1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* no break */ deliberate_fall_through 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( p->pSub ){ 792 int i; 793 for(i=0; i<p->pSub->nExpr; i++){ 794 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 795 iCol = i; 796 break; 797 } 798 } 799 } 800 if( iCol<0 ){ 801 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 802 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 803 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 804 } 805 if( p->pSub ){ 806 int f = pExpr->flags & EP_Collate; 807 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 808 ExprSetProperty(pExpr, EP_Static); 809 sqlite3ExprDelete(pParse->db, pExpr); 810 ExprClearProperty(pExpr, EP_Static); 811 memset(pExpr, 0, sizeof(Expr)); 812 813 pExpr->op = TK_COLUMN; 814 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 815 pExpr->iTable = p->pWin->iEphCsr; 816 pExpr->y.pTab = p->pTab; 817 pExpr->flags = f; 818 } 819 if( pParse->db->mallocFailed ) return WRC_Abort; 820 break; 821 } 822 823 default: /* no-op */ 824 break; 825 } 826 827 return WRC_Continue; 828 } 829 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 830 struct WindowRewrite *p = pWalker->u.pRewrite; 831 Select *pSave = p->pSubSelect; 832 if( pSave==pSelect ){ 833 return WRC_Continue; 834 }else{ 835 p->pSubSelect = pSelect; 836 sqlite3WalkSelect(pWalker, pSelect); 837 p->pSubSelect = pSave; 838 } 839 return WRC_Prune; 840 } 841 842 843 /* 844 ** Iterate through each expression in expression-list pEList. For each: 845 ** 846 ** * TK_COLUMN, 847 ** * aggregate function, or 848 ** * window function with a Window object that is not a member of the 849 ** Window list passed as the second argument (pWin). 850 ** 851 ** Append the node to output expression-list (*ppSub). And replace it 852 ** with a TK_COLUMN that reads the (N-1)th element of table 853 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 854 ** appending the new one. 855 */ 856 static void selectWindowRewriteEList( 857 Parse *pParse, 858 Window *pWin, 859 SrcList *pSrc, 860 ExprList *pEList, /* Rewrite expressions in this list */ 861 Table *pTab, 862 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 863 ){ 864 Walker sWalker; 865 WindowRewrite sRewrite; 866 867 assert( pWin!=0 ); 868 memset(&sWalker, 0, sizeof(Walker)); 869 memset(&sRewrite, 0, sizeof(WindowRewrite)); 870 871 sRewrite.pSub = *ppSub; 872 sRewrite.pWin = pWin; 873 sRewrite.pSrc = pSrc; 874 sRewrite.pTab = pTab; 875 876 sWalker.pParse = pParse; 877 sWalker.xExprCallback = selectWindowRewriteExprCb; 878 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 879 sWalker.u.pRewrite = &sRewrite; 880 881 (void)sqlite3WalkExprList(&sWalker, pEList); 882 883 *ppSub = sRewrite.pSub; 884 } 885 886 /* 887 ** Append a copy of each expression in expression-list pAppend to 888 ** expression list pList. Return a pointer to the result list. 889 */ 890 static ExprList *exprListAppendList( 891 Parse *pParse, /* Parsing context */ 892 ExprList *pList, /* List to which to append. Might be NULL */ 893 ExprList *pAppend, /* List of values to append. Might be NULL */ 894 int bIntToNull 895 ){ 896 if( pAppend ){ 897 int i; 898 int nInit = pList ? pList->nExpr : 0; 899 for(i=0; i<pAppend->nExpr; i++){ 900 sqlite3 *db = pParse->db; 901 Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); 902 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 903 if( bIntToNull && db->mallocFailed==0 ){ 904 int iDummy; 905 Expr *pSub; 906 for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){ 907 assert( pSub ); 908 } 909 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 910 pSub->op = TK_NULL; 911 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 912 pSub->u.zToken = 0; 913 } 914 } 915 pList = sqlite3ExprListAppend(pParse, pList, pDup); 916 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 917 } 918 } 919 return pList; 920 } 921 922 /* 923 ** When rewriting a query, if the new subquery in the FROM clause 924 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 925 ** then we have to increase the Expr->op2 values of those nodes 926 ** due to the extra subquery layer that was added. 927 ** 928 ** See also the incrAggDepth() routine in resolve.c 929 */ 930 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 931 if( pExpr->op==TK_AGG_FUNCTION 932 && pExpr->op2>=pWalker->walkerDepth 933 ){ 934 pExpr->op2++; 935 } 936 return WRC_Continue; 937 } 938 939 /* 940 ** If the SELECT statement passed as the second argument does not invoke 941 ** any SQL window functions, this function is a no-op. Otherwise, it 942 ** rewrites the SELECT statement so that window function xStep functions 943 ** are invoked in the correct order as described under "SELECT REWRITING" 944 ** at the top of this file. 945 */ 946 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 947 int rc = SQLITE_OK; 948 if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){ 949 Vdbe *v = sqlite3GetVdbe(pParse); 950 sqlite3 *db = pParse->db; 951 Select *pSub = 0; /* The subquery */ 952 SrcList *pSrc = p->pSrc; 953 Expr *pWhere = p->pWhere; 954 ExprList *pGroupBy = p->pGroupBy; 955 Expr *pHaving = p->pHaving; 956 ExprList *pSort = 0; 957 958 ExprList *pSublist = 0; /* Expression list for sub-query */ 959 Window *pMWin = p->pWin; /* Main window object */ 960 Window *pWin; /* Window object iterator */ 961 Table *pTab; 962 Walker w; 963 964 u32 selFlags = p->selFlags; 965 966 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 967 if( pTab==0 ){ 968 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 969 } 970 sqlite3AggInfoPersistWalkerInit(&w, pParse); 971 sqlite3WalkSelect(&w, p); 972 973 p->pSrc = 0; 974 p->pWhere = 0; 975 p->pGroupBy = 0; 976 p->pHaving = 0; 977 p->selFlags &= ~SF_Aggregate; 978 p->selFlags |= SF_WinRewrite; 979 980 /* Create the ORDER BY clause for the sub-select. This is the concatenation 981 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 982 ** redundant, remove the ORDER BY from the parent SELECT. */ 983 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 984 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 985 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 986 int nSave = pSort->nExpr; 987 pSort->nExpr = p->pOrderBy->nExpr; 988 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 989 sqlite3ExprListDelete(db, p->pOrderBy); 990 p->pOrderBy = 0; 991 } 992 pSort->nExpr = nSave; 993 } 994 995 /* Assign a cursor number for the ephemeral table used to buffer rows. 996 ** The OpenEphemeral instruction is coded later, after it is known how 997 ** many columns the table will have. */ 998 pMWin->iEphCsr = pParse->nTab++; 999 pParse->nTab += 3; 1000 1001 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 1002 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1003 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1004 1005 /* Append the PARTITION BY and ORDER BY expressions to the to the 1006 ** sub-select expression list. They are required to figure out where 1007 ** boundaries for partitions and sets of peer rows lie. */ 1008 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1009 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1010 1011 /* Append the arguments passed to each window function to the 1012 ** sub-select expression list. Also allocate two registers for each 1013 ** window function - one for the accumulator, another for interim 1014 ** results. */ 1015 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1016 ExprList *pArgs = pWin->pOwner->x.pList; 1017 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1018 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1019 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1020 pWin->bExprArgs = 1; 1021 }else{ 1022 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1023 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1024 } 1025 if( pWin->pFilter ){ 1026 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1027 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1028 } 1029 pWin->regAccum = ++pParse->nMem; 1030 pWin->regResult = ++pParse->nMem; 1031 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1032 } 1033 1034 /* If there is no ORDER BY or PARTITION BY clause, and the window 1035 ** function accepts zero arguments, and there are no other columns 1036 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1037 ** that pSublist is still NULL here. Add a constant expression here to 1038 ** keep everything legal in this case. 1039 */ 1040 if( pSublist==0 ){ 1041 pSublist = sqlite3ExprListAppend(pParse, 0, 1042 sqlite3Expr(db, TK_INTEGER, "0") 1043 ); 1044 } 1045 1046 pSub = sqlite3SelectNew( 1047 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1048 ); 1049 SELECTTRACE(1,pParse,pSub, 1050 ("New window-function subquery in FROM clause of (%u/%p)\n", 1051 p->selId, p)); 1052 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1053 if( p->pSrc ){ 1054 Table *pTab2; 1055 p->pSrc->a[0].pSelect = pSub; 1056 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1057 pSub->selFlags |= SF_Expanded; 1058 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1059 pSub->selFlags |= (selFlags & SF_Aggregate); 1060 if( pTab2==0 ){ 1061 /* Might actually be some other kind of error, but in that case 1062 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1063 ** the correct error message regardless. */ 1064 rc = SQLITE_NOMEM; 1065 }else{ 1066 memcpy(pTab, pTab2, sizeof(Table)); 1067 pTab->tabFlags |= TF_Ephemeral; 1068 p->pSrc->a[0].pTab = pTab; 1069 pTab = pTab2; 1070 memset(&w, 0, sizeof(w)); 1071 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1072 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1073 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1074 sqlite3WalkSelect(&w, pSub); 1075 } 1076 }else{ 1077 sqlite3SelectDelete(db, pSub); 1078 } 1079 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1080 sqlite3DbFree(db, pTab); 1081 } 1082 1083 if( rc ){ 1084 if( pParse->nErr==0 ){ 1085 assert( pParse->db->mallocFailed ); 1086 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1087 } 1088 } 1089 return rc; 1090 } 1091 1092 /* 1093 ** Unlink the Window object from the Select to which it is attached, 1094 ** if it is attached. 1095 */ 1096 void sqlite3WindowUnlinkFromSelect(Window *p){ 1097 if( p->ppThis ){ 1098 *p->ppThis = p->pNextWin; 1099 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1100 p->ppThis = 0; 1101 } 1102 } 1103 1104 /* 1105 ** Free the Window object passed as the second argument. 1106 */ 1107 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1108 if( p ){ 1109 sqlite3WindowUnlinkFromSelect(p); 1110 sqlite3ExprDelete(db, p->pFilter); 1111 sqlite3ExprListDelete(db, p->pPartition); 1112 sqlite3ExprListDelete(db, p->pOrderBy); 1113 sqlite3ExprDelete(db, p->pEnd); 1114 sqlite3ExprDelete(db, p->pStart); 1115 sqlite3DbFree(db, p->zName); 1116 sqlite3DbFree(db, p->zBase); 1117 sqlite3DbFree(db, p); 1118 } 1119 } 1120 1121 /* 1122 ** Free the linked list of Window objects starting at the second argument. 1123 */ 1124 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1125 while( p ){ 1126 Window *pNext = p->pNextWin; 1127 sqlite3WindowDelete(db, p); 1128 p = pNext; 1129 } 1130 } 1131 1132 /* 1133 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1134 ** value should be a non-negative integer. If the value is not a 1135 ** constant, change it to NULL. The fact that it is then a non-negative 1136 ** integer will be caught later. But it is important not to leave 1137 ** variable values in the expression tree. 1138 */ 1139 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1140 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1141 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1142 sqlite3ExprDelete(pParse->db, pExpr); 1143 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1144 } 1145 return pExpr; 1146 } 1147 1148 /* 1149 ** Allocate and return a new Window object describing a Window Definition. 1150 */ 1151 Window *sqlite3WindowAlloc( 1152 Parse *pParse, /* Parsing context */ 1153 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1154 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1155 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1156 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1157 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1158 u8 eExclude /* EXCLUDE clause */ 1159 ){ 1160 Window *pWin = 0; 1161 int bImplicitFrame = 0; 1162 1163 /* Parser assures the following: */ 1164 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1165 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1166 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1167 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1168 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1169 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1170 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1171 1172 if( eType==0 ){ 1173 bImplicitFrame = 1; 1174 eType = TK_RANGE; 1175 } 1176 1177 /* Additionally, the 1178 ** starting boundary type may not occur earlier in the following list than 1179 ** the ending boundary type: 1180 ** 1181 ** UNBOUNDED PRECEDING 1182 ** <expr> PRECEDING 1183 ** CURRENT ROW 1184 ** <expr> FOLLOWING 1185 ** UNBOUNDED FOLLOWING 1186 ** 1187 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1188 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1189 ** frame boundary. 1190 */ 1191 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1192 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1193 ){ 1194 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1195 goto windowAllocErr; 1196 } 1197 1198 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1199 if( pWin==0 ) goto windowAllocErr; 1200 pWin->eFrmType = eType; 1201 pWin->eStart = eStart; 1202 pWin->eEnd = eEnd; 1203 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1204 eExclude = TK_NO; 1205 } 1206 pWin->eExclude = eExclude; 1207 pWin->bImplicitFrame = bImplicitFrame; 1208 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1209 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1210 return pWin; 1211 1212 windowAllocErr: 1213 sqlite3ExprDelete(pParse->db, pEnd); 1214 sqlite3ExprDelete(pParse->db, pStart); 1215 return 0; 1216 } 1217 1218 /* 1219 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1220 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1221 ** equivalent nul-terminated string. 1222 */ 1223 Window *sqlite3WindowAssemble( 1224 Parse *pParse, 1225 Window *pWin, 1226 ExprList *pPartition, 1227 ExprList *pOrderBy, 1228 Token *pBase 1229 ){ 1230 if( pWin ){ 1231 pWin->pPartition = pPartition; 1232 pWin->pOrderBy = pOrderBy; 1233 if( pBase ){ 1234 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1235 } 1236 }else{ 1237 sqlite3ExprListDelete(pParse->db, pPartition); 1238 sqlite3ExprListDelete(pParse->db, pOrderBy); 1239 } 1240 return pWin; 1241 } 1242 1243 /* 1244 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1245 ** is the base window. Earlier windows from the same WINDOW clause are 1246 ** stored in the linked list starting at pWin->pNextWin. This function 1247 ** either updates *pWin according to the base specification, or else 1248 ** leaves an error in pParse. 1249 */ 1250 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1251 if( pWin->zBase ){ 1252 sqlite3 *db = pParse->db; 1253 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1254 if( pExist ){ 1255 const char *zErr = 0; 1256 /* Check for errors */ 1257 if( pWin->pPartition ){ 1258 zErr = "PARTITION clause"; 1259 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1260 zErr = "ORDER BY clause"; 1261 }else if( pExist->bImplicitFrame==0 ){ 1262 zErr = "frame specification"; 1263 } 1264 if( zErr ){ 1265 sqlite3ErrorMsg(pParse, 1266 "cannot override %s of window: %s", zErr, pWin->zBase 1267 ); 1268 }else{ 1269 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1270 if( pExist->pOrderBy ){ 1271 assert( pWin->pOrderBy==0 ); 1272 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1273 } 1274 sqlite3DbFree(db, pWin->zBase); 1275 pWin->zBase = 0; 1276 } 1277 } 1278 } 1279 } 1280 1281 /* 1282 ** Attach window object pWin to expression p. 1283 */ 1284 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1285 if( p ){ 1286 assert( p->op==TK_FUNCTION ); 1287 assert( pWin ); 1288 p->y.pWin = pWin; 1289 ExprSetProperty(p, EP_WinFunc); 1290 pWin->pOwner = p; 1291 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1292 sqlite3ErrorMsg(pParse, 1293 "DISTINCT is not supported for window functions" 1294 ); 1295 } 1296 }else{ 1297 sqlite3WindowDelete(pParse->db, pWin); 1298 } 1299 } 1300 1301 /* 1302 ** Possibly link window pWin into the list at pSel->pWin (window functions 1303 ** to be processed as part of SELECT statement pSel). The window is linked 1304 ** in if either (a) there are no other windows already linked to this 1305 ** SELECT, or (b) the windows already linked use a compatible window frame. 1306 */ 1307 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1308 if( pSel ){ 1309 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ 1310 pWin->pNextWin = pSel->pWin; 1311 if( pSel->pWin ){ 1312 pSel->pWin->ppThis = &pWin->pNextWin; 1313 } 1314 pSel->pWin = pWin; 1315 pWin->ppThis = &pSel->pWin; 1316 }else{ 1317 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ 1318 pSel->selFlags |= SF_MultiPart; 1319 } 1320 } 1321 } 1322 } 1323 1324 /* 1325 ** Return 0 if the two window objects are identical, 1 if they are 1326 ** different, or 2 if it cannot be determined if the objects are identical 1327 ** or not. Identical window objects can be processed in a single scan. 1328 */ 1329 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1330 int res; 1331 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1332 if( p1->eFrmType!=p2->eFrmType ) return 1; 1333 if( p1->eStart!=p2->eStart ) return 1; 1334 if( p1->eEnd!=p2->eEnd ) return 1; 1335 if( p1->eExclude!=p2->eExclude ) return 1; 1336 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1337 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1338 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1339 return res; 1340 } 1341 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1342 return res; 1343 } 1344 if( bFilter ){ 1345 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1346 return res; 1347 } 1348 } 1349 return 0; 1350 } 1351 1352 1353 /* 1354 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1355 ** to begin iterating through the sub-query results. It is used to allocate 1356 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1357 */ 1358 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1359 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1360 Window *pMWin = pSelect->pWin; 1361 Window *pWin; 1362 Vdbe *v = sqlite3GetVdbe(pParse); 1363 1364 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1365 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1366 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1367 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1368 1369 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1370 ** said registers to NULL. */ 1371 if( pMWin->pPartition ){ 1372 int nExpr = pMWin->pPartition->nExpr; 1373 pMWin->regPart = pParse->nMem+1; 1374 pParse->nMem += nExpr; 1375 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1376 } 1377 1378 pMWin->regOne = ++pParse->nMem; 1379 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1380 1381 if( pMWin->eExclude ){ 1382 pMWin->regStartRowid = ++pParse->nMem; 1383 pMWin->regEndRowid = ++pParse->nMem; 1384 pMWin->csrApp = pParse->nTab++; 1385 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1386 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1387 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1388 return; 1389 } 1390 1391 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1392 FuncDef *p = pWin->pFunc; 1393 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1394 /* The inline versions of min() and max() require a single ephemeral 1395 ** table and 3 registers. The registers are used as follows: 1396 ** 1397 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1398 ** regApp+1: integer value used to ensure keys are unique 1399 ** regApp+2: output of MakeRecord 1400 */ 1401 ExprList *pList = pWin->pOwner->x.pList; 1402 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1403 pWin->csrApp = pParse->nTab++; 1404 pWin->regApp = pParse->nMem+1; 1405 pParse->nMem += 3; 1406 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1407 assert( pKeyInfo->aSortFlags[0]==0 ); 1408 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1409 } 1410 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1411 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1412 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1413 } 1414 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1415 /* Allocate two registers at pWin->regApp. These will be used to 1416 ** store the start and end index of the current frame. */ 1417 pWin->regApp = pParse->nMem+1; 1418 pWin->csrApp = pParse->nTab++; 1419 pParse->nMem += 2; 1420 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1421 } 1422 else if( p->zName==leadName || p->zName==lagName ){ 1423 pWin->csrApp = pParse->nTab++; 1424 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1425 } 1426 } 1427 } 1428 1429 #define WINDOW_STARTING_INT 0 1430 #define WINDOW_ENDING_INT 1 1431 #define WINDOW_NTH_VALUE_INT 2 1432 #define WINDOW_STARTING_NUM 3 1433 #define WINDOW_ENDING_NUM 4 1434 1435 /* 1436 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1437 ** value of the second argument to nth_value() (eCond==2) has just been 1438 ** evaluated and the result left in register reg. This function generates VM 1439 ** code to check that the value is a non-negative integer and throws an 1440 ** exception if it is not. 1441 */ 1442 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1443 static const char *azErr[] = { 1444 "frame starting offset must be a non-negative integer", 1445 "frame ending offset must be a non-negative integer", 1446 "second argument to nth_value must be a positive integer", 1447 "frame starting offset must be a non-negative number", 1448 "frame ending offset must be a non-negative number", 1449 }; 1450 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1451 Vdbe *v = sqlite3GetVdbe(pParse); 1452 int regZero = sqlite3GetTempReg(pParse); 1453 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1454 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1455 if( eCond>=WINDOW_STARTING_NUM ){ 1456 int regString = sqlite3GetTempReg(pParse); 1457 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1458 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1459 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1460 VdbeCoverage(v); 1461 assert( eCond==3 || eCond==4 ); 1462 VdbeCoverageIf(v, eCond==3); 1463 VdbeCoverageIf(v, eCond==4); 1464 }else{ 1465 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1466 VdbeCoverage(v); 1467 assert( eCond==0 || eCond==1 || eCond==2 ); 1468 VdbeCoverageIf(v, eCond==0); 1469 VdbeCoverageIf(v, eCond==1); 1470 VdbeCoverageIf(v, eCond==2); 1471 } 1472 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1473 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); 1474 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1475 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1476 VdbeCoverageNeverNullIf(v, eCond==2); 1477 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1478 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1479 sqlite3MayAbort(pParse); 1480 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1481 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1482 sqlite3ReleaseTempReg(pParse, regZero); 1483 } 1484 1485 /* 1486 ** Return the number of arguments passed to the window-function associated 1487 ** with the object passed as the only argument to this function. 1488 */ 1489 static int windowArgCount(Window *pWin){ 1490 ExprList *pList = pWin->pOwner->x.pList; 1491 return (pList ? pList->nExpr : 0); 1492 } 1493 1494 typedef struct WindowCodeArg WindowCodeArg; 1495 typedef struct WindowCsrAndReg WindowCsrAndReg; 1496 1497 /* 1498 ** See comments above struct WindowCodeArg. 1499 */ 1500 struct WindowCsrAndReg { 1501 int csr; /* Cursor number */ 1502 int reg; /* First in array of peer values */ 1503 }; 1504 1505 /* 1506 ** A single instance of this structure is allocated on the stack by 1507 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1508 ** routines. This is to reduce the number of arguments required by each 1509 ** helper function. 1510 ** 1511 ** regArg: 1512 ** Each window function requires an accumulator register (just as an 1513 ** ordinary aggregate function does). This variable is set to the first 1514 ** in an array of accumulator registers - one for each window function 1515 ** in the WindowCodeArg.pMWin list. 1516 ** 1517 ** eDelete: 1518 ** The window functions implementation sometimes caches the input rows 1519 ** that it processes in a temporary table. If it is not zero, this 1520 ** variable indicates when rows may be removed from the temp table (in 1521 ** order to reduce memory requirements - it would always be safe just 1522 ** to leave them there). Possible values for eDelete are: 1523 ** 1524 ** WINDOW_RETURN_ROW: 1525 ** An input row can be discarded after it is returned to the caller. 1526 ** 1527 ** WINDOW_AGGINVERSE: 1528 ** An input row can be discarded after the window functions xInverse() 1529 ** callbacks have been invoked in it. 1530 ** 1531 ** WINDOW_AGGSTEP: 1532 ** An input row can be discarded after the window functions xStep() 1533 ** callbacks have been invoked in it. 1534 ** 1535 ** start,current,end 1536 ** Consider a window-frame similar to the following: 1537 ** 1538 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1539 ** 1540 ** The windows functions implmentation caches the input rows in a temp 1541 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1542 ** aggressively removes rows once they are no longer required, but that's 1543 ** a mere detail). It keeps three cursors open on the temp table. One 1544 ** (current) that points to the next row to return to the query engine 1545 ** once its window function values have been calculated. Another (end) 1546 ** points to the next row to call the xStep() method of each window function 1547 ** on (so that it is 2 groups ahead of current). And a third (start) that 1548 ** points to the next row to call the xInverse() method of each window 1549 ** function on. 1550 ** 1551 ** Each cursor (start, current and end) consists of a VDBE cursor 1552 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1553 ** WindowCodeArg.reg) that always contains a copy of the peer values 1554 ** read from the corresponding cursor. 1555 ** 1556 ** Depending on the window-frame in question, all three cursors may not 1557 ** be required. In this case both WindowCodeArg.csr and reg are set to 1558 ** 0. 1559 */ 1560 struct WindowCodeArg { 1561 Parse *pParse; /* Parse context */ 1562 Window *pMWin; /* First in list of functions being processed */ 1563 Vdbe *pVdbe; /* VDBE object */ 1564 int addrGosub; /* OP_Gosub to this address to return one row */ 1565 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1566 int regArg; /* First in array of accumulator registers */ 1567 int eDelete; /* See above */ 1568 1569 WindowCsrAndReg start; 1570 WindowCsrAndReg current; 1571 WindowCsrAndReg end; 1572 }; 1573 1574 /* 1575 ** Generate VM code to read the window frames peer values from cursor csr into 1576 ** an array of registers starting at reg. 1577 */ 1578 static void windowReadPeerValues( 1579 WindowCodeArg *p, 1580 int csr, 1581 int reg 1582 ){ 1583 Window *pMWin = p->pMWin; 1584 ExprList *pOrderBy = pMWin->pOrderBy; 1585 if( pOrderBy ){ 1586 Vdbe *v = sqlite3GetVdbe(p->pParse); 1587 ExprList *pPart = pMWin->pPartition; 1588 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1589 int i; 1590 for(i=0; i<pOrderBy->nExpr; i++){ 1591 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1592 } 1593 } 1594 } 1595 1596 /* 1597 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1598 ** xInverse (if bInverse is non-zero) for each window function in the 1599 ** linked list starting at pMWin. Or, for built-in window functions 1600 ** that do not use the standard function API, generate the required 1601 ** inline VM code. 1602 ** 1603 ** If argument csr is greater than or equal to 0, then argument reg is 1604 ** the first register in an array of registers guaranteed to be large 1605 ** enough to hold the array of arguments for each function. In this case 1606 ** the arguments are extracted from the current row of csr into the 1607 ** array of registers before invoking OP_AggStep or OP_AggInverse 1608 ** 1609 ** Or, if csr is less than zero, then the array of registers at reg is 1610 ** already populated with all columns from the current row of the sub-query. 1611 ** 1612 ** If argument regPartSize is non-zero, then it is a register containing the 1613 ** number of rows in the current partition. 1614 */ 1615 static void windowAggStep( 1616 WindowCodeArg *p, 1617 Window *pMWin, /* Linked list of window functions */ 1618 int csr, /* Read arguments from this cursor */ 1619 int bInverse, /* True to invoke xInverse instead of xStep */ 1620 int reg /* Array of registers */ 1621 ){ 1622 Parse *pParse = p->pParse; 1623 Vdbe *v = sqlite3GetVdbe(pParse); 1624 Window *pWin; 1625 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1626 FuncDef *pFunc = pWin->pFunc; 1627 int regArg; 1628 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1629 int i; 1630 1631 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1632 1633 /* All OVER clauses in the same window function aggregate step must 1634 ** be the same. */ 1635 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1636 1637 for(i=0; i<nArg; i++){ 1638 if( i!=1 || pFunc->zName!=nth_valueName ){ 1639 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1640 }else{ 1641 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1642 } 1643 } 1644 regArg = reg; 1645 1646 if( pMWin->regStartRowid==0 1647 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1648 && (pWin->eStart!=TK_UNBOUNDED) 1649 ){ 1650 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1651 VdbeCoverage(v); 1652 if( bInverse==0 ){ 1653 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1654 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1655 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1656 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1657 }else{ 1658 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1659 VdbeCoverageNeverTaken(v); 1660 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1661 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1662 } 1663 sqlite3VdbeJumpHere(v, addrIsNull); 1664 }else if( pWin->regApp ){ 1665 assert( pFunc->zName==nth_valueName 1666 || pFunc->zName==first_valueName 1667 ); 1668 assert( bInverse==0 || bInverse==1 ); 1669 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1670 }else if( pFunc->xSFunc!=noopStepFunc ){ 1671 int addrIf = 0; 1672 if( pWin->pFilter ){ 1673 int regTmp; 1674 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1675 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1676 regTmp = sqlite3GetTempReg(pParse); 1677 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1678 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1679 VdbeCoverage(v); 1680 sqlite3ReleaseTempReg(pParse, regTmp); 1681 } 1682 1683 if( pWin->bExprArgs ){ 1684 int iStart = sqlite3VdbeCurrentAddr(v); 1685 VdbeOp *pOp, *pEnd; 1686 1687 nArg = pWin->pOwner->x.pList->nExpr; 1688 regArg = sqlite3GetTempRange(pParse, nArg); 1689 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1690 1691 pEnd = sqlite3VdbeGetOp(v, -1); 1692 for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){ 1693 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1694 pOp->p1 = csr; 1695 } 1696 } 1697 } 1698 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1699 CollSeq *pColl; 1700 assert( nArg>0 ); 1701 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1702 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1703 } 1704 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1705 bInverse, regArg, pWin->regAccum); 1706 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1707 sqlite3VdbeChangeP5(v, (u8)nArg); 1708 if( pWin->bExprArgs ){ 1709 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1710 } 1711 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1712 } 1713 } 1714 } 1715 1716 /* 1717 ** Values that may be passed as the second argument to windowCodeOp(). 1718 */ 1719 #define WINDOW_RETURN_ROW 1 1720 #define WINDOW_AGGINVERSE 2 1721 #define WINDOW_AGGSTEP 3 1722 1723 /* 1724 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1725 ** (bFin==1) for each window function in the linked list starting at 1726 ** pMWin. Or, for built-in window-functions that do not use the standard 1727 ** API, generate the equivalent VM code. 1728 */ 1729 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1730 Parse *pParse = p->pParse; 1731 Window *pMWin = p->pMWin; 1732 Vdbe *v = sqlite3GetVdbe(pParse); 1733 Window *pWin; 1734 1735 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1736 if( pMWin->regStartRowid==0 1737 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1738 && (pWin->eStart!=TK_UNBOUNDED) 1739 ){ 1740 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1741 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1742 VdbeCoverage(v); 1743 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1744 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1745 }else if( pWin->regApp ){ 1746 assert( pMWin->regStartRowid==0 ); 1747 }else{ 1748 int nArg = windowArgCount(pWin); 1749 if( bFin ){ 1750 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1751 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1752 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1753 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1754 }else{ 1755 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1756 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1757 } 1758 } 1759 } 1760 } 1761 1762 /* 1763 ** Generate code to calculate the current values of all window functions in the 1764 ** p->pMWin list by doing a full scan of the current window frame. Store the 1765 ** results in the Window.regResult registers, ready to return the upper 1766 ** layer. 1767 */ 1768 static void windowFullScan(WindowCodeArg *p){ 1769 Window *pWin; 1770 Parse *pParse = p->pParse; 1771 Window *pMWin = p->pMWin; 1772 Vdbe *v = p->pVdbe; 1773 1774 int regCRowid = 0; /* Current rowid value */ 1775 int regCPeer = 0; /* Current peer values */ 1776 int regRowid = 0; /* AggStep rowid value */ 1777 int regPeer = 0; /* AggStep peer values */ 1778 1779 int nPeer; 1780 int lblNext; 1781 int lblBrk; 1782 int addrNext; 1783 int csr; 1784 1785 VdbeModuleComment((v, "windowFullScan begin")); 1786 1787 assert( pMWin!=0 ); 1788 csr = pMWin->csrApp; 1789 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1790 1791 lblNext = sqlite3VdbeMakeLabel(pParse); 1792 lblBrk = sqlite3VdbeMakeLabel(pParse); 1793 1794 regCRowid = sqlite3GetTempReg(pParse); 1795 regRowid = sqlite3GetTempReg(pParse); 1796 if( nPeer ){ 1797 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1798 regPeer = sqlite3GetTempRange(pParse, nPeer); 1799 } 1800 1801 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1802 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1803 1804 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1805 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1806 } 1807 1808 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1809 VdbeCoverage(v); 1810 addrNext = sqlite3VdbeCurrentAddr(v); 1811 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1812 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1813 VdbeCoverageNeverNull(v); 1814 1815 if( pMWin->eExclude==TK_CURRENT ){ 1816 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1817 VdbeCoverageNeverNull(v); 1818 }else if( pMWin->eExclude!=TK_NO ){ 1819 int addr; 1820 int addrEq = 0; 1821 KeyInfo *pKeyInfo = 0; 1822 1823 if( pMWin->pOrderBy ){ 1824 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1825 } 1826 if( pMWin->eExclude==TK_TIES ){ 1827 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1828 VdbeCoverageNeverNull(v); 1829 } 1830 if( pKeyInfo ){ 1831 windowReadPeerValues(p, csr, regPeer); 1832 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1833 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1834 addr = sqlite3VdbeCurrentAddr(v)+1; 1835 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1836 VdbeCoverageEqNe(v); 1837 }else{ 1838 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1839 } 1840 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1841 } 1842 1843 windowAggStep(p, pMWin, csr, 0, p->regArg); 1844 1845 sqlite3VdbeResolveLabel(v, lblNext); 1846 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1847 VdbeCoverage(v); 1848 sqlite3VdbeJumpHere(v, addrNext-1); 1849 sqlite3VdbeJumpHere(v, addrNext+1); 1850 sqlite3ReleaseTempReg(pParse, regRowid); 1851 sqlite3ReleaseTempReg(pParse, regCRowid); 1852 if( nPeer ){ 1853 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1854 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1855 } 1856 1857 windowAggFinal(p, 1); 1858 VdbeModuleComment((v, "windowFullScan end")); 1859 } 1860 1861 /* 1862 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1863 ** return the current row of Window.iEphCsr. If all window functions are 1864 ** aggregate window functions that use the standard API, a single 1865 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1866 ** for per-row processing is only generated for the following built-in window 1867 ** functions: 1868 ** 1869 ** nth_value() 1870 ** first_value() 1871 ** lag() 1872 ** lead() 1873 */ 1874 static void windowReturnOneRow(WindowCodeArg *p){ 1875 Window *pMWin = p->pMWin; 1876 Vdbe *v = p->pVdbe; 1877 1878 if( pMWin->regStartRowid ){ 1879 windowFullScan(p); 1880 }else{ 1881 Parse *pParse = p->pParse; 1882 Window *pWin; 1883 1884 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1885 FuncDef *pFunc = pWin->pFunc; 1886 if( pFunc->zName==nth_valueName 1887 || pFunc->zName==first_valueName 1888 ){ 1889 int csr = pWin->csrApp; 1890 int lbl = sqlite3VdbeMakeLabel(pParse); 1891 int tmpReg = sqlite3GetTempReg(pParse); 1892 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1893 1894 if( pFunc->zName==nth_valueName ){ 1895 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1896 windowCheckValue(pParse, tmpReg, 2); 1897 }else{ 1898 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1899 } 1900 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1901 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1902 VdbeCoverageNeverNull(v); 1903 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1904 VdbeCoverageNeverTaken(v); 1905 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1906 sqlite3VdbeResolveLabel(v, lbl); 1907 sqlite3ReleaseTempReg(pParse, tmpReg); 1908 } 1909 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1910 int nArg = pWin->pOwner->x.pList->nExpr; 1911 int csr = pWin->csrApp; 1912 int lbl = sqlite3VdbeMakeLabel(pParse); 1913 int tmpReg = sqlite3GetTempReg(pParse); 1914 int iEph = pMWin->iEphCsr; 1915 1916 if( nArg<3 ){ 1917 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1918 }else{ 1919 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1920 } 1921 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1922 if( nArg<2 ){ 1923 int val = (pFunc->zName==leadName ? 1 : -1); 1924 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1925 }else{ 1926 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1927 int tmpReg2 = sqlite3GetTempReg(pParse); 1928 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1929 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1930 sqlite3ReleaseTempReg(pParse, tmpReg2); 1931 } 1932 1933 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1934 VdbeCoverage(v); 1935 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1936 sqlite3VdbeResolveLabel(v, lbl); 1937 sqlite3ReleaseTempReg(pParse, tmpReg); 1938 } 1939 } 1940 } 1941 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1942 } 1943 1944 /* 1945 ** Generate code to set the accumulator register for each window function 1946 ** in the linked list passed as the second argument to NULL. And perform 1947 ** any equivalent initialization required by any built-in window functions 1948 ** in the list. 1949 */ 1950 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1951 Vdbe *v = sqlite3GetVdbe(pParse); 1952 int regArg; 1953 int nArg = 0; 1954 Window *pWin; 1955 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1956 FuncDef *pFunc = pWin->pFunc; 1957 assert( pWin->regAccum ); 1958 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1959 nArg = MAX(nArg, windowArgCount(pWin)); 1960 if( pMWin->regStartRowid==0 ){ 1961 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1962 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1963 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1964 } 1965 1966 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1967 assert( pWin->eStart!=TK_UNBOUNDED ); 1968 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1969 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1970 } 1971 } 1972 } 1973 regArg = pParse->nMem+1; 1974 pParse->nMem += nArg; 1975 return regArg; 1976 } 1977 1978 /* 1979 ** Return true if the current frame should be cached in the ephemeral table, 1980 ** even if there are no xInverse() calls required. 1981 */ 1982 static int windowCacheFrame(Window *pMWin){ 1983 Window *pWin; 1984 if( pMWin->regStartRowid ) return 1; 1985 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1986 FuncDef *pFunc = pWin->pFunc; 1987 if( (pFunc->zName==nth_valueName) 1988 || (pFunc->zName==first_valueName) 1989 || (pFunc->zName==leadName) 1990 || (pFunc->zName==lagName) 1991 ){ 1992 return 1; 1993 } 1994 } 1995 return 0; 1996 } 1997 1998 /* 1999 ** regOld and regNew are each the first register in an array of size 2000 ** pOrderBy->nExpr. This function generates code to compare the two 2001 ** arrays of registers using the collation sequences and other comparison 2002 ** parameters specified by pOrderBy. 2003 ** 2004 ** If the two arrays are not equal, the contents of regNew is copied to 2005 ** regOld and control falls through. Otherwise, if the contents of the arrays 2006 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2007 */ 2008 static void windowIfNewPeer( 2009 Parse *pParse, 2010 ExprList *pOrderBy, 2011 int regNew, /* First in array of new values */ 2012 int regOld, /* First in array of old values */ 2013 int addr /* Jump here */ 2014 ){ 2015 Vdbe *v = sqlite3GetVdbe(pParse); 2016 if( pOrderBy ){ 2017 int nVal = pOrderBy->nExpr; 2018 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2019 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2020 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2021 sqlite3VdbeAddOp3(v, OP_Jump, 2022 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2023 ); 2024 VdbeCoverageEqNe(v); 2025 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2026 }else{ 2027 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2028 } 2029 } 2030 2031 /* 2032 ** This function is called as part of generating VM programs for RANGE 2033 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2034 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2035 ** code equivalent to: 2036 ** 2037 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2038 ** 2039 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2040 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2041 ** 2042 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2043 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2044 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2045 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2046 ** is OP_Ge, the generated code is equivalent to: 2047 ** 2048 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2049 ** 2050 ** A special type of arithmetic is used such that if csr1.peerVal is not 2051 ** a numeric type (real or integer), then the result of the addition 2052 ** or subtraction is a a copy of csr1.peerVal. 2053 */ 2054 static void windowCodeRangeTest( 2055 WindowCodeArg *p, 2056 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2057 int csr1, /* Cursor number for cursor 1 */ 2058 int regVal, /* Register containing non-negative number */ 2059 int csr2, /* Cursor number for cursor 2 */ 2060 int lbl /* Jump destination if condition is true */ 2061 ){ 2062 Parse *pParse = p->pParse; 2063 Vdbe *v = sqlite3GetVdbe(pParse); 2064 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2065 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2066 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2067 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2068 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2069 int addrGe; /* Jump destination */ 2070 int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ 2071 CollSeq *pColl; 2072 2073 /* Read the peer-value from each cursor into a register */ 2074 windowReadPeerValues(p, csr1, reg1); 2075 windowReadPeerValues(p, csr2, reg2); 2076 2077 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2078 assert( pOrderBy && pOrderBy->nExpr==1 ); 2079 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2080 switch( op ){ 2081 case OP_Ge: op = OP_Le; break; 2082 case OP_Gt: op = OP_Lt; break; 2083 default: assert( op==OP_Le ); op = OP_Ge; break; 2084 } 2085 arith = OP_Subtract; 2086 } 2087 2088 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2089 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2090 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2091 )); 2092 2093 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2094 ** consider NULL values to be larger than all other values, instead of 2095 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2096 ** (and adding that capability causes a performance regression), so 2097 ** instead if the BIGNULL flag is set then cases where either reg1 or 2098 ** reg2 are NULL are handled separately in the following block. The code 2099 ** generated is equivalent to: 2100 ** 2101 ** if( reg1 IS NULL ){ 2102 ** if( op==OP_Ge ) goto lbl; 2103 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2104 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2105 ** }else if( reg2 IS NULL ){ 2106 ** if( op==OP_Le ) goto lbl; 2107 ** } 2108 ** 2109 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2110 ** not taken, control jumps over the comparison operator coded below this 2111 ** block. */ 2112 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2113 /* This block runs if reg1 contains a NULL. */ 2114 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2115 switch( op ){ 2116 case OP_Ge: 2117 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2118 break; 2119 case OP_Gt: 2120 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2121 VdbeCoverage(v); 2122 break; 2123 case OP_Le: 2124 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2125 VdbeCoverage(v); 2126 break; 2127 default: assert( op==OP_Lt ); /* no-op */ break; 2128 } 2129 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 2130 2131 /* This block runs if reg1 is not NULL, but reg2 is. */ 2132 sqlite3VdbeJumpHere(v, addr); 2133 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2134 if( op==OP_Gt || op==OP_Ge ){ 2135 sqlite3VdbeChangeP2(v, -1, addrDone); 2136 } 2137 } 2138 2139 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2140 ** This block adds (or subtracts for DESC) the numeric value in regVal 2141 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2142 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2143 ** 2144 ** if( reg1>='' ) goto addrGe; 2145 ** reg1 = reg1 +/- regVal 2146 ** addrGe: 2147 ** 2148 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2149 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2150 ** then the arithmetic is performed, but since adding or subtracting from 2151 ** NULL is always NULL anyway, this case is handled as required too. */ 2152 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2153 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2154 VdbeCoverage(v); 2155 if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ 2156 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2157 } 2158 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2159 sqlite3VdbeJumpHere(v, addrGe); 2160 2161 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2162 ** control skips over this test if the BIGNULL flag is set and either 2163 ** reg1 or reg2 contain a NULL value. */ 2164 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2165 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); 2166 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); 2167 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2168 sqlite3VdbeResolveLabel(v, addrDone); 2169 2170 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2171 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2172 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2173 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2174 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2175 sqlite3ReleaseTempReg(pParse, reg1); 2176 sqlite3ReleaseTempReg(pParse, reg2); 2177 2178 VdbeModuleComment((v, "CodeRangeTest: end")); 2179 } 2180 2181 /* 2182 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2183 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2184 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2185 ** details. 2186 */ 2187 static int windowCodeOp( 2188 WindowCodeArg *p, /* Context object */ 2189 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2190 int regCountdown, /* Register for OP_IfPos countdown */ 2191 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2192 ){ 2193 int csr, reg; 2194 Parse *pParse = p->pParse; 2195 Window *pMWin = p->pMWin; 2196 int ret = 0; 2197 Vdbe *v = p->pVdbe; 2198 int addrContinue = 0; 2199 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2200 2201 int lblDone = sqlite3VdbeMakeLabel(pParse); 2202 int addrNextRange = 0; 2203 2204 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2205 ** starts with UNBOUNDED PRECEDING. */ 2206 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2207 assert( regCountdown==0 && jumpOnEof==0 ); 2208 return 0; 2209 } 2210 2211 if( regCountdown>0 ){ 2212 if( pMWin->eFrmType==TK_RANGE ){ 2213 addrNextRange = sqlite3VdbeCurrentAddr(v); 2214 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2215 if( op==WINDOW_AGGINVERSE ){ 2216 if( pMWin->eStart==TK_FOLLOWING ){ 2217 windowCodeRangeTest( 2218 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2219 ); 2220 }else{ 2221 windowCodeRangeTest( 2222 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2223 ); 2224 } 2225 }else{ 2226 windowCodeRangeTest( 2227 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2228 ); 2229 } 2230 }else{ 2231 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2232 VdbeCoverage(v); 2233 } 2234 } 2235 2236 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2237 windowAggFinal(p, 0); 2238 } 2239 addrContinue = sqlite3VdbeCurrentAddr(v); 2240 2241 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2242 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2243 ** start cursor does not advance past the end cursor within the 2244 ** temporary table. It otherwise might, if (a>b). */ 2245 if( pMWin->eStart==pMWin->eEnd && regCountdown 2246 && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE 2247 ){ 2248 int regRowid1 = sqlite3GetTempReg(pParse); 2249 int regRowid2 = sqlite3GetTempReg(pParse); 2250 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2251 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2252 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2253 VdbeCoverage(v); 2254 sqlite3ReleaseTempReg(pParse, regRowid1); 2255 sqlite3ReleaseTempReg(pParse, regRowid2); 2256 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2257 } 2258 2259 switch( op ){ 2260 case WINDOW_RETURN_ROW: 2261 csr = p->current.csr; 2262 reg = p->current.reg; 2263 windowReturnOneRow(p); 2264 break; 2265 2266 case WINDOW_AGGINVERSE: 2267 csr = p->start.csr; 2268 reg = p->start.reg; 2269 if( pMWin->regStartRowid ){ 2270 assert( pMWin->regEndRowid ); 2271 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2272 }else{ 2273 windowAggStep(p, pMWin, csr, 1, p->regArg); 2274 } 2275 break; 2276 2277 default: 2278 assert( op==WINDOW_AGGSTEP ); 2279 csr = p->end.csr; 2280 reg = p->end.reg; 2281 if( pMWin->regStartRowid ){ 2282 assert( pMWin->regEndRowid ); 2283 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2284 }else{ 2285 windowAggStep(p, pMWin, csr, 0, p->regArg); 2286 } 2287 break; 2288 } 2289 2290 if( op==p->eDelete ){ 2291 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2292 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2293 } 2294 2295 if( jumpOnEof ){ 2296 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2297 VdbeCoverage(v); 2298 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2299 }else{ 2300 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2301 VdbeCoverage(v); 2302 if( bPeer ){ 2303 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2304 } 2305 } 2306 2307 if( bPeer ){ 2308 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2309 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2310 windowReadPeerValues(p, csr, regTmp); 2311 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2312 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2313 } 2314 2315 if( addrNextRange ){ 2316 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2317 } 2318 sqlite3VdbeResolveLabel(v, lblDone); 2319 return ret; 2320 } 2321 2322 2323 /* 2324 ** Allocate and return a duplicate of the Window object indicated by the 2325 ** third argument. Set the Window.pOwner field of the new object to 2326 ** pOwner. 2327 */ 2328 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2329 Window *pNew = 0; 2330 if( ALWAYS(p) ){ 2331 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2332 if( pNew ){ 2333 pNew->zName = sqlite3DbStrDup(db, p->zName); 2334 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2335 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2336 pNew->pFunc = p->pFunc; 2337 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2338 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2339 pNew->eFrmType = p->eFrmType; 2340 pNew->eEnd = p->eEnd; 2341 pNew->eStart = p->eStart; 2342 pNew->eExclude = p->eExclude; 2343 pNew->regResult = p->regResult; 2344 pNew->regAccum = p->regAccum; 2345 pNew->iArgCol = p->iArgCol; 2346 pNew->iEphCsr = p->iEphCsr; 2347 pNew->bExprArgs = p->bExprArgs; 2348 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2349 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2350 pNew->pOwner = pOwner; 2351 pNew->bImplicitFrame = p->bImplicitFrame; 2352 } 2353 } 2354 return pNew; 2355 } 2356 2357 /* 2358 ** Return a copy of the linked list of Window objects passed as the 2359 ** second argument. 2360 */ 2361 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2362 Window *pWin; 2363 Window *pRet = 0; 2364 Window **pp = &pRet; 2365 2366 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2367 *pp = sqlite3WindowDup(db, 0, pWin); 2368 if( *pp==0 ) break; 2369 pp = &((*pp)->pNextWin); 2370 } 2371 2372 return pRet; 2373 } 2374 2375 /* 2376 ** Return true if it can be determined at compile time that expression 2377 ** pExpr evaluates to a value that, when cast to an integer, is greater 2378 ** than zero. False otherwise. 2379 ** 2380 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2381 ** flag and returns zero. 2382 */ 2383 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2384 int ret = 0; 2385 sqlite3 *db = pParse->db; 2386 sqlite3_value *pVal = 0; 2387 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2388 if( pVal && sqlite3_value_int(pVal)>0 ){ 2389 ret = 1; 2390 } 2391 sqlite3ValueFree(pVal); 2392 return ret; 2393 } 2394 2395 /* 2396 ** sqlite3WhereBegin() has already been called for the SELECT statement 2397 ** passed as the second argument when this function is invoked. It generates 2398 ** code to populate the Window.regResult register for each window function 2399 ** and invoke the sub-routine at instruction addrGosub once for each row. 2400 ** sqlite3WhereEnd() is always called before returning. 2401 ** 2402 ** This function handles several different types of window frames, which 2403 ** require slightly different processing. The following pseudo code is 2404 ** used to implement window frames of the form: 2405 ** 2406 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2407 ** 2408 ** Other window frame types use variants of the following: 2409 ** 2410 ** ... loop started by sqlite3WhereBegin() ... 2411 ** if( new partition ){ 2412 ** Gosub flush 2413 ** } 2414 ** Insert new row into eph table. 2415 ** 2416 ** if( first row of partition ){ 2417 ** // Rewind three cursors, all open on the eph table. 2418 ** Rewind(csrEnd); 2419 ** Rewind(csrStart); 2420 ** Rewind(csrCurrent); 2421 ** 2422 ** regEnd = <expr2> // FOLLOWING expression 2423 ** regStart = <expr1> // PRECEDING expression 2424 ** }else{ 2425 ** // First time this branch is taken, the eph table contains two 2426 ** // rows. The first row in the partition, which all three cursors 2427 ** // currently point to, and the following row. 2428 ** AGGSTEP 2429 ** if( (regEnd--)<=0 ){ 2430 ** RETURN_ROW 2431 ** if( (regStart--)<=0 ){ 2432 ** AGGINVERSE 2433 ** } 2434 ** } 2435 ** } 2436 ** } 2437 ** flush: 2438 ** AGGSTEP 2439 ** while( 1 ){ 2440 ** RETURN ROW 2441 ** if( csrCurrent is EOF ) break; 2442 ** if( (regStart--)<=0 ){ 2443 ** AggInverse(csrStart) 2444 ** Next(csrStart) 2445 ** } 2446 ** } 2447 ** 2448 ** The pseudo-code above uses the following shorthand: 2449 ** 2450 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2451 ** with arguments read from the current row of cursor csrEnd, then 2452 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2453 ** 2454 ** RETURN_ROW: return a row to the caller based on the contents of the 2455 ** current row of csrCurrent and the current state of all 2456 ** aggregates. Then step cursor csrCurrent forward one row. 2457 ** 2458 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2459 ** functions with arguments read from the current row of cursor 2460 ** csrStart. Then step csrStart forward one row. 2461 ** 2462 ** There are two other ROWS window frames that are handled significantly 2463 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2464 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2465 ** cases because they change the order in which the three cursors (csrStart, 2466 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2467 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2468 ** three. 2469 ** 2470 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2471 ** 2472 ** ... loop started by sqlite3WhereBegin() ... 2473 ** if( new partition ){ 2474 ** Gosub flush 2475 ** } 2476 ** Insert new row into eph table. 2477 ** if( first row of partition ){ 2478 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2479 ** regEnd = <expr2> 2480 ** regStart = <expr1> 2481 ** }else{ 2482 ** if( (regEnd--)<=0 ){ 2483 ** AGGSTEP 2484 ** } 2485 ** RETURN_ROW 2486 ** if( (regStart--)<=0 ){ 2487 ** AGGINVERSE 2488 ** } 2489 ** } 2490 ** } 2491 ** flush: 2492 ** if( (regEnd--)<=0 ){ 2493 ** AGGSTEP 2494 ** } 2495 ** RETURN_ROW 2496 ** 2497 ** 2498 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2499 ** 2500 ** ... loop started by sqlite3WhereBegin() ... 2501 ** if( new partition ){ 2502 ** Gosub flush 2503 ** } 2504 ** Insert new row into eph table. 2505 ** if( first row of partition ){ 2506 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2507 ** regEnd = <expr2> 2508 ** regStart = regEnd - <expr1> 2509 ** }else{ 2510 ** AGGSTEP 2511 ** if( (regEnd--)<=0 ){ 2512 ** RETURN_ROW 2513 ** } 2514 ** if( (regStart--)<=0 ){ 2515 ** AGGINVERSE 2516 ** } 2517 ** } 2518 ** } 2519 ** flush: 2520 ** AGGSTEP 2521 ** while( 1 ){ 2522 ** if( (regEnd--)<=0 ){ 2523 ** RETURN_ROW 2524 ** if( eof ) break; 2525 ** } 2526 ** if( (regStart--)<=0 ){ 2527 ** AGGINVERSE 2528 ** if( eof ) break 2529 ** } 2530 ** } 2531 ** while( !eof csrCurrent ){ 2532 ** RETURN_ROW 2533 ** } 2534 ** 2535 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2536 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2537 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2538 ** This is optimized of course - branches that will never be taken and 2539 ** conditions that are always true are omitted from the VM code. The only 2540 ** exceptional case is: 2541 ** 2542 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2543 ** 2544 ** ... loop started by sqlite3WhereBegin() ... 2545 ** if( new partition ){ 2546 ** Gosub flush 2547 ** } 2548 ** Insert new row into eph table. 2549 ** if( first row of partition ){ 2550 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2551 ** regStart = <expr1> 2552 ** }else{ 2553 ** AGGSTEP 2554 ** } 2555 ** } 2556 ** flush: 2557 ** AGGSTEP 2558 ** while( 1 ){ 2559 ** if( (regStart--)<=0 ){ 2560 ** AGGINVERSE 2561 ** if( eof ) break 2562 ** } 2563 ** RETURN_ROW 2564 ** } 2565 ** while( !eof csrCurrent ){ 2566 ** RETURN_ROW 2567 ** } 2568 ** 2569 ** Also requiring special handling are the cases: 2570 ** 2571 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2572 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2573 ** 2574 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2575 ** To handle this case, the pseudo-code programs depicted above are modified 2576 ** slightly to be: 2577 ** 2578 ** ... loop started by sqlite3WhereBegin() ... 2579 ** if( new partition ){ 2580 ** Gosub flush 2581 ** } 2582 ** Insert new row into eph table. 2583 ** if( first row of partition ){ 2584 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2585 ** regEnd = <expr2> 2586 ** regStart = <expr1> 2587 ** if( regEnd < regStart ){ 2588 ** RETURN_ROW 2589 ** delete eph table contents 2590 ** continue 2591 ** } 2592 ** ... 2593 ** 2594 ** The new "continue" statement in the above jumps to the next iteration 2595 ** of the outer loop - the one started by sqlite3WhereBegin(). 2596 ** 2597 ** The various GROUPS cases are implemented using the same patterns as 2598 ** ROWS. The VM code is modified slightly so that: 2599 ** 2600 ** 1. The else branch in the main loop is only taken if the row just 2601 ** added to the ephemeral table is the start of a new group. In 2602 ** other words, it becomes: 2603 ** 2604 ** ... loop started by sqlite3WhereBegin() ... 2605 ** if( new partition ){ 2606 ** Gosub flush 2607 ** } 2608 ** Insert new row into eph table. 2609 ** if( first row of partition ){ 2610 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2611 ** regEnd = <expr2> 2612 ** regStart = <expr1> 2613 ** }else if( new group ){ 2614 ** ... 2615 ** } 2616 ** } 2617 ** 2618 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2619 ** AGGINVERSE step processes the current row of the relevant cursor and 2620 ** all subsequent rows belonging to the same group. 2621 ** 2622 ** RANGE window frames are a little different again. As for GROUPS, the 2623 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2624 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2625 ** basic cases: 2626 ** 2627 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2628 ** 2629 ** ... loop started by sqlite3WhereBegin() ... 2630 ** if( new partition ){ 2631 ** Gosub flush 2632 ** } 2633 ** Insert new row into eph table. 2634 ** if( first row of partition ){ 2635 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2636 ** regEnd = <expr2> 2637 ** regStart = <expr1> 2638 ** }else{ 2639 ** AGGSTEP 2640 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2641 ** RETURN_ROW 2642 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2643 ** AGGINVERSE 2644 ** } 2645 ** } 2646 ** } 2647 ** } 2648 ** flush: 2649 ** AGGSTEP 2650 ** while( 1 ){ 2651 ** RETURN ROW 2652 ** if( csrCurrent is EOF ) break; 2653 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2654 ** AGGINVERSE 2655 ** } 2656 ** } 2657 ** } 2658 ** 2659 ** In the above notation, "csr.key" means the current value of the ORDER BY 2660 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2661 ** or <expr PRECEDING) read from cursor csr. 2662 ** 2663 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2664 ** 2665 ** ... loop started by sqlite3WhereBegin() ... 2666 ** if( new partition ){ 2667 ** Gosub flush 2668 ** } 2669 ** Insert new row into eph table. 2670 ** if( first row of partition ){ 2671 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2672 ** regEnd = <expr2> 2673 ** regStart = <expr1> 2674 ** }else{ 2675 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2676 ** AGGSTEP 2677 ** } 2678 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2679 ** AGGINVERSE 2680 ** } 2681 ** RETURN_ROW 2682 ** } 2683 ** } 2684 ** flush: 2685 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2686 ** AGGSTEP 2687 ** } 2688 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2689 ** AGGINVERSE 2690 ** } 2691 ** RETURN_ROW 2692 ** 2693 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2694 ** 2695 ** ... loop started by sqlite3WhereBegin() ... 2696 ** if( new partition ){ 2697 ** Gosub flush 2698 ** } 2699 ** Insert new row into eph table. 2700 ** if( first row of partition ){ 2701 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2702 ** regEnd = <expr2> 2703 ** regStart = <expr1> 2704 ** }else{ 2705 ** AGGSTEP 2706 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2707 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2708 ** AGGINVERSE 2709 ** } 2710 ** RETURN_ROW 2711 ** } 2712 ** } 2713 ** } 2714 ** flush: 2715 ** AGGSTEP 2716 ** while( 1 ){ 2717 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2718 ** AGGINVERSE 2719 ** if( eof ) break "while( 1 )" loop. 2720 ** } 2721 ** RETURN_ROW 2722 ** } 2723 ** while( !eof csrCurrent ){ 2724 ** RETURN_ROW 2725 ** } 2726 ** 2727 ** The text above leaves out many details. Refer to the code and comments 2728 ** below for a more complete picture. 2729 */ 2730 void sqlite3WindowCodeStep( 2731 Parse *pParse, /* Parse context */ 2732 Select *p, /* Rewritten SELECT statement */ 2733 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2734 int regGosub, /* Register for OP_Gosub */ 2735 int addrGosub /* OP_Gosub here to return each row */ 2736 ){ 2737 Window *pMWin = p->pWin; 2738 ExprList *pOrderBy = pMWin->pOrderBy; 2739 Vdbe *v = sqlite3GetVdbe(pParse); 2740 int csrWrite; /* Cursor used to write to eph. table */ 2741 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2742 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2743 int iInput; /* To iterate through sub cols */ 2744 int addrNe; /* Address of OP_Ne */ 2745 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2746 int addrInteger = 0; /* Address of OP_Integer */ 2747 int addrEmpty; /* Address of OP_Rewind in flush: */ 2748 int regNew; /* Array of registers holding new input row */ 2749 int regRecord; /* regNew array in record form */ 2750 int regRowid; /* Rowid for regRecord in eph table */ 2751 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2752 int regPeer = 0; /* Peer values for current row */ 2753 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2754 WindowCodeArg s; /* Context object for sub-routines */ 2755 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2756 int regStart = 0; /* Value of <expr> PRECEDING */ 2757 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2758 2759 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2760 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2761 ); 2762 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2763 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2764 ); 2765 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2766 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2767 || pMWin->eExclude==TK_NO 2768 ); 2769 2770 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2771 2772 /* Fill in the context object */ 2773 memset(&s, 0, sizeof(WindowCodeArg)); 2774 s.pParse = pParse; 2775 s.pMWin = pMWin; 2776 s.pVdbe = v; 2777 s.regGosub = regGosub; 2778 s.addrGosub = addrGosub; 2779 s.current.csr = pMWin->iEphCsr; 2780 csrWrite = s.current.csr+1; 2781 s.start.csr = s.current.csr+2; 2782 s.end.csr = s.current.csr+3; 2783 2784 /* Figure out when rows may be deleted from the ephemeral table. There 2785 ** are four options - they may never be deleted (eDelete==0), they may 2786 ** be deleted as soon as they are no longer part of the window frame 2787 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2788 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2789 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2790 switch( pMWin->eStart ){ 2791 case TK_FOLLOWING: 2792 if( pMWin->eFrmType!=TK_RANGE 2793 && windowExprGtZero(pParse, pMWin->pStart) 2794 ){ 2795 s.eDelete = WINDOW_RETURN_ROW; 2796 } 2797 break; 2798 case TK_UNBOUNDED: 2799 if( windowCacheFrame(pMWin)==0 ){ 2800 if( pMWin->eEnd==TK_PRECEDING ){ 2801 if( pMWin->eFrmType!=TK_RANGE 2802 && windowExprGtZero(pParse, pMWin->pEnd) 2803 ){ 2804 s.eDelete = WINDOW_AGGSTEP; 2805 } 2806 }else{ 2807 s.eDelete = WINDOW_RETURN_ROW; 2808 } 2809 } 2810 break; 2811 default: 2812 s.eDelete = WINDOW_AGGINVERSE; 2813 break; 2814 } 2815 2816 /* Allocate registers for the array of values from the sub-query, the 2817 ** samve values in record form, and the rowid used to insert said record 2818 ** into the ephemeral table. */ 2819 regNew = pParse->nMem+1; 2820 pParse->nMem += nInput; 2821 regRecord = ++pParse->nMem; 2822 regRowid = ++pParse->nMem; 2823 2824 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2825 ** clause, allocate registers to store the results of evaluating each 2826 ** <expr>. */ 2827 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2828 regStart = ++pParse->nMem; 2829 } 2830 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2831 regEnd = ++pParse->nMem; 2832 } 2833 2834 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2835 ** registers to store copies of the ORDER BY expressions (peer values) 2836 ** for the main loop, and for each cursor (start, current and end). */ 2837 if( pMWin->eFrmType!=TK_ROWS ){ 2838 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2839 regNewPeer = regNew + pMWin->nBufferCol; 2840 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2841 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2842 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2843 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2844 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2845 } 2846 2847 /* Load the column values for the row returned by the sub-select 2848 ** into an array of registers starting at regNew. Assemble them into 2849 ** a record in register regRecord. */ 2850 for(iInput=0; iInput<nInput; iInput++){ 2851 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2852 } 2853 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2854 2855 /* An input row has just been read into an array of registers starting 2856 ** at regNew. If the window has a PARTITION clause, this block generates 2857 ** VM code to check if the input row is the start of a new partition. 2858 ** If so, it does an OP_Gosub to an address to be filled in later. The 2859 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2860 if( pMWin->pPartition ){ 2861 int addr; 2862 ExprList *pPart = pMWin->pPartition; 2863 int nPart = pPart->nExpr; 2864 int regNewPart = regNew + pMWin->nBufferCol; 2865 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2866 2867 regFlushPart = ++pParse->nMem; 2868 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2869 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2870 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2871 VdbeCoverageEqNe(v); 2872 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2873 VdbeComment((v, "call flush_partition")); 2874 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2875 } 2876 2877 /* Insert the new row into the ephemeral table */ 2878 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2879 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2880 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2881 VdbeCoverageNeverNull(v); 2882 2883 /* This block is run for the first row of each partition */ 2884 s.regArg = windowInitAccum(pParse, pMWin); 2885 2886 if( regStart ){ 2887 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2888 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2889 } 2890 if( regEnd ){ 2891 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2892 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2893 } 2894 2895 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2896 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2897 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2898 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2899 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2900 windowAggFinal(&s, 0); 2901 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2902 VdbeCoverageNeverTaken(v); 2903 windowReturnOneRow(&s); 2904 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2905 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2906 sqlite3VdbeJumpHere(v, addrGe); 2907 } 2908 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2909 assert( pMWin->eEnd==TK_FOLLOWING ); 2910 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2911 } 2912 2913 if( pMWin->eStart!=TK_UNBOUNDED ){ 2914 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2915 VdbeCoverageNeverTaken(v); 2916 } 2917 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2918 VdbeCoverageNeverTaken(v); 2919 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2920 VdbeCoverageNeverTaken(v); 2921 if( regPeer && pOrderBy ){ 2922 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2923 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2924 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2925 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2926 } 2927 2928 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2929 2930 sqlite3VdbeJumpHere(v, addrNe); 2931 2932 /* Beginning of the block executed for the second and subsequent rows. */ 2933 if( regPeer ){ 2934 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2935 } 2936 if( pMWin->eStart==TK_FOLLOWING ){ 2937 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2938 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2939 if( pMWin->eFrmType==TK_RANGE ){ 2940 int lbl = sqlite3VdbeMakeLabel(pParse); 2941 int addrNext = sqlite3VdbeCurrentAddr(v); 2942 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2943 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2944 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2945 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2946 sqlite3VdbeResolveLabel(v, lbl); 2947 }else{ 2948 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2949 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2950 } 2951 } 2952 }else 2953 if( pMWin->eEnd==TK_PRECEDING ){ 2954 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2955 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2956 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2957 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2958 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2959 }else{ 2960 int addr = 0; 2961 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2962 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2963 if( pMWin->eFrmType==TK_RANGE ){ 2964 int lbl = 0; 2965 addr = sqlite3VdbeCurrentAddr(v); 2966 if( regEnd ){ 2967 lbl = sqlite3VdbeMakeLabel(pParse); 2968 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2969 } 2970 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2971 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2972 if( regEnd ){ 2973 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2974 sqlite3VdbeResolveLabel(v, lbl); 2975 } 2976 }else{ 2977 if( regEnd ){ 2978 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2979 VdbeCoverage(v); 2980 } 2981 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2982 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2983 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2984 } 2985 } 2986 } 2987 2988 /* End of the main input loop */ 2989 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2990 sqlite3WhereEnd(pWInfo); 2991 2992 /* Fall through */ 2993 if( pMWin->pPartition ){ 2994 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2995 sqlite3VdbeJumpHere(v, addrGosubFlush); 2996 } 2997 2998 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2999 VdbeCoverage(v); 3000 if( pMWin->eEnd==TK_PRECEDING ){ 3001 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 3002 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3003 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3004 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3005 }else if( pMWin->eStart==TK_FOLLOWING ){ 3006 int addrStart; 3007 int addrBreak1; 3008 int addrBreak2; 3009 int addrBreak3; 3010 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3011 if( pMWin->eFrmType==TK_RANGE ){ 3012 addrStart = sqlite3VdbeCurrentAddr(v); 3013 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3014 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3015 }else 3016 if( pMWin->eEnd==TK_UNBOUNDED ){ 3017 addrStart = sqlite3VdbeCurrentAddr(v); 3018 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3019 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3020 }else{ 3021 assert( pMWin->eEnd==TK_FOLLOWING ); 3022 addrStart = sqlite3VdbeCurrentAddr(v); 3023 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3024 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3025 } 3026 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3027 sqlite3VdbeJumpHere(v, addrBreak2); 3028 addrStart = sqlite3VdbeCurrentAddr(v); 3029 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3030 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3031 sqlite3VdbeJumpHere(v, addrBreak1); 3032 sqlite3VdbeJumpHere(v, addrBreak3); 3033 }else{ 3034 int addrBreak; 3035 int addrStart; 3036 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3037 addrStart = sqlite3VdbeCurrentAddr(v); 3038 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3039 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3040 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3041 sqlite3VdbeJumpHere(v, addrBreak); 3042 } 3043 sqlite3VdbeJumpHere(v, addrEmpty); 3044 3045 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3046 if( pMWin->pPartition ){ 3047 if( pMWin->regStartRowid ){ 3048 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3049 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3050 } 3051 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3052 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3053 } 3054 } 3055 3056 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3057