754 ); 2755 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2756 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2757 ); 2758 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2759 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2760 || pMWin->eExclude==TK_NO 2761 ); 2762 2763 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2764 2765 /* Fill in the context object */ 2766 memset(&s, 0, sizeof(WindowCodeArg)); 2767 s.pParse = pParse; 2768 s.pMWin = pMWin; 2769 s.pVdbe = v; 2770 s.regGosub = regGosub; 2771 s.addrGosub = addrGosub; 2772 s.current.csr = pMWin->iEphCsr; 2773 csrWrite = s.current.csr+1; 2774 s.start.csr = s.current.csr+2; 2775 s.end.csr = s.current.csr+3; 2776 2777 /* Figure out when rows may be deleted from the ephemeral table. There 2778 ** are four options - they may never be deleted (eDelete==0), they may 2779 ** be deleted as soon as they are no longer part of the window frame 2780 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2781 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2782 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2783 switch( pMWin->eStart ){ 2784 case TK_FOLLOWING: 2785 if( pMWin->eFrmType!=TK_RANGE 2786 && windowExprGtZero(pParse, pMWin->pStart) 2787 ){ 2788 s.eDelete = WINDOW_RETURN_ROW; 2789 } 2790 break; 2791 case TK_UNBOUNDED: 2792 if( windowCacheFrame(pMWin)==0 ){ 2793 if( pMWin->eEnd==TK_PRECEDING ){ 2794 if( pMWin->eFrmType!=TK_RANGE 2795 && windowExprGtZero(pParse, pMWin->pEnd) 2796 ){ 2797 s.eDelete = WINDOW_AGGSTEP; 2798 } 2799 }else{ 2800 s.eDelete = WINDOW_RETURN_ROW; 2801 } 2802 } 2803 break; 2804 default: 2805 s.eDelete = WINDOW_AGGINVERSE; 2806 break; 2807 } 2808 2809 /* Allocate registers for the array of values from the sub-query, the 2810 ** samve values in record form, and the rowid used to insert said record 2811 ** into the ephemeral table. */ 2812 regNew = pParse->nMem+1; 2813 pParse->nMem += nInput; 2814 regRecord = ++pParse->nMem; 2815 regRowid = ++pParse->nMem; 2816 2817 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2818 ** clause, allocate registers to store the results of evaluating each 2819 ** <expr>. */ 2820 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2821 regStart = ++pParse->nMem; 2822 } 2823 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2824 regEnd = ++pParse->nMem; 2825 } 2826 2827 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2828 ** registers to store copies of the ORDER BY expressions (peer values) 2829 ** for the main loop, and for each cursor (start, current and end). */ 2830 if( pMWin->eFrmType!=TK_ROWS ){ 2831 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2832 regNewPeer = regNew + pMWin->nBufferCol; 2833 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2834 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2835 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2836 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2837 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2838 } 2839 2840 /* Load the column values for the row returned by the sub-select 2841 ** into an array of registers starting at regNew. Assemble them into 2842 ** a record in register regRecord. */ 2843 for(iInput=0; iInput<nInput; iInput++){ 2844 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2845 } 2846 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2847 2848 /* An input row has just been read into an array of registers starting 2849 ** at regNew. If the window has a PARTITION clause, this block generates 2850 ** VM code to check if the input row is the start of a new partition. 2851 ** If so, it does an OP_Gosub to an address to be filled in later. The 2852 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2853 if( pMWin->pPartition ){ 2854 int addr; 2855 ExprList *pPart = pMWin->pPartition; 2856 int nPart = pPart->nExpr; 2857 int regNewPart = regNew + pMWin->nBufferCol; 2858 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2859 2860 regFlushPart = ++pParse->nMem; 2861 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2862 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2863 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2864 VdbeCoverageEqNe(v); 2865 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2866 VdbeComment((v, "call flush_partition")); 2867 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2868 } 2869 2870 /* Insert the new row into the ephemeral table */ 2871 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2872 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2873 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2874 VdbeCoverageNeverNull(v); 2875 2876 /* This block is run for the first row of each partition */ 2877 s.regArg = windowInitAccum(pParse, pMWin); 2878 2879 if( regStart ){ 2880 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2881 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2882 } 2883 if( regEnd ){ 2884 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2885 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2886 } 2887 2888 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2889 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2890 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2891 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2892 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2893 windowAggFinal(&s, 0); 2894 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2895 VdbeCoverageNeverTaken(v); 2896 windowReturnOneRow(&s); 2897 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2898 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2899 sqlite3VdbeJumpHere(v, addrGe); 2900 } 2901 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2902 assert( pMWin->eEnd==TK_FOLLOWING ); 2903 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2904 } 2905 2906 if( pMWin->eStart!=TK_UNBOUNDED ){ 2907 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2908 VdbeCoverageNeverTaken(v); 2909 } 2910 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2911 VdbeCoverageNeverTaken(v); 2912 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2913 VdbeCoverageNeverTaken(v); 2914 if( regPeer && pOrderBy ){ 2915 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2916 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2917 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2918 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2919 } 2920 2921 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2922 2923 sqlite3VdbeJumpHere(v, addrNe); 2924 2925 /* Beginning of the block executed for the second and subsequent rows. */ 2926 if( regPeer ){ 2927 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2928 } 2929 if( pMWin->eStart==TK_FOLLOWING ){ 2930 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2931 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2932 if( pMWin->eFrmType==TK_RANGE ){ 2933 int lbl = sqlite3VdbeMakeLabel(pParse); 2934 int addrNext = sqlite3VdbeCurrentAddr(v); 2935 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2936 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2937 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2938 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2939 sqlite3VdbeResolveLabel(v, lbl); 2940 }else{ 2941 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2942 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2943 } 2944 } 2945 }else 2946 if( pMWin->eEnd==TK_PRECEDING ){ 2947 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2948 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2949 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2950 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2951 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2952 }else{ 2953 int addr = 0; 2954 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2955 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2956 if( pMWin->eFrmType==TK_RANGE ){ 2957 int lbl = 0; 2958 addr = sqlite3VdbeCurrentAddr(v); 2959 if( regEnd ){ 2960 lbl = sqlite3VdbeMakeLabel(pParse); 2961 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2962 } 2963 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2964 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2965 if( regEnd ){ 2966 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2967 sqlite3VdbeResolveLabel(v, lbl); 2968 } 2969 }else{ 2970 if( regEnd ){ 2971 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2972 VdbeCoverage(v); 2973 } 2974 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2975 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2976 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2977 } 2978 } 2979 } 2980 2981 /* End of the main input loop */ 2982 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2983 sqlite3WhereEnd(pWInfo); 2984 2985 /* Fall through */ 2986 if( pMWin->pPartition ){ 2987 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2988 sqlite3VdbeJumpHere(v, addrGosubFlush); 2989 } 2990 2991 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2992 VdbeCoverage(v); 2993 if( pMWin->eEnd==TK_PRECEDING ){ 2994 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2995 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2996 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2997 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2998 }else if( pMWin->eStart==TK_FOLLOWING ){ 2999 int addrStart; 3000 int addrBreak1; 3001 int addrBreak2; 3002 int addrBreak3; 3003 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3004 if( pMWin->eFrmType==TK_RANGE ){ 3005 addrStart = sqlite3VdbeCurrentAddr(v); 3006 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3007 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3008 }else 3009 if( pMWin->eEnd==TK_UNBOUNDED ){ 3010 addrStart = sqlite3VdbeCurrentAddr(v); 3011 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3012 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3013 }else{ 3014 assert( pMWin->eEnd==TK_FOLLOWING ); 3015 addrStart = sqlite3VdbeCurrentAddr(v); 3016 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3017 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3018 } 3019 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3020 sqlite3VdbeJumpHere(v, addrBreak2); 3021 addrStart = sqlite3VdbeCurrentAddr(v); 3022 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3023 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3024 sqlite3VdbeJumpHere(v, addrBreak1); 3025 sqlite3VdbeJumpHere(v, addrBreak3); 3026 }else{ 3027 int addrBreak; 3028 int addrStart; 3029 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3030 addrStart = sqlite3VdbeCurrentAddr(v); 3031 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3032 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3033 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3034 sqlite3VdbeJumpHere(v, addrBreak); 3035 } 3036 sqlite3VdbeJumpHere(v, addrEmpty); 3037 3038 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3039 if( pMWin->pPartition ){ 3040 if( pMWin->regStartRowid ){ 3041 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3042 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3043 } 3044 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3045 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3046 } 3047 } 3048 3049 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3050