1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* Fall through. */ 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( p->pSub ){ 792 int i; 793 for(i=0; i<p->pSub->nExpr; i++){ 794 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 795 iCol = i; 796 break; 797 } 798 } 799 } 800 if( iCol<0 ){ 801 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 802 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 803 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 804 } 805 if( p->pSub ){ 806 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 807 ExprSetProperty(pExpr, EP_Static); 808 sqlite3ExprDelete(pParse->db, pExpr); 809 ExprClearProperty(pExpr, EP_Static); 810 memset(pExpr, 0, sizeof(Expr)); 811 812 pExpr->op = TK_COLUMN; 813 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 814 pExpr->iTable = p->pWin->iEphCsr; 815 pExpr->y.pTab = p->pTab; 816 } 817 if( pParse->db->mallocFailed ) return WRC_Abort; 818 break; 819 } 820 821 default: /* no-op */ 822 break; 823 } 824 825 return WRC_Continue; 826 } 827 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 828 struct WindowRewrite *p = pWalker->u.pRewrite; 829 Select *pSave = p->pSubSelect; 830 if( pSave==pSelect ){ 831 return WRC_Continue; 832 }else{ 833 p->pSubSelect = pSelect; 834 sqlite3WalkSelect(pWalker, pSelect); 835 p->pSubSelect = pSave; 836 } 837 return WRC_Prune; 838 } 839 840 841 /* 842 ** Iterate through each expression in expression-list pEList. For each: 843 ** 844 ** * TK_COLUMN, 845 ** * aggregate function, or 846 ** * window function with a Window object that is not a member of the 847 ** Window list passed as the second argument (pWin). 848 ** 849 ** Append the node to output expression-list (*ppSub). And replace it 850 ** with a TK_COLUMN that reads the (N-1)th element of table 851 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 852 ** appending the new one. 853 */ 854 static void selectWindowRewriteEList( 855 Parse *pParse, 856 Window *pWin, 857 SrcList *pSrc, 858 ExprList *pEList, /* Rewrite expressions in this list */ 859 Table *pTab, 860 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 861 ){ 862 Walker sWalker; 863 WindowRewrite sRewrite; 864 865 assert( pWin!=0 ); 866 memset(&sWalker, 0, sizeof(Walker)); 867 memset(&sRewrite, 0, sizeof(WindowRewrite)); 868 869 sRewrite.pSub = *ppSub; 870 sRewrite.pWin = pWin; 871 sRewrite.pSrc = pSrc; 872 sRewrite.pTab = pTab; 873 874 sWalker.pParse = pParse; 875 sWalker.xExprCallback = selectWindowRewriteExprCb; 876 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 877 sWalker.u.pRewrite = &sRewrite; 878 879 (void)sqlite3WalkExprList(&sWalker, pEList); 880 881 *ppSub = sRewrite.pSub; 882 } 883 884 /* 885 ** Append a copy of each expression in expression-list pAppend to 886 ** expression list pList. Return a pointer to the result list. 887 */ 888 static ExprList *exprListAppendList( 889 Parse *pParse, /* Parsing context */ 890 ExprList *pList, /* List to which to append. Might be NULL */ 891 ExprList *pAppend, /* List of values to append. Might be NULL */ 892 int bIntToNull 893 ){ 894 if( pAppend ){ 895 int i; 896 int nInit = pList ? pList->nExpr : 0; 897 for(i=0; i<pAppend->nExpr; i++){ 898 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); 899 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 900 if( bIntToNull && pDup ){ 901 int iDummy; 902 Expr *pSub; 903 for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){ 904 assert( pSub ); 905 } 906 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 907 pSub->op = TK_NULL; 908 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 909 pSub->u.zToken = 0; 910 } 911 } 912 pList = sqlite3ExprListAppend(pParse, pList, pDup); 913 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 914 } 915 } 916 return pList; 917 } 918 919 /* 920 ** When rewriting a query, if the new subquery in the FROM clause 921 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 922 ** then we have to increase the Expr->op2 values of those nodes 923 ** due to the extra subquery layer that was added. 924 ** 925 ** See also the incrAggDepth() routine in resolve.c 926 */ 927 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 928 if( pExpr->op==TK_AGG_FUNCTION 929 && pExpr->op2>=pWalker->walkerDepth 930 ){ 931 pExpr->op2++; 932 } 933 return WRC_Continue; 934 } 935 936 /* 937 ** If the SELECT statement passed as the second argument does not invoke 938 ** any SQL window functions, this function is a no-op. Otherwise, it 939 ** rewrites the SELECT statement so that window function xStep functions 940 ** are invoked in the correct order as described under "SELECT REWRITING" 941 ** at the top of this file. 942 */ 943 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 944 int rc = SQLITE_OK; 945 if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){ 946 Vdbe *v = sqlite3GetVdbe(pParse); 947 sqlite3 *db = pParse->db; 948 Select *pSub = 0; /* The subquery */ 949 SrcList *pSrc = p->pSrc; 950 Expr *pWhere = p->pWhere; 951 ExprList *pGroupBy = p->pGroupBy; 952 Expr *pHaving = p->pHaving; 953 ExprList *pSort = 0; 954 955 ExprList *pSublist = 0; /* Expression list for sub-query */ 956 Window *pMWin = p->pWin; /* Main window object */ 957 Window *pWin; /* Window object iterator */ 958 Table *pTab; 959 Walker w; 960 961 u32 selFlags = p->selFlags; 962 963 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 964 if( pTab==0 ){ 965 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 966 } 967 sqlite3AggInfoPersistWalkerInit(&w, pParse); 968 sqlite3WalkSelect(&w, p); 969 970 p->pSrc = 0; 971 p->pWhere = 0; 972 p->pGroupBy = 0; 973 p->pHaving = 0; 974 p->selFlags &= ~SF_Aggregate; 975 p->selFlags |= SF_WinRewrite; 976 977 /* Create the ORDER BY clause for the sub-select. This is the concatenation 978 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 979 ** redundant, remove the ORDER BY from the parent SELECT. */ 980 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 981 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 982 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 983 int nSave = pSort->nExpr; 984 pSort->nExpr = p->pOrderBy->nExpr; 985 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 986 sqlite3ExprListDelete(db, p->pOrderBy); 987 p->pOrderBy = 0; 988 } 989 pSort->nExpr = nSave; 990 } 991 992 /* Assign a cursor number for the ephemeral table used to buffer rows. 993 ** The OpenEphemeral instruction is coded later, after it is known how 994 ** many columns the table will have. */ 995 pMWin->iEphCsr = pParse->nTab++; 996 pParse->nTab += 3; 997 998 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 999 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1000 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1001 1002 /* Append the PARTITION BY and ORDER BY expressions to the to the 1003 ** sub-select expression list. They are required to figure out where 1004 ** boundaries for partitions and sets of peer rows lie. */ 1005 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1006 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1007 1008 /* Append the arguments passed to each window function to the 1009 ** sub-select expression list. Also allocate two registers for each 1010 ** window function - one for the accumulator, another for interim 1011 ** results. */ 1012 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1013 ExprList *pArgs = pWin->pOwner->x.pList; 1014 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1015 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1016 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1017 pWin->bExprArgs = 1; 1018 }else{ 1019 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1020 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1021 } 1022 if( pWin->pFilter ){ 1023 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1024 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1025 } 1026 pWin->regAccum = ++pParse->nMem; 1027 pWin->regResult = ++pParse->nMem; 1028 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1029 } 1030 1031 /* If there is no ORDER BY or PARTITION BY clause, and the window 1032 ** function accepts zero arguments, and there are no other columns 1033 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1034 ** that pSublist is still NULL here. Add a constant expression here to 1035 ** keep everything legal in this case. 1036 */ 1037 if( pSublist==0 ){ 1038 pSublist = sqlite3ExprListAppend(pParse, 0, 1039 sqlite3Expr(db, TK_INTEGER, "0") 1040 ); 1041 } 1042 1043 pSub = sqlite3SelectNew( 1044 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1045 ); 1046 SELECTTRACE(1,pParse,pSub, 1047 ("New window-function subquery in FROM clause of (%u/%p)\n", 1048 p->selId, p)); 1049 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1050 if( p->pSrc ){ 1051 Table *pTab2; 1052 p->pSrc->a[0].pSelect = pSub; 1053 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1054 pSub->selFlags |= SF_Expanded; 1055 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1056 pSub->selFlags |= (selFlags & SF_Aggregate); 1057 if( pTab2==0 ){ 1058 /* Might actually be some other kind of error, but in that case 1059 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1060 ** the correct error message regardless. */ 1061 rc = SQLITE_NOMEM; 1062 }else{ 1063 memcpy(pTab, pTab2, sizeof(Table)); 1064 pTab->tabFlags |= TF_Ephemeral; 1065 p->pSrc->a[0].pTab = pTab; 1066 pTab = pTab2; 1067 memset(&w, 0, sizeof(w)); 1068 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1069 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1070 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1071 sqlite3WalkSelect(&w, pSub); 1072 } 1073 }else{ 1074 sqlite3SelectDelete(db, pSub); 1075 } 1076 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1077 sqlite3DbFree(db, pTab); 1078 } 1079 1080 if( rc ){ 1081 if( pParse->nErr==0 ){ 1082 assert( pParse->db->mallocFailed ); 1083 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1084 } 1085 sqlite3SelectReset(pParse, p); 1086 } 1087 return rc; 1088 } 1089 1090 /* 1091 ** Unlink the Window object from the Select to which it is attached, 1092 ** if it is attached. 1093 */ 1094 void sqlite3WindowUnlinkFromSelect(Window *p){ 1095 if( p->ppThis ){ 1096 *p->ppThis = p->pNextWin; 1097 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1098 p->ppThis = 0; 1099 } 1100 } 1101 1102 /* 1103 ** Free the Window object passed as the second argument. 1104 */ 1105 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1106 if( p ){ 1107 sqlite3WindowUnlinkFromSelect(p); 1108 sqlite3ExprDelete(db, p->pFilter); 1109 sqlite3ExprListDelete(db, p->pPartition); 1110 sqlite3ExprListDelete(db, p->pOrderBy); 1111 sqlite3ExprDelete(db, p->pEnd); 1112 sqlite3ExprDelete(db, p->pStart); 1113 sqlite3DbFree(db, p->zName); 1114 sqlite3DbFree(db, p->zBase); 1115 sqlite3DbFree(db, p); 1116 } 1117 } 1118 1119 /* 1120 ** Free the linked list of Window objects starting at the second argument. 1121 */ 1122 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1123 while( p ){ 1124 Window *pNext = p->pNextWin; 1125 sqlite3WindowDelete(db, p); 1126 p = pNext; 1127 } 1128 } 1129 1130 /* 1131 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1132 ** value should be a non-negative integer. If the value is not a 1133 ** constant, change it to NULL. The fact that it is then a non-negative 1134 ** integer will be caught later. But it is important not to leave 1135 ** variable values in the expression tree. 1136 */ 1137 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1138 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1139 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1140 sqlite3ExprDelete(pParse->db, pExpr); 1141 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1142 } 1143 return pExpr; 1144 } 1145 1146 /* 1147 ** Allocate and return a new Window object describing a Window Definition. 1148 */ 1149 Window *sqlite3WindowAlloc( 1150 Parse *pParse, /* Parsing context */ 1151 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1152 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1153 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1154 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1155 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1156 u8 eExclude /* EXCLUDE clause */ 1157 ){ 1158 Window *pWin = 0; 1159 int bImplicitFrame = 0; 1160 1161 /* Parser assures the following: */ 1162 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1163 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1164 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1165 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1166 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1167 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1168 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1169 1170 if( eType==0 ){ 1171 bImplicitFrame = 1; 1172 eType = TK_RANGE; 1173 } 1174 1175 /* Additionally, the 1176 ** starting boundary type may not occur earlier in the following list than 1177 ** the ending boundary type: 1178 ** 1179 ** UNBOUNDED PRECEDING 1180 ** <expr> PRECEDING 1181 ** CURRENT ROW 1182 ** <expr> FOLLOWING 1183 ** UNBOUNDED FOLLOWING 1184 ** 1185 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1186 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1187 ** frame boundary. 1188 */ 1189 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1190 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1191 ){ 1192 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1193 goto windowAllocErr; 1194 } 1195 1196 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1197 if( pWin==0 ) goto windowAllocErr; 1198 pWin->eFrmType = eType; 1199 pWin->eStart = eStart; 1200 pWin->eEnd = eEnd; 1201 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1202 eExclude = TK_NO; 1203 } 1204 pWin->eExclude = eExclude; 1205 pWin->bImplicitFrame = bImplicitFrame; 1206 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1207 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1208 return pWin; 1209 1210 windowAllocErr: 1211 sqlite3ExprDelete(pParse->db, pEnd); 1212 sqlite3ExprDelete(pParse->db, pStart); 1213 return 0; 1214 } 1215 1216 /* 1217 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1218 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1219 ** equivalent nul-terminated string. 1220 */ 1221 Window *sqlite3WindowAssemble( 1222 Parse *pParse, 1223 Window *pWin, 1224 ExprList *pPartition, 1225 ExprList *pOrderBy, 1226 Token *pBase 1227 ){ 1228 if( pWin ){ 1229 pWin->pPartition = pPartition; 1230 pWin->pOrderBy = pOrderBy; 1231 if( pBase ){ 1232 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1233 } 1234 }else{ 1235 sqlite3ExprListDelete(pParse->db, pPartition); 1236 sqlite3ExprListDelete(pParse->db, pOrderBy); 1237 } 1238 return pWin; 1239 } 1240 1241 /* 1242 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1243 ** is the base window. Earlier windows from the same WINDOW clause are 1244 ** stored in the linked list starting at pWin->pNextWin. This function 1245 ** either updates *pWin according to the base specification, or else 1246 ** leaves an error in pParse. 1247 */ 1248 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1249 if( pWin->zBase ){ 1250 sqlite3 *db = pParse->db; 1251 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1252 if( pExist ){ 1253 const char *zErr = 0; 1254 /* Check for errors */ 1255 if( pWin->pPartition ){ 1256 zErr = "PARTITION clause"; 1257 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1258 zErr = "ORDER BY clause"; 1259 }else if( pExist->bImplicitFrame==0 ){ 1260 zErr = "frame specification"; 1261 } 1262 if( zErr ){ 1263 sqlite3ErrorMsg(pParse, 1264 "cannot override %s of window: %s", zErr, pWin->zBase 1265 ); 1266 }else{ 1267 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1268 if( pExist->pOrderBy ){ 1269 assert( pWin->pOrderBy==0 ); 1270 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1271 } 1272 sqlite3DbFree(db, pWin->zBase); 1273 pWin->zBase = 0; 1274 } 1275 } 1276 } 1277 } 1278 1279 /* 1280 ** Attach window object pWin to expression p. 1281 */ 1282 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1283 if( p ){ 1284 assert( p->op==TK_FUNCTION ); 1285 assert( pWin ); 1286 p->y.pWin = pWin; 1287 ExprSetProperty(p, EP_WinFunc); 1288 pWin->pOwner = p; 1289 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1290 sqlite3ErrorMsg(pParse, 1291 "DISTINCT is not supported for window functions" 1292 ); 1293 } 1294 }else{ 1295 sqlite3WindowDelete(pParse->db, pWin); 1296 } 1297 } 1298 1299 /* 1300 ** Possibly link window pWin into the list at pSel->pWin (window functions 1301 ** to be processed as part of SELECT statement pSel). The window is linked 1302 ** in if either (a) there are no other windows already linked to this 1303 ** SELECT, or (b) the windows already linked use a compatible window frame. 1304 */ 1305 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1306 if( pSel!=0 1307 && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0)) 1308 ){ 1309 pWin->pNextWin = pSel->pWin; 1310 if( pSel->pWin ){ 1311 pSel->pWin->ppThis = &pWin->pNextWin; 1312 } 1313 pSel->pWin = pWin; 1314 pWin->ppThis = &pSel->pWin; 1315 } 1316 } 1317 1318 /* 1319 ** Return 0 if the two window objects are identical, 1 if they are 1320 ** different, or 2 if it cannot be determined if the objects are identical 1321 ** or not. Identical window objects can be processed in a single scan. 1322 */ 1323 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1324 int res; 1325 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1326 if( p1->eFrmType!=p2->eFrmType ) return 1; 1327 if( p1->eStart!=p2->eStart ) return 1; 1328 if( p1->eEnd!=p2->eEnd ) return 1; 1329 if( p1->eExclude!=p2->eExclude ) return 1; 1330 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1331 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1332 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1333 return res; 1334 } 1335 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1336 return res; 1337 } 1338 if( bFilter ){ 1339 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1340 return res; 1341 } 1342 } 1343 return 0; 1344 } 1345 1346 1347 /* 1348 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1349 ** to begin iterating through the sub-query results. It is used to allocate 1350 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1351 */ 1352 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1353 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1354 Window *pMWin = pSelect->pWin; 1355 Window *pWin; 1356 Vdbe *v = sqlite3GetVdbe(pParse); 1357 1358 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1359 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1360 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1361 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1362 1363 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1364 ** said registers to NULL. */ 1365 if( pMWin->pPartition ){ 1366 int nExpr = pMWin->pPartition->nExpr; 1367 pMWin->regPart = pParse->nMem+1; 1368 pParse->nMem += nExpr; 1369 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1370 } 1371 1372 pMWin->regOne = ++pParse->nMem; 1373 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1374 1375 if( pMWin->eExclude ){ 1376 pMWin->regStartRowid = ++pParse->nMem; 1377 pMWin->regEndRowid = ++pParse->nMem; 1378 pMWin->csrApp = pParse->nTab++; 1379 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1380 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1381 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1382 return; 1383 } 1384 1385 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1386 FuncDef *p = pWin->pFunc; 1387 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1388 /* The inline versions of min() and max() require a single ephemeral 1389 ** table and 3 registers. The registers are used as follows: 1390 ** 1391 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1392 ** regApp+1: integer value used to ensure keys are unique 1393 ** regApp+2: output of MakeRecord 1394 */ 1395 ExprList *pList = pWin->pOwner->x.pList; 1396 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1397 pWin->csrApp = pParse->nTab++; 1398 pWin->regApp = pParse->nMem+1; 1399 pParse->nMem += 3; 1400 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1401 assert( pKeyInfo->aSortFlags[0]==0 ); 1402 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1403 } 1404 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1405 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1406 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1407 } 1408 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1409 /* Allocate two registers at pWin->regApp. These will be used to 1410 ** store the start and end index of the current frame. */ 1411 pWin->regApp = pParse->nMem+1; 1412 pWin->csrApp = pParse->nTab++; 1413 pParse->nMem += 2; 1414 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1415 } 1416 else if( p->zName==leadName || p->zName==lagName ){ 1417 pWin->csrApp = pParse->nTab++; 1418 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1419 } 1420 } 1421 } 1422 1423 #define WINDOW_STARTING_INT 0 1424 #define WINDOW_ENDING_INT 1 1425 #define WINDOW_NTH_VALUE_INT 2 1426 #define WINDOW_STARTING_NUM 3 1427 #define WINDOW_ENDING_NUM 4 1428 1429 /* 1430 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1431 ** value of the second argument to nth_value() (eCond==2) has just been 1432 ** evaluated and the result left in register reg. This function generates VM 1433 ** code to check that the value is a non-negative integer and throws an 1434 ** exception if it is not. 1435 */ 1436 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1437 static const char *azErr[] = { 1438 "frame starting offset must be a non-negative integer", 1439 "frame ending offset must be a non-negative integer", 1440 "second argument to nth_value must be a positive integer", 1441 "frame starting offset must be a non-negative number", 1442 "frame ending offset must be a non-negative number", 1443 }; 1444 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1445 Vdbe *v = sqlite3GetVdbe(pParse); 1446 int regZero = sqlite3GetTempReg(pParse); 1447 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1448 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1449 if( eCond>=WINDOW_STARTING_NUM ){ 1450 int regString = sqlite3GetTempReg(pParse); 1451 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1452 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1453 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1454 VdbeCoverage(v); 1455 assert( eCond==3 || eCond==4 ); 1456 VdbeCoverageIf(v, eCond==3); 1457 VdbeCoverageIf(v, eCond==4); 1458 }else{ 1459 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1460 VdbeCoverage(v); 1461 assert( eCond==0 || eCond==1 || eCond==2 ); 1462 VdbeCoverageIf(v, eCond==0); 1463 VdbeCoverageIf(v, eCond==1); 1464 VdbeCoverageIf(v, eCond==2); 1465 } 1466 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1467 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1468 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1469 VdbeCoverageNeverNullIf(v, eCond==2); 1470 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1471 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1472 sqlite3MayAbort(pParse); 1473 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1474 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1475 sqlite3ReleaseTempReg(pParse, regZero); 1476 } 1477 1478 /* 1479 ** Return the number of arguments passed to the window-function associated 1480 ** with the object passed as the only argument to this function. 1481 */ 1482 static int windowArgCount(Window *pWin){ 1483 ExprList *pList = pWin->pOwner->x.pList; 1484 return (pList ? pList->nExpr : 0); 1485 } 1486 1487 typedef struct WindowCodeArg WindowCodeArg; 1488 typedef struct WindowCsrAndReg WindowCsrAndReg; 1489 1490 /* 1491 ** See comments above struct WindowCodeArg. 1492 */ 1493 struct WindowCsrAndReg { 1494 int csr; /* Cursor number */ 1495 int reg; /* First in array of peer values */ 1496 }; 1497 1498 /* 1499 ** A single instance of this structure is allocated on the stack by 1500 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1501 ** routines. This is to reduce the number of arguments required by each 1502 ** helper function. 1503 ** 1504 ** regArg: 1505 ** Each window function requires an accumulator register (just as an 1506 ** ordinary aggregate function does). This variable is set to the first 1507 ** in an array of accumulator registers - one for each window function 1508 ** in the WindowCodeArg.pMWin list. 1509 ** 1510 ** eDelete: 1511 ** The window functions implementation sometimes caches the input rows 1512 ** that it processes in a temporary table. If it is not zero, this 1513 ** variable indicates when rows may be removed from the temp table (in 1514 ** order to reduce memory requirements - it would always be safe just 1515 ** to leave them there). Possible values for eDelete are: 1516 ** 1517 ** WINDOW_RETURN_ROW: 1518 ** An input row can be discarded after it is returned to the caller. 1519 ** 1520 ** WINDOW_AGGINVERSE: 1521 ** An input row can be discarded after the window functions xInverse() 1522 ** callbacks have been invoked in it. 1523 ** 1524 ** WINDOW_AGGSTEP: 1525 ** An input row can be discarded after the window functions xStep() 1526 ** callbacks have been invoked in it. 1527 ** 1528 ** start,current,end 1529 ** Consider a window-frame similar to the following: 1530 ** 1531 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1532 ** 1533 ** The windows functions implmentation caches the input rows in a temp 1534 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1535 ** aggressively removes rows once they are no longer required, but that's 1536 ** a mere detail). It keeps three cursors open on the temp table. One 1537 ** (current) that points to the next row to return to the query engine 1538 ** once its window function values have been calculated. Another (end) 1539 ** points to the next row to call the xStep() method of each window function 1540 ** on (so that it is 2 groups ahead of current). And a third (start) that 1541 ** points to the next row to call the xInverse() method of each window 1542 ** function on. 1543 ** 1544 ** Each cursor (start, current and end) consists of a VDBE cursor 1545 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1546 ** WindowCodeArg.reg) that always contains a copy of the peer values 1547 ** read from the corresponding cursor. 1548 ** 1549 ** Depending on the window-frame in question, all three cursors may not 1550 ** be required. In this case both WindowCodeArg.csr and reg are set to 1551 ** 0. 1552 */ 1553 struct WindowCodeArg { 1554 Parse *pParse; /* Parse context */ 1555 Window *pMWin; /* First in list of functions being processed */ 1556 Vdbe *pVdbe; /* VDBE object */ 1557 int addrGosub; /* OP_Gosub to this address to return one row */ 1558 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1559 int regArg; /* First in array of accumulator registers */ 1560 int eDelete; /* See above */ 1561 1562 WindowCsrAndReg start; 1563 WindowCsrAndReg current; 1564 WindowCsrAndReg end; 1565 }; 1566 1567 /* 1568 ** Generate VM code to read the window frames peer values from cursor csr into 1569 ** an array of registers starting at reg. 1570 */ 1571 static void windowReadPeerValues( 1572 WindowCodeArg *p, 1573 int csr, 1574 int reg 1575 ){ 1576 Window *pMWin = p->pMWin; 1577 ExprList *pOrderBy = pMWin->pOrderBy; 1578 if( pOrderBy ){ 1579 Vdbe *v = sqlite3GetVdbe(p->pParse); 1580 ExprList *pPart = pMWin->pPartition; 1581 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1582 int i; 1583 for(i=0; i<pOrderBy->nExpr; i++){ 1584 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1585 } 1586 } 1587 } 1588 1589 /* 1590 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1591 ** xInverse (if bInverse is non-zero) for each window function in the 1592 ** linked list starting at pMWin. Or, for built-in window functions 1593 ** that do not use the standard function API, generate the required 1594 ** inline VM code. 1595 ** 1596 ** If argument csr is greater than or equal to 0, then argument reg is 1597 ** the first register in an array of registers guaranteed to be large 1598 ** enough to hold the array of arguments for each function. In this case 1599 ** the arguments are extracted from the current row of csr into the 1600 ** array of registers before invoking OP_AggStep or OP_AggInverse 1601 ** 1602 ** Or, if csr is less than zero, then the array of registers at reg is 1603 ** already populated with all columns from the current row of the sub-query. 1604 ** 1605 ** If argument regPartSize is non-zero, then it is a register containing the 1606 ** number of rows in the current partition. 1607 */ 1608 static void windowAggStep( 1609 WindowCodeArg *p, 1610 Window *pMWin, /* Linked list of window functions */ 1611 int csr, /* Read arguments from this cursor */ 1612 int bInverse, /* True to invoke xInverse instead of xStep */ 1613 int reg /* Array of registers */ 1614 ){ 1615 Parse *pParse = p->pParse; 1616 Vdbe *v = sqlite3GetVdbe(pParse); 1617 Window *pWin; 1618 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1619 FuncDef *pFunc = pWin->pFunc; 1620 int regArg; 1621 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1622 int i; 1623 1624 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1625 1626 /* All OVER clauses in the same window function aggregate step must 1627 ** be the same. */ 1628 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1629 1630 for(i=0; i<nArg; i++){ 1631 if( i!=1 || pFunc->zName!=nth_valueName ){ 1632 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1633 }else{ 1634 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1635 } 1636 } 1637 regArg = reg; 1638 1639 if( pMWin->regStartRowid==0 1640 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1641 && (pWin->eStart!=TK_UNBOUNDED) 1642 ){ 1643 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1644 VdbeCoverage(v); 1645 if( bInverse==0 ){ 1646 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1647 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1648 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1649 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1650 }else{ 1651 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1652 VdbeCoverageNeverTaken(v); 1653 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1654 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1655 } 1656 sqlite3VdbeJumpHere(v, addrIsNull); 1657 }else if( pWin->regApp ){ 1658 assert( pFunc->zName==nth_valueName 1659 || pFunc->zName==first_valueName 1660 ); 1661 assert( bInverse==0 || bInverse==1 ); 1662 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1663 }else if( pFunc->xSFunc!=noopStepFunc ){ 1664 int addrIf = 0; 1665 if( pWin->pFilter ){ 1666 int regTmp; 1667 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1668 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1669 regTmp = sqlite3GetTempReg(pParse); 1670 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1671 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1672 VdbeCoverage(v); 1673 sqlite3ReleaseTempReg(pParse, regTmp); 1674 } 1675 1676 if( pWin->bExprArgs ){ 1677 int iStart = sqlite3VdbeCurrentAddr(v); 1678 VdbeOp *pOp, *pEnd; 1679 1680 nArg = pWin->pOwner->x.pList->nExpr; 1681 regArg = sqlite3GetTempRange(pParse, nArg); 1682 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1683 1684 pEnd = sqlite3VdbeGetOp(v, -1); 1685 for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){ 1686 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1687 pOp->p1 = csr; 1688 } 1689 } 1690 } 1691 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1692 CollSeq *pColl; 1693 assert( nArg>0 ); 1694 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1695 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1696 } 1697 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1698 bInverse, regArg, pWin->regAccum); 1699 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1700 sqlite3VdbeChangeP5(v, (u8)nArg); 1701 if( pWin->bExprArgs ){ 1702 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1703 } 1704 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1705 } 1706 } 1707 } 1708 1709 /* 1710 ** Values that may be passed as the second argument to windowCodeOp(). 1711 */ 1712 #define WINDOW_RETURN_ROW 1 1713 #define WINDOW_AGGINVERSE 2 1714 #define WINDOW_AGGSTEP 3 1715 1716 /* 1717 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1718 ** (bFin==1) for each window function in the linked list starting at 1719 ** pMWin. Or, for built-in window-functions that do not use the standard 1720 ** API, generate the equivalent VM code. 1721 */ 1722 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1723 Parse *pParse = p->pParse; 1724 Window *pMWin = p->pMWin; 1725 Vdbe *v = sqlite3GetVdbe(pParse); 1726 Window *pWin; 1727 1728 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1729 if( pMWin->regStartRowid==0 1730 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1731 && (pWin->eStart!=TK_UNBOUNDED) 1732 ){ 1733 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1734 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1735 VdbeCoverage(v); 1736 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1737 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1738 }else if( pWin->regApp ){ 1739 assert( pMWin->regStartRowid==0 ); 1740 }else{ 1741 int nArg = windowArgCount(pWin); 1742 if( bFin ){ 1743 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1744 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1745 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1746 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1747 }else{ 1748 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1749 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1750 } 1751 } 1752 } 1753 } 1754 1755 /* 1756 ** Generate code to calculate the current values of all window functions in the 1757 ** p->pMWin list by doing a full scan of the current window frame. Store the 1758 ** results in the Window.regResult registers, ready to return the upper 1759 ** layer. 1760 */ 1761 static void windowFullScan(WindowCodeArg *p){ 1762 Window *pWin; 1763 Parse *pParse = p->pParse; 1764 Window *pMWin = p->pMWin; 1765 Vdbe *v = p->pVdbe; 1766 1767 int regCRowid = 0; /* Current rowid value */ 1768 int regCPeer = 0; /* Current peer values */ 1769 int regRowid = 0; /* AggStep rowid value */ 1770 int regPeer = 0; /* AggStep peer values */ 1771 1772 int nPeer; 1773 int lblNext; 1774 int lblBrk; 1775 int addrNext; 1776 int csr; 1777 1778 VdbeModuleComment((v, "windowFullScan begin")); 1779 1780 assert( pMWin!=0 ); 1781 csr = pMWin->csrApp; 1782 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1783 1784 lblNext = sqlite3VdbeMakeLabel(pParse); 1785 lblBrk = sqlite3VdbeMakeLabel(pParse); 1786 1787 regCRowid = sqlite3GetTempReg(pParse); 1788 regRowid = sqlite3GetTempReg(pParse); 1789 if( nPeer ){ 1790 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1791 regPeer = sqlite3GetTempRange(pParse, nPeer); 1792 } 1793 1794 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1795 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1796 1797 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1798 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1799 } 1800 1801 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1802 VdbeCoverage(v); 1803 addrNext = sqlite3VdbeCurrentAddr(v); 1804 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1805 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1806 VdbeCoverageNeverNull(v); 1807 1808 if( pMWin->eExclude==TK_CURRENT ){ 1809 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1810 VdbeCoverageNeverNull(v); 1811 }else if( pMWin->eExclude!=TK_NO ){ 1812 int addr; 1813 int addrEq = 0; 1814 KeyInfo *pKeyInfo = 0; 1815 1816 if( pMWin->pOrderBy ){ 1817 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1818 } 1819 if( pMWin->eExclude==TK_TIES ){ 1820 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1821 VdbeCoverageNeverNull(v); 1822 } 1823 if( pKeyInfo ){ 1824 windowReadPeerValues(p, csr, regPeer); 1825 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1826 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1827 addr = sqlite3VdbeCurrentAddr(v)+1; 1828 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1829 VdbeCoverageEqNe(v); 1830 }else{ 1831 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1832 } 1833 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1834 } 1835 1836 windowAggStep(p, pMWin, csr, 0, p->regArg); 1837 1838 sqlite3VdbeResolveLabel(v, lblNext); 1839 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1840 VdbeCoverage(v); 1841 sqlite3VdbeJumpHere(v, addrNext-1); 1842 sqlite3VdbeJumpHere(v, addrNext+1); 1843 sqlite3ReleaseTempReg(pParse, regRowid); 1844 sqlite3ReleaseTempReg(pParse, regCRowid); 1845 if( nPeer ){ 1846 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1847 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1848 } 1849 1850 windowAggFinal(p, 1); 1851 VdbeModuleComment((v, "windowFullScan end")); 1852 } 1853 1854 /* 1855 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1856 ** return the current row of Window.iEphCsr. If all window functions are 1857 ** aggregate window functions that use the standard API, a single 1858 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1859 ** for per-row processing is only generated for the following built-in window 1860 ** functions: 1861 ** 1862 ** nth_value() 1863 ** first_value() 1864 ** lag() 1865 ** lead() 1866 */ 1867 static void windowReturnOneRow(WindowCodeArg *p){ 1868 Window *pMWin = p->pMWin; 1869 Vdbe *v = p->pVdbe; 1870 1871 if( pMWin->regStartRowid ){ 1872 windowFullScan(p); 1873 }else{ 1874 Parse *pParse = p->pParse; 1875 Window *pWin; 1876 1877 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1878 FuncDef *pFunc = pWin->pFunc; 1879 if( pFunc->zName==nth_valueName 1880 || pFunc->zName==first_valueName 1881 ){ 1882 int csr = pWin->csrApp; 1883 int lbl = sqlite3VdbeMakeLabel(pParse); 1884 int tmpReg = sqlite3GetTempReg(pParse); 1885 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1886 1887 if( pFunc->zName==nth_valueName ){ 1888 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1889 windowCheckValue(pParse, tmpReg, 2); 1890 }else{ 1891 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1892 } 1893 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1894 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1895 VdbeCoverageNeverNull(v); 1896 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1897 VdbeCoverageNeverTaken(v); 1898 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1899 sqlite3VdbeResolveLabel(v, lbl); 1900 sqlite3ReleaseTempReg(pParse, tmpReg); 1901 } 1902 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1903 int nArg = pWin->pOwner->x.pList->nExpr; 1904 int csr = pWin->csrApp; 1905 int lbl = sqlite3VdbeMakeLabel(pParse); 1906 int tmpReg = sqlite3GetTempReg(pParse); 1907 int iEph = pMWin->iEphCsr; 1908 1909 if( nArg<3 ){ 1910 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1911 }else{ 1912 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1913 } 1914 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1915 if( nArg<2 ){ 1916 int val = (pFunc->zName==leadName ? 1 : -1); 1917 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1918 }else{ 1919 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1920 int tmpReg2 = sqlite3GetTempReg(pParse); 1921 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1922 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1923 sqlite3ReleaseTempReg(pParse, tmpReg2); 1924 } 1925 1926 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1927 VdbeCoverage(v); 1928 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1929 sqlite3VdbeResolveLabel(v, lbl); 1930 sqlite3ReleaseTempReg(pParse, tmpReg); 1931 } 1932 } 1933 } 1934 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1935 } 1936 1937 /* 1938 ** Generate code to set the accumulator register for each window function 1939 ** in the linked list passed as the second argument to NULL. And perform 1940 ** any equivalent initialization required by any built-in window functions 1941 ** in the list. 1942 */ 1943 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1944 Vdbe *v = sqlite3GetVdbe(pParse); 1945 int regArg; 1946 int nArg = 0; 1947 Window *pWin; 1948 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1949 FuncDef *pFunc = pWin->pFunc; 1950 assert( pWin->regAccum ); 1951 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1952 nArg = MAX(nArg, windowArgCount(pWin)); 1953 if( pMWin->regStartRowid==0 ){ 1954 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1955 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1956 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1957 } 1958 1959 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1960 assert( pWin->eStart!=TK_UNBOUNDED ); 1961 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1962 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1963 } 1964 } 1965 } 1966 regArg = pParse->nMem+1; 1967 pParse->nMem += nArg; 1968 return regArg; 1969 } 1970 1971 /* 1972 ** Return true if the current frame should be cached in the ephemeral table, 1973 ** even if there are no xInverse() calls required. 1974 */ 1975 static int windowCacheFrame(Window *pMWin){ 1976 Window *pWin; 1977 if( pMWin->regStartRowid ) return 1; 1978 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1979 FuncDef *pFunc = pWin->pFunc; 1980 if( (pFunc->zName==nth_valueName) 1981 || (pFunc->zName==first_valueName) 1982 || (pFunc->zName==leadName) 1983 || (pFunc->zName==lagName) 1984 ){ 1985 return 1; 1986 } 1987 } 1988 return 0; 1989 } 1990 1991 /* 1992 ** regOld and regNew are each the first register in an array of size 1993 ** pOrderBy->nExpr. This function generates code to compare the two 1994 ** arrays of registers using the collation sequences and other comparison 1995 ** parameters specified by pOrderBy. 1996 ** 1997 ** If the two arrays are not equal, the contents of regNew is copied to 1998 ** regOld and control falls through. Otherwise, if the contents of the arrays 1999 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2000 */ 2001 static void windowIfNewPeer( 2002 Parse *pParse, 2003 ExprList *pOrderBy, 2004 int regNew, /* First in array of new values */ 2005 int regOld, /* First in array of old values */ 2006 int addr /* Jump here */ 2007 ){ 2008 Vdbe *v = sqlite3GetVdbe(pParse); 2009 if( pOrderBy ){ 2010 int nVal = pOrderBy->nExpr; 2011 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2012 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2013 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2014 sqlite3VdbeAddOp3(v, OP_Jump, 2015 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2016 ); 2017 VdbeCoverageEqNe(v); 2018 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2019 }else{ 2020 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2021 } 2022 } 2023 2024 /* 2025 ** This function is called as part of generating VM programs for RANGE 2026 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2027 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2028 ** code equivalent to: 2029 ** 2030 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2031 ** 2032 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2033 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2034 ** 2035 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2036 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2037 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2038 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2039 ** is OP_Ge, the generated code is equivalent to: 2040 ** 2041 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2042 ** 2043 ** A special type of arithmetic is used such that if csr1.peerVal is not 2044 ** a numeric type (real or integer), then the result of the addition addition 2045 ** or subtraction is a a copy of csr1.peerVal. 2046 */ 2047 static void windowCodeRangeTest( 2048 WindowCodeArg *p, 2049 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2050 int csr1, /* Cursor number for cursor 1 */ 2051 int regVal, /* Register containing non-negative number */ 2052 int csr2, /* Cursor number for cursor 2 */ 2053 int lbl /* Jump destination if condition is true */ 2054 ){ 2055 Parse *pParse = p->pParse; 2056 Vdbe *v = sqlite3GetVdbe(pParse); 2057 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2058 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2059 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2060 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2061 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2062 int addrGe; /* Jump destination */ 2063 2064 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2065 assert( pOrderBy && pOrderBy->nExpr==1 ); 2066 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2067 switch( op ){ 2068 case OP_Ge: op = OP_Le; break; 2069 case OP_Gt: op = OP_Lt; break; 2070 default: assert( op==OP_Le ); op = OP_Ge; break; 2071 } 2072 arith = OP_Subtract; 2073 } 2074 2075 /* Read the peer-value from each cursor into a register */ 2076 windowReadPeerValues(p, csr1, reg1); 2077 windowReadPeerValues(p, csr2, reg2); 2078 2079 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2080 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2081 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2082 )); 2083 2084 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2085 ** This block adds (or subtracts for DESC) the numeric value in regVal 2086 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2087 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2088 ** 2089 ** if( reg1>='' ) goto addrGe; 2090 ** reg1 = reg1 +/- regVal 2091 ** addrGe: 2092 ** 2093 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2094 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2095 ** then the arithmetic is performed, but since adding or subtracting from 2096 ** NULL is always NULL anyway, this case is handled as required too. */ 2097 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2098 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2099 VdbeCoverage(v); 2100 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2101 sqlite3VdbeJumpHere(v, addrGe); 2102 2103 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2104 ** consider NULL values to be larger than all other values, instead of 2105 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2106 ** (and adding that capability causes a performance regression), so 2107 ** instead if the BIGNULL flag is set then cases where either reg1 or 2108 ** reg2 are NULL are handled separately in the following block. The code 2109 ** generated is equivalent to: 2110 ** 2111 ** if( reg1 IS NULL ){ 2112 ** if( op==OP_Ge ) goto lbl; 2113 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2114 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2115 ** }else if( reg2 IS NULL ){ 2116 ** if( op==OP_Le ) goto lbl; 2117 ** } 2118 ** 2119 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2120 ** not taken, control jumps over the comparison operator coded below this 2121 ** block. */ 2122 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2123 /* This block runs if reg1 contains a NULL. */ 2124 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2125 switch( op ){ 2126 case OP_Ge: 2127 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2128 break; 2129 case OP_Gt: 2130 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2131 VdbeCoverage(v); 2132 break; 2133 case OP_Le: 2134 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2135 VdbeCoverage(v); 2136 break; 2137 default: assert( op==OP_Lt ); /* no-op */ break; 2138 } 2139 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 2140 2141 /* This block runs if reg1 is not NULL, but reg2 is. */ 2142 sqlite3VdbeJumpHere(v, addr); 2143 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2144 if( op==OP_Gt || op==OP_Ge ){ 2145 sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1); 2146 } 2147 } 2148 2149 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2150 ** control skips over this test if the BIGNULL flag is set and either 2151 ** reg1 or reg2 contain a NULL value. */ 2152 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2153 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2154 2155 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2156 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2157 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2158 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2159 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2160 sqlite3ReleaseTempReg(pParse, reg1); 2161 sqlite3ReleaseTempReg(pParse, reg2); 2162 2163 VdbeModuleComment((v, "CodeRangeTest: end")); 2164 } 2165 2166 /* 2167 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2168 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2169 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2170 ** details. 2171 */ 2172 static int windowCodeOp( 2173 WindowCodeArg *p, /* Context object */ 2174 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2175 int regCountdown, /* Register for OP_IfPos countdown */ 2176 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2177 ){ 2178 int csr, reg; 2179 Parse *pParse = p->pParse; 2180 Window *pMWin = p->pMWin; 2181 int ret = 0; 2182 Vdbe *v = p->pVdbe; 2183 int addrContinue = 0; 2184 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2185 2186 int lblDone = sqlite3VdbeMakeLabel(pParse); 2187 int addrNextRange = 0; 2188 2189 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2190 ** starts with UNBOUNDED PRECEDING. */ 2191 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2192 assert( regCountdown==0 && jumpOnEof==0 ); 2193 return 0; 2194 } 2195 2196 if( regCountdown>0 ){ 2197 if( pMWin->eFrmType==TK_RANGE ){ 2198 addrNextRange = sqlite3VdbeCurrentAddr(v); 2199 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2200 if( op==WINDOW_AGGINVERSE ){ 2201 if( pMWin->eStart==TK_FOLLOWING ){ 2202 windowCodeRangeTest( 2203 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2204 ); 2205 }else{ 2206 windowCodeRangeTest( 2207 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2208 ); 2209 } 2210 }else{ 2211 windowCodeRangeTest( 2212 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2213 ); 2214 } 2215 }else{ 2216 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2217 VdbeCoverage(v); 2218 } 2219 } 2220 2221 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2222 windowAggFinal(p, 0); 2223 } 2224 addrContinue = sqlite3VdbeCurrentAddr(v); 2225 2226 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2227 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2228 ** start cursor does not advance past the end cursor within the 2229 ** temporary table. It otherwise might, if (a>b). */ 2230 if( pMWin->eStart==pMWin->eEnd && regCountdown 2231 && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE 2232 ){ 2233 int regRowid1 = sqlite3GetTempReg(pParse); 2234 int regRowid2 = sqlite3GetTempReg(pParse); 2235 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2236 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2237 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2238 VdbeCoverage(v); 2239 sqlite3ReleaseTempReg(pParse, regRowid1); 2240 sqlite3ReleaseTempReg(pParse, regRowid2); 2241 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2242 } 2243 2244 switch( op ){ 2245 case WINDOW_RETURN_ROW: 2246 csr = p->current.csr; 2247 reg = p->current.reg; 2248 windowReturnOneRow(p); 2249 break; 2250 2251 case WINDOW_AGGINVERSE: 2252 csr = p->start.csr; 2253 reg = p->start.reg; 2254 if( pMWin->regStartRowid ){ 2255 assert( pMWin->regEndRowid ); 2256 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2257 }else{ 2258 windowAggStep(p, pMWin, csr, 1, p->regArg); 2259 } 2260 break; 2261 2262 default: 2263 assert( op==WINDOW_AGGSTEP ); 2264 csr = p->end.csr; 2265 reg = p->end.reg; 2266 if( pMWin->regStartRowid ){ 2267 assert( pMWin->regEndRowid ); 2268 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2269 }else{ 2270 windowAggStep(p, pMWin, csr, 0, p->regArg); 2271 } 2272 break; 2273 } 2274 2275 if( op==p->eDelete ){ 2276 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2277 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2278 } 2279 2280 if( jumpOnEof ){ 2281 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2282 VdbeCoverage(v); 2283 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2284 }else{ 2285 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2286 VdbeCoverage(v); 2287 if( bPeer ){ 2288 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2289 } 2290 } 2291 2292 if( bPeer ){ 2293 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2294 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2295 windowReadPeerValues(p, csr, regTmp); 2296 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2297 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2298 } 2299 2300 if( addrNextRange ){ 2301 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2302 } 2303 sqlite3VdbeResolveLabel(v, lblDone); 2304 return ret; 2305 } 2306 2307 2308 /* 2309 ** Allocate and return a duplicate of the Window object indicated by the 2310 ** third argument. Set the Window.pOwner field of the new object to 2311 ** pOwner. 2312 */ 2313 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2314 Window *pNew = 0; 2315 if( ALWAYS(p) ){ 2316 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2317 if( pNew ){ 2318 pNew->zName = sqlite3DbStrDup(db, p->zName); 2319 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2320 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2321 pNew->pFunc = p->pFunc; 2322 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2323 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2324 pNew->eFrmType = p->eFrmType; 2325 pNew->eEnd = p->eEnd; 2326 pNew->eStart = p->eStart; 2327 pNew->eExclude = p->eExclude; 2328 pNew->regResult = p->regResult; 2329 pNew->regAccum = p->regAccum; 2330 pNew->iArgCol = p->iArgCol; 2331 pNew->iEphCsr = p->iEphCsr; 2332 pNew->bExprArgs = p->bExprArgs; 2333 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2334 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2335 pNew->pOwner = pOwner; 2336 pNew->bImplicitFrame = p->bImplicitFrame; 2337 } 2338 } 2339 return pNew; 2340 } 2341 2342 /* 2343 ** Return a copy of the linked list of Window objects passed as the 2344 ** second argument. 2345 */ 2346 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2347 Window *pWin; 2348 Window *pRet = 0; 2349 Window **pp = &pRet; 2350 2351 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2352 *pp = sqlite3WindowDup(db, 0, pWin); 2353 if( *pp==0 ) break; 2354 pp = &((*pp)->pNextWin); 2355 } 2356 2357 return pRet; 2358 } 2359 2360 /* 2361 ** Return true if it can be determined at compile time that expression 2362 ** pExpr evaluates to a value that, when cast to an integer, is greater 2363 ** than zero. False otherwise. 2364 ** 2365 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2366 ** flag and returns zero. 2367 */ 2368 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2369 int ret = 0; 2370 sqlite3 *db = pParse->db; 2371 sqlite3_value *pVal = 0; 2372 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2373 if( pVal && sqlite3_value_int(pVal)>0 ){ 2374 ret = 1; 2375 } 2376 sqlite3ValueFree(pVal); 2377 return ret; 2378 } 2379 2380 /* 2381 ** sqlite3WhereBegin() has already been called for the SELECT statement 2382 ** passed as the second argument when this function is invoked. It generates 2383 ** code to populate the Window.regResult register for each window function 2384 ** and invoke the sub-routine at instruction addrGosub once for each row. 2385 ** sqlite3WhereEnd() is always called before returning. 2386 ** 2387 ** This function handles several different types of window frames, which 2388 ** require slightly different processing. The following pseudo code is 2389 ** used to implement window frames of the form: 2390 ** 2391 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2392 ** 2393 ** Other window frame types use variants of the following: 2394 ** 2395 ** ... loop started by sqlite3WhereBegin() ... 2396 ** if( new partition ){ 2397 ** Gosub flush 2398 ** } 2399 ** Insert new row into eph table. 2400 ** 2401 ** if( first row of partition ){ 2402 ** // Rewind three cursors, all open on the eph table. 2403 ** Rewind(csrEnd); 2404 ** Rewind(csrStart); 2405 ** Rewind(csrCurrent); 2406 ** 2407 ** regEnd = <expr2> // FOLLOWING expression 2408 ** regStart = <expr1> // PRECEDING expression 2409 ** }else{ 2410 ** // First time this branch is taken, the eph table contains two 2411 ** // rows. The first row in the partition, which all three cursors 2412 ** // currently point to, and the following row. 2413 ** AGGSTEP 2414 ** if( (regEnd--)<=0 ){ 2415 ** RETURN_ROW 2416 ** if( (regStart--)<=0 ){ 2417 ** AGGINVERSE 2418 ** } 2419 ** } 2420 ** } 2421 ** } 2422 ** flush: 2423 ** AGGSTEP 2424 ** while( 1 ){ 2425 ** RETURN ROW 2426 ** if( csrCurrent is EOF ) break; 2427 ** if( (regStart--)<=0 ){ 2428 ** AggInverse(csrStart) 2429 ** Next(csrStart) 2430 ** } 2431 ** } 2432 ** 2433 ** The pseudo-code above uses the following shorthand: 2434 ** 2435 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2436 ** with arguments read from the current row of cursor csrEnd, then 2437 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2438 ** 2439 ** RETURN_ROW: return a row to the caller based on the contents of the 2440 ** current row of csrCurrent and the current state of all 2441 ** aggregates. Then step cursor csrCurrent forward one row. 2442 ** 2443 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2444 ** functions with arguments read from the current row of cursor 2445 ** csrStart. Then step csrStart forward one row. 2446 ** 2447 ** There are two other ROWS window frames that are handled significantly 2448 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2449 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2450 ** cases because they change the order in which the three cursors (csrStart, 2451 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2452 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2453 ** three. 2454 ** 2455 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2456 ** 2457 ** ... loop started by sqlite3WhereBegin() ... 2458 ** if( new partition ){ 2459 ** Gosub flush 2460 ** } 2461 ** Insert new row into eph table. 2462 ** if( first row of partition ){ 2463 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2464 ** regEnd = <expr2> 2465 ** regStart = <expr1> 2466 ** }else{ 2467 ** if( (regEnd--)<=0 ){ 2468 ** AGGSTEP 2469 ** } 2470 ** RETURN_ROW 2471 ** if( (regStart--)<=0 ){ 2472 ** AGGINVERSE 2473 ** } 2474 ** } 2475 ** } 2476 ** flush: 2477 ** if( (regEnd--)<=0 ){ 2478 ** AGGSTEP 2479 ** } 2480 ** RETURN_ROW 2481 ** 2482 ** 2483 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2484 ** 2485 ** ... loop started by sqlite3WhereBegin() ... 2486 ** if( new partition ){ 2487 ** Gosub flush 2488 ** } 2489 ** Insert new row into eph table. 2490 ** if( first row of partition ){ 2491 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2492 ** regEnd = <expr2> 2493 ** regStart = regEnd - <expr1> 2494 ** }else{ 2495 ** AGGSTEP 2496 ** if( (regEnd--)<=0 ){ 2497 ** RETURN_ROW 2498 ** } 2499 ** if( (regStart--)<=0 ){ 2500 ** AGGINVERSE 2501 ** } 2502 ** } 2503 ** } 2504 ** flush: 2505 ** AGGSTEP 2506 ** while( 1 ){ 2507 ** if( (regEnd--)<=0 ){ 2508 ** RETURN_ROW 2509 ** if( eof ) break; 2510 ** } 2511 ** if( (regStart--)<=0 ){ 2512 ** AGGINVERSE 2513 ** if( eof ) break 2514 ** } 2515 ** } 2516 ** while( !eof csrCurrent ){ 2517 ** RETURN_ROW 2518 ** } 2519 ** 2520 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2521 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2522 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2523 ** This is optimized of course - branches that will never be taken and 2524 ** conditions that are always true are omitted from the VM code. The only 2525 ** exceptional case is: 2526 ** 2527 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2528 ** 2529 ** ... loop started by sqlite3WhereBegin() ... 2530 ** if( new partition ){ 2531 ** Gosub flush 2532 ** } 2533 ** Insert new row into eph table. 2534 ** if( first row of partition ){ 2535 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2536 ** regStart = <expr1> 2537 ** }else{ 2538 ** AGGSTEP 2539 ** } 2540 ** } 2541 ** flush: 2542 ** AGGSTEP 2543 ** while( 1 ){ 2544 ** if( (regStart--)<=0 ){ 2545 ** AGGINVERSE 2546 ** if( eof ) break 2547 ** } 2548 ** RETURN_ROW 2549 ** } 2550 ** while( !eof csrCurrent ){ 2551 ** RETURN_ROW 2552 ** } 2553 ** 2554 ** Also requiring special handling are the cases: 2555 ** 2556 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2557 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2558 ** 2559 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2560 ** To handle this case, the pseudo-code programs depicted above are modified 2561 ** slightly to be: 2562 ** 2563 ** ... loop started by sqlite3WhereBegin() ... 2564 ** if( new partition ){ 2565 ** Gosub flush 2566 ** } 2567 ** Insert new row into eph table. 2568 ** if( first row of partition ){ 2569 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2570 ** regEnd = <expr2> 2571 ** regStart = <expr1> 2572 ** if( regEnd < regStart ){ 2573 ** RETURN_ROW 2574 ** delete eph table contents 2575 ** continue 2576 ** } 2577 ** ... 2578 ** 2579 ** The new "continue" statement in the above jumps to the next iteration 2580 ** of the outer loop - the one started by sqlite3WhereBegin(). 2581 ** 2582 ** The various GROUPS cases are implemented using the same patterns as 2583 ** ROWS. The VM code is modified slightly so that: 2584 ** 2585 ** 1. The else branch in the main loop is only taken if the row just 2586 ** added to the ephemeral table is the start of a new group. In 2587 ** other words, it becomes: 2588 ** 2589 ** ... loop started by sqlite3WhereBegin() ... 2590 ** if( new partition ){ 2591 ** Gosub flush 2592 ** } 2593 ** Insert new row into eph table. 2594 ** if( first row of partition ){ 2595 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2596 ** regEnd = <expr2> 2597 ** regStart = <expr1> 2598 ** }else if( new group ){ 2599 ** ... 2600 ** } 2601 ** } 2602 ** 2603 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2604 ** AGGINVERSE step processes the current row of the relevant cursor and 2605 ** all subsequent rows belonging to the same group. 2606 ** 2607 ** RANGE window frames are a little different again. As for GROUPS, the 2608 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2609 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2610 ** basic cases: 2611 ** 2612 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2613 ** 2614 ** ... loop started by sqlite3WhereBegin() ... 2615 ** if( new partition ){ 2616 ** Gosub flush 2617 ** } 2618 ** Insert new row into eph table. 2619 ** if( first row of partition ){ 2620 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2621 ** regEnd = <expr2> 2622 ** regStart = <expr1> 2623 ** }else{ 2624 ** AGGSTEP 2625 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2626 ** RETURN_ROW 2627 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2628 ** AGGINVERSE 2629 ** } 2630 ** } 2631 ** } 2632 ** } 2633 ** flush: 2634 ** AGGSTEP 2635 ** while( 1 ){ 2636 ** RETURN ROW 2637 ** if( csrCurrent is EOF ) break; 2638 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2639 ** AGGINVERSE 2640 ** } 2641 ** } 2642 ** } 2643 ** 2644 ** In the above notation, "csr.key" means the current value of the ORDER BY 2645 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2646 ** or <expr PRECEDING) read from cursor csr. 2647 ** 2648 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2649 ** 2650 ** ... loop started by sqlite3WhereBegin() ... 2651 ** if( new partition ){ 2652 ** Gosub flush 2653 ** } 2654 ** Insert new row into eph table. 2655 ** if( first row of partition ){ 2656 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2657 ** regEnd = <expr2> 2658 ** regStart = <expr1> 2659 ** }else{ 2660 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2661 ** AGGSTEP 2662 ** } 2663 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2664 ** AGGINVERSE 2665 ** } 2666 ** RETURN_ROW 2667 ** } 2668 ** } 2669 ** flush: 2670 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2671 ** AGGSTEP 2672 ** } 2673 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2674 ** AGGINVERSE 2675 ** } 2676 ** RETURN_ROW 2677 ** 2678 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2679 ** 2680 ** ... loop started by sqlite3WhereBegin() ... 2681 ** if( new partition ){ 2682 ** Gosub flush 2683 ** } 2684 ** Insert new row into eph table. 2685 ** if( first row of partition ){ 2686 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2687 ** regEnd = <expr2> 2688 ** regStart = <expr1> 2689 ** }else{ 2690 ** AGGSTEP 2691 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2692 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2693 ** AGGINVERSE 2694 ** } 2695 ** RETURN_ROW 2696 ** } 2697 ** } 2698 ** } 2699 ** flush: 2700 ** AGGSTEP 2701 ** while( 1 ){ 2702 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2703 ** AGGINVERSE 2704 ** if( eof ) break "while( 1 )" loop. 2705 ** } 2706 ** RETURN_ROW 2707 ** } 2708 ** while( !eof csrCurrent ){ 2709 ** RETURN_ROW 2710 ** } 2711 ** 2712 ** The text above leaves out many details. Refer to the code and comments 2713 ** below for a more complete picture. 2714 */ 2715 void sqlite3WindowCodeStep( 2716 Parse *pParse, /* Parse context */ 2717 Select *p, /* Rewritten SELECT statement */ 2718 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2719 int regGosub, /* Register for OP_Gosub */ 2720 int addrGosub /* OP_Gosub here to return each row */ 2721 ){ 2722 Window *pMWin = p->pWin; 2723 ExprList *pOrderBy = pMWin->pOrderBy; 2724 Vdbe *v = sqlite3GetVdbe(pParse); 2725 int csrWrite; /* Cursor used to write to eph. table */ 2726 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2727 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2728 int iInput; /* To iterate through sub cols */ 2729 int addrNe; /* Address of OP_Ne */ 2730 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2731 int addrInteger = 0; /* Address of OP_Integer */ 2732 int addrEmpty; /* Address of OP_Rewind in flush: */ 2733 int regNew; /* Array of registers holding new input row */ 2734 int regRecord; /* regNew array in record form */ 2735 int regRowid; /* Rowid for regRecord in eph table */ 2736 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2737 int regPeer = 0; /* Peer values for current row */ 2738 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2739 WindowCodeArg s; /* Context object for sub-routines */ 2740 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2741 int regStart = 0; /* Value of <expr> PRECEDING */ 2742 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2743 2744 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2745 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2746 ); 2747 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2748 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2749 ); 2750 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2751 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2752 || pMWin->eExclude==TK_NO 2753 ); 2754 2755 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2756 2757 /* Fill in the context object */ 2758 memset(&s, 0, sizeof(WindowCodeArg)); 2759 s.pParse = pParse; 2760 s.pMWin = pMWin; 2761 s.pVdbe = v; 2762 s.regGosub = regGosub; 2763 s.addrGosub = addrGosub; 2764 s.current.csr = pMWin->iEphCsr; 2765 csrWrite = s.current.csr+1; 2766 s.start.csr = s.current.csr+2; 2767 s.end.csr = s.current.csr+3; 2768 2769 /* Figure out when rows may be deleted from the ephemeral table. There 2770 ** are four options - they may never be deleted (eDelete==0), they may 2771 ** be deleted as soon as they are no longer part of the window frame 2772 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2773 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2774 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2775 switch( pMWin->eStart ){ 2776 case TK_FOLLOWING: 2777 if( pMWin->eFrmType!=TK_RANGE 2778 && windowExprGtZero(pParse, pMWin->pStart) 2779 ){ 2780 s.eDelete = WINDOW_RETURN_ROW; 2781 } 2782 break; 2783 case TK_UNBOUNDED: 2784 if( windowCacheFrame(pMWin)==0 ){ 2785 if( pMWin->eEnd==TK_PRECEDING ){ 2786 if( pMWin->eFrmType!=TK_RANGE 2787 && windowExprGtZero(pParse, pMWin->pEnd) 2788 ){ 2789 s.eDelete = WINDOW_AGGSTEP; 2790 } 2791 }else{ 2792 s.eDelete = WINDOW_RETURN_ROW; 2793 } 2794 } 2795 break; 2796 default: 2797 s.eDelete = WINDOW_AGGINVERSE; 2798 break; 2799 } 2800 2801 /* Allocate registers for the array of values from the sub-query, the 2802 ** samve values in record form, and the rowid used to insert said record 2803 ** into the ephemeral table. */ 2804 regNew = pParse->nMem+1; 2805 pParse->nMem += nInput; 2806 regRecord = ++pParse->nMem; 2807 regRowid = ++pParse->nMem; 2808 2809 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2810 ** clause, allocate registers to store the results of evaluating each 2811 ** <expr>. */ 2812 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2813 regStart = ++pParse->nMem; 2814 } 2815 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2816 regEnd = ++pParse->nMem; 2817 } 2818 2819 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2820 ** registers to store copies of the ORDER BY expressions (peer values) 2821 ** for the main loop, and for each cursor (start, current and end). */ 2822 if( pMWin->eFrmType!=TK_ROWS ){ 2823 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2824 regNewPeer = regNew + pMWin->nBufferCol; 2825 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2826 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2827 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2828 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2829 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2830 } 2831 2832 /* Load the column values for the row returned by the sub-select 2833 ** into an array of registers starting at regNew. Assemble them into 2834 ** a record in register regRecord. */ 2835 for(iInput=0; iInput<nInput; iInput++){ 2836 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2837 } 2838 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2839 2840 /* An input row has just been read into an array of registers starting 2841 ** at regNew. If the window has a PARTITION clause, this block generates 2842 ** VM code to check if the input row is the start of a new partition. 2843 ** If so, it does an OP_Gosub to an address to be filled in later. The 2844 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2845 if( pMWin->pPartition ){ 2846 int addr; 2847 ExprList *pPart = pMWin->pPartition; 2848 int nPart = pPart->nExpr; 2849 int regNewPart = regNew + pMWin->nBufferCol; 2850 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2851 2852 regFlushPart = ++pParse->nMem; 2853 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2854 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2855 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2856 VdbeCoverageEqNe(v); 2857 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2858 VdbeComment((v, "call flush_partition")); 2859 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2860 } 2861 2862 /* Insert the new row into the ephemeral table */ 2863 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2864 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2865 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2866 VdbeCoverageNeverNull(v); 2867 2868 /* This block is run for the first row of each partition */ 2869 s.regArg = windowInitAccum(pParse, pMWin); 2870 2871 if( regStart ){ 2872 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2873 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2874 } 2875 if( regEnd ){ 2876 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2877 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2878 } 2879 2880 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2881 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2882 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2883 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2884 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2885 windowAggFinal(&s, 0); 2886 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2887 VdbeCoverageNeverTaken(v); 2888 windowReturnOneRow(&s); 2889 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2890 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2891 sqlite3VdbeJumpHere(v, addrGe); 2892 } 2893 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2894 assert( pMWin->eEnd==TK_FOLLOWING ); 2895 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2896 } 2897 2898 if( pMWin->eStart!=TK_UNBOUNDED ){ 2899 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2900 VdbeCoverageNeverTaken(v); 2901 } 2902 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2903 VdbeCoverageNeverTaken(v); 2904 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2905 VdbeCoverageNeverTaken(v); 2906 if( regPeer && pOrderBy ){ 2907 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2908 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2909 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2910 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2911 } 2912 2913 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2914 2915 sqlite3VdbeJumpHere(v, addrNe); 2916 2917 /* Beginning of the block executed for the second and subsequent rows. */ 2918 if( regPeer ){ 2919 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2920 } 2921 if( pMWin->eStart==TK_FOLLOWING ){ 2922 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2923 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2924 if( pMWin->eFrmType==TK_RANGE ){ 2925 int lbl = sqlite3VdbeMakeLabel(pParse); 2926 int addrNext = sqlite3VdbeCurrentAddr(v); 2927 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2928 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2929 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2930 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2931 sqlite3VdbeResolveLabel(v, lbl); 2932 }else{ 2933 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2934 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2935 } 2936 } 2937 }else 2938 if( pMWin->eEnd==TK_PRECEDING ){ 2939 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2940 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2941 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2942 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2943 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2944 }else{ 2945 int addr = 0; 2946 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2947 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2948 if( pMWin->eFrmType==TK_RANGE ){ 2949 int lbl = 0; 2950 addr = sqlite3VdbeCurrentAddr(v); 2951 if( regEnd ){ 2952 lbl = sqlite3VdbeMakeLabel(pParse); 2953 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2954 } 2955 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2956 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2957 if( regEnd ){ 2958 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2959 sqlite3VdbeResolveLabel(v, lbl); 2960 } 2961 }else{ 2962 if( regEnd ){ 2963 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2964 VdbeCoverage(v); 2965 } 2966 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2967 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2968 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2969 } 2970 } 2971 } 2972 2973 /* End of the main input loop */ 2974 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2975 sqlite3WhereEnd(pWInfo); 2976 2977 /* Fall through */ 2978 if( pMWin->pPartition ){ 2979 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2980 sqlite3VdbeJumpHere(v, addrGosubFlush); 2981 } 2982 2983 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2984 VdbeCoverage(v); 2985 if( pMWin->eEnd==TK_PRECEDING ){ 2986 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2987 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2988 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2989 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2990 }else if( pMWin->eStart==TK_FOLLOWING ){ 2991 int addrStart; 2992 int addrBreak1; 2993 int addrBreak2; 2994 int addrBreak3; 2995 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2996 if( pMWin->eFrmType==TK_RANGE ){ 2997 addrStart = sqlite3VdbeCurrentAddr(v); 2998 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2999 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3000 }else 3001 if( pMWin->eEnd==TK_UNBOUNDED ){ 3002 addrStart = sqlite3VdbeCurrentAddr(v); 3003 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3004 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3005 }else{ 3006 assert( pMWin->eEnd==TK_FOLLOWING ); 3007 addrStart = sqlite3VdbeCurrentAddr(v); 3008 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3009 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3010 } 3011 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3012 sqlite3VdbeJumpHere(v, addrBreak2); 3013 addrStart = sqlite3VdbeCurrentAddr(v); 3014 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3015 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3016 sqlite3VdbeJumpHere(v, addrBreak1); 3017 sqlite3VdbeJumpHere(v, addrBreak3); 3018 }else{ 3019 int addrBreak; 3020 int addrStart; 3021 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3022 addrStart = sqlite3VdbeCurrentAddr(v); 3023 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3024 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3025 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3026 sqlite3VdbeJumpHere(v, addrBreak); 3027 } 3028 sqlite3VdbeJumpHere(v, addrEmpty); 3029 3030 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3031 if( pMWin->pPartition ){ 3032 if( pMWin->regStartRowid ){ 3033 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3034 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3035 } 3036 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3037 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3038 } 3039 } 3040 3041 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3042