1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pWFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* no break */ deliberate_fall_through 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( pParse->db->mallocFailed ) return WRC_Abort; 792 if( p->pSub ){ 793 int i; 794 for(i=0; i<p->pSub->nExpr; i++){ 795 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 796 iCol = i; 797 break; 798 } 799 } 800 } 801 if( iCol<0 ){ 802 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 803 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 804 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 805 } 806 if( p->pSub ){ 807 int f = pExpr->flags & EP_Collate; 808 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 809 ExprSetProperty(pExpr, EP_Static); 810 sqlite3ExprDelete(pParse->db, pExpr); 811 ExprClearProperty(pExpr, EP_Static); 812 memset(pExpr, 0, sizeof(Expr)); 813 814 pExpr->op = TK_COLUMN; 815 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 816 pExpr->iTable = p->pWin->iEphCsr; 817 pExpr->y.pTab = p->pTab; 818 pExpr->flags = f; 819 } 820 if( pParse->db->mallocFailed ) return WRC_Abort; 821 break; 822 } 823 824 default: /* no-op */ 825 break; 826 } 827 828 return WRC_Continue; 829 } 830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 831 struct WindowRewrite *p = pWalker->u.pRewrite; 832 Select *pSave = p->pSubSelect; 833 if( pSave==pSelect ){ 834 return WRC_Continue; 835 }else{ 836 p->pSubSelect = pSelect; 837 sqlite3WalkSelect(pWalker, pSelect); 838 p->pSubSelect = pSave; 839 } 840 return WRC_Prune; 841 } 842 843 844 /* 845 ** Iterate through each expression in expression-list pEList. For each: 846 ** 847 ** * TK_COLUMN, 848 ** * aggregate function, or 849 ** * window function with a Window object that is not a member of the 850 ** Window list passed as the second argument (pWin). 851 ** 852 ** Append the node to output expression-list (*ppSub). And replace it 853 ** with a TK_COLUMN that reads the (N-1)th element of table 854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 855 ** appending the new one. 856 */ 857 static void selectWindowRewriteEList( 858 Parse *pParse, 859 Window *pWin, 860 SrcList *pSrc, 861 ExprList *pEList, /* Rewrite expressions in this list */ 862 Table *pTab, 863 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 864 ){ 865 Walker sWalker; 866 WindowRewrite sRewrite; 867 868 assert( pWin!=0 ); 869 memset(&sWalker, 0, sizeof(Walker)); 870 memset(&sRewrite, 0, sizeof(WindowRewrite)); 871 872 sRewrite.pSub = *ppSub; 873 sRewrite.pWin = pWin; 874 sRewrite.pSrc = pSrc; 875 sRewrite.pTab = pTab; 876 877 sWalker.pParse = pParse; 878 sWalker.xExprCallback = selectWindowRewriteExprCb; 879 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 880 sWalker.u.pRewrite = &sRewrite; 881 882 (void)sqlite3WalkExprList(&sWalker, pEList); 883 884 *ppSub = sRewrite.pSub; 885 } 886 887 /* 888 ** Append a copy of each expression in expression-list pAppend to 889 ** expression list pList. Return a pointer to the result list. 890 */ 891 static ExprList *exprListAppendList( 892 Parse *pParse, /* Parsing context */ 893 ExprList *pList, /* List to which to append. Might be NULL */ 894 ExprList *pAppend, /* List of values to append. Might be NULL */ 895 int bIntToNull 896 ){ 897 if( pAppend ){ 898 int i; 899 int nInit = pList ? pList->nExpr : 0; 900 for(i=0; i<pAppend->nExpr; i++){ 901 sqlite3 *db = pParse->db; 902 Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); 903 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 904 if( db->mallocFailed ){ 905 sqlite3ExprDelete(db, pDup); 906 break; 907 } 908 if( bIntToNull ){ 909 int iDummy; 910 Expr *pSub; 911 pSub = sqlite3ExprSkipCollateAndLikely(pDup); 912 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 913 pSub->op = TK_NULL; 914 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 915 pSub->u.zToken = 0; 916 } 917 } 918 pList = sqlite3ExprListAppend(pParse, pList, pDup); 919 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 920 } 921 } 922 return pList; 923 } 924 925 /* 926 ** When rewriting a query, if the new subquery in the FROM clause 927 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 928 ** then we have to increase the Expr->op2 values of those nodes 929 ** due to the extra subquery layer that was added. 930 ** 931 ** See also the incrAggDepth() routine in resolve.c 932 */ 933 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 934 if( pExpr->op==TK_AGG_FUNCTION 935 && pExpr->op2>=pWalker->walkerDepth 936 ){ 937 pExpr->op2++; 938 } 939 return WRC_Continue; 940 } 941 942 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){ 943 if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){ 944 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 945 sqlite3ErrorMsg(pWalker->pParse, 946 "misuse of aggregate: %s()", pExpr->u.zToken); 947 } 948 return WRC_Continue; 949 } 950 951 /* 952 ** If the SELECT statement passed as the second argument does not invoke 953 ** any SQL window functions, this function is a no-op. Otherwise, it 954 ** rewrites the SELECT statement so that window function xStep functions 955 ** are invoked in the correct order as described under "SELECT REWRITING" 956 ** at the top of this file. 957 */ 958 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 959 int rc = SQLITE_OK; 960 if( p->pWin 961 && p->pPrior==0 962 && ALWAYS((p->selFlags & SF_WinRewrite)==0) 963 && ALWAYS(!IN_RENAME_OBJECT) 964 ){ 965 Vdbe *v = sqlite3GetVdbe(pParse); 966 sqlite3 *db = pParse->db; 967 Select *pSub = 0; /* The subquery */ 968 SrcList *pSrc = p->pSrc; 969 Expr *pWhere = p->pWhere; 970 ExprList *pGroupBy = p->pGroupBy; 971 Expr *pHaving = p->pHaving; 972 ExprList *pSort = 0; 973 974 ExprList *pSublist = 0; /* Expression list for sub-query */ 975 Window *pMWin = p->pWin; /* Main window object */ 976 Window *pWin; /* Window object iterator */ 977 Table *pTab; 978 Walker w; 979 980 u32 selFlags = p->selFlags; 981 982 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 983 if( pTab==0 ){ 984 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 985 } 986 sqlite3AggInfoPersistWalkerInit(&w, pParse); 987 sqlite3WalkSelect(&w, p); 988 if( (p->selFlags & SF_Aggregate)==0 ){ 989 w.xExprCallback = disallowAggregatesInOrderByCb; 990 w.xSelectCallback = 0; 991 sqlite3WalkExprList(&w, p->pOrderBy); 992 } 993 994 p->pSrc = 0; 995 p->pWhere = 0; 996 p->pGroupBy = 0; 997 p->pHaving = 0; 998 p->selFlags &= ~SF_Aggregate; 999 p->selFlags |= SF_WinRewrite; 1000 1001 /* Create the ORDER BY clause for the sub-select. This is the concatenation 1002 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 1003 ** redundant, remove the ORDER BY from the parent SELECT. */ 1004 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 1005 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 1006 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 1007 int nSave = pSort->nExpr; 1008 pSort->nExpr = p->pOrderBy->nExpr; 1009 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 1010 sqlite3ExprListDelete(db, p->pOrderBy); 1011 p->pOrderBy = 0; 1012 } 1013 pSort->nExpr = nSave; 1014 } 1015 1016 /* Assign a cursor number for the ephemeral table used to buffer rows. 1017 ** The OpenEphemeral instruction is coded later, after it is known how 1018 ** many columns the table will have. */ 1019 pMWin->iEphCsr = pParse->nTab++; 1020 pParse->nTab += 3; 1021 1022 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 1023 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1024 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1025 1026 /* Append the PARTITION BY and ORDER BY expressions to the to the 1027 ** sub-select expression list. They are required to figure out where 1028 ** boundaries for partitions and sets of peer rows lie. */ 1029 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1030 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1031 1032 /* Append the arguments passed to each window function to the 1033 ** sub-select expression list. Also allocate two registers for each 1034 ** window function - one for the accumulator, another for interim 1035 ** results. */ 1036 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1037 ExprList *pArgs; 1038 assert( ExprUseXList(pWin->pOwner) ); 1039 assert( pWin->pWFunc!=0 ); 1040 pArgs = pWin->pOwner->x.pList; 1041 if( pWin->pWFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1042 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1043 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1044 pWin->bExprArgs = 1; 1045 }else{ 1046 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1047 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1048 } 1049 if( pWin->pFilter ){ 1050 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1051 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1052 } 1053 pWin->regAccum = ++pParse->nMem; 1054 pWin->regResult = ++pParse->nMem; 1055 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1056 } 1057 1058 /* If there is no ORDER BY or PARTITION BY clause, and the window 1059 ** function accepts zero arguments, and there are no other columns 1060 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1061 ** that pSublist is still NULL here. Add a constant expression here to 1062 ** keep everything legal in this case. 1063 */ 1064 if( pSublist==0 ){ 1065 pSublist = sqlite3ExprListAppend(pParse, 0, 1066 sqlite3Expr(db, TK_INTEGER, "0") 1067 ); 1068 } 1069 1070 pSub = sqlite3SelectNew( 1071 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1072 ); 1073 SELECTTRACE(1,pParse,pSub, 1074 ("New window-function subquery in FROM clause of (%u/%p)\n", 1075 p->selId, p)); 1076 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1077 assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside 1078 ** of sqlite3DbMallocRawNN() called from 1079 ** sqlite3SrcListAppend() */ 1080 if( p->pSrc ){ 1081 Table *pTab2; 1082 p->pSrc->a[0].pSelect = pSub; 1083 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1084 pSub->selFlags |= SF_Expanded|SF_OrderByReqd; 1085 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1086 pSub->selFlags |= (selFlags & SF_Aggregate); 1087 if( pTab2==0 ){ 1088 /* Might actually be some other kind of error, but in that case 1089 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1090 ** the correct error message regardless. */ 1091 rc = SQLITE_NOMEM; 1092 }else{ 1093 memcpy(pTab, pTab2, sizeof(Table)); 1094 pTab->tabFlags |= TF_Ephemeral; 1095 p->pSrc->a[0].pTab = pTab; 1096 pTab = pTab2; 1097 memset(&w, 0, sizeof(w)); 1098 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1099 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1100 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1101 sqlite3WalkSelect(&w, pSub); 1102 } 1103 }else{ 1104 sqlite3SelectDelete(db, pSub); 1105 } 1106 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1107 1108 /* Defer deleting the temporary table pTab because if an error occurred, 1109 ** there could still be references to that table embedded in the 1110 ** result-set or ORDER BY clause of the SELECT statement p. */ 1111 sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab); 1112 } 1113 1114 assert( rc==SQLITE_OK || pParse->nErr!=0 ); 1115 return rc; 1116 } 1117 1118 /* 1119 ** Unlink the Window object from the Select to which it is attached, 1120 ** if it is attached. 1121 */ 1122 void sqlite3WindowUnlinkFromSelect(Window *p){ 1123 if( p->ppThis ){ 1124 *p->ppThis = p->pNextWin; 1125 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1126 p->ppThis = 0; 1127 } 1128 } 1129 1130 /* 1131 ** Free the Window object passed as the second argument. 1132 */ 1133 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1134 if( p ){ 1135 sqlite3WindowUnlinkFromSelect(p); 1136 sqlite3ExprDelete(db, p->pFilter); 1137 sqlite3ExprListDelete(db, p->pPartition); 1138 sqlite3ExprListDelete(db, p->pOrderBy); 1139 sqlite3ExprDelete(db, p->pEnd); 1140 sqlite3ExprDelete(db, p->pStart); 1141 sqlite3DbFree(db, p->zName); 1142 sqlite3DbFree(db, p->zBase); 1143 sqlite3DbFree(db, p); 1144 } 1145 } 1146 1147 /* 1148 ** Free the linked list of Window objects starting at the second argument. 1149 */ 1150 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1151 while( p ){ 1152 Window *pNext = p->pNextWin; 1153 sqlite3WindowDelete(db, p); 1154 p = pNext; 1155 } 1156 } 1157 1158 /* 1159 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1160 ** value should be a non-negative integer. If the value is not a 1161 ** constant, change it to NULL. The fact that it is then a non-negative 1162 ** integer will be caught later. But it is important not to leave 1163 ** variable values in the expression tree. 1164 */ 1165 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1166 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1167 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1168 sqlite3ExprDelete(pParse->db, pExpr); 1169 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1170 } 1171 return pExpr; 1172 } 1173 1174 /* 1175 ** Allocate and return a new Window object describing a Window Definition. 1176 */ 1177 Window *sqlite3WindowAlloc( 1178 Parse *pParse, /* Parsing context */ 1179 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1180 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1181 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1182 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1183 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1184 u8 eExclude /* EXCLUDE clause */ 1185 ){ 1186 Window *pWin = 0; 1187 int bImplicitFrame = 0; 1188 1189 /* Parser assures the following: */ 1190 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1191 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1192 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1193 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1194 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1195 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1196 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1197 1198 if( eType==0 ){ 1199 bImplicitFrame = 1; 1200 eType = TK_RANGE; 1201 } 1202 1203 /* Additionally, the 1204 ** starting boundary type may not occur earlier in the following list than 1205 ** the ending boundary type: 1206 ** 1207 ** UNBOUNDED PRECEDING 1208 ** <expr> PRECEDING 1209 ** CURRENT ROW 1210 ** <expr> FOLLOWING 1211 ** UNBOUNDED FOLLOWING 1212 ** 1213 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1214 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1215 ** frame boundary. 1216 */ 1217 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1218 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1219 ){ 1220 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1221 goto windowAllocErr; 1222 } 1223 1224 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1225 if( pWin==0 ) goto windowAllocErr; 1226 pWin->eFrmType = eType; 1227 pWin->eStart = eStart; 1228 pWin->eEnd = eEnd; 1229 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1230 eExclude = TK_NO; 1231 } 1232 pWin->eExclude = eExclude; 1233 pWin->bImplicitFrame = bImplicitFrame; 1234 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1235 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1236 return pWin; 1237 1238 windowAllocErr: 1239 sqlite3ExprDelete(pParse->db, pEnd); 1240 sqlite3ExprDelete(pParse->db, pStart); 1241 return 0; 1242 } 1243 1244 /* 1245 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1246 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1247 ** equivalent nul-terminated string. 1248 */ 1249 Window *sqlite3WindowAssemble( 1250 Parse *pParse, 1251 Window *pWin, 1252 ExprList *pPartition, 1253 ExprList *pOrderBy, 1254 Token *pBase 1255 ){ 1256 if( pWin ){ 1257 pWin->pPartition = pPartition; 1258 pWin->pOrderBy = pOrderBy; 1259 if( pBase ){ 1260 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1261 } 1262 }else{ 1263 sqlite3ExprListDelete(pParse->db, pPartition); 1264 sqlite3ExprListDelete(pParse->db, pOrderBy); 1265 } 1266 return pWin; 1267 } 1268 1269 /* 1270 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1271 ** is the base window. Earlier windows from the same WINDOW clause are 1272 ** stored in the linked list starting at pWin->pNextWin. This function 1273 ** either updates *pWin according to the base specification, or else 1274 ** leaves an error in pParse. 1275 */ 1276 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1277 if( pWin->zBase ){ 1278 sqlite3 *db = pParse->db; 1279 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1280 if( pExist ){ 1281 const char *zErr = 0; 1282 /* Check for errors */ 1283 if( pWin->pPartition ){ 1284 zErr = "PARTITION clause"; 1285 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1286 zErr = "ORDER BY clause"; 1287 }else if( pExist->bImplicitFrame==0 ){ 1288 zErr = "frame specification"; 1289 } 1290 if( zErr ){ 1291 sqlite3ErrorMsg(pParse, 1292 "cannot override %s of window: %s", zErr, pWin->zBase 1293 ); 1294 }else{ 1295 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1296 if( pExist->pOrderBy ){ 1297 assert( pWin->pOrderBy==0 ); 1298 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1299 } 1300 sqlite3DbFree(db, pWin->zBase); 1301 pWin->zBase = 0; 1302 } 1303 } 1304 } 1305 } 1306 1307 /* 1308 ** Attach window object pWin to expression p. 1309 */ 1310 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1311 if( p ){ 1312 assert( p->op==TK_FUNCTION ); 1313 assert( pWin ); 1314 p->y.pWin = pWin; 1315 ExprSetProperty(p, EP_WinFunc); 1316 pWin->pOwner = p; 1317 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1318 sqlite3ErrorMsg(pParse, 1319 "DISTINCT is not supported for window functions" 1320 ); 1321 } 1322 }else{ 1323 sqlite3WindowDelete(pParse->db, pWin); 1324 } 1325 } 1326 1327 /* 1328 ** Possibly link window pWin into the list at pSel->pWin (window functions 1329 ** to be processed as part of SELECT statement pSel). The window is linked 1330 ** in if either (a) there are no other windows already linked to this 1331 ** SELECT, or (b) the windows already linked use a compatible window frame. 1332 */ 1333 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1334 if( pSel ){ 1335 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ 1336 pWin->pNextWin = pSel->pWin; 1337 if( pSel->pWin ){ 1338 pSel->pWin->ppThis = &pWin->pNextWin; 1339 } 1340 pSel->pWin = pWin; 1341 pWin->ppThis = &pSel->pWin; 1342 }else{ 1343 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ 1344 pSel->selFlags |= SF_MultiPart; 1345 } 1346 } 1347 } 1348 } 1349 1350 /* 1351 ** Return 0 if the two window objects are identical, 1 if they are 1352 ** different, or 2 if it cannot be determined if the objects are identical 1353 ** or not. Identical window objects can be processed in a single scan. 1354 */ 1355 int sqlite3WindowCompare( 1356 const Parse *pParse, 1357 const Window *p1, 1358 const Window *p2, 1359 int bFilter 1360 ){ 1361 int res; 1362 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1363 if( p1->eFrmType!=p2->eFrmType ) return 1; 1364 if( p1->eStart!=p2->eStart ) return 1; 1365 if( p1->eEnd!=p2->eEnd ) return 1; 1366 if( p1->eExclude!=p2->eExclude ) return 1; 1367 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1368 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1369 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1370 return res; 1371 } 1372 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1373 return res; 1374 } 1375 if( bFilter ){ 1376 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1377 return res; 1378 } 1379 } 1380 return 0; 1381 } 1382 1383 1384 /* 1385 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1386 ** to begin iterating through the sub-query results. It is used to allocate 1387 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1388 */ 1389 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1390 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1391 Window *pMWin = pSelect->pWin; 1392 Window *pWin; 1393 Vdbe *v = sqlite3GetVdbe(pParse); 1394 1395 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1396 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1397 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1398 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1399 1400 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1401 ** said registers to NULL. */ 1402 if( pMWin->pPartition ){ 1403 int nExpr = pMWin->pPartition->nExpr; 1404 pMWin->regPart = pParse->nMem+1; 1405 pParse->nMem += nExpr; 1406 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1407 } 1408 1409 pMWin->regOne = ++pParse->nMem; 1410 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1411 1412 if( pMWin->eExclude ){ 1413 pMWin->regStartRowid = ++pParse->nMem; 1414 pMWin->regEndRowid = ++pParse->nMem; 1415 pMWin->csrApp = pParse->nTab++; 1416 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1417 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1418 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1419 return; 1420 } 1421 1422 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1423 FuncDef *p = pWin->pWFunc; 1424 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1425 /* The inline versions of min() and max() require a single ephemeral 1426 ** table and 3 registers. The registers are used as follows: 1427 ** 1428 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1429 ** regApp+1: integer value used to ensure keys are unique 1430 ** regApp+2: output of MakeRecord 1431 */ 1432 ExprList *pList; 1433 KeyInfo *pKeyInfo; 1434 assert( ExprUseXList(pWin->pOwner) ); 1435 pList = pWin->pOwner->x.pList; 1436 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1437 pWin->csrApp = pParse->nTab++; 1438 pWin->regApp = pParse->nMem+1; 1439 pParse->nMem += 3; 1440 if( pKeyInfo && pWin->pWFunc->zName[1]=='i' ){ 1441 assert( pKeyInfo->aSortFlags[0]==0 ); 1442 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1443 } 1444 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1445 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1446 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1447 } 1448 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1449 /* Allocate two registers at pWin->regApp. These will be used to 1450 ** store the start and end index of the current frame. */ 1451 pWin->regApp = pParse->nMem+1; 1452 pWin->csrApp = pParse->nTab++; 1453 pParse->nMem += 2; 1454 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1455 } 1456 else if( p->zName==leadName || p->zName==lagName ){ 1457 pWin->csrApp = pParse->nTab++; 1458 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1459 } 1460 } 1461 } 1462 1463 #define WINDOW_STARTING_INT 0 1464 #define WINDOW_ENDING_INT 1 1465 #define WINDOW_NTH_VALUE_INT 2 1466 #define WINDOW_STARTING_NUM 3 1467 #define WINDOW_ENDING_NUM 4 1468 1469 /* 1470 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1471 ** value of the second argument to nth_value() (eCond==2) has just been 1472 ** evaluated and the result left in register reg. This function generates VM 1473 ** code to check that the value is a non-negative integer and throws an 1474 ** exception if it is not. 1475 */ 1476 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1477 static const char *azErr[] = { 1478 "frame starting offset must be a non-negative integer", 1479 "frame ending offset must be a non-negative integer", 1480 "second argument to nth_value must be a positive integer", 1481 "frame starting offset must be a non-negative number", 1482 "frame ending offset must be a non-negative number", 1483 }; 1484 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1485 Vdbe *v = sqlite3GetVdbe(pParse); 1486 int regZero = sqlite3GetTempReg(pParse); 1487 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1488 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1489 if( eCond>=WINDOW_STARTING_NUM ){ 1490 int regString = sqlite3GetTempReg(pParse); 1491 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1492 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1493 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1494 VdbeCoverage(v); 1495 assert( eCond==3 || eCond==4 ); 1496 VdbeCoverageIf(v, eCond==3); 1497 VdbeCoverageIf(v, eCond==4); 1498 }else{ 1499 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1500 VdbeCoverage(v); 1501 assert( eCond==0 || eCond==1 || eCond==2 ); 1502 VdbeCoverageIf(v, eCond==0); 1503 VdbeCoverageIf(v, eCond==1); 1504 VdbeCoverageIf(v, eCond==2); 1505 } 1506 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1507 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); 1508 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1509 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1510 VdbeCoverageNeverNullIf(v, eCond==2); 1511 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1512 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1513 sqlite3MayAbort(pParse); 1514 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1515 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1516 sqlite3ReleaseTempReg(pParse, regZero); 1517 } 1518 1519 /* 1520 ** Return the number of arguments passed to the window-function associated 1521 ** with the object passed as the only argument to this function. 1522 */ 1523 static int windowArgCount(Window *pWin){ 1524 const ExprList *pList; 1525 assert( ExprUseXList(pWin->pOwner) ); 1526 pList = pWin->pOwner->x.pList; 1527 return (pList ? pList->nExpr : 0); 1528 } 1529 1530 typedef struct WindowCodeArg WindowCodeArg; 1531 typedef struct WindowCsrAndReg WindowCsrAndReg; 1532 1533 /* 1534 ** See comments above struct WindowCodeArg. 1535 */ 1536 struct WindowCsrAndReg { 1537 int csr; /* Cursor number */ 1538 int reg; /* First in array of peer values */ 1539 }; 1540 1541 /* 1542 ** A single instance of this structure is allocated on the stack by 1543 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1544 ** routines. This is to reduce the number of arguments required by each 1545 ** helper function. 1546 ** 1547 ** regArg: 1548 ** Each window function requires an accumulator register (just as an 1549 ** ordinary aggregate function does). This variable is set to the first 1550 ** in an array of accumulator registers - one for each window function 1551 ** in the WindowCodeArg.pMWin list. 1552 ** 1553 ** eDelete: 1554 ** The window functions implementation sometimes caches the input rows 1555 ** that it processes in a temporary table. If it is not zero, this 1556 ** variable indicates when rows may be removed from the temp table (in 1557 ** order to reduce memory requirements - it would always be safe just 1558 ** to leave them there). Possible values for eDelete are: 1559 ** 1560 ** WINDOW_RETURN_ROW: 1561 ** An input row can be discarded after it is returned to the caller. 1562 ** 1563 ** WINDOW_AGGINVERSE: 1564 ** An input row can be discarded after the window functions xInverse() 1565 ** callbacks have been invoked in it. 1566 ** 1567 ** WINDOW_AGGSTEP: 1568 ** An input row can be discarded after the window functions xStep() 1569 ** callbacks have been invoked in it. 1570 ** 1571 ** start,current,end 1572 ** Consider a window-frame similar to the following: 1573 ** 1574 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1575 ** 1576 ** The windows functions implmentation caches the input rows in a temp 1577 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1578 ** aggressively removes rows once they are no longer required, but that's 1579 ** a mere detail). It keeps three cursors open on the temp table. One 1580 ** (current) that points to the next row to return to the query engine 1581 ** once its window function values have been calculated. Another (end) 1582 ** points to the next row to call the xStep() method of each window function 1583 ** on (so that it is 2 groups ahead of current). And a third (start) that 1584 ** points to the next row to call the xInverse() method of each window 1585 ** function on. 1586 ** 1587 ** Each cursor (start, current and end) consists of a VDBE cursor 1588 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1589 ** WindowCodeArg.reg) that always contains a copy of the peer values 1590 ** read from the corresponding cursor. 1591 ** 1592 ** Depending on the window-frame in question, all three cursors may not 1593 ** be required. In this case both WindowCodeArg.csr and reg are set to 1594 ** 0. 1595 */ 1596 struct WindowCodeArg { 1597 Parse *pParse; /* Parse context */ 1598 Window *pMWin; /* First in list of functions being processed */ 1599 Vdbe *pVdbe; /* VDBE object */ 1600 int addrGosub; /* OP_Gosub to this address to return one row */ 1601 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1602 int regArg; /* First in array of accumulator registers */ 1603 int eDelete; /* See above */ 1604 int regRowid; 1605 1606 WindowCsrAndReg start; 1607 WindowCsrAndReg current; 1608 WindowCsrAndReg end; 1609 }; 1610 1611 /* 1612 ** Generate VM code to read the window frames peer values from cursor csr into 1613 ** an array of registers starting at reg. 1614 */ 1615 static void windowReadPeerValues( 1616 WindowCodeArg *p, 1617 int csr, 1618 int reg 1619 ){ 1620 Window *pMWin = p->pMWin; 1621 ExprList *pOrderBy = pMWin->pOrderBy; 1622 if( pOrderBy ){ 1623 Vdbe *v = sqlite3GetVdbe(p->pParse); 1624 ExprList *pPart = pMWin->pPartition; 1625 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1626 int i; 1627 for(i=0; i<pOrderBy->nExpr; i++){ 1628 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1629 } 1630 } 1631 } 1632 1633 /* 1634 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1635 ** xInverse (if bInverse is non-zero) for each window function in the 1636 ** linked list starting at pMWin. Or, for built-in window functions 1637 ** that do not use the standard function API, generate the required 1638 ** inline VM code. 1639 ** 1640 ** If argument csr is greater than or equal to 0, then argument reg is 1641 ** the first register in an array of registers guaranteed to be large 1642 ** enough to hold the array of arguments for each function. In this case 1643 ** the arguments are extracted from the current row of csr into the 1644 ** array of registers before invoking OP_AggStep or OP_AggInverse 1645 ** 1646 ** Or, if csr is less than zero, then the array of registers at reg is 1647 ** already populated with all columns from the current row of the sub-query. 1648 ** 1649 ** If argument regPartSize is non-zero, then it is a register containing the 1650 ** number of rows in the current partition. 1651 */ 1652 static void windowAggStep( 1653 WindowCodeArg *p, 1654 Window *pMWin, /* Linked list of window functions */ 1655 int csr, /* Read arguments from this cursor */ 1656 int bInverse, /* True to invoke xInverse instead of xStep */ 1657 int reg /* Array of registers */ 1658 ){ 1659 Parse *pParse = p->pParse; 1660 Vdbe *v = sqlite3GetVdbe(pParse); 1661 Window *pWin; 1662 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1663 FuncDef *pFunc = pWin->pWFunc; 1664 int regArg; 1665 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1666 int i; 1667 1668 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1669 1670 /* All OVER clauses in the same window function aggregate step must 1671 ** be the same. */ 1672 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1673 1674 for(i=0; i<nArg; i++){ 1675 if( i!=1 || pFunc->zName!=nth_valueName ){ 1676 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1677 }else{ 1678 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1679 } 1680 } 1681 regArg = reg; 1682 1683 if( pMWin->regStartRowid==0 1684 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1685 && (pWin->eStart!=TK_UNBOUNDED) 1686 ){ 1687 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1688 VdbeCoverage(v); 1689 if( bInverse==0 ){ 1690 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1691 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1692 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1693 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1694 }else{ 1695 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1696 VdbeCoverageNeverTaken(v); 1697 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1698 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1699 } 1700 sqlite3VdbeJumpHere(v, addrIsNull); 1701 }else if( pWin->regApp ){ 1702 assert( pFunc->zName==nth_valueName 1703 || pFunc->zName==first_valueName 1704 ); 1705 assert( bInverse==0 || bInverse==1 ); 1706 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1707 }else if( pFunc->xSFunc!=noopStepFunc ){ 1708 int addrIf = 0; 1709 if( pWin->pFilter ){ 1710 int regTmp; 1711 assert( ExprUseXList(pWin->pOwner) ); 1712 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1713 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1714 regTmp = sqlite3GetTempReg(pParse); 1715 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1716 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1717 VdbeCoverage(v); 1718 sqlite3ReleaseTempReg(pParse, regTmp); 1719 } 1720 1721 if( pWin->bExprArgs ){ 1722 int iOp = sqlite3VdbeCurrentAddr(v); 1723 int iEnd; 1724 1725 assert( ExprUseXList(pWin->pOwner) ); 1726 nArg = pWin->pOwner->x.pList->nExpr; 1727 regArg = sqlite3GetTempRange(pParse, nArg); 1728 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1729 1730 for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){ 1731 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp); 1732 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1733 pOp->p1 = csr; 1734 } 1735 } 1736 } 1737 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1738 CollSeq *pColl; 1739 assert( nArg>0 ); 1740 assert( ExprUseXList(pWin->pOwner) ); 1741 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1742 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1743 } 1744 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1745 bInverse, regArg, pWin->regAccum); 1746 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1747 sqlite3VdbeChangeP5(v, (u8)nArg); 1748 if( pWin->bExprArgs ){ 1749 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1750 } 1751 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1752 } 1753 } 1754 } 1755 1756 /* 1757 ** Values that may be passed as the second argument to windowCodeOp(). 1758 */ 1759 #define WINDOW_RETURN_ROW 1 1760 #define WINDOW_AGGINVERSE 2 1761 #define WINDOW_AGGSTEP 3 1762 1763 /* 1764 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1765 ** (bFin==1) for each window function in the linked list starting at 1766 ** pMWin. Or, for built-in window-functions that do not use the standard 1767 ** API, generate the equivalent VM code. 1768 */ 1769 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1770 Parse *pParse = p->pParse; 1771 Window *pMWin = p->pMWin; 1772 Vdbe *v = sqlite3GetVdbe(pParse); 1773 Window *pWin; 1774 1775 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1776 if( pMWin->regStartRowid==0 1777 && (pWin->pWFunc->funcFlags & SQLITE_FUNC_MINMAX) 1778 && (pWin->eStart!=TK_UNBOUNDED) 1779 ){ 1780 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1781 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1782 VdbeCoverage(v); 1783 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1784 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1785 }else if( pWin->regApp ){ 1786 assert( pMWin->regStartRowid==0 ); 1787 }else{ 1788 int nArg = windowArgCount(pWin); 1789 if( bFin ){ 1790 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1791 sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF); 1792 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1793 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1794 }else{ 1795 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1796 sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF); 1797 } 1798 } 1799 } 1800 } 1801 1802 /* 1803 ** Generate code to calculate the current values of all window functions in the 1804 ** p->pMWin list by doing a full scan of the current window frame. Store the 1805 ** results in the Window.regResult registers, ready to return the upper 1806 ** layer. 1807 */ 1808 static void windowFullScan(WindowCodeArg *p){ 1809 Window *pWin; 1810 Parse *pParse = p->pParse; 1811 Window *pMWin = p->pMWin; 1812 Vdbe *v = p->pVdbe; 1813 1814 int regCRowid = 0; /* Current rowid value */ 1815 int regCPeer = 0; /* Current peer values */ 1816 int regRowid = 0; /* AggStep rowid value */ 1817 int regPeer = 0; /* AggStep peer values */ 1818 1819 int nPeer; 1820 int lblNext; 1821 int lblBrk; 1822 int addrNext; 1823 int csr; 1824 1825 VdbeModuleComment((v, "windowFullScan begin")); 1826 1827 assert( pMWin!=0 ); 1828 csr = pMWin->csrApp; 1829 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1830 1831 lblNext = sqlite3VdbeMakeLabel(pParse); 1832 lblBrk = sqlite3VdbeMakeLabel(pParse); 1833 1834 regCRowid = sqlite3GetTempReg(pParse); 1835 regRowid = sqlite3GetTempReg(pParse); 1836 if( nPeer ){ 1837 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1838 regPeer = sqlite3GetTempRange(pParse, nPeer); 1839 } 1840 1841 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1842 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1843 1844 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1845 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1846 } 1847 1848 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1849 VdbeCoverage(v); 1850 addrNext = sqlite3VdbeCurrentAddr(v); 1851 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1852 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1853 VdbeCoverageNeverNull(v); 1854 1855 if( pMWin->eExclude==TK_CURRENT ){ 1856 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1857 VdbeCoverageNeverNull(v); 1858 }else if( pMWin->eExclude!=TK_NO ){ 1859 int addr; 1860 int addrEq = 0; 1861 KeyInfo *pKeyInfo = 0; 1862 1863 if( pMWin->pOrderBy ){ 1864 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1865 } 1866 if( pMWin->eExclude==TK_TIES ){ 1867 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1868 VdbeCoverageNeverNull(v); 1869 } 1870 if( pKeyInfo ){ 1871 windowReadPeerValues(p, csr, regPeer); 1872 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1873 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1874 addr = sqlite3VdbeCurrentAddr(v)+1; 1875 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1876 VdbeCoverageEqNe(v); 1877 }else{ 1878 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1879 } 1880 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1881 } 1882 1883 windowAggStep(p, pMWin, csr, 0, p->regArg); 1884 1885 sqlite3VdbeResolveLabel(v, lblNext); 1886 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1887 VdbeCoverage(v); 1888 sqlite3VdbeJumpHere(v, addrNext-1); 1889 sqlite3VdbeJumpHere(v, addrNext+1); 1890 sqlite3ReleaseTempReg(pParse, regRowid); 1891 sqlite3ReleaseTempReg(pParse, regCRowid); 1892 if( nPeer ){ 1893 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1894 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1895 } 1896 1897 windowAggFinal(p, 1); 1898 VdbeModuleComment((v, "windowFullScan end")); 1899 } 1900 1901 /* 1902 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1903 ** return the current row of Window.iEphCsr. If all window functions are 1904 ** aggregate window functions that use the standard API, a single 1905 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1906 ** for per-row processing is only generated for the following built-in window 1907 ** functions: 1908 ** 1909 ** nth_value() 1910 ** first_value() 1911 ** lag() 1912 ** lead() 1913 */ 1914 static void windowReturnOneRow(WindowCodeArg *p){ 1915 Window *pMWin = p->pMWin; 1916 Vdbe *v = p->pVdbe; 1917 1918 if( pMWin->regStartRowid ){ 1919 windowFullScan(p); 1920 }else{ 1921 Parse *pParse = p->pParse; 1922 Window *pWin; 1923 1924 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1925 FuncDef *pFunc = pWin->pWFunc; 1926 assert( ExprUseXList(pWin->pOwner) ); 1927 if( pFunc->zName==nth_valueName 1928 || pFunc->zName==first_valueName 1929 ){ 1930 int csr = pWin->csrApp; 1931 int lbl = sqlite3VdbeMakeLabel(pParse); 1932 int tmpReg = sqlite3GetTempReg(pParse); 1933 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1934 1935 if( pFunc->zName==nth_valueName ){ 1936 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1937 windowCheckValue(pParse, tmpReg, 2); 1938 }else{ 1939 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1940 } 1941 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1942 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1943 VdbeCoverageNeverNull(v); 1944 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1945 VdbeCoverageNeverTaken(v); 1946 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1947 sqlite3VdbeResolveLabel(v, lbl); 1948 sqlite3ReleaseTempReg(pParse, tmpReg); 1949 } 1950 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1951 int nArg = pWin->pOwner->x.pList->nExpr; 1952 int csr = pWin->csrApp; 1953 int lbl = sqlite3VdbeMakeLabel(pParse); 1954 int tmpReg = sqlite3GetTempReg(pParse); 1955 int iEph = pMWin->iEphCsr; 1956 1957 if( nArg<3 ){ 1958 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1959 }else{ 1960 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1961 } 1962 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1963 if( nArg<2 ){ 1964 int val = (pFunc->zName==leadName ? 1 : -1); 1965 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1966 }else{ 1967 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1968 int tmpReg2 = sqlite3GetTempReg(pParse); 1969 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1970 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1971 sqlite3ReleaseTempReg(pParse, tmpReg2); 1972 } 1973 1974 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1975 VdbeCoverage(v); 1976 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1977 sqlite3VdbeResolveLabel(v, lbl); 1978 sqlite3ReleaseTempReg(pParse, tmpReg); 1979 } 1980 } 1981 } 1982 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1983 } 1984 1985 /* 1986 ** Generate code to set the accumulator register for each window function 1987 ** in the linked list passed as the second argument to NULL. And perform 1988 ** any equivalent initialization required by any built-in window functions 1989 ** in the list. 1990 */ 1991 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1992 Vdbe *v = sqlite3GetVdbe(pParse); 1993 int regArg; 1994 int nArg = 0; 1995 Window *pWin; 1996 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1997 FuncDef *pFunc = pWin->pWFunc; 1998 assert( pWin->regAccum ); 1999 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 2000 nArg = MAX(nArg, windowArgCount(pWin)); 2001 if( pMWin->regStartRowid==0 ){ 2002 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 2003 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 2004 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 2005 } 2006 2007 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 2008 assert( pWin->eStart!=TK_UNBOUNDED ); 2009 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 2010 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 2011 } 2012 } 2013 } 2014 regArg = pParse->nMem+1; 2015 pParse->nMem += nArg; 2016 return regArg; 2017 } 2018 2019 /* 2020 ** Return true if the current frame should be cached in the ephemeral table, 2021 ** even if there are no xInverse() calls required. 2022 */ 2023 static int windowCacheFrame(Window *pMWin){ 2024 Window *pWin; 2025 if( pMWin->regStartRowid ) return 1; 2026 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 2027 FuncDef *pFunc = pWin->pWFunc; 2028 if( (pFunc->zName==nth_valueName) 2029 || (pFunc->zName==first_valueName) 2030 || (pFunc->zName==leadName) 2031 || (pFunc->zName==lagName) 2032 ){ 2033 return 1; 2034 } 2035 } 2036 return 0; 2037 } 2038 2039 /* 2040 ** regOld and regNew are each the first register in an array of size 2041 ** pOrderBy->nExpr. This function generates code to compare the two 2042 ** arrays of registers using the collation sequences and other comparison 2043 ** parameters specified by pOrderBy. 2044 ** 2045 ** If the two arrays are not equal, the contents of regNew is copied to 2046 ** regOld and control falls through. Otherwise, if the contents of the arrays 2047 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2048 */ 2049 static void windowIfNewPeer( 2050 Parse *pParse, 2051 ExprList *pOrderBy, 2052 int regNew, /* First in array of new values */ 2053 int regOld, /* First in array of old values */ 2054 int addr /* Jump here */ 2055 ){ 2056 Vdbe *v = sqlite3GetVdbe(pParse); 2057 if( pOrderBy ){ 2058 int nVal = pOrderBy->nExpr; 2059 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2060 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2061 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2062 sqlite3VdbeAddOp3(v, OP_Jump, 2063 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2064 ); 2065 VdbeCoverageEqNe(v); 2066 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2067 }else{ 2068 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2069 } 2070 } 2071 2072 /* 2073 ** This function is called as part of generating VM programs for RANGE 2074 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2075 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2076 ** code equivalent to: 2077 ** 2078 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2079 ** 2080 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2081 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2082 ** 2083 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2084 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2085 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2086 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2087 ** is OP_Ge, the generated code is equivalent to: 2088 ** 2089 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2090 ** 2091 ** A special type of arithmetic is used such that if csr1.peerVal is not 2092 ** a numeric type (real or integer), then the result of the addition 2093 ** or subtraction is a a copy of csr1.peerVal. 2094 */ 2095 static void windowCodeRangeTest( 2096 WindowCodeArg *p, 2097 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2098 int csr1, /* Cursor number for cursor 1 */ 2099 int regVal, /* Register containing non-negative number */ 2100 int csr2, /* Cursor number for cursor 2 */ 2101 int lbl /* Jump destination if condition is true */ 2102 ){ 2103 Parse *pParse = p->pParse; 2104 Vdbe *v = sqlite3GetVdbe(pParse); 2105 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2106 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2107 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2108 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2109 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2110 int addrGe; /* Jump destination */ 2111 int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ 2112 CollSeq *pColl; 2113 2114 /* Read the peer-value from each cursor into a register */ 2115 windowReadPeerValues(p, csr1, reg1); 2116 windowReadPeerValues(p, csr2, reg2); 2117 2118 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2119 assert( pOrderBy && pOrderBy->nExpr==1 ); 2120 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2121 switch( op ){ 2122 case OP_Ge: op = OP_Le; break; 2123 case OP_Gt: op = OP_Lt; break; 2124 default: assert( op==OP_Le ); op = OP_Ge; break; 2125 } 2126 arith = OP_Subtract; 2127 } 2128 2129 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2130 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2131 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2132 )); 2133 2134 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2135 ** consider NULL values to be larger than all other values, instead of 2136 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2137 ** (and adding that capability causes a performance regression), so 2138 ** instead if the BIGNULL flag is set then cases where either reg1 or 2139 ** reg2 are NULL are handled separately in the following block. The code 2140 ** generated is equivalent to: 2141 ** 2142 ** if( reg1 IS NULL ){ 2143 ** if( op==OP_Ge ) goto lbl; 2144 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2145 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2146 ** }else if( reg2 IS NULL ){ 2147 ** if( op==OP_Le ) goto lbl; 2148 ** } 2149 ** 2150 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2151 ** not taken, control jumps over the comparison operator coded below this 2152 ** block. */ 2153 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2154 /* This block runs if reg1 contains a NULL. */ 2155 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2156 switch( op ){ 2157 case OP_Ge: 2158 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2159 break; 2160 case OP_Gt: 2161 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2162 VdbeCoverage(v); 2163 break; 2164 case OP_Le: 2165 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2166 VdbeCoverage(v); 2167 break; 2168 default: assert( op==OP_Lt ); /* no-op */ break; 2169 } 2170 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 2171 2172 /* This block runs if reg1 is not NULL, but reg2 is. */ 2173 sqlite3VdbeJumpHere(v, addr); 2174 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2175 if( op==OP_Gt || op==OP_Ge ){ 2176 sqlite3VdbeChangeP2(v, -1, addrDone); 2177 } 2178 } 2179 2180 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2181 ** This block adds (or subtracts for DESC) the numeric value in regVal 2182 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2183 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2184 ** 2185 ** if( reg1>='' ) goto addrGe; 2186 ** reg1 = reg1 +/- regVal 2187 ** addrGe: 2188 ** 2189 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2190 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2191 ** then the arithmetic is performed, but since adding or subtracting from 2192 ** NULL is always NULL anyway, this case is handled as required too. */ 2193 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2194 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2195 VdbeCoverage(v); 2196 if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ 2197 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2198 } 2199 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2200 sqlite3VdbeJumpHere(v, addrGe); 2201 2202 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2203 ** control skips over this test if the BIGNULL flag is set and either 2204 ** reg1 or reg2 contain a NULL value. */ 2205 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2206 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); 2207 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); 2208 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2209 sqlite3VdbeResolveLabel(v, addrDone); 2210 2211 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2212 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2213 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2214 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2215 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2216 sqlite3ReleaseTempReg(pParse, reg1); 2217 sqlite3ReleaseTempReg(pParse, reg2); 2218 2219 VdbeModuleComment((v, "CodeRangeTest: end")); 2220 } 2221 2222 /* 2223 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2224 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2225 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2226 ** details. 2227 */ 2228 static int windowCodeOp( 2229 WindowCodeArg *p, /* Context object */ 2230 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2231 int regCountdown, /* Register for OP_IfPos countdown */ 2232 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2233 ){ 2234 int csr, reg; 2235 Parse *pParse = p->pParse; 2236 Window *pMWin = p->pMWin; 2237 int ret = 0; 2238 Vdbe *v = p->pVdbe; 2239 int addrContinue = 0; 2240 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2241 2242 int lblDone = sqlite3VdbeMakeLabel(pParse); 2243 int addrNextRange = 0; 2244 2245 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2246 ** starts with UNBOUNDED PRECEDING. */ 2247 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2248 assert( regCountdown==0 && jumpOnEof==0 ); 2249 return 0; 2250 } 2251 2252 if( regCountdown>0 ){ 2253 if( pMWin->eFrmType==TK_RANGE ){ 2254 addrNextRange = sqlite3VdbeCurrentAddr(v); 2255 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2256 if( op==WINDOW_AGGINVERSE ){ 2257 if( pMWin->eStart==TK_FOLLOWING ){ 2258 windowCodeRangeTest( 2259 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2260 ); 2261 }else{ 2262 windowCodeRangeTest( 2263 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2264 ); 2265 } 2266 }else{ 2267 windowCodeRangeTest( 2268 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2269 ); 2270 } 2271 }else{ 2272 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2273 VdbeCoverage(v); 2274 } 2275 } 2276 2277 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2278 windowAggFinal(p, 0); 2279 } 2280 addrContinue = sqlite3VdbeCurrentAddr(v); 2281 2282 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2283 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2284 ** start cursor does not advance past the end cursor within the 2285 ** temporary table. It otherwise might, if (a>b). Also ensure that, 2286 ** if the input cursor is still finding new rows, that the end 2287 ** cursor does not go past it to EOF. */ 2288 if( pMWin->eStart==pMWin->eEnd && regCountdown 2289 && pMWin->eFrmType==TK_RANGE 2290 ){ 2291 int regRowid1 = sqlite3GetTempReg(pParse); 2292 int regRowid2 = sqlite3GetTempReg(pParse); 2293 if( op==WINDOW_AGGINVERSE ){ 2294 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2295 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2296 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2297 VdbeCoverage(v); 2298 }else if( p->regRowid ){ 2299 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1); 2300 sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1); 2301 VdbeCoverageNeverNull(v); 2302 } 2303 sqlite3ReleaseTempReg(pParse, regRowid1); 2304 sqlite3ReleaseTempReg(pParse, regRowid2); 2305 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2306 } 2307 2308 switch( op ){ 2309 case WINDOW_RETURN_ROW: 2310 csr = p->current.csr; 2311 reg = p->current.reg; 2312 windowReturnOneRow(p); 2313 break; 2314 2315 case WINDOW_AGGINVERSE: 2316 csr = p->start.csr; 2317 reg = p->start.reg; 2318 if( pMWin->regStartRowid ){ 2319 assert( pMWin->regEndRowid ); 2320 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2321 }else{ 2322 windowAggStep(p, pMWin, csr, 1, p->regArg); 2323 } 2324 break; 2325 2326 default: 2327 assert( op==WINDOW_AGGSTEP ); 2328 csr = p->end.csr; 2329 reg = p->end.reg; 2330 if( pMWin->regStartRowid ){ 2331 assert( pMWin->regEndRowid ); 2332 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2333 }else{ 2334 windowAggStep(p, pMWin, csr, 0, p->regArg); 2335 } 2336 break; 2337 } 2338 2339 if( op==p->eDelete ){ 2340 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2341 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2342 } 2343 2344 if( jumpOnEof ){ 2345 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2346 VdbeCoverage(v); 2347 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2348 }else{ 2349 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2350 VdbeCoverage(v); 2351 if( bPeer ){ 2352 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2353 } 2354 } 2355 2356 if( bPeer ){ 2357 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2358 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2359 windowReadPeerValues(p, csr, regTmp); 2360 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2361 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2362 } 2363 2364 if( addrNextRange ){ 2365 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2366 } 2367 sqlite3VdbeResolveLabel(v, lblDone); 2368 return ret; 2369 } 2370 2371 2372 /* 2373 ** Allocate and return a duplicate of the Window object indicated by the 2374 ** third argument. Set the Window.pOwner field of the new object to 2375 ** pOwner. 2376 */ 2377 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2378 Window *pNew = 0; 2379 if( ALWAYS(p) ){ 2380 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2381 if( pNew ){ 2382 pNew->zName = sqlite3DbStrDup(db, p->zName); 2383 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2384 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2385 pNew->pWFunc = p->pWFunc; 2386 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2387 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2388 pNew->eFrmType = p->eFrmType; 2389 pNew->eEnd = p->eEnd; 2390 pNew->eStart = p->eStart; 2391 pNew->eExclude = p->eExclude; 2392 pNew->regResult = p->regResult; 2393 pNew->regAccum = p->regAccum; 2394 pNew->iArgCol = p->iArgCol; 2395 pNew->iEphCsr = p->iEphCsr; 2396 pNew->bExprArgs = p->bExprArgs; 2397 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2398 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2399 pNew->pOwner = pOwner; 2400 pNew->bImplicitFrame = p->bImplicitFrame; 2401 } 2402 } 2403 return pNew; 2404 } 2405 2406 /* 2407 ** Return a copy of the linked list of Window objects passed as the 2408 ** second argument. 2409 */ 2410 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2411 Window *pWin; 2412 Window *pRet = 0; 2413 Window **pp = &pRet; 2414 2415 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2416 *pp = sqlite3WindowDup(db, 0, pWin); 2417 if( *pp==0 ) break; 2418 pp = &((*pp)->pNextWin); 2419 } 2420 2421 return pRet; 2422 } 2423 2424 /* 2425 ** Return true if it can be determined at compile time that expression 2426 ** pExpr evaluates to a value that, when cast to an integer, is greater 2427 ** than zero. False otherwise. 2428 ** 2429 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2430 ** flag and returns zero. 2431 */ 2432 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2433 int ret = 0; 2434 sqlite3 *db = pParse->db; 2435 sqlite3_value *pVal = 0; 2436 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2437 if( pVal && sqlite3_value_int(pVal)>0 ){ 2438 ret = 1; 2439 } 2440 sqlite3ValueFree(pVal); 2441 return ret; 2442 } 2443 2444 /* 2445 ** sqlite3WhereBegin() has already been called for the SELECT statement 2446 ** passed as the second argument when this function is invoked. It generates 2447 ** code to populate the Window.regResult register for each window function 2448 ** and invoke the sub-routine at instruction addrGosub once for each row. 2449 ** sqlite3WhereEnd() is always called before returning. 2450 ** 2451 ** This function handles several different types of window frames, which 2452 ** require slightly different processing. The following pseudo code is 2453 ** used to implement window frames of the form: 2454 ** 2455 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2456 ** 2457 ** Other window frame types use variants of the following: 2458 ** 2459 ** ... loop started by sqlite3WhereBegin() ... 2460 ** if( new partition ){ 2461 ** Gosub flush 2462 ** } 2463 ** Insert new row into eph table. 2464 ** 2465 ** if( first row of partition ){ 2466 ** // Rewind three cursors, all open on the eph table. 2467 ** Rewind(csrEnd); 2468 ** Rewind(csrStart); 2469 ** Rewind(csrCurrent); 2470 ** 2471 ** regEnd = <expr2> // FOLLOWING expression 2472 ** regStart = <expr1> // PRECEDING expression 2473 ** }else{ 2474 ** // First time this branch is taken, the eph table contains two 2475 ** // rows. The first row in the partition, which all three cursors 2476 ** // currently point to, and the following row. 2477 ** AGGSTEP 2478 ** if( (regEnd--)<=0 ){ 2479 ** RETURN_ROW 2480 ** if( (regStart--)<=0 ){ 2481 ** AGGINVERSE 2482 ** } 2483 ** } 2484 ** } 2485 ** } 2486 ** flush: 2487 ** AGGSTEP 2488 ** while( 1 ){ 2489 ** RETURN ROW 2490 ** if( csrCurrent is EOF ) break; 2491 ** if( (regStart--)<=0 ){ 2492 ** AggInverse(csrStart) 2493 ** Next(csrStart) 2494 ** } 2495 ** } 2496 ** 2497 ** The pseudo-code above uses the following shorthand: 2498 ** 2499 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2500 ** with arguments read from the current row of cursor csrEnd, then 2501 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2502 ** 2503 ** RETURN_ROW: return a row to the caller based on the contents of the 2504 ** current row of csrCurrent and the current state of all 2505 ** aggregates. Then step cursor csrCurrent forward one row. 2506 ** 2507 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2508 ** functions with arguments read from the current row of cursor 2509 ** csrStart. Then step csrStart forward one row. 2510 ** 2511 ** There are two other ROWS window frames that are handled significantly 2512 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2513 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2514 ** cases because they change the order in which the three cursors (csrStart, 2515 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2516 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2517 ** three. 2518 ** 2519 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2520 ** 2521 ** ... loop started by sqlite3WhereBegin() ... 2522 ** if( new partition ){ 2523 ** Gosub flush 2524 ** } 2525 ** Insert new row into eph table. 2526 ** if( first row of partition ){ 2527 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2528 ** regEnd = <expr2> 2529 ** regStart = <expr1> 2530 ** }else{ 2531 ** if( (regEnd--)<=0 ){ 2532 ** AGGSTEP 2533 ** } 2534 ** RETURN_ROW 2535 ** if( (regStart--)<=0 ){ 2536 ** AGGINVERSE 2537 ** } 2538 ** } 2539 ** } 2540 ** flush: 2541 ** if( (regEnd--)<=0 ){ 2542 ** AGGSTEP 2543 ** } 2544 ** RETURN_ROW 2545 ** 2546 ** 2547 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2548 ** 2549 ** ... loop started by sqlite3WhereBegin() ... 2550 ** if( new partition ){ 2551 ** Gosub flush 2552 ** } 2553 ** Insert new row into eph table. 2554 ** if( first row of partition ){ 2555 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2556 ** regEnd = <expr2> 2557 ** regStart = regEnd - <expr1> 2558 ** }else{ 2559 ** AGGSTEP 2560 ** if( (regEnd--)<=0 ){ 2561 ** RETURN_ROW 2562 ** } 2563 ** if( (regStart--)<=0 ){ 2564 ** AGGINVERSE 2565 ** } 2566 ** } 2567 ** } 2568 ** flush: 2569 ** AGGSTEP 2570 ** while( 1 ){ 2571 ** if( (regEnd--)<=0 ){ 2572 ** RETURN_ROW 2573 ** if( eof ) break; 2574 ** } 2575 ** if( (regStart--)<=0 ){ 2576 ** AGGINVERSE 2577 ** if( eof ) break 2578 ** } 2579 ** } 2580 ** while( !eof csrCurrent ){ 2581 ** RETURN_ROW 2582 ** } 2583 ** 2584 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2585 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2586 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2587 ** This is optimized of course - branches that will never be taken and 2588 ** conditions that are always true are omitted from the VM code. The only 2589 ** exceptional case is: 2590 ** 2591 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2592 ** 2593 ** ... loop started by sqlite3WhereBegin() ... 2594 ** if( new partition ){ 2595 ** Gosub flush 2596 ** } 2597 ** Insert new row into eph table. 2598 ** if( first row of partition ){ 2599 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2600 ** regStart = <expr1> 2601 ** }else{ 2602 ** AGGSTEP 2603 ** } 2604 ** } 2605 ** flush: 2606 ** AGGSTEP 2607 ** while( 1 ){ 2608 ** if( (regStart--)<=0 ){ 2609 ** AGGINVERSE 2610 ** if( eof ) break 2611 ** } 2612 ** RETURN_ROW 2613 ** } 2614 ** while( !eof csrCurrent ){ 2615 ** RETURN_ROW 2616 ** } 2617 ** 2618 ** Also requiring special handling are the cases: 2619 ** 2620 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2621 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2622 ** 2623 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2624 ** To handle this case, the pseudo-code programs depicted above are modified 2625 ** slightly to be: 2626 ** 2627 ** ... loop started by sqlite3WhereBegin() ... 2628 ** if( new partition ){ 2629 ** Gosub flush 2630 ** } 2631 ** Insert new row into eph table. 2632 ** if( first row of partition ){ 2633 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2634 ** regEnd = <expr2> 2635 ** regStart = <expr1> 2636 ** if( regEnd < regStart ){ 2637 ** RETURN_ROW 2638 ** delete eph table contents 2639 ** continue 2640 ** } 2641 ** ... 2642 ** 2643 ** The new "continue" statement in the above jumps to the next iteration 2644 ** of the outer loop - the one started by sqlite3WhereBegin(). 2645 ** 2646 ** The various GROUPS cases are implemented using the same patterns as 2647 ** ROWS. The VM code is modified slightly so that: 2648 ** 2649 ** 1. The else branch in the main loop is only taken if the row just 2650 ** added to the ephemeral table is the start of a new group. In 2651 ** other words, it becomes: 2652 ** 2653 ** ... loop started by sqlite3WhereBegin() ... 2654 ** if( new partition ){ 2655 ** Gosub flush 2656 ** } 2657 ** Insert new row into eph table. 2658 ** if( first row of partition ){ 2659 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2660 ** regEnd = <expr2> 2661 ** regStart = <expr1> 2662 ** }else if( new group ){ 2663 ** ... 2664 ** } 2665 ** } 2666 ** 2667 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2668 ** AGGINVERSE step processes the current row of the relevant cursor and 2669 ** all subsequent rows belonging to the same group. 2670 ** 2671 ** RANGE window frames are a little different again. As for GROUPS, the 2672 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2673 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2674 ** basic cases: 2675 ** 2676 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2677 ** 2678 ** ... loop started by sqlite3WhereBegin() ... 2679 ** if( new partition ){ 2680 ** Gosub flush 2681 ** } 2682 ** Insert new row into eph table. 2683 ** if( first row of partition ){ 2684 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2685 ** regEnd = <expr2> 2686 ** regStart = <expr1> 2687 ** }else{ 2688 ** AGGSTEP 2689 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2690 ** RETURN_ROW 2691 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2692 ** AGGINVERSE 2693 ** } 2694 ** } 2695 ** } 2696 ** } 2697 ** flush: 2698 ** AGGSTEP 2699 ** while( 1 ){ 2700 ** RETURN ROW 2701 ** if( csrCurrent is EOF ) break; 2702 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2703 ** AGGINVERSE 2704 ** } 2705 ** } 2706 ** } 2707 ** 2708 ** In the above notation, "csr.key" means the current value of the ORDER BY 2709 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2710 ** or <expr PRECEDING) read from cursor csr. 2711 ** 2712 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2713 ** 2714 ** ... loop started by sqlite3WhereBegin() ... 2715 ** if( new partition ){ 2716 ** Gosub flush 2717 ** } 2718 ** Insert new row into eph table. 2719 ** if( first row of partition ){ 2720 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2721 ** regEnd = <expr2> 2722 ** regStart = <expr1> 2723 ** }else{ 2724 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2725 ** AGGSTEP 2726 ** } 2727 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2728 ** AGGINVERSE 2729 ** } 2730 ** RETURN_ROW 2731 ** } 2732 ** } 2733 ** flush: 2734 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2735 ** AGGSTEP 2736 ** } 2737 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2738 ** AGGINVERSE 2739 ** } 2740 ** RETURN_ROW 2741 ** 2742 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2743 ** 2744 ** ... loop started by sqlite3WhereBegin() ... 2745 ** if( new partition ){ 2746 ** Gosub flush 2747 ** } 2748 ** Insert new row into eph table. 2749 ** if( first row of partition ){ 2750 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2751 ** regEnd = <expr2> 2752 ** regStart = <expr1> 2753 ** }else{ 2754 ** AGGSTEP 2755 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2756 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2757 ** AGGINVERSE 2758 ** } 2759 ** RETURN_ROW 2760 ** } 2761 ** } 2762 ** } 2763 ** flush: 2764 ** AGGSTEP 2765 ** while( 1 ){ 2766 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2767 ** AGGINVERSE 2768 ** if( eof ) break "while( 1 )" loop. 2769 ** } 2770 ** RETURN_ROW 2771 ** } 2772 ** while( !eof csrCurrent ){ 2773 ** RETURN_ROW 2774 ** } 2775 ** 2776 ** The text above leaves out many details. Refer to the code and comments 2777 ** below for a more complete picture. 2778 */ 2779 void sqlite3WindowCodeStep( 2780 Parse *pParse, /* Parse context */ 2781 Select *p, /* Rewritten SELECT statement */ 2782 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2783 int regGosub, /* Register for OP_Gosub */ 2784 int addrGosub /* OP_Gosub here to return each row */ 2785 ){ 2786 Window *pMWin = p->pWin; 2787 ExprList *pOrderBy = pMWin->pOrderBy; 2788 Vdbe *v = sqlite3GetVdbe(pParse); 2789 int csrWrite; /* Cursor used to write to eph. table */ 2790 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2791 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2792 int iInput; /* To iterate through sub cols */ 2793 int addrNe; /* Address of OP_Ne */ 2794 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2795 int addrInteger = 0; /* Address of OP_Integer */ 2796 int addrEmpty; /* Address of OP_Rewind in flush: */ 2797 int regNew; /* Array of registers holding new input row */ 2798 int regRecord; /* regNew array in record form */ 2799 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2800 int regPeer = 0; /* Peer values for current row */ 2801 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2802 WindowCodeArg s; /* Context object for sub-routines */ 2803 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2804 int regStart = 0; /* Value of <expr> PRECEDING */ 2805 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2806 2807 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2808 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2809 ); 2810 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2811 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2812 ); 2813 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2814 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2815 || pMWin->eExclude==TK_NO 2816 ); 2817 2818 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2819 2820 /* Fill in the context object */ 2821 memset(&s, 0, sizeof(WindowCodeArg)); 2822 s.pParse = pParse; 2823 s.pMWin = pMWin; 2824 s.pVdbe = v; 2825 s.regGosub = regGosub; 2826 s.addrGosub = addrGosub; 2827 s.current.csr = pMWin->iEphCsr; 2828 csrWrite = s.current.csr+1; 2829 s.start.csr = s.current.csr+2; 2830 s.end.csr = s.current.csr+3; 2831 2832 /* Figure out when rows may be deleted from the ephemeral table. There 2833 ** are four options - they may never be deleted (eDelete==0), they may 2834 ** be deleted as soon as they are no longer part of the window frame 2835 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2836 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2837 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2838 switch( pMWin->eStart ){ 2839 case TK_FOLLOWING: 2840 if( pMWin->eFrmType!=TK_RANGE 2841 && windowExprGtZero(pParse, pMWin->pStart) 2842 ){ 2843 s.eDelete = WINDOW_RETURN_ROW; 2844 } 2845 break; 2846 case TK_UNBOUNDED: 2847 if( windowCacheFrame(pMWin)==0 ){ 2848 if( pMWin->eEnd==TK_PRECEDING ){ 2849 if( pMWin->eFrmType!=TK_RANGE 2850 && windowExprGtZero(pParse, pMWin->pEnd) 2851 ){ 2852 s.eDelete = WINDOW_AGGSTEP; 2853 } 2854 }else{ 2855 s.eDelete = WINDOW_RETURN_ROW; 2856 } 2857 } 2858 break; 2859 default: 2860 s.eDelete = WINDOW_AGGINVERSE; 2861 break; 2862 } 2863 2864 /* Allocate registers for the array of values from the sub-query, the 2865 ** samve values in record form, and the rowid used to insert said record 2866 ** into the ephemeral table. */ 2867 regNew = pParse->nMem+1; 2868 pParse->nMem += nInput; 2869 regRecord = ++pParse->nMem; 2870 s.regRowid = ++pParse->nMem; 2871 2872 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2873 ** clause, allocate registers to store the results of evaluating each 2874 ** <expr>. */ 2875 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2876 regStart = ++pParse->nMem; 2877 } 2878 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2879 regEnd = ++pParse->nMem; 2880 } 2881 2882 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2883 ** registers to store copies of the ORDER BY expressions (peer values) 2884 ** for the main loop, and for each cursor (start, current and end). */ 2885 if( pMWin->eFrmType!=TK_ROWS ){ 2886 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2887 regNewPeer = regNew + pMWin->nBufferCol; 2888 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2889 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2890 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2891 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2892 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2893 } 2894 2895 /* Load the column values for the row returned by the sub-select 2896 ** into an array of registers starting at regNew. Assemble them into 2897 ** a record in register regRecord. */ 2898 for(iInput=0; iInput<nInput; iInput++){ 2899 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2900 } 2901 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2902 2903 /* An input row has just been read into an array of registers starting 2904 ** at regNew. If the window has a PARTITION clause, this block generates 2905 ** VM code to check if the input row is the start of a new partition. 2906 ** If so, it does an OP_Gosub to an address to be filled in later. The 2907 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2908 if( pMWin->pPartition ){ 2909 int addr; 2910 ExprList *pPart = pMWin->pPartition; 2911 int nPart = pPart->nExpr; 2912 int regNewPart = regNew + pMWin->nBufferCol; 2913 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2914 2915 regFlushPart = ++pParse->nMem; 2916 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2917 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2918 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2919 VdbeCoverageEqNe(v); 2920 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2921 VdbeComment((v, "call flush_partition")); 2922 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2923 } 2924 2925 /* Insert the new row into the ephemeral table */ 2926 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid); 2927 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid); 2928 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid); 2929 VdbeCoverageNeverNull(v); 2930 2931 /* This block is run for the first row of each partition */ 2932 s.regArg = windowInitAccum(pParse, pMWin); 2933 2934 if( regStart ){ 2935 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2936 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2937 } 2938 if( regEnd ){ 2939 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2940 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2941 } 2942 2943 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2944 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2945 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2946 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2947 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2948 windowAggFinal(&s, 0); 2949 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2950 VdbeCoverageNeverTaken(v); 2951 windowReturnOneRow(&s); 2952 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2953 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2954 sqlite3VdbeJumpHere(v, addrGe); 2955 } 2956 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2957 assert( pMWin->eEnd==TK_FOLLOWING ); 2958 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2959 } 2960 2961 if( pMWin->eStart!=TK_UNBOUNDED ){ 2962 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2963 VdbeCoverageNeverTaken(v); 2964 } 2965 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2966 VdbeCoverageNeverTaken(v); 2967 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2968 VdbeCoverageNeverTaken(v); 2969 if( regPeer && pOrderBy ){ 2970 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2971 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2972 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2973 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2974 } 2975 2976 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2977 2978 sqlite3VdbeJumpHere(v, addrNe); 2979 2980 /* Beginning of the block executed for the second and subsequent rows. */ 2981 if( regPeer ){ 2982 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2983 } 2984 if( pMWin->eStart==TK_FOLLOWING ){ 2985 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2986 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2987 if( pMWin->eFrmType==TK_RANGE ){ 2988 int lbl = sqlite3VdbeMakeLabel(pParse); 2989 int addrNext = sqlite3VdbeCurrentAddr(v); 2990 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2991 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2992 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2993 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2994 sqlite3VdbeResolveLabel(v, lbl); 2995 }else{ 2996 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2997 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2998 } 2999 } 3000 }else 3001 if( pMWin->eEnd==TK_PRECEDING ){ 3002 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 3003 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3004 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3005 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3006 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3007 }else{ 3008 int addr = 0; 3009 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3010 if( pMWin->eEnd!=TK_UNBOUNDED ){ 3011 if( pMWin->eFrmType==TK_RANGE ){ 3012 int lbl = 0; 3013 addr = sqlite3VdbeCurrentAddr(v); 3014 if( regEnd ){ 3015 lbl = sqlite3VdbeMakeLabel(pParse); 3016 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 3017 } 3018 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3019 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3020 if( regEnd ){ 3021 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 3022 sqlite3VdbeResolveLabel(v, lbl); 3023 } 3024 }else{ 3025 if( regEnd ){ 3026 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 3027 VdbeCoverage(v); 3028 } 3029 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3030 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3031 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 3032 } 3033 } 3034 } 3035 3036 /* End of the main input loop */ 3037 sqlite3VdbeResolveLabel(v, lblWhereEnd); 3038 sqlite3WhereEnd(pWInfo); 3039 3040 /* Fall through */ 3041 if( pMWin->pPartition ){ 3042 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 3043 sqlite3VdbeJumpHere(v, addrGosubFlush); 3044 } 3045 3046 s.regRowid = 0; 3047 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 3048 VdbeCoverage(v); 3049 if( pMWin->eEnd==TK_PRECEDING ){ 3050 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 3051 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3052 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3053 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3054 }else if( pMWin->eStart==TK_FOLLOWING ){ 3055 int addrStart; 3056 int addrBreak1; 3057 int addrBreak2; 3058 int addrBreak3; 3059 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3060 if( pMWin->eFrmType==TK_RANGE ){ 3061 addrStart = sqlite3VdbeCurrentAddr(v); 3062 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3063 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3064 }else 3065 if( pMWin->eEnd==TK_UNBOUNDED ){ 3066 addrStart = sqlite3VdbeCurrentAddr(v); 3067 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3068 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3069 }else{ 3070 assert( pMWin->eEnd==TK_FOLLOWING ); 3071 addrStart = sqlite3VdbeCurrentAddr(v); 3072 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3073 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3074 } 3075 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3076 sqlite3VdbeJumpHere(v, addrBreak2); 3077 addrStart = sqlite3VdbeCurrentAddr(v); 3078 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3079 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3080 sqlite3VdbeJumpHere(v, addrBreak1); 3081 sqlite3VdbeJumpHere(v, addrBreak3); 3082 }else{ 3083 int addrBreak; 3084 int addrStart; 3085 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3086 addrStart = sqlite3VdbeCurrentAddr(v); 3087 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3088 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3089 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3090 sqlite3VdbeJumpHere(v, addrBreak); 3091 } 3092 sqlite3VdbeJumpHere(v, addrEmpty); 3093 3094 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3095 if( pMWin->pPartition ){ 3096 if( pMWin->regStartRowid ){ 3097 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3098 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3099 } 3100 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3101 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3102 } 3103 } 3104 3105 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3106