1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Select *pSubSelect; /* Current sub-select, if any */ 740 }; 741 742 /* 743 ** Callback function used by selectWindowRewriteEList(). If necessary, 744 ** this function appends to the output expression-list and updates 745 ** expression (*ppExpr) in place. 746 */ 747 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 748 struct WindowRewrite *p = pWalker->u.pRewrite; 749 Parse *pParse = pWalker->pParse; 750 751 /* If this function is being called from within a scalar sub-select 752 ** that used by the SELECT statement being processed, only process 753 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 754 ** not process aggregates or window functions at all, as they belong 755 ** to the scalar sub-select. */ 756 if( p->pSubSelect ){ 757 if( pExpr->op!=TK_COLUMN ){ 758 return WRC_Continue; 759 }else{ 760 int nSrc = p->pSrc->nSrc; 761 int i; 762 for(i=0; i<nSrc; i++){ 763 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 764 } 765 if( i==nSrc ) return WRC_Continue; 766 } 767 } 768 769 switch( pExpr->op ){ 770 771 case TK_FUNCTION: 772 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 773 break; 774 }else{ 775 Window *pWin; 776 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 777 if( pExpr->y.pWin==pWin ){ 778 assert( pWin->pOwner==pExpr ); 779 return WRC_Prune; 780 } 781 } 782 } 783 /* Fall through. */ 784 785 case TK_AGG_FUNCTION: 786 case TK_COLUMN: { 787 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 788 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 789 if( p->pSub ){ 790 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 791 ExprSetProperty(pExpr, EP_Static); 792 sqlite3ExprDelete(pParse->db, pExpr); 793 ExprClearProperty(pExpr, EP_Static); 794 memset(pExpr, 0, sizeof(Expr)); 795 796 pExpr->op = TK_COLUMN; 797 pExpr->iColumn = p->pSub->nExpr-1; 798 pExpr->iTable = p->pWin->iEphCsr; 799 } 800 801 break; 802 } 803 804 default: /* no-op */ 805 break; 806 } 807 808 return WRC_Continue; 809 } 810 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 811 struct WindowRewrite *p = pWalker->u.pRewrite; 812 Select *pSave = p->pSubSelect; 813 if( pSave==pSelect ){ 814 return WRC_Continue; 815 }else{ 816 p->pSubSelect = pSelect; 817 sqlite3WalkSelect(pWalker, pSelect); 818 p->pSubSelect = pSave; 819 } 820 return WRC_Prune; 821 } 822 823 824 /* 825 ** Iterate through each expression in expression-list pEList. For each: 826 ** 827 ** * TK_COLUMN, 828 ** * aggregate function, or 829 ** * window function with a Window object that is not a member of the 830 ** Window list passed as the second argument (pWin). 831 ** 832 ** Append the node to output expression-list (*ppSub). And replace it 833 ** with a TK_COLUMN that reads the (N-1)th element of table 834 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 835 ** appending the new one. 836 */ 837 static void selectWindowRewriteEList( 838 Parse *pParse, 839 Window *pWin, 840 SrcList *pSrc, 841 ExprList *pEList, /* Rewrite expressions in this list */ 842 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 843 ){ 844 Walker sWalker; 845 WindowRewrite sRewrite; 846 847 memset(&sWalker, 0, sizeof(Walker)); 848 memset(&sRewrite, 0, sizeof(WindowRewrite)); 849 850 sRewrite.pSub = *ppSub; 851 sRewrite.pWin = pWin; 852 sRewrite.pSrc = pSrc; 853 854 sWalker.pParse = pParse; 855 sWalker.xExprCallback = selectWindowRewriteExprCb; 856 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 857 sWalker.u.pRewrite = &sRewrite; 858 859 (void)sqlite3WalkExprList(&sWalker, pEList); 860 861 *ppSub = sRewrite.pSub; 862 } 863 864 /* 865 ** Append a copy of each expression in expression-list pAppend to 866 ** expression list pList. Return a pointer to the result list. 867 */ 868 static ExprList *exprListAppendList( 869 Parse *pParse, /* Parsing context */ 870 ExprList *pList, /* List to which to append. Might be NULL */ 871 ExprList *pAppend, /* List of values to append. Might be NULL */ 872 int bIntToNull 873 ){ 874 if( pAppend ){ 875 int i; 876 int nInit = pList ? pList->nExpr : 0; 877 for(i=0; i<pAppend->nExpr; i++){ 878 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); 879 if( bIntToNull && pDup && pDup->op==TK_INTEGER ){ 880 pDup->op = TK_NULL; 881 pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 882 } 883 pList = sqlite3ExprListAppend(pParse, pList, pDup); 884 if( pList ) pList->a[nInit+i].sortOrder = pAppend->a[i].sortOrder; 885 } 886 } 887 return pList; 888 } 889 890 /* 891 ** If the SELECT statement passed as the second argument does not invoke 892 ** any SQL window functions, this function is a no-op. Otherwise, it 893 ** rewrites the SELECT statement so that window function xStep functions 894 ** are invoked in the correct order as described under "SELECT REWRITING" 895 ** at the top of this file. 896 */ 897 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 898 int rc = SQLITE_OK; 899 if( p->pWin && p->pPrior==0 ){ 900 Vdbe *v = sqlite3GetVdbe(pParse); 901 sqlite3 *db = pParse->db; 902 Select *pSub = 0; /* The subquery */ 903 SrcList *pSrc = p->pSrc; 904 Expr *pWhere = p->pWhere; 905 ExprList *pGroupBy = p->pGroupBy; 906 Expr *pHaving = p->pHaving; 907 ExprList *pSort = 0; 908 909 ExprList *pSublist = 0; /* Expression list for sub-query */ 910 Window *pMWin = p->pWin; /* Master window object */ 911 Window *pWin; /* Window object iterator */ 912 913 p->pSrc = 0; 914 p->pWhere = 0; 915 p->pGroupBy = 0; 916 p->pHaving = 0; 917 918 /* Create the ORDER BY clause for the sub-select. This is the concatenation 919 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 920 ** redundant, remove the ORDER BY from the parent SELECT. */ 921 pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0); 922 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 923 if( pSort && p->pOrderBy ){ 924 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 925 sqlite3ExprListDelete(db, p->pOrderBy); 926 p->pOrderBy = 0; 927 } 928 } 929 930 /* Assign a cursor number for the ephemeral table used to buffer rows. 931 ** The OpenEphemeral instruction is coded later, after it is known how 932 ** many columns the table will have. */ 933 pMWin->iEphCsr = pParse->nTab++; 934 pParse->nTab += 3; 935 936 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, &pSublist); 937 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, &pSublist); 938 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 939 940 /* Append the PARTITION BY and ORDER BY expressions to the to the 941 ** sub-select expression list. They are required to figure out where 942 ** boundaries for partitions and sets of peer rows lie. */ 943 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 944 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 945 946 /* Append the arguments passed to each window function to the 947 ** sub-select expression list. Also allocate two registers for each 948 ** window function - one for the accumulator, another for interim 949 ** results. */ 950 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 951 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 952 pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList, 0); 953 if( pWin->pFilter ){ 954 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 955 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 956 } 957 pWin->regAccum = ++pParse->nMem; 958 pWin->regResult = ++pParse->nMem; 959 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 960 } 961 962 /* If there is no ORDER BY or PARTITION BY clause, and the window 963 ** function accepts zero arguments, and there are no other columns 964 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 965 ** that pSublist is still NULL here. Add a constant expression here to 966 ** keep everything legal in this case. 967 */ 968 if( pSublist==0 ){ 969 pSublist = sqlite3ExprListAppend(pParse, 0, 970 sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0) 971 ); 972 } 973 974 pSub = sqlite3SelectNew( 975 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 976 ); 977 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 978 if( p->pSrc ){ 979 p->pSrc->a[0].pSelect = pSub; 980 sqlite3SrcListAssignCursors(pParse, p->pSrc); 981 if( sqlite3ExpandSubquery(pParse, &p->pSrc->a[0]) ){ 982 rc = SQLITE_NOMEM; 983 }else{ 984 pSub->selFlags |= SF_Expanded; 985 p->selFlags &= ~SF_Aggregate; 986 sqlite3SelectPrep(pParse, pSub, 0); 987 } 988 989 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr); 990 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 991 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 992 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 993 }else{ 994 sqlite3SelectDelete(db, pSub); 995 } 996 if( db->mallocFailed ) rc = SQLITE_NOMEM; 997 } 998 999 return rc; 1000 } 1001 1002 /* 1003 ** Free the Window object passed as the second argument. 1004 */ 1005 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1006 if( p ){ 1007 sqlite3ExprDelete(db, p->pFilter); 1008 sqlite3ExprListDelete(db, p->pPartition); 1009 sqlite3ExprListDelete(db, p->pOrderBy); 1010 sqlite3ExprDelete(db, p->pEnd); 1011 sqlite3ExprDelete(db, p->pStart); 1012 sqlite3DbFree(db, p->zName); 1013 sqlite3DbFree(db, p->zBase); 1014 sqlite3DbFree(db, p); 1015 } 1016 } 1017 1018 /* 1019 ** Free the linked list of Window objects starting at the second argument. 1020 */ 1021 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1022 while( p ){ 1023 Window *pNext = p->pNextWin; 1024 sqlite3WindowDelete(db, p); 1025 p = pNext; 1026 } 1027 } 1028 1029 /* 1030 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1031 ** value should be a non-negative integer. If the value is not a 1032 ** constant, change it to NULL. The fact that it is then a non-negative 1033 ** integer will be caught later. But it is important not to leave 1034 ** variable values in the expression tree. 1035 */ 1036 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1037 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1038 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1039 sqlite3ExprDelete(pParse->db, pExpr); 1040 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1041 } 1042 return pExpr; 1043 } 1044 1045 /* 1046 ** Allocate and return a new Window object describing a Window Definition. 1047 */ 1048 Window *sqlite3WindowAlloc( 1049 Parse *pParse, /* Parsing context */ 1050 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1051 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1052 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1053 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1054 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1055 u8 eExclude /* EXCLUDE clause */ 1056 ){ 1057 Window *pWin = 0; 1058 int bImplicitFrame = 0; 1059 1060 /* Parser assures the following: */ 1061 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1062 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1063 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1064 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1065 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1066 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1067 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1068 1069 if( eType==0 ){ 1070 bImplicitFrame = 1; 1071 eType = TK_RANGE; 1072 } 1073 1074 /* Additionally, the 1075 ** starting boundary type may not occur earlier in the following list than 1076 ** the ending boundary type: 1077 ** 1078 ** UNBOUNDED PRECEDING 1079 ** <expr> PRECEDING 1080 ** CURRENT ROW 1081 ** <expr> FOLLOWING 1082 ** UNBOUNDED FOLLOWING 1083 ** 1084 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1085 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1086 ** frame boundary. 1087 */ 1088 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1089 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1090 ){ 1091 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1092 goto windowAllocErr; 1093 } 1094 1095 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1096 if( pWin==0 ) goto windowAllocErr; 1097 pWin->eFrmType = eType; 1098 pWin->eStart = eStart; 1099 pWin->eEnd = eEnd; 1100 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1101 eExclude = TK_NO; 1102 } 1103 pWin->eExclude = eExclude; 1104 pWin->bImplicitFrame = bImplicitFrame; 1105 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1106 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1107 return pWin; 1108 1109 windowAllocErr: 1110 sqlite3ExprDelete(pParse->db, pEnd); 1111 sqlite3ExprDelete(pParse->db, pStart); 1112 return 0; 1113 } 1114 1115 /* 1116 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1117 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1118 ** equivalent nul-terminated string. 1119 */ 1120 Window *sqlite3WindowAssemble( 1121 Parse *pParse, 1122 Window *pWin, 1123 ExprList *pPartition, 1124 ExprList *pOrderBy, 1125 Token *pBase 1126 ){ 1127 if( pWin ){ 1128 pWin->pPartition = pPartition; 1129 pWin->pOrderBy = pOrderBy; 1130 if( pBase ){ 1131 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1132 } 1133 }else{ 1134 sqlite3ExprListDelete(pParse->db, pPartition); 1135 sqlite3ExprListDelete(pParse->db, pOrderBy); 1136 } 1137 return pWin; 1138 } 1139 1140 /* 1141 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1142 ** is the base window. Earlier windows from the same WINDOW clause are 1143 ** stored in the linked list starting at pWin->pNextWin. This function 1144 ** either updates *pWin according to the base specification, or else 1145 ** leaves an error in pParse. 1146 */ 1147 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1148 if( pWin->zBase ){ 1149 sqlite3 *db = pParse->db; 1150 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1151 if( pExist ){ 1152 const char *zErr = 0; 1153 /* Check for errors */ 1154 if( pWin->pPartition ){ 1155 zErr = "PARTITION clause"; 1156 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1157 zErr = "ORDER BY clause"; 1158 }else if( pExist->bImplicitFrame==0 ){ 1159 zErr = "frame specification"; 1160 } 1161 if( zErr ){ 1162 sqlite3ErrorMsg(pParse, 1163 "cannot override %s of window: %s", zErr, pWin->zBase 1164 ); 1165 }else{ 1166 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1167 if( pExist->pOrderBy ){ 1168 assert( pWin->pOrderBy==0 ); 1169 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1170 } 1171 sqlite3DbFree(db, pWin->zBase); 1172 pWin->zBase = 0; 1173 } 1174 } 1175 } 1176 } 1177 1178 /* 1179 ** Attach window object pWin to expression p. 1180 */ 1181 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1182 if( p ){ 1183 assert( p->op==TK_FUNCTION ); 1184 /* This routine is only called for the parser. If pWin was not 1185 ** allocated due to an OOM, then the parser would fail before ever 1186 ** invoking this routine */ 1187 if( ALWAYS(pWin) ){ 1188 p->y.pWin = pWin; 1189 ExprSetProperty(p, EP_WinFunc); 1190 pWin->pOwner = p; 1191 if( p->flags & EP_Distinct ){ 1192 sqlite3ErrorMsg(pParse, 1193 "DISTINCT is not supported for window functions"); 1194 } 1195 } 1196 }else{ 1197 sqlite3WindowDelete(pParse->db, pWin); 1198 } 1199 } 1200 1201 /* 1202 ** Return 0 if the two window objects are identical, or non-zero otherwise. 1203 ** Identical window objects can be processed in a single scan. 1204 */ 1205 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2){ 1206 if( p1->eFrmType!=p2->eFrmType ) return 1; 1207 if( p1->eStart!=p2->eStart ) return 1; 1208 if( p1->eEnd!=p2->eEnd ) return 1; 1209 if( p1->eExclude!=p2->eExclude ) return 1; 1210 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1211 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1212 if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1; 1213 if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1; 1214 return 0; 1215 } 1216 1217 1218 /* 1219 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1220 ** to begin iterating through the sub-query results. It is used to allocate 1221 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1222 */ 1223 void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){ 1224 Window *pWin; 1225 Vdbe *v = sqlite3GetVdbe(pParse); 1226 1227 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1228 ** said registers to NULL. */ 1229 if( pMWin->pPartition ){ 1230 int nExpr = pMWin->pPartition->nExpr; 1231 pMWin->regPart = pParse->nMem+1; 1232 pParse->nMem += nExpr; 1233 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1234 } 1235 1236 pMWin->regOne = ++pParse->nMem; 1237 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1238 1239 if( pMWin->eExclude ){ 1240 pMWin->regStartRowid = ++pParse->nMem; 1241 pMWin->regEndRowid = ++pParse->nMem; 1242 pMWin->csrApp = pParse->nTab++; 1243 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1244 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1245 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1246 return; 1247 } 1248 1249 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1250 FuncDef *p = pWin->pFunc; 1251 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1252 /* The inline versions of min() and max() require a single ephemeral 1253 ** table and 3 registers. The registers are used as follows: 1254 ** 1255 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1256 ** regApp+1: integer value used to ensure keys are unique 1257 ** regApp+2: output of MakeRecord 1258 */ 1259 ExprList *pList = pWin->pOwner->x.pList; 1260 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1261 pWin->csrApp = pParse->nTab++; 1262 pWin->regApp = pParse->nMem+1; 1263 pParse->nMem += 3; 1264 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1265 assert( pKeyInfo->aSortOrder[0]==0 ); 1266 pKeyInfo->aSortOrder[0] = 1; 1267 } 1268 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1269 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1270 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1271 } 1272 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1273 /* Allocate two registers at pWin->regApp. These will be used to 1274 ** store the start and end index of the current frame. */ 1275 pWin->regApp = pParse->nMem+1; 1276 pWin->csrApp = pParse->nTab++; 1277 pParse->nMem += 2; 1278 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1279 } 1280 else if( p->zName==leadName || p->zName==lagName ){ 1281 pWin->csrApp = pParse->nTab++; 1282 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1283 } 1284 } 1285 } 1286 1287 #define WINDOW_STARTING_INT 0 1288 #define WINDOW_ENDING_INT 1 1289 #define WINDOW_NTH_VALUE_INT 2 1290 #define WINDOW_STARTING_NUM 3 1291 #define WINDOW_ENDING_NUM 4 1292 1293 /* 1294 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1295 ** value of the second argument to nth_value() (eCond==2) has just been 1296 ** evaluated and the result left in register reg. This function generates VM 1297 ** code to check that the value is a non-negative integer and throws an 1298 ** exception if it is not. 1299 */ 1300 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1301 static const char *azErr[] = { 1302 "frame starting offset must be a non-negative integer", 1303 "frame ending offset must be a non-negative integer", 1304 "second argument to nth_value must be a positive integer", 1305 "frame starting offset must be a non-negative number", 1306 "frame ending offset must be a non-negative number", 1307 }; 1308 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1309 Vdbe *v = sqlite3GetVdbe(pParse); 1310 int regZero = sqlite3GetTempReg(pParse); 1311 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1312 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1313 if( eCond>=WINDOW_STARTING_NUM ){ 1314 int regString = sqlite3GetTempReg(pParse); 1315 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1316 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1317 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1318 VdbeCoverage(v); 1319 assert( eCond==3 || eCond==4 ); 1320 VdbeCoverageIf(v, eCond==3); 1321 VdbeCoverageIf(v, eCond==4); 1322 }else{ 1323 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1324 VdbeCoverage(v); 1325 assert( eCond==0 || eCond==1 || eCond==2 ); 1326 VdbeCoverageIf(v, eCond==0); 1327 VdbeCoverageIf(v, eCond==1); 1328 VdbeCoverageIf(v, eCond==2); 1329 } 1330 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1331 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1332 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1333 VdbeCoverageNeverNullIf(v, eCond==2); 1334 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1335 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1336 sqlite3MayAbort(pParse); 1337 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1338 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1339 sqlite3ReleaseTempReg(pParse, regZero); 1340 } 1341 1342 /* 1343 ** Return the number of arguments passed to the window-function associated 1344 ** with the object passed as the only argument to this function. 1345 */ 1346 static int windowArgCount(Window *pWin){ 1347 ExprList *pList = pWin->pOwner->x.pList; 1348 return (pList ? pList->nExpr : 0); 1349 } 1350 1351 /* 1352 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1353 ** xInverse (if bInverse is non-zero) for each window function in the 1354 ** linked list starting at pMWin. Or, for built-in window functions 1355 ** that do not use the standard function API, generate the required 1356 ** inline VM code. 1357 ** 1358 ** If argument csr is greater than or equal to 0, then argument reg is 1359 ** the first register in an array of registers guaranteed to be large 1360 ** enough to hold the array of arguments for each function. In this case 1361 ** the arguments are extracted from the current row of csr into the 1362 ** array of registers before invoking OP_AggStep or OP_AggInverse 1363 ** 1364 ** Or, if csr is less than zero, then the array of registers at reg is 1365 ** already populated with all columns from the current row of the sub-query. 1366 ** 1367 ** If argument regPartSize is non-zero, then it is a register containing the 1368 ** number of rows in the current partition. 1369 */ 1370 static void windowAggStep( 1371 Parse *pParse, 1372 Window *pMWin, /* Linked list of window functions */ 1373 int csr, /* Read arguments from this cursor */ 1374 int bInverse, /* True to invoke xInverse instead of xStep */ 1375 int reg /* Array of registers */ 1376 ){ 1377 Vdbe *v = sqlite3GetVdbe(pParse); 1378 Window *pWin; 1379 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1380 FuncDef *pFunc = pWin->pFunc; 1381 int regArg; 1382 int nArg = windowArgCount(pWin); 1383 int i; 1384 1385 for(i=0; i<nArg; i++){ 1386 if( i!=1 || pFunc->zName!=nth_valueName ){ 1387 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1388 }else{ 1389 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1390 } 1391 } 1392 regArg = reg; 1393 1394 if( pMWin->regStartRowid==0 1395 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1396 && (pWin->eStart!=TK_UNBOUNDED) 1397 ){ 1398 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1399 VdbeCoverage(v); 1400 if( bInverse==0 ){ 1401 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1402 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1403 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1404 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1405 }else{ 1406 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1407 VdbeCoverageNeverTaken(v); 1408 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1409 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1410 } 1411 sqlite3VdbeJumpHere(v, addrIsNull); 1412 }else if( pWin->regApp ){ 1413 assert( pFunc->zName==nth_valueName 1414 || pFunc->zName==first_valueName 1415 ); 1416 assert( bInverse==0 || bInverse==1 ); 1417 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1418 }else if( pFunc->xSFunc!=noopStepFunc ){ 1419 int addrIf = 0; 1420 if( pWin->pFilter ){ 1421 int regTmp; 1422 assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr ); 1423 assert( nArg || pWin->pOwner->x.pList==0 ); 1424 regTmp = sqlite3GetTempReg(pParse); 1425 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1426 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1427 VdbeCoverage(v); 1428 sqlite3ReleaseTempReg(pParse, regTmp); 1429 } 1430 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1431 CollSeq *pColl; 1432 assert( nArg>0 ); 1433 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1434 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1435 } 1436 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1437 bInverse, regArg, pWin->regAccum); 1438 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1439 sqlite3VdbeChangeP5(v, (u8)nArg); 1440 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1441 } 1442 } 1443 } 1444 1445 typedef struct WindowCodeArg WindowCodeArg; 1446 typedef struct WindowCsrAndReg WindowCsrAndReg; 1447 struct WindowCsrAndReg { 1448 int csr; 1449 int reg; 1450 }; 1451 1452 struct WindowCodeArg { 1453 Parse *pParse; 1454 Window *pMWin; 1455 Vdbe *pVdbe; 1456 int regGosub; 1457 int addrGosub; 1458 int regArg; 1459 int eDelete; 1460 1461 WindowCsrAndReg start; 1462 WindowCsrAndReg current; 1463 WindowCsrAndReg end; 1464 }; 1465 1466 /* 1467 ** Values that may be passed as the second argument to windowCodeOp(). 1468 */ 1469 #define WINDOW_RETURN_ROW 1 1470 #define WINDOW_AGGINVERSE 2 1471 #define WINDOW_AGGSTEP 3 1472 1473 /* 1474 ** Generate VM code to read the window frames peer values from cursor csr into 1475 ** an array of registers starting at reg. 1476 */ 1477 static void windowReadPeerValues( 1478 WindowCodeArg *p, 1479 int csr, 1480 int reg 1481 ){ 1482 Window *pMWin = p->pMWin; 1483 ExprList *pOrderBy = pMWin->pOrderBy; 1484 if( pOrderBy ){ 1485 Vdbe *v = sqlite3GetVdbe(p->pParse); 1486 ExprList *pPart = pMWin->pPartition; 1487 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1488 int i; 1489 for(i=0; i<pOrderBy->nExpr; i++){ 1490 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1491 } 1492 } 1493 } 1494 1495 /* 1496 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1497 ** (bFin==1) for each window function in the linked list starting at 1498 ** pMWin. Or, for built-in window-functions that do not use the standard 1499 ** API, generate the equivalent VM code. 1500 */ 1501 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1502 Parse *pParse = p->pParse; 1503 Window *pMWin = p->pMWin; 1504 Vdbe *v = sqlite3GetVdbe(pParse); 1505 Window *pWin; 1506 1507 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1508 if( pMWin->regStartRowid==0 1509 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1510 && (pWin->eStart!=TK_UNBOUNDED) 1511 ){ 1512 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1513 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1514 VdbeCoverage(v); 1515 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1516 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1517 }else if( pWin->regApp ){ 1518 assert( pMWin->regStartRowid==0 ); 1519 }else{ 1520 int nArg = windowArgCount(pWin); 1521 if( bFin ){ 1522 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1523 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1524 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1525 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1526 }else{ 1527 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1528 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1529 } 1530 } 1531 } 1532 } 1533 1534 /* 1535 ** Generate code to calculate the current values of all window functions in the 1536 ** p->pMWin list by doing a full scan of the current window frame. Store the 1537 ** results in the Window.regResult registers, ready to return the upper 1538 ** layer. 1539 */ 1540 static void windowFullScan(WindowCodeArg *p){ 1541 Window *pWin; 1542 Parse *pParse = p->pParse; 1543 Window *pMWin = p->pMWin; 1544 Vdbe *v = p->pVdbe; 1545 1546 int regCRowid = 0; /* Current rowid value */ 1547 int regCPeer = 0; /* Current peer values */ 1548 int regRowid = 0; /* AggStep rowid value */ 1549 int regPeer = 0; /* AggStep peer values */ 1550 1551 int nPeer; 1552 int lblNext; 1553 int lblBrk; 1554 int addrNext; 1555 int csr = pMWin->csrApp; 1556 1557 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1558 1559 lblNext = sqlite3VdbeMakeLabel(pParse); 1560 lblBrk = sqlite3VdbeMakeLabel(pParse); 1561 1562 regCRowid = sqlite3GetTempReg(pParse); 1563 regRowid = sqlite3GetTempReg(pParse); 1564 if( nPeer ){ 1565 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1566 regPeer = sqlite3GetTempRange(pParse, nPeer); 1567 } 1568 1569 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1570 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1571 1572 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1573 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1574 } 1575 1576 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1577 VdbeCoverage(v); 1578 addrNext = sqlite3VdbeCurrentAddr(v); 1579 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1580 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1581 VdbeCoverageNeverNull(v); 1582 1583 if( pMWin->eExclude==TK_CURRENT ){ 1584 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1585 VdbeCoverageNeverNull(v); 1586 }else if( pMWin->eExclude!=TK_NO ){ 1587 int addr; 1588 int addrEq = 0; 1589 KeyInfo *pKeyInfo = 0; 1590 1591 if( pMWin->pOrderBy ){ 1592 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1593 } 1594 if( pMWin->eExclude==TK_TIES ){ 1595 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1596 VdbeCoverageNeverNull(v); 1597 } 1598 if( pKeyInfo ){ 1599 windowReadPeerValues(p, csr, regPeer); 1600 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1601 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1602 addr = sqlite3VdbeCurrentAddr(v)+1; 1603 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1604 VdbeCoverageEqNe(v); 1605 }else{ 1606 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1607 } 1608 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1609 } 1610 1611 windowAggStep(pParse, pMWin, csr, 0, p->regArg); 1612 1613 sqlite3VdbeResolveLabel(v, lblNext); 1614 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1615 VdbeCoverage(v); 1616 sqlite3VdbeJumpHere(v, addrNext-1); 1617 sqlite3VdbeJumpHere(v, addrNext+1); 1618 sqlite3ReleaseTempReg(pParse, regRowid); 1619 sqlite3ReleaseTempReg(pParse, regCRowid); 1620 if( nPeer ){ 1621 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1622 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1623 } 1624 1625 windowAggFinal(p, 1); 1626 } 1627 1628 /* 1629 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1630 ** return the current row of Window.iEphCsr. If all window functions are 1631 ** aggregate window functions that use the standard API, a single 1632 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1633 ** for per-row processing is only generated for the following built-in window 1634 ** functions: 1635 ** 1636 ** nth_value() 1637 ** first_value() 1638 ** lag() 1639 ** lead() 1640 */ 1641 static void windowReturnOneRow(WindowCodeArg *p){ 1642 Window *pMWin = p->pMWin; 1643 Vdbe *v = p->pVdbe; 1644 1645 if( pMWin->regStartRowid ){ 1646 windowFullScan(p); 1647 }else{ 1648 Parse *pParse = p->pParse; 1649 Window *pWin; 1650 1651 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1652 FuncDef *pFunc = pWin->pFunc; 1653 if( pFunc->zName==nth_valueName 1654 || pFunc->zName==first_valueName 1655 ){ 1656 int csr = pWin->csrApp; 1657 int lbl = sqlite3VdbeMakeLabel(pParse); 1658 int tmpReg = sqlite3GetTempReg(pParse); 1659 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1660 1661 if( pFunc->zName==nth_valueName ){ 1662 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1663 windowCheckValue(pParse, tmpReg, 2); 1664 }else{ 1665 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1666 } 1667 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1668 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1669 VdbeCoverageNeverNull(v); 1670 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1671 VdbeCoverageNeverTaken(v); 1672 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1673 sqlite3VdbeResolveLabel(v, lbl); 1674 sqlite3ReleaseTempReg(pParse, tmpReg); 1675 } 1676 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1677 int nArg = pWin->pOwner->x.pList->nExpr; 1678 int csr = pWin->csrApp; 1679 int lbl = sqlite3VdbeMakeLabel(pParse); 1680 int tmpReg = sqlite3GetTempReg(pParse); 1681 int iEph = pMWin->iEphCsr; 1682 1683 if( nArg<3 ){ 1684 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1685 }else{ 1686 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1687 } 1688 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1689 if( nArg<2 ){ 1690 int val = (pFunc->zName==leadName ? 1 : -1); 1691 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1692 }else{ 1693 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1694 int tmpReg2 = sqlite3GetTempReg(pParse); 1695 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1696 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1697 sqlite3ReleaseTempReg(pParse, tmpReg2); 1698 } 1699 1700 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1701 VdbeCoverage(v); 1702 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1703 sqlite3VdbeResolveLabel(v, lbl); 1704 sqlite3ReleaseTempReg(pParse, tmpReg); 1705 } 1706 } 1707 } 1708 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1709 } 1710 1711 /* 1712 ** Generate code to set the accumulator register for each window function 1713 ** in the linked list passed as the second argument to NULL. And perform 1714 ** any equivalent initialization required by any built-in window functions 1715 ** in the list. 1716 */ 1717 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1718 Vdbe *v = sqlite3GetVdbe(pParse); 1719 int regArg; 1720 int nArg = 0; 1721 Window *pWin; 1722 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1723 FuncDef *pFunc = pWin->pFunc; 1724 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1725 nArg = MAX(nArg, windowArgCount(pWin)); 1726 if( pMWin->regStartRowid==0 ){ 1727 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1728 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1729 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1730 } 1731 1732 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1733 assert( pWin->eStart!=TK_UNBOUNDED ); 1734 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1735 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1736 } 1737 } 1738 } 1739 regArg = pParse->nMem+1; 1740 pParse->nMem += nArg; 1741 return regArg; 1742 } 1743 1744 /* 1745 ** Return true if the current frame should be cached in the ephemeral table, 1746 ** even if there are no xInverse() calls required. 1747 */ 1748 static int windowCacheFrame(Window *pMWin){ 1749 Window *pWin; 1750 if( pMWin->regStartRowid ) return 1; 1751 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1752 FuncDef *pFunc = pWin->pFunc; 1753 if( (pFunc->zName==nth_valueName) 1754 || (pFunc->zName==first_valueName) 1755 || (pFunc->zName==leadName) 1756 || (pFunc->zName==lagName) 1757 ){ 1758 return 1; 1759 } 1760 } 1761 return 0; 1762 } 1763 1764 /* 1765 ** regOld and regNew are each the first register in an array of size 1766 ** pOrderBy->nExpr. This function generates code to compare the two 1767 ** arrays of registers using the collation sequences and other comparison 1768 ** parameters specified by pOrderBy. 1769 ** 1770 ** If the two arrays are not equal, the contents of regNew is copied to 1771 ** regOld and control falls through. Otherwise, if the contents of the arrays 1772 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 1773 */ 1774 static void windowIfNewPeer( 1775 Parse *pParse, 1776 ExprList *pOrderBy, 1777 int regNew, /* First in array of new values */ 1778 int regOld, /* First in array of old values */ 1779 int addr /* Jump here */ 1780 ){ 1781 Vdbe *v = sqlite3GetVdbe(pParse); 1782 if( pOrderBy ){ 1783 int nVal = pOrderBy->nExpr; 1784 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 1785 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 1786 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1787 sqlite3VdbeAddOp3(v, OP_Jump, 1788 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 1789 ); 1790 VdbeCoverageEqNe(v); 1791 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 1792 }else{ 1793 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 1794 } 1795 } 1796 1797 /* 1798 ** This function is called as part of generating VM programs for RANGE 1799 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 1800 ** the ORDER BY term in the window, it generates code equivalent to: 1801 ** 1802 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 1803 ** 1804 ** A special type of arithmetic is used such that if csr.peerVal is not 1805 ** a numeric type (real or integer), then the result of the addition is 1806 ** a copy of csr1.peerVal. 1807 */ 1808 static void windowCodeRangeTest( 1809 WindowCodeArg *p, 1810 int op, /* OP_Ge or OP_Gt */ 1811 int csr1, 1812 int regVal, 1813 int csr2, 1814 int lbl 1815 ){ 1816 Parse *pParse = p->pParse; 1817 Vdbe *v = sqlite3GetVdbe(pParse); 1818 int reg1 = sqlite3GetTempReg(pParse); 1819 int reg2 = sqlite3GetTempReg(pParse); 1820 int arith = OP_Add; 1821 int addrGe; 1822 1823 int regString = ++pParse->nMem; 1824 1825 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 1826 assert( p->pMWin->pOrderBy && p->pMWin->pOrderBy->nExpr==1 ); 1827 if( p->pMWin->pOrderBy->a[0].sortOrder ){ 1828 switch( op ){ 1829 case OP_Ge: op = OP_Le; break; 1830 case OP_Gt: op = OP_Lt; break; 1831 default: assert( op==OP_Le ); op = OP_Ge; break; 1832 } 1833 arith = OP_Subtract; 1834 } 1835 1836 windowReadPeerValues(p, csr1, reg1); 1837 windowReadPeerValues(p, csr2, reg2); 1838 1839 /* Check if the peer value for csr1 value is a text or blob by comparing 1840 ** it to the smallest possible string - ''. If it is, jump over the 1841 ** OP_Add or OP_Subtract operation and proceed directly to the comparison. */ 1842 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1843 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 1844 VdbeCoverage(v); 1845 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 1846 sqlite3VdbeJumpHere(v, addrGe); 1847 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 1848 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1849 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 1850 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 1851 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 1852 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 1853 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 1854 1855 sqlite3ReleaseTempReg(pParse, reg1); 1856 sqlite3ReleaseTempReg(pParse, reg2); 1857 } 1858 1859 /* 1860 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 1861 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 1862 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 1863 ** details. 1864 */ 1865 static int windowCodeOp( 1866 WindowCodeArg *p, /* Context object */ 1867 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 1868 int regCountdown, /* Register for OP_IfPos countdown */ 1869 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 1870 ){ 1871 int csr, reg; 1872 Parse *pParse = p->pParse; 1873 Window *pMWin = p->pMWin; 1874 int ret = 0; 1875 Vdbe *v = p->pVdbe; 1876 int addrIf = 0; 1877 int addrContinue = 0; 1878 int addrGoto = 0; 1879 int bPeer = (pMWin->eFrmType!=TK_ROWS); 1880 1881 int lblDone = sqlite3VdbeMakeLabel(pParse); 1882 int addrNextRange = 0; 1883 1884 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 1885 ** starts with UNBOUNDED PRECEDING. */ 1886 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 1887 assert( regCountdown==0 && jumpOnEof==0 ); 1888 return 0; 1889 } 1890 1891 if( regCountdown>0 ){ 1892 if( pMWin->eFrmType==TK_RANGE ){ 1893 addrNextRange = sqlite3VdbeCurrentAddr(v); 1894 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 1895 if( op==WINDOW_AGGINVERSE ){ 1896 if( pMWin->eStart==TK_FOLLOWING ){ 1897 windowCodeRangeTest( 1898 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 1899 ); 1900 }else{ 1901 windowCodeRangeTest( 1902 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 1903 ); 1904 } 1905 }else{ 1906 windowCodeRangeTest( 1907 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 1908 ); 1909 } 1910 }else{ 1911 addrIf = sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, 0, 1); 1912 VdbeCoverage(v); 1913 } 1914 } 1915 1916 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 1917 windowAggFinal(p, 0); 1918 } 1919 addrContinue = sqlite3VdbeCurrentAddr(v); 1920 switch( op ){ 1921 case WINDOW_RETURN_ROW: 1922 csr = p->current.csr; 1923 reg = p->current.reg; 1924 windowReturnOneRow(p); 1925 break; 1926 1927 case WINDOW_AGGINVERSE: 1928 csr = p->start.csr; 1929 reg = p->start.reg; 1930 if( pMWin->regStartRowid ){ 1931 assert( pMWin->regEndRowid ); 1932 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 1933 }else{ 1934 windowAggStep(pParse, pMWin, csr, 1, p->regArg); 1935 } 1936 break; 1937 1938 default: 1939 assert( op==WINDOW_AGGSTEP ); 1940 csr = p->end.csr; 1941 reg = p->end.reg; 1942 if( pMWin->regStartRowid ){ 1943 assert( pMWin->regEndRowid ); 1944 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 1945 }else{ 1946 windowAggStep(pParse, pMWin, csr, 0, p->regArg); 1947 } 1948 break; 1949 } 1950 1951 if( op==p->eDelete ){ 1952 sqlite3VdbeAddOp1(v, OP_Delete, csr); 1953 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 1954 } 1955 1956 if( jumpOnEof ){ 1957 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 1958 VdbeCoverage(v); 1959 ret = sqlite3VdbeAddOp0(v, OP_Goto); 1960 }else{ 1961 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 1962 VdbeCoverage(v); 1963 if( bPeer ){ 1964 addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); 1965 } 1966 } 1967 1968 if( bPeer ){ 1969 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1970 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 1971 windowReadPeerValues(p, csr, regTmp); 1972 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 1973 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 1974 } 1975 1976 if( addrNextRange ){ 1977 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 1978 } 1979 sqlite3VdbeResolveLabel(v, lblDone); 1980 if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto); 1981 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1982 return ret; 1983 } 1984 1985 1986 /* 1987 ** Allocate and return a duplicate of the Window object indicated by the 1988 ** third argument. Set the Window.pOwner field of the new object to 1989 ** pOwner. 1990 */ 1991 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 1992 Window *pNew = 0; 1993 if( ALWAYS(p) ){ 1994 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 1995 if( pNew ){ 1996 pNew->zName = sqlite3DbStrDup(db, p->zName); 1997 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 1998 pNew->pFunc = p->pFunc; 1999 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2000 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2001 pNew->eFrmType = p->eFrmType; 2002 pNew->eEnd = p->eEnd; 2003 pNew->eStart = p->eStart; 2004 pNew->eExclude = p->eExclude; 2005 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2006 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2007 pNew->pOwner = pOwner; 2008 } 2009 } 2010 return pNew; 2011 } 2012 2013 /* 2014 ** Return a copy of the linked list of Window objects passed as the 2015 ** second argument. 2016 */ 2017 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2018 Window *pWin; 2019 Window *pRet = 0; 2020 Window **pp = &pRet; 2021 2022 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2023 *pp = sqlite3WindowDup(db, 0, pWin); 2024 if( *pp==0 ) break; 2025 pp = &((*pp)->pNextWin); 2026 } 2027 2028 return pRet; 2029 } 2030 2031 /* 2032 ** Return true if it can be determined at compile time that expression 2033 ** pExpr evaluates to a value that, when cast to an integer, is greater 2034 ** than zero. False otherwise. 2035 ** 2036 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2037 ** flag and returns zero. 2038 */ 2039 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2040 int ret = 0; 2041 sqlite3 *db = pParse->db; 2042 sqlite3_value *pVal = 0; 2043 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2044 if( pVal && sqlite3_value_int(pVal)>0 ){ 2045 ret = 1; 2046 } 2047 sqlite3ValueFree(pVal); 2048 return ret; 2049 } 2050 2051 /* 2052 ** sqlite3WhereBegin() has already been called for the SELECT statement 2053 ** passed as the second argument when this function is invoked. It generates 2054 ** code to populate the Window.regResult register for each window function 2055 ** and invoke the sub-routine at instruction addrGosub once for each row. 2056 ** sqlite3WhereEnd() is always called before returning. 2057 ** 2058 ** This function handles several different types of window frames, which 2059 ** require slightly different processing. The following pseudo code is 2060 ** used to implement window frames of the form: 2061 ** 2062 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2063 ** 2064 ** Other window frame types use variants of the following: 2065 ** 2066 ** ... loop started by sqlite3WhereBegin() ... 2067 ** if( new partition ){ 2068 ** Gosub flush 2069 ** } 2070 ** Insert new row into eph table. 2071 ** 2072 ** if( first row of partition ){ 2073 ** // Rewind three cursors, all open on the eph table. 2074 ** Rewind(csrEnd); 2075 ** Rewind(csrStart); 2076 ** Rewind(csrCurrent); 2077 ** 2078 ** regEnd = <expr2> // FOLLOWING expression 2079 ** regStart = <expr1> // PRECEDING expression 2080 ** }else{ 2081 ** // First time this branch is taken, the eph table contains two 2082 ** // rows. The first row in the partition, which all three cursors 2083 ** // currently point to, and the following row. 2084 ** AGGSTEP 2085 ** if( (regEnd--)<=0 ){ 2086 ** RETURN_ROW 2087 ** if( (regStart--)<=0 ){ 2088 ** AGGINVERSE 2089 ** } 2090 ** } 2091 ** } 2092 ** } 2093 ** flush: 2094 ** AGGSTEP 2095 ** while( 1 ){ 2096 ** RETURN ROW 2097 ** if( csrCurrent is EOF ) break; 2098 ** if( (regStart--)<=0 ){ 2099 ** AggInverse(csrStart) 2100 ** Next(csrStart) 2101 ** } 2102 ** } 2103 ** 2104 ** The pseudo-code above uses the following shorthand: 2105 ** 2106 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2107 ** with arguments read from the current row of cursor csrEnd, then 2108 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2109 ** 2110 ** RETURN_ROW: return a row to the caller based on the contents of the 2111 ** current row of csrCurrent and the current state of all 2112 ** aggregates. Then step cursor csrCurrent forward one row. 2113 ** 2114 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2115 ** functions with arguments read from the current row of cursor 2116 ** csrStart. Then step csrStart forward one row. 2117 ** 2118 ** There are two other ROWS window frames that are handled significantly 2119 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2120 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2121 ** cases because they change the order in which the three cursors (csrStart, 2122 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2123 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2124 ** three. 2125 ** 2126 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2127 ** 2128 ** ... loop started by sqlite3WhereBegin() ... 2129 ** if( new partition ){ 2130 ** Gosub flush 2131 ** } 2132 ** Insert new row into eph table. 2133 ** if( first row of partition ){ 2134 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2135 ** regEnd = <expr2> 2136 ** regStart = <expr1> 2137 ** }else{ 2138 ** if( (regEnd--)<=0 ){ 2139 ** AGGSTEP 2140 ** } 2141 ** RETURN_ROW 2142 ** if( (regStart--)<=0 ){ 2143 ** AGGINVERSE 2144 ** } 2145 ** } 2146 ** } 2147 ** flush: 2148 ** if( (regEnd--)<=0 ){ 2149 ** AGGSTEP 2150 ** } 2151 ** RETURN_ROW 2152 ** 2153 ** 2154 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2155 ** 2156 ** ... loop started by sqlite3WhereBegin() ... 2157 ** if( new partition ){ 2158 ** Gosub flush 2159 ** } 2160 ** Insert new row into eph table. 2161 ** if( first row of partition ){ 2162 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2163 ** regEnd = <expr2> 2164 ** regStart = regEnd - <expr1> 2165 ** }else{ 2166 ** AGGSTEP 2167 ** if( (regEnd--)<=0 ){ 2168 ** RETURN_ROW 2169 ** } 2170 ** if( (regStart--)<=0 ){ 2171 ** AGGINVERSE 2172 ** } 2173 ** } 2174 ** } 2175 ** flush: 2176 ** AGGSTEP 2177 ** while( 1 ){ 2178 ** if( (regEnd--)<=0 ){ 2179 ** RETURN_ROW 2180 ** if( eof ) break; 2181 ** } 2182 ** if( (regStart--)<=0 ){ 2183 ** AGGINVERSE 2184 ** if( eof ) break 2185 ** } 2186 ** } 2187 ** while( !eof csrCurrent ){ 2188 ** RETURN_ROW 2189 ** } 2190 ** 2191 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2192 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2193 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2194 ** This is optimized of course - branches that will never be taken and 2195 ** conditions that are always true are omitted from the VM code. The only 2196 ** exceptional case is: 2197 ** 2198 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2199 ** 2200 ** ... loop started by sqlite3WhereBegin() ... 2201 ** if( new partition ){ 2202 ** Gosub flush 2203 ** } 2204 ** Insert new row into eph table. 2205 ** if( first row of partition ){ 2206 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2207 ** regStart = <expr1> 2208 ** }else{ 2209 ** AGGSTEP 2210 ** } 2211 ** } 2212 ** flush: 2213 ** AGGSTEP 2214 ** while( 1 ){ 2215 ** if( (regStart--)<=0 ){ 2216 ** AGGINVERSE 2217 ** if( eof ) break 2218 ** } 2219 ** RETURN_ROW 2220 ** } 2221 ** while( !eof csrCurrent ){ 2222 ** RETURN_ROW 2223 ** } 2224 ** 2225 ** Also requiring special handling are the cases: 2226 ** 2227 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2228 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2229 ** 2230 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2231 ** To handle this case, the pseudo-code programs depicted above are modified 2232 ** slightly to be: 2233 ** 2234 ** ... loop started by sqlite3WhereBegin() ... 2235 ** if( new partition ){ 2236 ** Gosub flush 2237 ** } 2238 ** Insert new row into eph table. 2239 ** if( first row of partition ){ 2240 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2241 ** regEnd = <expr2> 2242 ** regStart = <expr1> 2243 ** if( regEnd < regStart ){ 2244 ** RETURN_ROW 2245 ** delete eph table contents 2246 ** continue 2247 ** } 2248 ** ... 2249 ** 2250 ** The new "continue" statement in the above jumps to the next iteration 2251 ** of the outer loop - the one started by sqlite3WhereBegin(). 2252 ** 2253 ** The various GROUPS cases are implemented using the same patterns as 2254 ** ROWS. The VM code is modified slightly so that: 2255 ** 2256 ** 1. The else branch in the main loop is only taken if the row just 2257 ** added to the ephemeral table is the start of a new group. In 2258 ** other words, it becomes: 2259 ** 2260 ** ... loop started by sqlite3WhereBegin() ... 2261 ** if( new partition ){ 2262 ** Gosub flush 2263 ** } 2264 ** Insert new row into eph table. 2265 ** if( first row of partition ){ 2266 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2267 ** regEnd = <expr2> 2268 ** regStart = <expr1> 2269 ** }else if( new group ){ 2270 ** ... 2271 ** } 2272 ** } 2273 ** 2274 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2275 ** AGGINVERSE step processes the current row of the relevant cursor and 2276 ** all subsequent rows belonging to the same group. 2277 ** 2278 ** RANGE window frames are a little different again. As for GROUPS, the 2279 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2280 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2281 ** basic cases: 2282 ** 2283 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2284 ** 2285 ** ... loop started by sqlite3WhereBegin() ... 2286 ** if( new partition ){ 2287 ** Gosub flush 2288 ** } 2289 ** Insert new row into eph table. 2290 ** if( first row of partition ){ 2291 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2292 ** regEnd = <expr2> 2293 ** regStart = <expr1> 2294 ** }else{ 2295 ** AGGSTEP 2296 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2297 ** RETURN_ROW 2298 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2299 ** AGGINVERSE 2300 ** } 2301 ** } 2302 ** } 2303 ** } 2304 ** flush: 2305 ** AGGSTEP 2306 ** while( 1 ){ 2307 ** RETURN ROW 2308 ** if( csrCurrent is EOF ) break; 2309 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2310 ** AGGINVERSE 2311 ** } 2312 ** } 2313 ** } 2314 ** 2315 ** In the above notation, "csr.key" means the current value of the ORDER BY 2316 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2317 ** or <expr PRECEDING) read from cursor csr. 2318 ** 2319 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2320 ** 2321 ** ... loop started by sqlite3WhereBegin() ... 2322 ** if( new partition ){ 2323 ** Gosub flush 2324 ** } 2325 ** Insert new row into eph table. 2326 ** if( first row of partition ){ 2327 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2328 ** regEnd = <expr2> 2329 ** regStart = <expr1> 2330 ** }else{ 2331 ** if( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2332 ** AGGSTEP 2333 ** } 2334 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2335 ** AGGINVERSE 2336 ** } 2337 ** RETURN_ROW 2338 ** } 2339 ** } 2340 ** flush: 2341 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2342 ** AGGSTEP 2343 ** } 2344 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2345 ** AGGINVERSE 2346 ** } 2347 ** RETURN_ROW 2348 ** 2349 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2350 ** 2351 ** ... loop started by sqlite3WhereBegin() ... 2352 ** if( new partition ){ 2353 ** Gosub flush 2354 ** } 2355 ** Insert new row into eph table. 2356 ** if( first row of partition ){ 2357 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2358 ** regEnd = <expr2> 2359 ** regStart = <expr1> 2360 ** }else{ 2361 ** AGGSTEP 2362 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2363 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2364 ** AGGINVERSE 2365 ** } 2366 ** RETURN_ROW 2367 ** } 2368 ** } 2369 ** } 2370 ** flush: 2371 ** AGGSTEP 2372 ** while( 1 ){ 2373 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2374 ** AGGINVERSE 2375 ** if( eof ) break "while( 1 )" loop. 2376 ** } 2377 ** RETURN_ROW 2378 ** } 2379 ** while( !eof csrCurrent ){ 2380 ** RETURN_ROW 2381 ** } 2382 ** 2383 ** The text above leaves out many details. Refer to the code and comments 2384 ** below for a more complete picture. 2385 */ 2386 void sqlite3WindowCodeStep( 2387 Parse *pParse, /* Parse context */ 2388 Select *p, /* Rewritten SELECT statement */ 2389 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2390 int regGosub, /* Register for OP_Gosub */ 2391 int addrGosub /* OP_Gosub here to return each row */ 2392 ){ 2393 Window *pMWin = p->pWin; 2394 ExprList *pOrderBy = pMWin->pOrderBy; 2395 Vdbe *v = sqlite3GetVdbe(pParse); 2396 int csrWrite; /* Cursor used to write to eph. table */ 2397 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2398 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2399 int iInput; /* To iterate through sub cols */ 2400 int addrNe; /* Address of OP_Ne */ 2401 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2402 int addrInteger = 0; /* Address of OP_Integer */ 2403 int addrEmpty; /* Address of OP_Rewind in flush: */ 2404 int regStart = 0; /* Value of <expr> PRECEDING */ 2405 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2406 int regNew; /* Array of registers holding new input row */ 2407 int regRecord; /* regNew array in record form */ 2408 int regRowid; /* Rowid for regRecord in eph table */ 2409 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2410 int regPeer = 0; /* Peer values for current row */ 2411 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2412 WindowCodeArg s; /* Context object for sub-routines */ 2413 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2414 2415 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2416 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2417 ); 2418 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2419 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2420 ); 2421 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2422 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2423 || pMWin->eExclude==TK_NO 2424 ); 2425 2426 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2427 2428 /* Fill in the context object */ 2429 memset(&s, 0, sizeof(WindowCodeArg)); 2430 s.pParse = pParse; 2431 s.pMWin = pMWin; 2432 s.pVdbe = v; 2433 s.regGosub = regGosub; 2434 s.addrGosub = addrGosub; 2435 s.current.csr = pMWin->iEphCsr; 2436 csrWrite = s.current.csr+1; 2437 s.start.csr = s.current.csr+2; 2438 s.end.csr = s.current.csr+3; 2439 2440 /* Figure out when rows may be deleted from the ephemeral table. There 2441 ** are four options - they may never be deleted (eDelete==0), they may 2442 ** be deleted as soon as they are no longer part of the window frame 2443 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2444 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2445 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2446 switch( pMWin->eStart ){ 2447 case TK_FOLLOWING: 2448 if( pMWin->eFrmType!=TK_RANGE 2449 && windowExprGtZero(pParse, pMWin->pStart) 2450 ){ 2451 s.eDelete = WINDOW_RETURN_ROW; 2452 } 2453 break; 2454 case TK_UNBOUNDED: 2455 if( windowCacheFrame(pMWin)==0 ){ 2456 if( pMWin->eEnd==TK_PRECEDING ){ 2457 if( pMWin->eFrmType!=TK_RANGE 2458 && windowExprGtZero(pParse, pMWin->pEnd) 2459 ){ 2460 s.eDelete = WINDOW_AGGSTEP; 2461 } 2462 }else{ 2463 s.eDelete = WINDOW_RETURN_ROW; 2464 } 2465 } 2466 break; 2467 default: 2468 s.eDelete = WINDOW_AGGINVERSE; 2469 break; 2470 } 2471 2472 /* Allocate registers for the array of values from the sub-query, the 2473 ** samve values in record form, and the rowid used to insert said record 2474 ** into the ephemeral table. */ 2475 regNew = pParse->nMem+1; 2476 pParse->nMem += nInput; 2477 regRecord = ++pParse->nMem; 2478 regRowid = ++pParse->nMem; 2479 2480 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2481 ** clause, allocate registers to store the results of evaluating each 2482 ** <expr>. */ 2483 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2484 regStart = ++pParse->nMem; 2485 } 2486 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2487 regEnd = ++pParse->nMem; 2488 } 2489 2490 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2491 ** registers to store copies of the ORDER BY expressions (peer values) 2492 ** for the main loop, and for each cursor (start, current and end). */ 2493 if( pMWin->eFrmType!=TK_ROWS ){ 2494 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2495 regNewPeer = regNew + pMWin->nBufferCol; 2496 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2497 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2498 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2499 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2500 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2501 } 2502 2503 /* Load the column values for the row returned by the sub-select 2504 ** into an array of registers starting at regNew. Assemble them into 2505 ** a record in register regRecord. */ 2506 for(iInput=0; iInput<nInput; iInput++){ 2507 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2508 } 2509 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2510 2511 /* An input row has just been read into an array of registers starting 2512 ** at regNew. If the window has a PARTITION clause, this block generates 2513 ** VM code to check if the input row is the start of a new partition. 2514 ** If so, it does an OP_Gosub to an address to be filled in later. The 2515 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2516 if( pMWin->pPartition ){ 2517 int addr; 2518 ExprList *pPart = pMWin->pPartition; 2519 int nPart = pPart->nExpr; 2520 int regNewPart = regNew + pMWin->nBufferCol; 2521 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2522 2523 regFlushPart = ++pParse->nMem; 2524 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2525 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2526 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2527 VdbeCoverageEqNe(v); 2528 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2529 VdbeComment((v, "call flush_partition")); 2530 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2531 } 2532 2533 /* Insert the new row into the ephemeral table */ 2534 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2535 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2536 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2537 VdbeCoverageNeverNull(v); 2538 2539 /* This block is run for the first row of each partition */ 2540 s.regArg = windowInitAccum(pParse, pMWin); 2541 2542 if( regStart ){ 2543 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2544 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); 2545 } 2546 if( regEnd ){ 2547 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2548 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); 2549 } 2550 2551 if( pMWin->eStart==pMWin->eEnd && regStart ){ 2552 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2553 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2554 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2555 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2556 windowAggFinal(&s, 0); 2557 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2558 VdbeCoverageNeverTaken(v); 2559 windowReturnOneRow(&s); 2560 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2561 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2562 sqlite3VdbeJumpHere(v, addrGe); 2563 } 2564 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2565 assert( pMWin->eEnd==TK_FOLLOWING ); 2566 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2567 } 2568 2569 if( pMWin->eStart!=TK_UNBOUNDED ){ 2570 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2571 VdbeCoverageNeverTaken(v); 2572 } 2573 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2574 VdbeCoverageNeverTaken(v); 2575 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2576 VdbeCoverageNeverTaken(v); 2577 if( regPeer && pOrderBy ){ 2578 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2579 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2580 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2581 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2582 } 2583 2584 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2585 2586 sqlite3VdbeJumpHere(v, addrNe); 2587 2588 /* Beginning of the block executed for the second and subsequent rows. */ 2589 if( regPeer ){ 2590 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2591 } 2592 if( pMWin->eStart==TK_FOLLOWING ){ 2593 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2594 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2595 if( pMWin->eFrmType==TK_RANGE ){ 2596 int lbl = sqlite3VdbeMakeLabel(pParse); 2597 int addrNext = sqlite3VdbeCurrentAddr(v); 2598 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2599 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2600 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2601 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2602 sqlite3VdbeResolveLabel(v, lbl); 2603 }else{ 2604 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2605 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2606 } 2607 } 2608 }else 2609 if( pMWin->eEnd==TK_PRECEDING ){ 2610 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2611 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2612 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2613 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2614 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2615 }else{ 2616 int addr = 0; 2617 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2618 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2619 if( pMWin->eFrmType==TK_RANGE ){ 2620 int lbl = 0; 2621 addr = sqlite3VdbeCurrentAddr(v); 2622 if( regEnd ){ 2623 lbl = sqlite3VdbeMakeLabel(pParse); 2624 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2625 } 2626 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2627 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2628 if( regEnd ){ 2629 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2630 sqlite3VdbeResolveLabel(v, lbl); 2631 } 2632 }else{ 2633 if( regEnd ){ 2634 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2635 VdbeCoverage(v); 2636 } 2637 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2638 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2639 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2640 } 2641 } 2642 } 2643 2644 /* End of the main input loop */ 2645 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2646 sqlite3WhereEnd(pWInfo); 2647 2648 /* Fall through */ 2649 if( pMWin->pPartition ){ 2650 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2651 sqlite3VdbeJumpHere(v, addrGosubFlush); 2652 } 2653 2654 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2655 VdbeCoverage(v); 2656 if( pMWin->eEnd==TK_PRECEDING ){ 2657 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2658 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2659 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2660 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2661 }else if( pMWin->eStart==TK_FOLLOWING ){ 2662 int addrStart; 2663 int addrBreak1; 2664 int addrBreak2; 2665 int addrBreak3; 2666 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2667 if( pMWin->eFrmType==TK_RANGE ){ 2668 addrStart = sqlite3VdbeCurrentAddr(v); 2669 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2670 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2671 }else 2672 if( pMWin->eEnd==TK_UNBOUNDED ){ 2673 addrStart = sqlite3VdbeCurrentAddr(v); 2674 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 2675 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 2676 }else{ 2677 assert( pMWin->eEnd==TK_FOLLOWING ); 2678 addrStart = sqlite3VdbeCurrentAddr(v); 2679 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 2680 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2681 } 2682 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2683 sqlite3VdbeJumpHere(v, addrBreak2); 2684 addrStart = sqlite3VdbeCurrentAddr(v); 2685 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2686 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2687 sqlite3VdbeJumpHere(v, addrBreak1); 2688 sqlite3VdbeJumpHere(v, addrBreak3); 2689 }else{ 2690 int addrBreak; 2691 int addrStart; 2692 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2693 addrStart = sqlite3VdbeCurrentAddr(v); 2694 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2695 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2697 sqlite3VdbeJumpHere(v, addrBreak); 2698 } 2699 sqlite3VdbeJumpHere(v, addrEmpty); 2700 2701 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2702 if( pMWin->pPartition ){ 2703 if( pMWin->regStartRowid ){ 2704 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 2705 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 2706 } 2707 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 2708 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 2709 } 2710 } 2711 2712 #endif /* SQLITE_OMIT_WINDOWFUNC */ 2713