xref: /sqlite-3.40.0/src/window.c (revision 5f0d37b5)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* Fall through.  */
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( p->pSub ){
792         int i;
793         for(i=0; i<p->pSub->nExpr; i++){
794           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795             iCol = i;
796             break;
797           }
798         }
799       }
800       if( iCol<0 ){
801         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
803         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
804       }
805       if( p->pSub ){
806         assert( ExprHasProperty(pExpr, EP_Static)==0 );
807         ExprSetProperty(pExpr, EP_Static);
808         sqlite3ExprDelete(pParse->db, pExpr);
809         ExprClearProperty(pExpr, EP_Static);
810         memset(pExpr, 0, sizeof(Expr));
811 
812         pExpr->op = TK_COLUMN;
813         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
814         pExpr->iTable = p->pWin->iEphCsr;
815         pExpr->y.pTab = p->pTab;
816       }
817       if( pParse->db->mallocFailed ) return WRC_Abort;
818       break;
819     }
820 
821     default: /* no-op */
822       break;
823   }
824 
825   return WRC_Continue;
826 }
827 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
828   struct WindowRewrite *p = pWalker->u.pRewrite;
829   Select *pSave = p->pSubSelect;
830   if( pSave==pSelect ){
831     return WRC_Continue;
832   }else{
833     p->pSubSelect = pSelect;
834     sqlite3WalkSelect(pWalker, pSelect);
835     p->pSubSelect = pSave;
836   }
837   return WRC_Prune;
838 }
839 
840 
841 /*
842 ** Iterate through each expression in expression-list pEList. For each:
843 **
844 **   * TK_COLUMN,
845 **   * aggregate function, or
846 **   * window function with a Window object that is not a member of the
847 **     Window list passed as the second argument (pWin).
848 **
849 ** Append the node to output expression-list (*ppSub). And replace it
850 ** with a TK_COLUMN that reads the (N-1)th element of table
851 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
852 ** appending the new one.
853 */
854 static void selectWindowRewriteEList(
855   Parse *pParse,
856   Window *pWin,
857   SrcList *pSrc,
858   ExprList *pEList,               /* Rewrite expressions in this list */
859   Table *pTab,
860   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
861 ){
862   Walker sWalker;
863   WindowRewrite sRewrite;
864 
865   assert( pWin!=0 );
866   memset(&sWalker, 0, sizeof(Walker));
867   memset(&sRewrite, 0, sizeof(WindowRewrite));
868 
869   sRewrite.pSub = *ppSub;
870   sRewrite.pWin = pWin;
871   sRewrite.pSrc = pSrc;
872   sRewrite.pTab = pTab;
873 
874   sWalker.pParse = pParse;
875   sWalker.xExprCallback = selectWindowRewriteExprCb;
876   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
877   sWalker.u.pRewrite = &sRewrite;
878 
879   (void)sqlite3WalkExprList(&sWalker, pEList);
880 
881   *ppSub = sRewrite.pSub;
882 }
883 
884 /*
885 ** Append a copy of each expression in expression-list pAppend to
886 ** expression list pList. Return a pointer to the result list.
887 */
888 static ExprList *exprListAppendList(
889   Parse *pParse,          /* Parsing context */
890   ExprList *pList,        /* List to which to append. Might be NULL */
891   ExprList *pAppend,      /* List of values to append. Might be NULL */
892   int bIntToNull
893 ){
894   if( pAppend ){
895     int i;
896     int nInit = pList ? pList->nExpr : 0;
897     for(i=0; i<pAppend->nExpr; i++){
898       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
899       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
900       if( bIntToNull && pDup ){
901         int iDummy;
902         Expr *pSub;
903         for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){
904           assert( pSub );
905         }
906         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
907           pSub->op = TK_NULL;
908           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
909           pSub->u.zToken = 0;
910         }
911       }
912       pList = sqlite3ExprListAppend(pParse, pList, pDup);
913       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
914     }
915   }
916   return pList;
917 }
918 
919 /*
920 ** When rewriting a query, if the new subquery in the FROM clause
921 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
922 ** then we have to increase the Expr->op2 values of those nodes
923 ** due to the extra subquery layer that was added.
924 **
925 ** See also the incrAggDepth() routine in resolve.c
926 */
927 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
928   if( pExpr->op==TK_AGG_FUNCTION
929    && pExpr->op2>=pWalker->walkerDepth
930   ){
931     pExpr->op2++;
932   }
933   return WRC_Continue;
934 }
935 
936 /*
937 ** If the SELECT statement passed as the second argument does not invoke
938 ** any SQL window functions, this function is a no-op. Otherwise, it
939 ** rewrites the SELECT statement so that window function xStep functions
940 ** are invoked in the correct order as described under "SELECT REWRITING"
941 ** at the top of this file.
942 */
943 int sqlite3WindowRewrite(Parse *pParse, Select *p){
944   int rc = SQLITE_OK;
945   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
946     Vdbe *v = sqlite3GetVdbe(pParse);
947     sqlite3 *db = pParse->db;
948     Select *pSub = 0;             /* The subquery */
949     SrcList *pSrc = p->pSrc;
950     Expr *pWhere = p->pWhere;
951     ExprList *pGroupBy = p->pGroupBy;
952     Expr *pHaving = p->pHaving;
953     ExprList *pSort = 0;
954 
955     ExprList *pSublist = 0;       /* Expression list for sub-query */
956     Window *pMWin = p->pWin;      /* Main window object */
957     Window *pWin;                 /* Window object iterator */
958     Table *pTab;
959     Walker w;
960 
961     u32 selFlags = p->selFlags;
962 
963     pTab = sqlite3DbMallocZero(db, sizeof(Table));
964     if( pTab==0 ){
965       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
966     }
967     sqlite3AggInfoPersistWalkerInit(&w, pParse);
968     sqlite3WalkSelect(&w, p);
969 
970     p->pSrc = 0;
971     p->pWhere = 0;
972     p->pGroupBy = 0;
973     p->pHaving = 0;
974     p->selFlags &= ~SF_Aggregate;
975     p->selFlags |= SF_WinRewrite;
976 
977     /* Create the ORDER BY clause for the sub-select. This is the concatenation
978     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
979     ** redundant, remove the ORDER BY from the parent SELECT.  */
980     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
981     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
982     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
983       int nSave = pSort->nExpr;
984       pSort->nExpr = p->pOrderBy->nExpr;
985       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
986         sqlite3ExprListDelete(db, p->pOrderBy);
987         p->pOrderBy = 0;
988       }
989       pSort->nExpr = nSave;
990     }
991 
992     /* Assign a cursor number for the ephemeral table used to buffer rows.
993     ** The OpenEphemeral instruction is coded later, after it is known how
994     ** many columns the table will have.  */
995     pMWin->iEphCsr = pParse->nTab++;
996     pParse->nTab += 3;
997 
998     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
999     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1000     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1001 
1002     /* Append the PARTITION BY and ORDER BY expressions to the to the
1003     ** sub-select expression list. They are required to figure out where
1004     ** boundaries for partitions and sets of peer rows lie.  */
1005     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1006     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1007 
1008     /* Append the arguments passed to each window function to the
1009     ** sub-select expression list. Also allocate two registers for each
1010     ** window function - one for the accumulator, another for interim
1011     ** results.  */
1012     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1013       ExprList *pArgs = pWin->pOwner->x.pList;
1014       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1015         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1016         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1017         pWin->bExprArgs = 1;
1018       }else{
1019         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1020         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1021       }
1022       if( pWin->pFilter ){
1023         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1024         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1025       }
1026       pWin->regAccum = ++pParse->nMem;
1027       pWin->regResult = ++pParse->nMem;
1028       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1029     }
1030 
1031     /* If there is no ORDER BY or PARTITION BY clause, and the window
1032     ** function accepts zero arguments, and there are no other columns
1033     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1034     ** that pSublist is still NULL here. Add a constant expression here to
1035     ** keep everything legal in this case.
1036     */
1037     if( pSublist==0 ){
1038       pSublist = sqlite3ExprListAppend(pParse, 0,
1039         sqlite3Expr(db, TK_INTEGER, "0")
1040       );
1041     }
1042 
1043     pSub = sqlite3SelectNew(
1044         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1045     );
1046     SELECTTRACE(1,pParse,pSub,
1047        ("New window-function subquery in FROM clause of (%u/%p)\n",
1048        p->selId, p));
1049     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1050     if( p->pSrc ){
1051       Table *pTab2;
1052       p->pSrc->a[0].pSelect = pSub;
1053       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1054       pSub->selFlags |= SF_Expanded;
1055       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1056       pSub->selFlags |= (selFlags & SF_Aggregate);
1057       if( pTab2==0 ){
1058         /* Might actually be some other kind of error, but in that case
1059         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1060         ** the correct error message regardless. */
1061         rc = SQLITE_NOMEM;
1062       }else{
1063         memcpy(pTab, pTab2, sizeof(Table));
1064         pTab->tabFlags |= TF_Ephemeral;
1065         p->pSrc->a[0].pTab = pTab;
1066         pTab = pTab2;
1067         memset(&w, 0, sizeof(w));
1068         w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1069         w.xSelectCallback = sqlite3WalkerDepthIncrease;
1070         w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1071         sqlite3WalkSelect(&w, pSub);
1072       }
1073     }else{
1074       sqlite3SelectDelete(db, pSub);
1075     }
1076     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1077     sqlite3DbFree(db, pTab);
1078   }
1079 
1080   if( rc ){
1081     if( pParse->nErr==0 ){
1082       assert( pParse->db->mallocFailed );
1083       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1084     }
1085     sqlite3SelectReset(pParse, p);
1086   }
1087   return rc;
1088 }
1089 
1090 /*
1091 ** Unlink the Window object from the Select to which it is attached,
1092 ** if it is attached.
1093 */
1094 void sqlite3WindowUnlinkFromSelect(Window *p){
1095   if( p->ppThis ){
1096     *p->ppThis = p->pNextWin;
1097     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1098     p->ppThis = 0;
1099   }
1100 }
1101 
1102 /*
1103 ** Free the Window object passed as the second argument.
1104 */
1105 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1106   if( p ){
1107     sqlite3WindowUnlinkFromSelect(p);
1108     sqlite3ExprDelete(db, p->pFilter);
1109     sqlite3ExprListDelete(db, p->pPartition);
1110     sqlite3ExprListDelete(db, p->pOrderBy);
1111     sqlite3ExprDelete(db, p->pEnd);
1112     sqlite3ExprDelete(db, p->pStart);
1113     sqlite3DbFree(db, p->zName);
1114     sqlite3DbFree(db, p->zBase);
1115     sqlite3DbFree(db, p);
1116   }
1117 }
1118 
1119 /*
1120 ** Free the linked list of Window objects starting at the second argument.
1121 */
1122 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1123   while( p ){
1124     Window *pNext = p->pNextWin;
1125     sqlite3WindowDelete(db, p);
1126     p = pNext;
1127   }
1128 }
1129 
1130 /*
1131 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1132 ** value should be a non-negative integer.  If the value is not a
1133 ** constant, change it to NULL.  The fact that it is then a non-negative
1134 ** integer will be caught later.  But it is important not to leave
1135 ** variable values in the expression tree.
1136 */
1137 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1138   if( 0==sqlite3ExprIsConstant(pExpr) ){
1139     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1140     sqlite3ExprDelete(pParse->db, pExpr);
1141     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1142   }
1143   return pExpr;
1144 }
1145 
1146 /*
1147 ** Allocate and return a new Window object describing a Window Definition.
1148 */
1149 Window *sqlite3WindowAlloc(
1150   Parse *pParse,    /* Parsing context */
1151   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1152   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1153   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1154   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1155   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1156   u8 eExclude       /* EXCLUDE clause */
1157 ){
1158   Window *pWin = 0;
1159   int bImplicitFrame = 0;
1160 
1161   /* Parser assures the following: */
1162   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1163   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1164            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1165   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1166            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1167   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1168   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1169 
1170   if( eType==0 ){
1171     bImplicitFrame = 1;
1172     eType = TK_RANGE;
1173   }
1174 
1175   /* Additionally, the
1176   ** starting boundary type may not occur earlier in the following list than
1177   ** the ending boundary type:
1178   **
1179   **   UNBOUNDED PRECEDING
1180   **   <expr> PRECEDING
1181   **   CURRENT ROW
1182   **   <expr> FOLLOWING
1183   **   UNBOUNDED FOLLOWING
1184   **
1185   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1186   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1187   ** frame boundary.
1188   */
1189   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1190    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1191   ){
1192     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1193     goto windowAllocErr;
1194   }
1195 
1196   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1197   if( pWin==0 ) goto windowAllocErr;
1198   pWin->eFrmType = eType;
1199   pWin->eStart = eStart;
1200   pWin->eEnd = eEnd;
1201   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1202     eExclude = TK_NO;
1203   }
1204   pWin->eExclude = eExclude;
1205   pWin->bImplicitFrame = bImplicitFrame;
1206   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1207   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1208   return pWin;
1209 
1210 windowAllocErr:
1211   sqlite3ExprDelete(pParse->db, pEnd);
1212   sqlite3ExprDelete(pParse->db, pStart);
1213   return 0;
1214 }
1215 
1216 /*
1217 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1218 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1219 ** equivalent nul-terminated string.
1220 */
1221 Window *sqlite3WindowAssemble(
1222   Parse *pParse,
1223   Window *pWin,
1224   ExprList *pPartition,
1225   ExprList *pOrderBy,
1226   Token *pBase
1227 ){
1228   if( pWin ){
1229     pWin->pPartition = pPartition;
1230     pWin->pOrderBy = pOrderBy;
1231     if( pBase ){
1232       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1233     }
1234   }else{
1235     sqlite3ExprListDelete(pParse->db, pPartition);
1236     sqlite3ExprListDelete(pParse->db, pOrderBy);
1237   }
1238   return pWin;
1239 }
1240 
1241 /*
1242 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1243 ** is the base window. Earlier windows from the same WINDOW clause are
1244 ** stored in the linked list starting at pWin->pNextWin. This function
1245 ** either updates *pWin according to the base specification, or else
1246 ** leaves an error in pParse.
1247 */
1248 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1249   if( pWin->zBase ){
1250     sqlite3 *db = pParse->db;
1251     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1252     if( pExist ){
1253       const char *zErr = 0;
1254       /* Check for errors */
1255       if( pWin->pPartition ){
1256         zErr = "PARTITION clause";
1257       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1258         zErr = "ORDER BY clause";
1259       }else if( pExist->bImplicitFrame==0 ){
1260         zErr = "frame specification";
1261       }
1262       if( zErr ){
1263         sqlite3ErrorMsg(pParse,
1264             "cannot override %s of window: %s", zErr, pWin->zBase
1265         );
1266       }else{
1267         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1268         if( pExist->pOrderBy ){
1269           assert( pWin->pOrderBy==0 );
1270           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1271         }
1272         sqlite3DbFree(db, pWin->zBase);
1273         pWin->zBase = 0;
1274       }
1275     }
1276   }
1277 }
1278 
1279 /*
1280 ** Attach window object pWin to expression p.
1281 */
1282 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1283   if( p ){
1284     assert( p->op==TK_FUNCTION );
1285     assert( pWin );
1286     p->y.pWin = pWin;
1287     ExprSetProperty(p, EP_WinFunc);
1288     pWin->pOwner = p;
1289     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1290       sqlite3ErrorMsg(pParse,
1291           "DISTINCT is not supported for window functions"
1292       );
1293     }
1294   }else{
1295     sqlite3WindowDelete(pParse->db, pWin);
1296   }
1297 }
1298 
1299 /*
1300 ** Possibly link window pWin into the list at pSel->pWin (window functions
1301 ** to be processed as part of SELECT statement pSel). The window is linked
1302 ** in if either (a) there are no other windows already linked to this
1303 ** SELECT, or (b) the windows already linked use a compatible window frame.
1304 */
1305 void sqlite3WindowLink(Select *pSel, Window *pWin){
1306   if( pSel!=0
1307    && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0))
1308   ){
1309     pWin->pNextWin = pSel->pWin;
1310     if( pSel->pWin ){
1311       pSel->pWin->ppThis = &pWin->pNextWin;
1312     }
1313     pSel->pWin = pWin;
1314     pWin->ppThis = &pSel->pWin;
1315   }
1316 }
1317 
1318 /*
1319 ** Return 0 if the two window objects are identical, 1 if they are
1320 ** different, or 2 if it cannot be determined if the objects are identical
1321 ** or not. Identical window objects can be processed in a single scan.
1322 */
1323 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1324   int res;
1325   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1326   if( p1->eFrmType!=p2->eFrmType ) return 1;
1327   if( p1->eStart!=p2->eStart ) return 1;
1328   if( p1->eEnd!=p2->eEnd ) return 1;
1329   if( p1->eExclude!=p2->eExclude ) return 1;
1330   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1331   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1332   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1333     return res;
1334   }
1335   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1336     return res;
1337   }
1338   if( bFilter ){
1339     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1340       return res;
1341     }
1342   }
1343   return 0;
1344 }
1345 
1346 
1347 /*
1348 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1349 ** to begin iterating through the sub-query results. It is used to allocate
1350 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1351 */
1352 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1353   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1354   Window *pMWin = pSelect->pWin;
1355   Window *pWin;
1356   Vdbe *v = sqlite3GetVdbe(pParse);
1357 
1358   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1359   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1360   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1361   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1362 
1363   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1364   ** said registers to NULL.  */
1365   if( pMWin->pPartition ){
1366     int nExpr = pMWin->pPartition->nExpr;
1367     pMWin->regPart = pParse->nMem+1;
1368     pParse->nMem += nExpr;
1369     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1370   }
1371 
1372   pMWin->regOne = ++pParse->nMem;
1373   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1374 
1375   if( pMWin->eExclude ){
1376     pMWin->regStartRowid = ++pParse->nMem;
1377     pMWin->regEndRowid = ++pParse->nMem;
1378     pMWin->csrApp = pParse->nTab++;
1379     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1380     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1381     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1382     return;
1383   }
1384 
1385   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1386     FuncDef *p = pWin->pFunc;
1387     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1388       /* The inline versions of min() and max() require a single ephemeral
1389       ** table and 3 registers. The registers are used as follows:
1390       **
1391       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1392       **   regApp+1: integer value used to ensure keys are unique
1393       **   regApp+2: output of MakeRecord
1394       */
1395       ExprList *pList = pWin->pOwner->x.pList;
1396       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1397       pWin->csrApp = pParse->nTab++;
1398       pWin->regApp = pParse->nMem+1;
1399       pParse->nMem += 3;
1400       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1401         assert( pKeyInfo->aSortFlags[0]==0 );
1402         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1403       }
1404       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1405       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1406       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1407     }
1408     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1409       /* Allocate two registers at pWin->regApp. These will be used to
1410       ** store the start and end index of the current frame.  */
1411       pWin->regApp = pParse->nMem+1;
1412       pWin->csrApp = pParse->nTab++;
1413       pParse->nMem += 2;
1414       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1415     }
1416     else if( p->zName==leadName || p->zName==lagName ){
1417       pWin->csrApp = pParse->nTab++;
1418       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1419     }
1420   }
1421 }
1422 
1423 #define WINDOW_STARTING_INT  0
1424 #define WINDOW_ENDING_INT    1
1425 #define WINDOW_NTH_VALUE_INT 2
1426 #define WINDOW_STARTING_NUM  3
1427 #define WINDOW_ENDING_NUM    4
1428 
1429 /*
1430 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1431 ** value of the second argument to nth_value() (eCond==2) has just been
1432 ** evaluated and the result left in register reg. This function generates VM
1433 ** code to check that the value is a non-negative integer and throws an
1434 ** exception if it is not.
1435 */
1436 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1437   static const char *azErr[] = {
1438     "frame starting offset must be a non-negative integer",
1439     "frame ending offset must be a non-negative integer",
1440     "second argument to nth_value must be a positive integer",
1441     "frame starting offset must be a non-negative number",
1442     "frame ending offset must be a non-negative number",
1443   };
1444   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1445   Vdbe *v = sqlite3GetVdbe(pParse);
1446   int regZero = sqlite3GetTempReg(pParse);
1447   assert( eCond>=0 && eCond<ArraySize(azErr) );
1448   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1449   if( eCond>=WINDOW_STARTING_NUM ){
1450     int regString = sqlite3GetTempReg(pParse);
1451     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1452     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1453     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1454     VdbeCoverage(v);
1455     assert( eCond==3 || eCond==4 );
1456     VdbeCoverageIf(v, eCond==3);
1457     VdbeCoverageIf(v, eCond==4);
1458   }else{
1459     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1460     VdbeCoverage(v);
1461     assert( eCond==0 || eCond==1 || eCond==2 );
1462     VdbeCoverageIf(v, eCond==0);
1463     VdbeCoverageIf(v, eCond==1);
1464     VdbeCoverageIf(v, eCond==2);
1465   }
1466   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1467   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1468   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1469   VdbeCoverageNeverNullIf(v, eCond==2);
1470   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1471   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1472   sqlite3MayAbort(pParse);
1473   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1474   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1475   sqlite3ReleaseTempReg(pParse, regZero);
1476 }
1477 
1478 /*
1479 ** Return the number of arguments passed to the window-function associated
1480 ** with the object passed as the only argument to this function.
1481 */
1482 static int windowArgCount(Window *pWin){
1483   ExprList *pList = pWin->pOwner->x.pList;
1484   return (pList ? pList->nExpr : 0);
1485 }
1486 
1487 typedef struct WindowCodeArg WindowCodeArg;
1488 typedef struct WindowCsrAndReg WindowCsrAndReg;
1489 
1490 /*
1491 ** See comments above struct WindowCodeArg.
1492 */
1493 struct WindowCsrAndReg {
1494   int csr;                        /* Cursor number */
1495   int reg;                        /* First in array of peer values */
1496 };
1497 
1498 /*
1499 ** A single instance of this structure is allocated on the stack by
1500 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1501 ** routines. This is to reduce the number of arguments required by each
1502 ** helper function.
1503 **
1504 ** regArg:
1505 **   Each window function requires an accumulator register (just as an
1506 **   ordinary aggregate function does). This variable is set to the first
1507 **   in an array of accumulator registers - one for each window function
1508 **   in the WindowCodeArg.pMWin list.
1509 **
1510 ** eDelete:
1511 **   The window functions implementation sometimes caches the input rows
1512 **   that it processes in a temporary table. If it is not zero, this
1513 **   variable indicates when rows may be removed from the temp table (in
1514 **   order to reduce memory requirements - it would always be safe just
1515 **   to leave them there). Possible values for eDelete are:
1516 **
1517 **      WINDOW_RETURN_ROW:
1518 **        An input row can be discarded after it is returned to the caller.
1519 **
1520 **      WINDOW_AGGINVERSE:
1521 **        An input row can be discarded after the window functions xInverse()
1522 **        callbacks have been invoked in it.
1523 **
1524 **      WINDOW_AGGSTEP:
1525 **        An input row can be discarded after the window functions xStep()
1526 **        callbacks have been invoked in it.
1527 **
1528 ** start,current,end
1529 **   Consider a window-frame similar to the following:
1530 **
1531 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1532 **
1533 **   The windows functions implmentation caches the input rows in a temp
1534 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1535 **   aggressively removes rows once they are no longer required, but that's
1536 **   a mere detail). It keeps three cursors open on the temp table. One
1537 **   (current) that points to the next row to return to the query engine
1538 **   once its window function values have been calculated. Another (end)
1539 **   points to the next row to call the xStep() method of each window function
1540 **   on (so that it is 2 groups ahead of current). And a third (start) that
1541 **   points to the next row to call the xInverse() method of each window
1542 **   function on.
1543 **
1544 **   Each cursor (start, current and end) consists of a VDBE cursor
1545 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1546 **   WindowCodeArg.reg) that always contains a copy of the peer values
1547 **   read from the corresponding cursor.
1548 **
1549 **   Depending on the window-frame in question, all three cursors may not
1550 **   be required. In this case both WindowCodeArg.csr and reg are set to
1551 **   0.
1552 */
1553 struct WindowCodeArg {
1554   Parse *pParse;             /* Parse context */
1555   Window *pMWin;             /* First in list of functions being processed */
1556   Vdbe *pVdbe;               /* VDBE object */
1557   int addrGosub;             /* OP_Gosub to this address to return one row */
1558   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1559   int regArg;                /* First in array of accumulator registers */
1560   int eDelete;               /* See above */
1561 
1562   WindowCsrAndReg start;
1563   WindowCsrAndReg current;
1564   WindowCsrAndReg end;
1565 };
1566 
1567 /*
1568 ** Generate VM code to read the window frames peer values from cursor csr into
1569 ** an array of registers starting at reg.
1570 */
1571 static void windowReadPeerValues(
1572   WindowCodeArg *p,
1573   int csr,
1574   int reg
1575 ){
1576   Window *pMWin = p->pMWin;
1577   ExprList *pOrderBy = pMWin->pOrderBy;
1578   if( pOrderBy ){
1579     Vdbe *v = sqlite3GetVdbe(p->pParse);
1580     ExprList *pPart = pMWin->pPartition;
1581     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1582     int i;
1583     for(i=0; i<pOrderBy->nExpr; i++){
1584       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1585     }
1586   }
1587 }
1588 
1589 /*
1590 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1591 ** xInverse (if bInverse is non-zero) for each window function in the
1592 ** linked list starting at pMWin. Or, for built-in window functions
1593 ** that do not use the standard function API, generate the required
1594 ** inline VM code.
1595 **
1596 ** If argument csr is greater than or equal to 0, then argument reg is
1597 ** the first register in an array of registers guaranteed to be large
1598 ** enough to hold the array of arguments for each function. In this case
1599 ** the arguments are extracted from the current row of csr into the
1600 ** array of registers before invoking OP_AggStep or OP_AggInverse
1601 **
1602 ** Or, if csr is less than zero, then the array of registers at reg is
1603 ** already populated with all columns from the current row of the sub-query.
1604 **
1605 ** If argument regPartSize is non-zero, then it is a register containing the
1606 ** number of rows in the current partition.
1607 */
1608 static void windowAggStep(
1609   WindowCodeArg *p,
1610   Window *pMWin,                  /* Linked list of window functions */
1611   int csr,                        /* Read arguments from this cursor */
1612   int bInverse,                   /* True to invoke xInverse instead of xStep */
1613   int reg                         /* Array of registers */
1614 ){
1615   Parse *pParse = p->pParse;
1616   Vdbe *v = sqlite3GetVdbe(pParse);
1617   Window *pWin;
1618   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1619     FuncDef *pFunc = pWin->pFunc;
1620     int regArg;
1621     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1622     int i;
1623 
1624     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1625 
1626     /* All OVER clauses in the same window function aggregate step must
1627     ** be the same. */
1628     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1629 
1630     for(i=0; i<nArg; i++){
1631       if( i!=1 || pFunc->zName!=nth_valueName ){
1632         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1633       }else{
1634         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1635       }
1636     }
1637     regArg = reg;
1638 
1639     if( pMWin->regStartRowid==0
1640      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1641      && (pWin->eStart!=TK_UNBOUNDED)
1642     ){
1643       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1644       VdbeCoverage(v);
1645       if( bInverse==0 ){
1646         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1647         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1648         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1649         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1650       }else{
1651         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1652         VdbeCoverageNeverTaken(v);
1653         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1654         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1655       }
1656       sqlite3VdbeJumpHere(v, addrIsNull);
1657     }else if( pWin->regApp ){
1658       assert( pFunc->zName==nth_valueName
1659            || pFunc->zName==first_valueName
1660       );
1661       assert( bInverse==0 || bInverse==1 );
1662       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1663     }else if( pFunc->xSFunc!=noopStepFunc ){
1664       int addrIf = 0;
1665       if( pWin->pFilter ){
1666         int regTmp;
1667         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1668         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1669         regTmp = sqlite3GetTempReg(pParse);
1670         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1671         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1672         VdbeCoverage(v);
1673         sqlite3ReleaseTempReg(pParse, regTmp);
1674       }
1675 
1676       if( pWin->bExprArgs ){
1677         int iStart = sqlite3VdbeCurrentAddr(v);
1678         VdbeOp *pOp, *pEnd;
1679 
1680         nArg = pWin->pOwner->x.pList->nExpr;
1681         regArg = sqlite3GetTempRange(pParse, nArg);
1682         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1683 
1684         pEnd = sqlite3VdbeGetOp(v, -1);
1685         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1686           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1687             pOp->p1 = csr;
1688           }
1689         }
1690       }
1691       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1692         CollSeq *pColl;
1693         assert( nArg>0 );
1694         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1695         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1696       }
1697       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1698                         bInverse, regArg, pWin->regAccum);
1699       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1700       sqlite3VdbeChangeP5(v, (u8)nArg);
1701       if( pWin->bExprArgs ){
1702         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1703       }
1704       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1705     }
1706   }
1707 }
1708 
1709 /*
1710 ** Values that may be passed as the second argument to windowCodeOp().
1711 */
1712 #define WINDOW_RETURN_ROW 1
1713 #define WINDOW_AGGINVERSE 2
1714 #define WINDOW_AGGSTEP    3
1715 
1716 /*
1717 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1718 ** (bFin==1) for each window function in the linked list starting at
1719 ** pMWin. Or, for built-in window-functions that do not use the standard
1720 ** API, generate the equivalent VM code.
1721 */
1722 static void windowAggFinal(WindowCodeArg *p, int bFin){
1723   Parse *pParse = p->pParse;
1724   Window *pMWin = p->pMWin;
1725   Vdbe *v = sqlite3GetVdbe(pParse);
1726   Window *pWin;
1727 
1728   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1729     if( pMWin->regStartRowid==0
1730      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1731      && (pWin->eStart!=TK_UNBOUNDED)
1732     ){
1733       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1734       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1735       VdbeCoverage(v);
1736       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1737       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1738     }else if( pWin->regApp ){
1739       assert( pMWin->regStartRowid==0 );
1740     }else{
1741       int nArg = windowArgCount(pWin);
1742       if( bFin ){
1743         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1744         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1745         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1746         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1747       }else{
1748         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1749         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1750       }
1751     }
1752   }
1753 }
1754 
1755 /*
1756 ** Generate code to calculate the current values of all window functions in the
1757 ** p->pMWin list by doing a full scan of the current window frame. Store the
1758 ** results in the Window.regResult registers, ready to return the upper
1759 ** layer.
1760 */
1761 static void windowFullScan(WindowCodeArg *p){
1762   Window *pWin;
1763   Parse *pParse = p->pParse;
1764   Window *pMWin = p->pMWin;
1765   Vdbe *v = p->pVdbe;
1766 
1767   int regCRowid = 0;              /* Current rowid value */
1768   int regCPeer = 0;               /* Current peer values */
1769   int regRowid = 0;               /* AggStep rowid value */
1770   int regPeer = 0;                /* AggStep peer values */
1771 
1772   int nPeer;
1773   int lblNext;
1774   int lblBrk;
1775   int addrNext;
1776   int csr;
1777 
1778   VdbeModuleComment((v, "windowFullScan begin"));
1779 
1780   assert( pMWin!=0 );
1781   csr = pMWin->csrApp;
1782   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1783 
1784   lblNext = sqlite3VdbeMakeLabel(pParse);
1785   lblBrk = sqlite3VdbeMakeLabel(pParse);
1786 
1787   regCRowid = sqlite3GetTempReg(pParse);
1788   regRowid = sqlite3GetTempReg(pParse);
1789   if( nPeer ){
1790     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1791     regPeer = sqlite3GetTempRange(pParse, nPeer);
1792   }
1793 
1794   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1795   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1796 
1797   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1798     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1799   }
1800 
1801   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1802   VdbeCoverage(v);
1803   addrNext = sqlite3VdbeCurrentAddr(v);
1804   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1805   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1806   VdbeCoverageNeverNull(v);
1807 
1808   if( pMWin->eExclude==TK_CURRENT ){
1809     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1810     VdbeCoverageNeverNull(v);
1811   }else if( pMWin->eExclude!=TK_NO ){
1812     int addr;
1813     int addrEq = 0;
1814     KeyInfo *pKeyInfo = 0;
1815 
1816     if( pMWin->pOrderBy ){
1817       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1818     }
1819     if( pMWin->eExclude==TK_TIES ){
1820       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1821       VdbeCoverageNeverNull(v);
1822     }
1823     if( pKeyInfo ){
1824       windowReadPeerValues(p, csr, regPeer);
1825       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1826       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1827       addr = sqlite3VdbeCurrentAddr(v)+1;
1828       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1829       VdbeCoverageEqNe(v);
1830     }else{
1831       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1832     }
1833     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1834   }
1835 
1836   windowAggStep(p, pMWin, csr, 0, p->regArg);
1837 
1838   sqlite3VdbeResolveLabel(v, lblNext);
1839   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1840   VdbeCoverage(v);
1841   sqlite3VdbeJumpHere(v, addrNext-1);
1842   sqlite3VdbeJumpHere(v, addrNext+1);
1843   sqlite3ReleaseTempReg(pParse, regRowid);
1844   sqlite3ReleaseTempReg(pParse, regCRowid);
1845   if( nPeer ){
1846     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1847     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1848   }
1849 
1850   windowAggFinal(p, 1);
1851   VdbeModuleComment((v, "windowFullScan end"));
1852 }
1853 
1854 /*
1855 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1856 ** return the current row of Window.iEphCsr. If all window functions are
1857 ** aggregate window functions that use the standard API, a single
1858 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1859 ** for per-row processing is only generated for the following built-in window
1860 ** functions:
1861 **
1862 **   nth_value()
1863 **   first_value()
1864 **   lag()
1865 **   lead()
1866 */
1867 static void windowReturnOneRow(WindowCodeArg *p){
1868   Window *pMWin = p->pMWin;
1869   Vdbe *v = p->pVdbe;
1870 
1871   if( pMWin->regStartRowid ){
1872     windowFullScan(p);
1873   }else{
1874     Parse *pParse = p->pParse;
1875     Window *pWin;
1876 
1877     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1878       FuncDef *pFunc = pWin->pFunc;
1879       if( pFunc->zName==nth_valueName
1880        || pFunc->zName==first_valueName
1881       ){
1882         int csr = pWin->csrApp;
1883         int lbl = sqlite3VdbeMakeLabel(pParse);
1884         int tmpReg = sqlite3GetTempReg(pParse);
1885         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1886 
1887         if( pFunc->zName==nth_valueName ){
1888           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1889           windowCheckValue(pParse, tmpReg, 2);
1890         }else{
1891           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1892         }
1893         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1894         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1895         VdbeCoverageNeverNull(v);
1896         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1897         VdbeCoverageNeverTaken(v);
1898         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1899         sqlite3VdbeResolveLabel(v, lbl);
1900         sqlite3ReleaseTempReg(pParse, tmpReg);
1901       }
1902       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1903         int nArg = pWin->pOwner->x.pList->nExpr;
1904         int csr = pWin->csrApp;
1905         int lbl = sqlite3VdbeMakeLabel(pParse);
1906         int tmpReg = sqlite3GetTempReg(pParse);
1907         int iEph = pMWin->iEphCsr;
1908 
1909         if( nArg<3 ){
1910           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1911         }else{
1912           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1913         }
1914         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1915         if( nArg<2 ){
1916           int val = (pFunc->zName==leadName ? 1 : -1);
1917           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1918         }else{
1919           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1920           int tmpReg2 = sqlite3GetTempReg(pParse);
1921           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1922           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1923           sqlite3ReleaseTempReg(pParse, tmpReg2);
1924         }
1925 
1926         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1927         VdbeCoverage(v);
1928         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1929         sqlite3VdbeResolveLabel(v, lbl);
1930         sqlite3ReleaseTempReg(pParse, tmpReg);
1931       }
1932     }
1933   }
1934   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1935 }
1936 
1937 /*
1938 ** Generate code to set the accumulator register for each window function
1939 ** in the linked list passed as the second argument to NULL. And perform
1940 ** any equivalent initialization required by any built-in window functions
1941 ** in the list.
1942 */
1943 static int windowInitAccum(Parse *pParse, Window *pMWin){
1944   Vdbe *v = sqlite3GetVdbe(pParse);
1945   int regArg;
1946   int nArg = 0;
1947   Window *pWin;
1948   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1949     FuncDef *pFunc = pWin->pFunc;
1950     assert( pWin->regAccum );
1951     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1952     nArg = MAX(nArg, windowArgCount(pWin));
1953     if( pMWin->regStartRowid==0 ){
1954       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1955         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1956         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1957       }
1958 
1959       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1960         assert( pWin->eStart!=TK_UNBOUNDED );
1961         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1962         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1963       }
1964     }
1965   }
1966   regArg = pParse->nMem+1;
1967   pParse->nMem += nArg;
1968   return regArg;
1969 }
1970 
1971 /*
1972 ** Return true if the current frame should be cached in the ephemeral table,
1973 ** even if there are no xInverse() calls required.
1974 */
1975 static int windowCacheFrame(Window *pMWin){
1976   Window *pWin;
1977   if( pMWin->regStartRowid ) return 1;
1978   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1979     FuncDef *pFunc = pWin->pFunc;
1980     if( (pFunc->zName==nth_valueName)
1981      || (pFunc->zName==first_valueName)
1982      || (pFunc->zName==leadName)
1983      || (pFunc->zName==lagName)
1984     ){
1985       return 1;
1986     }
1987   }
1988   return 0;
1989 }
1990 
1991 /*
1992 ** regOld and regNew are each the first register in an array of size
1993 ** pOrderBy->nExpr. This function generates code to compare the two
1994 ** arrays of registers using the collation sequences and other comparison
1995 ** parameters specified by pOrderBy.
1996 **
1997 ** If the two arrays are not equal, the contents of regNew is copied to
1998 ** regOld and control falls through. Otherwise, if the contents of the arrays
1999 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2000 */
2001 static void windowIfNewPeer(
2002   Parse *pParse,
2003   ExprList *pOrderBy,
2004   int regNew,                     /* First in array of new values */
2005   int regOld,                     /* First in array of old values */
2006   int addr                        /* Jump here */
2007 ){
2008   Vdbe *v = sqlite3GetVdbe(pParse);
2009   if( pOrderBy ){
2010     int nVal = pOrderBy->nExpr;
2011     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2012     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2013     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2014     sqlite3VdbeAddOp3(v, OP_Jump,
2015       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2016     );
2017     VdbeCoverageEqNe(v);
2018     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2019   }else{
2020     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2021   }
2022 }
2023 
2024 /*
2025 ** This function is called as part of generating VM programs for RANGE
2026 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2027 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2028 ** code equivalent to:
2029 **
2030 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2031 **
2032 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2033 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2034 **
2035 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2036 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2037 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2038 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2039 ** is OP_Ge, the generated code is equivalent to:
2040 **
2041 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2042 **
2043 ** A special type of arithmetic is used such that if csr1.peerVal is not
2044 ** a numeric type (real or integer), then the result of the addition addition
2045 ** or subtraction is a a copy of csr1.peerVal.
2046 */
2047 static void windowCodeRangeTest(
2048   WindowCodeArg *p,
2049   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2050   int csr1,                       /* Cursor number for cursor 1 */
2051   int regVal,                     /* Register containing non-negative number */
2052   int csr2,                       /* Cursor number for cursor 2 */
2053   int lbl                         /* Jump destination if condition is true */
2054 ){
2055   Parse *pParse = p->pParse;
2056   Vdbe *v = sqlite3GetVdbe(pParse);
2057   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2058   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2059   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2060   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2061   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2062   int addrGe;                               /* Jump destination */
2063 
2064   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2065   assert( pOrderBy && pOrderBy->nExpr==1 );
2066   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2067     switch( op ){
2068       case OP_Ge: op = OP_Le; break;
2069       case OP_Gt: op = OP_Lt; break;
2070       default: assert( op==OP_Le ); op = OP_Ge; break;
2071     }
2072     arith = OP_Subtract;
2073   }
2074 
2075   /* Read the peer-value from each cursor into a register */
2076   windowReadPeerValues(p, csr1, reg1);
2077   windowReadPeerValues(p, csr2, reg2);
2078 
2079   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2080       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2081       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2082   ));
2083 
2084   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2085   ** This block adds (or subtracts for DESC) the numeric value in regVal
2086   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2087   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2088   **
2089   **   if( reg1>='' ) goto addrGe;
2090   **   reg1 = reg1 +/- regVal
2091   **   addrGe:
2092   **
2093   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2094   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2095   ** then the arithmetic is performed, but since adding or subtracting from
2096   ** NULL is always NULL anyway, this case is handled as required too.  */
2097   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2098   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2099   VdbeCoverage(v);
2100   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2101   sqlite3VdbeJumpHere(v, addrGe);
2102 
2103   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2104   ** consider NULL values to be larger than all other values, instead of
2105   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2106   ** (and adding that capability causes a performance regression), so
2107   ** instead if the BIGNULL flag is set then cases where either reg1 or
2108   ** reg2 are NULL are handled separately in the following block. The code
2109   ** generated is equivalent to:
2110   **
2111   **   if( reg1 IS NULL ){
2112   **     if( op==OP_Ge ) goto lbl;
2113   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2114   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2115   **   }else if( reg2 IS NULL ){
2116   **     if( op==OP_Le ) goto lbl;
2117   **   }
2118   **
2119   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2120   ** not taken, control jumps over the comparison operator coded below this
2121   ** block.  */
2122   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2123     /* This block runs if reg1 contains a NULL. */
2124     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2125     switch( op ){
2126       case OP_Ge:
2127         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2128         break;
2129       case OP_Gt:
2130         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2131         VdbeCoverage(v);
2132         break;
2133       case OP_Le:
2134         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2135         VdbeCoverage(v);
2136         break;
2137       default: assert( op==OP_Lt ); /* no-op */ break;
2138     }
2139     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2140 
2141     /* This block runs if reg1 is not NULL, but reg2 is. */
2142     sqlite3VdbeJumpHere(v, addr);
2143     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2144     if( op==OP_Gt || op==OP_Ge ){
2145       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2146     }
2147   }
2148 
2149   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2150   ** control skips over this test if the BIGNULL flag is set and either
2151   ** reg1 or reg2 contain a NULL value.  */
2152   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2153   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2154 
2155   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2156   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2157   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2158   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2159   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2160   sqlite3ReleaseTempReg(pParse, reg1);
2161   sqlite3ReleaseTempReg(pParse, reg2);
2162 
2163   VdbeModuleComment((v, "CodeRangeTest: end"));
2164 }
2165 
2166 /*
2167 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2168 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2169 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2170 ** details.
2171 */
2172 static int windowCodeOp(
2173  WindowCodeArg *p,                /* Context object */
2174  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2175  int regCountdown,                /* Register for OP_IfPos countdown */
2176  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2177 ){
2178   int csr, reg;
2179   Parse *pParse = p->pParse;
2180   Window *pMWin = p->pMWin;
2181   int ret = 0;
2182   Vdbe *v = p->pVdbe;
2183   int addrContinue = 0;
2184   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2185 
2186   int lblDone = sqlite3VdbeMakeLabel(pParse);
2187   int addrNextRange = 0;
2188 
2189   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2190   ** starts with UNBOUNDED PRECEDING. */
2191   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2192     assert( regCountdown==0 && jumpOnEof==0 );
2193     return 0;
2194   }
2195 
2196   if( regCountdown>0 ){
2197     if( pMWin->eFrmType==TK_RANGE ){
2198       addrNextRange = sqlite3VdbeCurrentAddr(v);
2199       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2200       if( op==WINDOW_AGGINVERSE ){
2201         if( pMWin->eStart==TK_FOLLOWING ){
2202           windowCodeRangeTest(
2203               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2204           );
2205         }else{
2206           windowCodeRangeTest(
2207               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2208           );
2209         }
2210       }else{
2211         windowCodeRangeTest(
2212             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2213         );
2214       }
2215     }else{
2216       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2217       VdbeCoverage(v);
2218     }
2219   }
2220 
2221   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2222     windowAggFinal(p, 0);
2223   }
2224   addrContinue = sqlite3VdbeCurrentAddr(v);
2225 
2226   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2227   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2228   ** start cursor does not advance past the end cursor within the
2229   ** temporary table. It otherwise might, if (a>b).  */
2230   if( pMWin->eStart==pMWin->eEnd && regCountdown
2231    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2232   ){
2233     int regRowid1 = sqlite3GetTempReg(pParse);
2234     int regRowid2 = sqlite3GetTempReg(pParse);
2235     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2236     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2237     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2238     VdbeCoverage(v);
2239     sqlite3ReleaseTempReg(pParse, regRowid1);
2240     sqlite3ReleaseTempReg(pParse, regRowid2);
2241     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2242   }
2243 
2244   switch( op ){
2245     case WINDOW_RETURN_ROW:
2246       csr = p->current.csr;
2247       reg = p->current.reg;
2248       windowReturnOneRow(p);
2249       break;
2250 
2251     case WINDOW_AGGINVERSE:
2252       csr = p->start.csr;
2253       reg = p->start.reg;
2254       if( pMWin->regStartRowid ){
2255         assert( pMWin->regEndRowid );
2256         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2257       }else{
2258         windowAggStep(p, pMWin, csr, 1, p->regArg);
2259       }
2260       break;
2261 
2262     default:
2263       assert( op==WINDOW_AGGSTEP );
2264       csr = p->end.csr;
2265       reg = p->end.reg;
2266       if( pMWin->regStartRowid ){
2267         assert( pMWin->regEndRowid );
2268         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2269       }else{
2270         windowAggStep(p, pMWin, csr, 0, p->regArg);
2271       }
2272       break;
2273   }
2274 
2275   if( op==p->eDelete ){
2276     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2277     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2278   }
2279 
2280   if( jumpOnEof ){
2281     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2282     VdbeCoverage(v);
2283     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2284   }else{
2285     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2286     VdbeCoverage(v);
2287     if( bPeer ){
2288       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2289     }
2290   }
2291 
2292   if( bPeer ){
2293     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2294     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2295     windowReadPeerValues(p, csr, regTmp);
2296     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2297     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2298   }
2299 
2300   if( addrNextRange ){
2301     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2302   }
2303   sqlite3VdbeResolveLabel(v, lblDone);
2304   return ret;
2305 }
2306 
2307 
2308 /*
2309 ** Allocate and return a duplicate of the Window object indicated by the
2310 ** third argument. Set the Window.pOwner field of the new object to
2311 ** pOwner.
2312 */
2313 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2314   Window *pNew = 0;
2315   if( ALWAYS(p) ){
2316     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2317     if( pNew ){
2318       pNew->zName = sqlite3DbStrDup(db, p->zName);
2319       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2320       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2321       pNew->pFunc = p->pFunc;
2322       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2323       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2324       pNew->eFrmType = p->eFrmType;
2325       pNew->eEnd = p->eEnd;
2326       pNew->eStart = p->eStart;
2327       pNew->eExclude = p->eExclude;
2328       pNew->regResult = p->regResult;
2329       pNew->regAccum = p->regAccum;
2330       pNew->iArgCol = p->iArgCol;
2331       pNew->iEphCsr = p->iEphCsr;
2332       pNew->bExprArgs = p->bExprArgs;
2333       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2334       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2335       pNew->pOwner = pOwner;
2336       pNew->bImplicitFrame = p->bImplicitFrame;
2337     }
2338   }
2339   return pNew;
2340 }
2341 
2342 /*
2343 ** Return a copy of the linked list of Window objects passed as the
2344 ** second argument.
2345 */
2346 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2347   Window *pWin;
2348   Window *pRet = 0;
2349   Window **pp = &pRet;
2350 
2351   for(pWin=p; pWin; pWin=pWin->pNextWin){
2352     *pp = sqlite3WindowDup(db, 0, pWin);
2353     if( *pp==0 ) break;
2354     pp = &((*pp)->pNextWin);
2355   }
2356 
2357   return pRet;
2358 }
2359 
2360 /*
2361 ** Return true if it can be determined at compile time that expression
2362 ** pExpr evaluates to a value that, when cast to an integer, is greater
2363 ** than zero. False otherwise.
2364 **
2365 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2366 ** flag and returns zero.
2367 */
2368 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2369   int ret = 0;
2370   sqlite3 *db = pParse->db;
2371   sqlite3_value *pVal = 0;
2372   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2373   if( pVal && sqlite3_value_int(pVal)>0 ){
2374     ret = 1;
2375   }
2376   sqlite3ValueFree(pVal);
2377   return ret;
2378 }
2379 
2380 /*
2381 ** sqlite3WhereBegin() has already been called for the SELECT statement
2382 ** passed as the second argument when this function is invoked. It generates
2383 ** code to populate the Window.regResult register for each window function
2384 ** and invoke the sub-routine at instruction addrGosub once for each row.
2385 ** sqlite3WhereEnd() is always called before returning.
2386 **
2387 ** This function handles several different types of window frames, which
2388 ** require slightly different processing. The following pseudo code is
2389 ** used to implement window frames of the form:
2390 **
2391 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2392 **
2393 ** Other window frame types use variants of the following:
2394 **
2395 **     ... loop started by sqlite3WhereBegin() ...
2396 **       if( new partition ){
2397 **         Gosub flush
2398 **       }
2399 **       Insert new row into eph table.
2400 **
2401 **       if( first row of partition ){
2402 **         // Rewind three cursors, all open on the eph table.
2403 **         Rewind(csrEnd);
2404 **         Rewind(csrStart);
2405 **         Rewind(csrCurrent);
2406 **
2407 **         regEnd = <expr2>          // FOLLOWING expression
2408 **         regStart = <expr1>        // PRECEDING expression
2409 **       }else{
2410 **         // First time this branch is taken, the eph table contains two
2411 **         // rows. The first row in the partition, which all three cursors
2412 **         // currently point to, and the following row.
2413 **         AGGSTEP
2414 **         if( (regEnd--)<=0 ){
2415 **           RETURN_ROW
2416 **           if( (regStart--)<=0 ){
2417 **             AGGINVERSE
2418 **           }
2419 **         }
2420 **       }
2421 **     }
2422 **     flush:
2423 **       AGGSTEP
2424 **       while( 1 ){
2425 **         RETURN ROW
2426 **         if( csrCurrent is EOF ) break;
2427 **         if( (regStart--)<=0 ){
2428 **           AggInverse(csrStart)
2429 **           Next(csrStart)
2430 **         }
2431 **       }
2432 **
2433 ** The pseudo-code above uses the following shorthand:
2434 **
2435 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2436 **               with arguments read from the current row of cursor csrEnd, then
2437 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2438 **
2439 **   RETURN_ROW: return a row to the caller based on the contents of the
2440 **               current row of csrCurrent and the current state of all
2441 **               aggregates. Then step cursor csrCurrent forward one row.
2442 **
2443 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2444 **               functions with arguments read from the current row of cursor
2445 **               csrStart. Then step csrStart forward one row.
2446 **
2447 ** There are two other ROWS window frames that are handled significantly
2448 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2449 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2450 ** cases because they change the order in which the three cursors (csrStart,
2451 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2452 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2453 ** three.
2454 **
2455 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2456 **
2457 **     ... loop started by sqlite3WhereBegin() ...
2458 **       if( new partition ){
2459 **         Gosub flush
2460 **       }
2461 **       Insert new row into eph table.
2462 **       if( first row of partition ){
2463 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2464 **         regEnd = <expr2>
2465 **         regStart = <expr1>
2466 **       }else{
2467 **         if( (regEnd--)<=0 ){
2468 **           AGGSTEP
2469 **         }
2470 **         RETURN_ROW
2471 **         if( (regStart--)<=0 ){
2472 **           AGGINVERSE
2473 **         }
2474 **       }
2475 **     }
2476 **     flush:
2477 **       if( (regEnd--)<=0 ){
2478 **         AGGSTEP
2479 **       }
2480 **       RETURN_ROW
2481 **
2482 **
2483 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2484 **
2485 **     ... loop started by sqlite3WhereBegin() ...
2486 **     if( new partition ){
2487 **       Gosub flush
2488 **     }
2489 **     Insert new row into eph table.
2490 **     if( first row of partition ){
2491 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2492 **       regEnd = <expr2>
2493 **       regStart = regEnd - <expr1>
2494 **     }else{
2495 **       AGGSTEP
2496 **       if( (regEnd--)<=0 ){
2497 **         RETURN_ROW
2498 **       }
2499 **       if( (regStart--)<=0 ){
2500 **         AGGINVERSE
2501 **       }
2502 **     }
2503 **   }
2504 **   flush:
2505 **     AGGSTEP
2506 **     while( 1 ){
2507 **       if( (regEnd--)<=0 ){
2508 **         RETURN_ROW
2509 **         if( eof ) break;
2510 **       }
2511 **       if( (regStart--)<=0 ){
2512 **         AGGINVERSE
2513 **         if( eof ) break
2514 **       }
2515 **     }
2516 **     while( !eof csrCurrent ){
2517 **       RETURN_ROW
2518 **     }
2519 **
2520 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2521 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2522 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2523 ** This is optimized of course - branches that will never be taken and
2524 ** conditions that are always true are omitted from the VM code. The only
2525 ** exceptional case is:
2526 **
2527 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2528 **
2529 **     ... loop started by sqlite3WhereBegin() ...
2530 **     if( new partition ){
2531 **       Gosub flush
2532 **     }
2533 **     Insert new row into eph table.
2534 **     if( first row of partition ){
2535 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2536 **       regStart = <expr1>
2537 **     }else{
2538 **       AGGSTEP
2539 **     }
2540 **   }
2541 **   flush:
2542 **     AGGSTEP
2543 **     while( 1 ){
2544 **       if( (regStart--)<=0 ){
2545 **         AGGINVERSE
2546 **         if( eof ) break
2547 **       }
2548 **       RETURN_ROW
2549 **     }
2550 **     while( !eof csrCurrent ){
2551 **       RETURN_ROW
2552 **     }
2553 **
2554 ** Also requiring special handling are the cases:
2555 **
2556 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2557 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2558 **
2559 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2560 ** To handle this case, the pseudo-code programs depicted above are modified
2561 ** slightly to be:
2562 **
2563 **     ... loop started by sqlite3WhereBegin() ...
2564 **     if( new partition ){
2565 **       Gosub flush
2566 **     }
2567 **     Insert new row into eph table.
2568 **     if( first row of partition ){
2569 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2570 **       regEnd = <expr2>
2571 **       regStart = <expr1>
2572 **       if( regEnd < regStart ){
2573 **         RETURN_ROW
2574 **         delete eph table contents
2575 **         continue
2576 **       }
2577 **     ...
2578 **
2579 ** The new "continue" statement in the above jumps to the next iteration
2580 ** of the outer loop - the one started by sqlite3WhereBegin().
2581 **
2582 ** The various GROUPS cases are implemented using the same patterns as
2583 ** ROWS. The VM code is modified slightly so that:
2584 **
2585 **   1. The else branch in the main loop is only taken if the row just
2586 **      added to the ephemeral table is the start of a new group. In
2587 **      other words, it becomes:
2588 **
2589 **         ... loop started by sqlite3WhereBegin() ...
2590 **         if( new partition ){
2591 **           Gosub flush
2592 **         }
2593 **         Insert new row into eph table.
2594 **         if( first row of partition ){
2595 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2596 **           regEnd = <expr2>
2597 **           regStart = <expr1>
2598 **         }else if( new group ){
2599 **           ...
2600 **         }
2601 **       }
2602 **
2603 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2604 **      AGGINVERSE step processes the current row of the relevant cursor and
2605 **      all subsequent rows belonging to the same group.
2606 **
2607 ** RANGE window frames are a little different again. As for GROUPS, the
2608 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2609 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2610 ** basic cases:
2611 **
2612 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2613 **
2614 **     ... loop started by sqlite3WhereBegin() ...
2615 **       if( new partition ){
2616 **         Gosub flush
2617 **       }
2618 **       Insert new row into eph table.
2619 **       if( first row of partition ){
2620 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2621 **         regEnd = <expr2>
2622 **         regStart = <expr1>
2623 **       }else{
2624 **         AGGSTEP
2625 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2626 **           RETURN_ROW
2627 **           while( csrStart.key + regStart) < csrCurrent.key ){
2628 **             AGGINVERSE
2629 **           }
2630 **         }
2631 **       }
2632 **     }
2633 **     flush:
2634 **       AGGSTEP
2635 **       while( 1 ){
2636 **         RETURN ROW
2637 **         if( csrCurrent is EOF ) break;
2638 **           while( csrStart.key + regStart) < csrCurrent.key ){
2639 **             AGGINVERSE
2640 **           }
2641 **         }
2642 **       }
2643 **
2644 ** In the above notation, "csr.key" means the current value of the ORDER BY
2645 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2646 ** or <expr PRECEDING) read from cursor csr.
2647 **
2648 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2649 **
2650 **     ... loop started by sqlite3WhereBegin() ...
2651 **       if( new partition ){
2652 **         Gosub flush
2653 **       }
2654 **       Insert new row into eph table.
2655 **       if( first row of partition ){
2656 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2657 **         regEnd = <expr2>
2658 **         regStart = <expr1>
2659 **       }else{
2660 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2661 **           AGGSTEP
2662 **         }
2663 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2664 **           AGGINVERSE
2665 **         }
2666 **         RETURN_ROW
2667 **       }
2668 **     }
2669 **     flush:
2670 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2671 **         AGGSTEP
2672 **       }
2673 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2674 **         AGGINVERSE
2675 **       }
2676 **       RETURN_ROW
2677 **
2678 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2679 **
2680 **     ... loop started by sqlite3WhereBegin() ...
2681 **       if( new partition ){
2682 **         Gosub flush
2683 **       }
2684 **       Insert new row into eph table.
2685 **       if( first row of partition ){
2686 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2687 **         regEnd = <expr2>
2688 **         regStart = <expr1>
2689 **       }else{
2690 **         AGGSTEP
2691 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2692 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2693 **             AGGINVERSE
2694 **           }
2695 **           RETURN_ROW
2696 **         }
2697 **       }
2698 **     }
2699 **     flush:
2700 **       AGGSTEP
2701 **       while( 1 ){
2702 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2703 **           AGGINVERSE
2704 **           if( eof ) break "while( 1 )" loop.
2705 **         }
2706 **         RETURN_ROW
2707 **       }
2708 **       while( !eof csrCurrent ){
2709 **         RETURN_ROW
2710 **       }
2711 **
2712 ** The text above leaves out many details. Refer to the code and comments
2713 ** below for a more complete picture.
2714 */
2715 void sqlite3WindowCodeStep(
2716   Parse *pParse,                  /* Parse context */
2717   Select *p,                      /* Rewritten SELECT statement */
2718   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2719   int regGosub,                   /* Register for OP_Gosub */
2720   int addrGosub                   /* OP_Gosub here to return each row */
2721 ){
2722   Window *pMWin = p->pWin;
2723   ExprList *pOrderBy = pMWin->pOrderBy;
2724   Vdbe *v = sqlite3GetVdbe(pParse);
2725   int csrWrite;                   /* Cursor used to write to eph. table */
2726   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2727   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2728   int iInput;                               /* To iterate through sub cols */
2729   int addrNe;                     /* Address of OP_Ne */
2730   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2731   int addrInteger = 0;            /* Address of OP_Integer */
2732   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2733   int regNew;                     /* Array of registers holding new input row */
2734   int regRecord;                  /* regNew array in record form */
2735   int regRowid;                   /* Rowid for regRecord in eph table */
2736   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2737   int regPeer = 0;                /* Peer values for current row */
2738   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2739   WindowCodeArg s;                /* Context object for sub-routines */
2740   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2741   int regStart = 0;               /* Value of <expr> PRECEDING */
2742   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2743 
2744   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2745        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2746   );
2747   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2748        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2749   );
2750   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2751        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2752        || pMWin->eExclude==TK_NO
2753   );
2754 
2755   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2756 
2757   /* Fill in the context object */
2758   memset(&s, 0, sizeof(WindowCodeArg));
2759   s.pParse = pParse;
2760   s.pMWin = pMWin;
2761   s.pVdbe = v;
2762   s.regGosub = regGosub;
2763   s.addrGosub = addrGosub;
2764   s.current.csr = pMWin->iEphCsr;
2765   csrWrite = s.current.csr+1;
2766   s.start.csr = s.current.csr+2;
2767   s.end.csr = s.current.csr+3;
2768 
2769   /* Figure out when rows may be deleted from the ephemeral table. There
2770   ** are four options - they may never be deleted (eDelete==0), they may
2771   ** be deleted as soon as they are no longer part of the window frame
2772   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2773   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2774   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2775   switch( pMWin->eStart ){
2776     case TK_FOLLOWING:
2777       if( pMWin->eFrmType!=TK_RANGE
2778        && windowExprGtZero(pParse, pMWin->pStart)
2779       ){
2780         s.eDelete = WINDOW_RETURN_ROW;
2781       }
2782       break;
2783     case TK_UNBOUNDED:
2784       if( windowCacheFrame(pMWin)==0 ){
2785         if( pMWin->eEnd==TK_PRECEDING ){
2786           if( pMWin->eFrmType!=TK_RANGE
2787            && windowExprGtZero(pParse, pMWin->pEnd)
2788           ){
2789             s.eDelete = WINDOW_AGGSTEP;
2790           }
2791         }else{
2792           s.eDelete = WINDOW_RETURN_ROW;
2793         }
2794       }
2795       break;
2796     default:
2797       s.eDelete = WINDOW_AGGINVERSE;
2798       break;
2799   }
2800 
2801   /* Allocate registers for the array of values from the sub-query, the
2802   ** samve values in record form, and the rowid used to insert said record
2803   ** into the ephemeral table.  */
2804   regNew = pParse->nMem+1;
2805   pParse->nMem += nInput;
2806   regRecord = ++pParse->nMem;
2807   regRowid = ++pParse->nMem;
2808 
2809   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2810   ** clause, allocate registers to store the results of evaluating each
2811   ** <expr>.  */
2812   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2813     regStart = ++pParse->nMem;
2814   }
2815   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2816     regEnd = ++pParse->nMem;
2817   }
2818 
2819   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2820   ** registers to store copies of the ORDER BY expressions (peer values)
2821   ** for the main loop, and for each cursor (start, current and end). */
2822   if( pMWin->eFrmType!=TK_ROWS ){
2823     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2824     regNewPeer = regNew + pMWin->nBufferCol;
2825     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2826     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2827     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2828     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2829     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2830   }
2831 
2832   /* Load the column values for the row returned by the sub-select
2833   ** into an array of registers starting at regNew. Assemble them into
2834   ** a record in register regRecord. */
2835   for(iInput=0; iInput<nInput; iInput++){
2836     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2837   }
2838   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2839 
2840   /* An input row has just been read into an array of registers starting
2841   ** at regNew. If the window has a PARTITION clause, this block generates
2842   ** VM code to check if the input row is the start of a new partition.
2843   ** If so, it does an OP_Gosub to an address to be filled in later. The
2844   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2845   if( pMWin->pPartition ){
2846     int addr;
2847     ExprList *pPart = pMWin->pPartition;
2848     int nPart = pPart->nExpr;
2849     int regNewPart = regNew + pMWin->nBufferCol;
2850     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2851 
2852     regFlushPart = ++pParse->nMem;
2853     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2854     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2855     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2856     VdbeCoverageEqNe(v);
2857     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2858     VdbeComment((v, "call flush_partition"));
2859     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2860   }
2861 
2862   /* Insert the new row into the ephemeral table */
2863   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2864   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2865   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2866   VdbeCoverageNeverNull(v);
2867 
2868   /* This block is run for the first row of each partition */
2869   s.regArg = windowInitAccum(pParse, pMWin);
2870 
2871   if( regStart ){
2872     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2873     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2874   }
2875   if( regEnd ){
2876     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2877     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2878   }
2879 
2880   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2881     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2882     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2883     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2884     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2885     windowAggFinal(&s, 0);
2886     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2887     VdbeCoverageNeverTaken(v);
2888     windowReturnOneRow(&s);
2889     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2890     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2891     sqlite3VdbeJumpHere(v, addrGe);
2892   }
2893   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2894     assert( pMWin->eEnd==TK_FOLLOWING );
2895     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2896   }
2897 
2898   if( pMWin->eStart!=TK_UNBOUNDED ){
2899     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2900     VdbeCoverageNeverTaken(v);
2901   }
2902   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2903   VdbeCoverageNeverTaken(v);
2904   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2905   VdbeCoverageNeverTaken(v);
2906   if( regPeer && pOrderBy ){
2907     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2908     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2909     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2910     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2911   }
2912 
2913   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2914 
2915   sqlite3VdbeJumpHere(v, addrNe);
2916 
2917   /* Beginning of the block executed for the second and subsequent rows. */
2918   if( regPeer ){
2919     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2920   }
2921   if( pMWin->eStart==TK_FOLLOWING ){
2922     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2923     if( pMWin->eEnd!=TK_UNBOUNDED ){
2924       if( pMWin->eFrmType==TK_RANGE ){
2925         int lbl = sqlite3VdbeMakeLabel(pParse);
2926         int addrNext = sqlite3VdbeCurrentAddr(v);
2927         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2928         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2929         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2930         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2931         sqlite3VdbeResolveLabel(v, lbl);
2932       }else{
2933         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2934         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2935       }
2936     }
2937   }else
2938   if( pMWin->eEnd==TK_PRECEDING ){
2939     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2940     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2941     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2942     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2943     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2944   }else{
2945     int addr = 0;
2946     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2947     if( pMWin->eEnd!=TK_UNBOUNDED ){
2948       if( pMWin->eFrmType==TK_RANGE ){
2949         int lbl = 0;
2950         addr = sqlite3VdbeCurrentAddr(v);
2951         if( regEnd ){
2952           lbl = sqlite3VdbeMakeLabel(pParse);
2953           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2954         }
2955         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2956         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2957         if( regEnd ){
2958           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2959           sqlite3VdbeResolveLabel(v, lbl);
2960         }
2961       }else{
2962         if( regEnd ){
2963           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2964           VdbeCoverage(v);
2965         }
2966         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2967         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2968         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2969       }
2970     }
2971   }
2972 
2973   /* End of the main input loop */
2974   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2975   sqlite3WhereEnd(pWInfo);
2976 
2977   /* Fall through */
2978   if( pMWin->pPartition ){
2979     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2980     sqlite3VdbeJumpHere(v, addrGosubFlush);
2981   }
2982 
2983   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2984   VdbeCoverage(v);
2985   if( pMWin->eEnd==TK_PRECEDING ){
2986     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2987     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2988     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2989     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2990   }else if( pMWin->eStart==TK_FOLLOWING ){
2991     int addrStart;
2992     int addrBreak1;
2993     int addrBreak2;
2994     int addrBreak3;
2995     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2996     if( pMWin->eFrmType==TK_RANGE ){
2997       addrStart = sqlite3VdbeCurrentAddr(v);
2998       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2999       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3000     }else
3001     if( pMWin->eEnd==TK_UNBOUNDED ){
3002       addrStart = sqlite3VdbeCurrentAddr(v);
3003       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3004       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3005     }else{
3006       assert( pMWin->eEnd==TK_FOLLOWING );
3007       addrStart = sqlite3VdbeCurrentAddr(v);
3008       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3009       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3010     }
3011     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3012     sqlite3VdbeJumpHere(v, addrBreak2);
3013     addrStart = sqlite3VdbeCurrentAddr(v);
3014     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3015     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3016     sqlite3VdbeJumpHere(v, addrBreak1);
3017     sqlite3VdbeJumpHere(v, addrBreak3);
3018   }else{
3019     int addrBreak;
3020     int addrStart;
3021     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3022     addrStart = sqlite3VdbeCurrentAddr(v);
3023     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3024     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3025     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3026     sqlite3VdbeJumpHere(v, addrBreak);
3027   }
3028   sqlite3VdbeJumpHere(v, addrEmpty);
3029 
3030   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3031   if( pMWin->pPartition ){
3032     if( pMWin->regStartRowid ){
3033       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3034       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3035     }
3036     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3037     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3038   }
3039 }
3040 
3041 #endif /* SQLITE_OMIT_WINDOWFUNC */
3042