xref: /sqlite-3.40.0/src/window.c (revision 4c4a2572)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* no break */ deliberate_fall_through
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( p->pSub ){
792         int i;
793         for(i=0; i<p->pSub->nExpr; i++){
794           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795             iCol = i;
796             break;
797           }
798         }
799       }
800       if( iCol<0 ){
801         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
803         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
804       }
805       if( p->pSub ){
806         int f = pExpr->flags & EP_Collate;
807         assert( ExprHasProperty(pExpr, EP_Static)==0 );
808         ExprSetProperty(pExpr, EP_Static);
809         sqlite3ExprDelete(pParse->db, pExpr);
810         ExprClearProperty(pExpr, EP_Static);
811         memset(pExpr, 0, sizeof(Expr));
812 
813         pExpr->op = TK_COLUMN;
814         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
815         pExpr->iTable = p->pWin->iEphCsr;
816         pExpr->y.pTab = p->pTab;
817         pExpr->flags = f;
818       }
819       if( pParse->db->mallocFailed ) return WRC_Abort;
820       break;
821     }
822 
823     default: /* no-op */
824       break;
825   }
826 
827   return WRC_Continue;
828 }
829 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
830   struct WindowRewrite *p = pWalker->u.pRewrite;
831   Select *pSave = p->pSubSelect;
832   if( pSave==pSelect ){
833     return WRC_Continue;
834   }else{
835     p->pSubSelect = pSelect;
836     sqlite3WalkSelect(pWalker, pSelect);
837     p->pSubSelect = pSave;
838   }
839   return WRC_Prune;
840 }
841 
842 
843 /*
844 ** Iterate through each expression in expression-list pEList. For each:
845 **
846 **   * TK_COLUMN,
847 **   * aggregate function, or
848 **   * window function with a Window object that is not a member of the
849 **     Window list passed as the second argument (pWin).
850 **
851 ** Append the node to output expression-list (*ppSub). And replace it
852 ** with a TK_COLUMN that reads the (N-1)th element of table
853 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
854 ** appending the new one.
855 */
856 static void selectWindowRewriteEList(
857   Parse *pParse,
858   Window *pWin,
859   SrcList *pSrc,
860   ExprList *pEList,               /* Rewrite expressions in this list */
861   Table *pTab,
862   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
863 ){
864   Walker sWalker;
865   WindowRewrite sRewrite;
866 
867   assert( pWin!=0 );
868   memset(&sWalker, 0, sizeof(Walker));
869   memset(&sRewrite, 0, sizeof(WindowRewrite));
870 
871   sRewrite.pSub = *ppSub;
872   sRewrite.pWin = pWin;
873   sRewrite.pSrc = pSrc;
874   sRewrite.pTab = pTab;
875 
876   sWalker.pParse = pParse;
877   sWalker.xExprCallback = selectWindowRewriteExprCb;
878   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
879   sWalker.u.pRewrite = &sRewrite;
880 
881   (void)sqlite3WalkExprList(&sWalker, pEList);
882 
883   *ppSub = sRewrite.pSub;
884 }
885 
886 /*
887 ** Append a copy of each expression in expression-list pAppend to
888 ** expression list pList. Return a pointer to the result list.
889 */
890 static ExprList *exprListAppendList(
891   Parse *pParse,          /* Parsing context */
892   ExprList *pList,        /* List to which to append. Might be NULL */
893   ExprList *pAppend,      /* List of values to append. Might be NULL */
894   int bIntToNull
895 ){
896   if( pAppend ){
897     int i;
898     int nInit = pList ? pList->nExpr : 0;
899     for(i=0; i<pAppend->nExpr; i++){
900       sqlite3 *db = pParse->db;
901       Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
902       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
903       if( db->mallocFailed ){
904         sqlite3ExprDelete(db, pDup);
905         break;
906       }
907       if( bIntToNull ){
908         int iDummy;
909         Expr *pSub;
910         for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){
911           assert( pSub );
912         }
913         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
914           pSub->op = TK_NULL;
915           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
916           pSub->u.zToken = 0;
917         }
918       }
919       pList = sqlite3ExprListAppend(pParse, pList, pDup);
920       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
921     }
922   }
923   return pList;
924 }
925 
926 /*
927 ** When rewriting a query, if the new subquery in the FROM clause
928 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
929 ** then we have to increase the Expr->op2 values of those nodes
930 ** due to the extra subquery layer that was added.
931 **
932 ** See also the incrAggDepth() routine in resolve.c
933 */
934 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
935   if( pExpr->op==TK_AGG_FUNCTION
936    && pExpr->op2>=pWalker->walkerDepth
937   ){
938     pExpr->op2++;
939   }
940   return WRC_Continue;
941 }
942 
943 /*
944 ** If the SELECT statement passed as the second argument does not invoke
945 ** any SQL window functions, this function is a no-op. Otherwise, it
946 ** rewrites the SELECT statement so that window function xStep functions
947 ** are invoked in the correct order as described under "SELECT REWRITING"
948 ** at the top of this file.
949 */
950 int sqlite3WindowRewrite(Parse *pParse, Select *p){
951   int rc = SQLITE_OK;
952   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
953     Vdbe *v = sqlite3GetVdbe(pParse);
954     sqlite3 *db = pParse->db;
955     Select *pSub = 0;             /* The subquery */
956     SrcList *pSrc = p->pSrc;
957     Expr *pWhere = p->pWhere;
958     ExprList *pGroupBy = p->pGroupBy;
959     Expr *pHaving = p->pHaving;
960     ExprList *pSort = 0;
961 
962     ExprList *pSublist = 0;       /* Expression list for sub-query */
963     Window *pMWin = p->pWin;      /* Main window object */
964     Window *pWin;                 /* Window object iterator */
965     Table *pTab;
966     Walker w;
967 
968     u32 selFlags = p->selFlags;
969 
970     pTab = sqlite3DbMallocZero(db, sizeof(Table));
971     if( pTab==0 ){
972       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
973     }
974     sqlite3AggInfoPersistWalkerInit(&w, pParse);
975     sqlite3WalkSelect(&w, p);
976 
977     p->pSrc = 0;
978     p->pWhere = 0;
979     p->pGroupBy = 0;
980     p->pHaving = 0;
981     p->selFlags &= ~SF_Aggregate;
982     p->selFlags |= SF_WinRewrite;
983 
984     /* Create the ORDER BY clause for the sub-select. This is the concatenation
985     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
986     ** redundant, remove the ORDER BY from the parent SELECT.  */
987     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
988     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
989     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
990       int nSave = pSort->nExpr;
991       pSort->nExpr = p->pOrderBy->nExpr;
992       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
993         sqlite3ExprListDelete(db, p->pOrderBy);
994         p->pOrderBy = 0;
995       }
996       pSort->nExpr = nSave;
997     }
998 
999     /* Assign a cursor number for the ephemeral table used to buffer rows.
1000     ** The OpenEphemeral instruction is coded later, after it is known how
1001     ** many columns the table will have.  */
1002     pMWin->iEphCsr = pParse->nTab++;
1003     pParse->nTab += 3;
1004 
1005     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1006     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1007     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1008 
1009     /* Append the PARTITION BY and ORDER BY expressions to the to the
1010     ** sub-select expression list. They are required to figure out where
1011     ** boundaries for partitions and sets of peer rows lie.  */
1012     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1013     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1014 
1015     /* Append the arguments passed to each window function to the
1016     ** sub-select expression list. Also allocate two registers for each
1017     ** window function - one for the accumulator, another for interim
1018     ** results.  */
1019     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1020       ExprList *pArgs = pWin->pOwner->x.pList;
1021       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1022         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1023         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1024         pWin->bExprArgs = 1;
1025       }else{
1026         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1027         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1028       }
1029       if( pWin->pFilter ){
1030         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1031         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1032       }
1033       pWin->regAccum = ++pParse->nMem;
1034       pWin->regResult = ++pParse->nMem;
1035       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1036     }
1037 
1038     /* If there is no ORDER BY or PARTITION BY clause, and the window
1039     ** function accepts zero arguments, and there are no other columns
1040     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1041     ** that pSublist is still NULL here. Add a constant expression here to
1042     ** keep everything legal in this case.
1043     */
1044     if( pSublist==0 ){
1045       pSublist = sqlite3ExprListAppend(pParse, 0,
1046         sqlite3Expr(db, TK_INTEGER, "0")
1047       );
1048     }
1049 
1050     pSub = sqlite3SelectNew(
1051         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1052     );
1053     SELECTTRACE(1,pParse,pSub,
1054        ("New window-function subquery in FROM clause of (%u/%p)\n",
1055        p->selId, p));
1056     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1057     if( p->pSrc ){
1058       Table *pTab2;
1059       p->pSrc->a[0].pSelect = pSub;
1060       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1061       pSub->selFlags |= SF_Expanded;
1062       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1063       pSub->selFlags |= (selFlags & SF_Aggregate);
1064       if( pTab2==0 ){
1065         /* Might actually be some other kind of error, but in that case
1066         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1067         ** the correct error message regardless. */
1068         rc = SQLITE_NOMEM;
1069       }else{
1070         memcpy(pTab, pTab2, sizeof(Table));
1071         pTab->tabFlags |= TF_Ephemeral;
1072         p->pSrc->a[0].pTab = pTab;
1073         pTab = pTab2;
1074         memset(&w, 0, sizeof(w));
1075         w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1076         w.xSelectCallback = sqlite3WalkerDepthIncrease;
1077         w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1078         sqlite3WalkSelect(&w, pSub);
1079       }
1080     }else{
1081       sqlite3SelectDelete(db, pSub);
1082     }
1083     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1084     sqlite3DbFree(db, pTab);
1085   }
1086 
1087   if( rc ){
1088     if( pParse->nErr==0 ){
1089       assert( pParse->db->mallocFailed );
1090       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1091     }
1092   }
1093   return rc;
1094 }
1095 
1096 /*
1097 ** Unlink the Window object from the Select to which it is attached,
1098 ** if it is attached.
1099 */
1100 void sqlite3WindowUnlinkFromSelect(Window *p){
1101   if( p->ppThis ){
1102     *p->ppThis = p->pNextWin;
1103     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1104     p->ppThis = 0;
1105   }
1106 }
1107 
1108 /*
1109 ** Free the Window object passed as the second argument.
1110 */
1111 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1112   if( p ){
1113     sqlite3WindowUnlinkFromSelect(p);
1114     sqlite3ExprDelete(db, p->pFilter);
1115     sqlite3ExprListDelete(db, p->pPartition);
1116     sqlite3ExprListDelete(db, p->pOrderBy);
1117     sqlite3ExprDelete(db, p->pEnd);
1118     sqlite3ExprDelete(db, p->pStart);
1119     sqlite3DbFree(db, p->zName);
1120     sqlite3DbFree(db, p->zBase);
1121     sqlite3DbFree(db, p);
1122   }
1123 }
1124 
1125 /*
1126 ** Free the linked list of Window objects starting at the second argument.
1127 */
1128 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1129   while( p ){
1130     Window *pNext = p->pNextWin;
1131     sqlite3WindowDelete(db, p);
1132     p = pNext;
1133   }
1134 }
1135 
1136 /*
1137 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1138 ** value should be a non-negative integer.  If the value is not a
1139 ** constant, change it to NULL.  The fact that it is then a non-negative
1140 ** integer will be caught later.  But it is important not to leave
1141 ** variable values in the expression tree.
1142 */
1143 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1144   if( 0==sqlite3ExprIsConstant(pExpr) ){
1145     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1146     sqlite3ExprDelete(pParse->db, pExpr);
1147     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1148   }
1149   return pExpr;
1150 }
1151 
1152 /*
1153 ** Allocate and return a new Window object describing a Window Definition.
1154 */
1155 Window *sqlite3WindowAlloc(
1156   Parse *pParse,    /* Parsing context */
1157   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1158   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1159   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1160   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1161   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1162   u8 eExclude       /* EXCLUDE clause */
1163 ){
1164   Window *pWin = 0;
1165   int bImplicitFrame = 0;
1166 
1167   /* Parser assures the following: */
1168   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1169   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1170            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1171   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1172            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1173   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1174   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1175 
1176   if( eType==0 ){
1177     bImplicitFrame = 1;
1178     eType = TK_RANGE;
1179   }
1180 
1181   /* Additionally, the
1182   ** starting boundary type may not occur earlier in the following list than
1183   ** the ending boundary type:
1184   **
1185   **   UNBOUNDED PRECEDING
1186   **   <expr> PRECEDING
1187   **   CURRENT ROW
1188   **   <expr> FOLLOWING
1189   **   UNBOUNDED FOLLOWING
1190   **
1191   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1192   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1193   ** frame boundary.
1194   */
1195   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1196    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1197   ){
1198     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1199     goto windowAllocErr;
1200   }
1201 
1202   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1203   if( pWin==0 ) goto windowAllocErr;
1204   pWin->eFrmType = eType;
1205   pWin->eStart = eStart;
1206   pWin->eEnd = eEnd;
1207   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1208     eExclude = TK_NO;
1209   }
1210   pWin->eExclude = eExclude;
1211   pWin->bImplicitFrame = bImplicitFrame;
1212   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1213   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1214   return pWin;
1215 
1216 windowAllocErr:
1217   sqlite3ExprDelete(pParse->db, pEnd);
1218   sqlite3ExprDelete(pParse->db, pStart);
1219   return 0;
1220 }
1221 
1222 /*
1223 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1224 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1225 ** equivalent nul-terminated string.
1226 */
1227 Window *sqlite3WindowAssemble(
1228   Parse *pParse,
1229   Window *pWin,
1230   ExprList *pPartition,
1231   ExprList *pOrderBy,
1232   Token *pBase
1233 ){
1234   if( pWin ){
1235     pWin->pPartition = pPartition;
1236     pWin->pOrderBy = pOrderBy;
1237     if( pBase ){
1238       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1239     }
1240   }else{
1241     sqlite3ExprListDelete(pParse->db, pPartition);
1242     sqlite3ExprListDelete(pParse->db, pOrderBy);
1243   }
1244   return pWin;
1245 }
1246 
1247 /*
1248 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1249 ** is the base window. Earlier windows from the same WINDOW clause are
1250 ** stored in the linked list starting at pWin->pNextWin. This function
1251 ** either updates *pWin according to the base specification, or else
1252 ** leaves an error in pParse.
1253 */
1254 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1255   if( pWin->zBase ){
1256     sqlite3 *db = pParse->db;
1257     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1258     if( pExist ){
1259       const char *zErr = 0;
1260       /* Check for errors */
1261       if( pWin->pPartition ){
1262         zErr = "PARTITION clause";
1263       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1264         zErr = "ORDER BY clause";
1265       }else if( pExist->bImplicitFrame==0 ){
1266         zErr = "frame specification";
1267       }
1268       if( zErr ){
1269         sqlite3ErrorMsg(pParse,
1270             "cannot override %s of window: %s", zErr, pWin->zBase
1271         );
1272       }else{
1273         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1274         if( pExist->pOrderBy ){
1275           assert( pWin->pOrderBy==0 );
1276           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1277         }
1278         sqlite3DbFree(db, pWin->zBase);
1279         pWin->zBase = 0;
1280       }
1281     }
1282   }
1283 }
1284 
1285 /*
1286 ** Attach window object pWin to expression p.
1287 */
1288 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1289   if( p ){
1290     assert( p->op==TK_FUNCTION );
1291     assert( pWin );
1292     p->y.pWin = pWin;
1293     ExprSetProperty(p, EP_WinFunc);
1294     pWin->pOwner = p;
1295     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1296       sqlite3ErrorMsg(pParse,
1297           "DISTINCT is not supported for window functions"
1298       );
1299     }
1300   }else{
1301     sqlite3WindowDelete(pParse->db, pWin);
1302   }
1303 }
1304 
1305 /*
1306 ** Possibly link window pWin into the list at pSel->pWin (window functions
1307 ** to be processed as part of SELECT statement pSel). The window is linked
1308 ** in if either (a) there are no other windows already linked to this
1309 ** SELECT, or (b) the windows already linked use a compatible window frame.
1310 */
1311 void sqlite3WindowLink(Select *pSel, Window *pWin){
1312   if( pSel ){
1313     if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
1314       pWin->pNextWin = pSel->pWin;
1315       if( pSel->pWin ){
1316         pSel->pWin->ppThis = &pWin->pNextWin;
1317       }
1318       pSel->pWin = pWin;
1319       pWin->ppThis = &pSel->pWin;
1320     }else{
1321       if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
1322         pSel->selFlags |= SF_MultiPart;
1323       }
1324     }
1325   }
1326 }
1327 
1328 /*
1329 ** Return 0 if the two window objects are identical, 1 if they are
1330 ** different, or 2 if it cannot be determined if the objects are identical
1331 ** or not. Identical window objects can be processed in a single scan.
1332 */
1333 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1334   int res;
1335   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1336   if( p1->eFrmType!=p2->eFrmType ) return 1;
1337   if( p1->eStart!=p2->eStart ) return 1;
1338   if( p1->eEnd!=p2->eEnd ) return 1;
1339   if( p1->eExclude!=p2->eExclude ) return 1;
1340   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1341   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1342   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1343     return res;
1344   }
1345   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1346     return res;
1347   }
1348   if( bFilter ){
1349     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1350       return res;
1351     }
1352   }
1353   return 0;
1354 }
1355 
1356 
1357 /*
1358 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1359 ** to begin iterating through the sub-query results. It is used to allocate
1360 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1361 */
1362 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1363   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1364   Window *pMWin = pSelect->pWin;
1365   Window *pWin;
1366   Vdbe *v = sqlite3GetVdbe(pParse);
1367 
1368   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1369   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1370   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1371   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1372 
1373   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1374   ** said registers to NULL.  */
1375   if( pMWin->pPartition ){
1376     int nExpr = pMWin->pPartition->nExpr;
1377     pMWin->regPart = pParse->nMem+1;
1378     pParse->nMem += nExpr;
1379     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1380   }
1381 
1382   pMWin->regOne = ++pParse->nMem;
1383   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1384 
1385   if( pMWin->eExclude ){
1386     pMWin->regStartRowid = ++pParse->nMem;
1387     pMWin->regEndRowid = ++pParse->nMem;
1388     pMWin->csrApp = pParse->nTab++;
1389     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1390     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1391     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1392     return;
1393   }
1394 
1395   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1396     FuncDef *p = pWin->pFunc;
1397     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1398       /* The inline versions of min() and max() require a single ephemeral
1399       ** table and 3 registers. The registers are used as follows:
1400       **
1401       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1402       **   regApp+1: integer value used to ensure keys are unique
1403       **   regApp+2: output of MakeRecord
1404       */
1405       ExprList *pList = pWin->pOwner->x.pList;
1406       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1407       pWin->csrApp = pParse->nTab++;
1408       pWin->regApp = pParse->nMem+1;
1409       pParse->nMem += 3;
1410       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1411         assert( pKeyInfo->aSortFlags[0]==0 );
1412         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1413       }
1414       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1415       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1416       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1417     }
1418     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1419       /* Allocate two registers at pWin->regApp. These will be used to
1420       ** store the start and end index of the current frame.  */
1421       pWin->regApp = pParse->nMem+1;
1422       pWin->csrApp = pParse->nTab++;
1423       pParse->nMem += 2;
1424       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1425     }
1426     else if( p->zName==leadName || p->zName==lagName ){
1427       pWin->csrApp = pParse->nTab++;
1428       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1429     }
1430   }
1431 }
1432 
1433 #define WINDOW_STARTING_INT  0
1434 #define WINDOW_ENDING_INT    1
1435 #define WINDOW_NTH_VALUE_INT 2
1436 #define WINDOW_STARTING_NUM  3
1437 #define WINDOW_ENDING_NUM    4
1438 
1439 /*
1440 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1441 ** value of the second argument to nth_value() (eCond==2) has just been
1442 ** evaluated and the result left in register reg. This function generates VM
1443 ** code to check that the value is a non-negative integer and throws an
1444 ** exception if it is not.
1445 */
1446 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1447   static const char *azErr[] = {
1448     "frame starting offset must be a non-negative integer",
1449     "frame ending offset must be a non-negative integer",
1450     "second argument to nth_value must be a positive integer",
1451     "frame starting offset must be a non-negative number",
1452     "frame ending offset must be a non-negative number",
1453   };
1454   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1455   Vdbe *v = sqlite3GetVdbe(pParse);
1456   int regZero = sqlite3GetTempReg(pParse);
1457   assert( eCond>=0 && eCond<ArraySize(azErr) );
1458   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1459   if( eCond>=WINDOW_STARTING_NUM ){
1460     int regString = sqlite3GetTempReg(pParse);
1461     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1462     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1463     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1464     VdbeCoverage(v);
1465     assert( eCond==3 || eCond==4 );
1466     VdbeCoverageIf(v, eCond==3);
1467     VdbeCoverageIf(v, eCond==4);
1468   }else{
1469     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1470     VdbeCoverage(v);
1471     assert( eCond==0 || eCond==1 || eCond==2 );
1472     VdbeCoverageIf(v, eCond==0);
1473     VdbeCoverageIf(v, eCond==1);
1474     VdbeCoverageIf(v, eCond==2);
1475   }
1476   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1477   sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
1478   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1479   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1480   VdbeCoverageNeverNullIf(v, eCond==2);
1481   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1482   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1483   sqlite3MayAbort(pParse);
1484   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1485   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1486   sqlite3ReleaseTempReg(pParse, regZero);
1487 }
1488 
1489 /*
1490 ** Return the number of arguments passed to the window-function associated
1491 ** with the object passed as the only argument to this function.
1492 */
1493 static int windowArgCount(Window *pWin){
1494   ExprList *pList = pWin->pOwner->x.pList;
1495   return (pList ? pList->nExpr : 0);
1496 }
1497 
1498 typedef struct WindowCodeArg WindowCodeArg;
1499 typedef struct WindowCsrAndReg WindowCsrAndReg;
1500 
1501 /*
1502 ** See comments above struct WindowCodeArg.
1503 */
1504 struct WindowCsrAndReg {
1505   int csr;                        /* Cursor number */
1506   int reg;                        /* First in array of peer values */
1507 };
1508 
1509 /*
1510 ** A single instance of this structure is allocated on the stack by
1511 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1512 ** routines. This is to reduce the number of arguments required by each
1513 ** helper function.
1514 **
1515 ** regArg:
1516 **   Each window function requires an accumulator register (just as an
1517 **   ordinary aggregate function does). This variable is set to the first
1518 **   in an array of accumulator registers - one for each window function
1519 **   in the WindowCodeArg.pMWin list.
1520 **
1521 ** eDelete:
1522 **   The window functions implementation sometimes caches the input rows
1523 **   that it processes in a temporary table. If it is not zero, this
1524 **   variable indicates when rows may be removed from the temp table (in
1525 **   order to reduce memory requirements - it would always be safe just
1526 **   to leave them there). Possible values for eDelete are:
1527 **
1528 **      WINDOW_RETURN_ROW:
1529 **        An input row can be discarded after it is returned to the caller.
1530 **
1531 **      WINDOW_AGGINVERSE:
1532 **        An input row can be discarded after the window functions xInverse()
1533 **        callbacks have been invoked in it.
1534 **
1535 **      WINDOW_AGGSTEP:
1536 **        An input row can be discarded after the window functions xStep()
1537 **        callbacks have been invoked in it.
1538 **
1539 ** start,current,end
1540 **   Consider a window-frame similar to the following:
1541 **
1542 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1543 **
1544 **   The windows functions implmentation caches the input rows in a temp
1545 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1546 **   aggressively removes rows once they are no longer required, but that's
1547 **   a mere detail). It keeps three cursors open on the temp table. One
1548 **   (current) that points to the next row to return to the query engine
1549 **   once its window function values have been calculated. Another (end)
1550 **   points to the next row to call the xStep() method of each window function
1551 **   on (so that it is 2 groups ahead of current). And a third (start) that
1552 **   points to the next row to call the xInverse() method of each window
1553 **   function on.
1554 **
1555 **   Each cursor (start, current and end) consists of a VDBE cursor
1556 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1557 **   WindowCodeArg.reg) that always contains a copy of the peer values
1558 **   read from the corresponding cursor.
1559 **
1560 **   Depending on the window-frame in question, all three cursors may not
1561 **   be required. In this case both WindowCodeArg.csr and reg are set to
1562 **   0.
1563 */
1564 struct WindowCodeArg {
1565   Parse *pParse;             /* Parse context */
1566   Window *pMWin;             /* First in list of functions being processed */
1567   Vdbe *pVdbe;               /* VDBE object */
1568   int addrGosub;             /* OP_Gosub to this address to return one row */
1569   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1570   int regArg;                /* First in array of accumulator registers */
1571   int eDelete;               /* See above */
1572 
1573   WindowCsrAndReg start;
1574   WindowCsrAndReg current;
1575   WindowCsrAndReg end;
1576 };
1577 
1578 /*
1579 ** Generate VM code to read the window frames peer values from cursor csr into
1580 ** an array of registers starting at reg.
1581 */
1582 static void windowReadPeerValues(
1583   WindowCodeArg *p,
1584   int csr,
1585   int reg
1586 ){
1587   Window *pMWin = p->pMWin;
1588   ExprList *pOrderBy = pMWin->pOrderBy;
1589   if( pOrderBy ){
1590     Vdbe *v = sqlite3GetVdbe(p->pParse);
1591     ExprList *pPart = pMWin->pPartition;
1592     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1593     int i;
1594     for(i=0; i<pOrderBy->nExpr; i++){
1595       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1596     }
1597   }
1598 }
1599 
1600 /*
1601 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1602 ** xInverse (if bInverse is non-zero) for each window function in the
1603 ** linked list starting at pMWin. Or, for built-in window functions
1604 ** that do not use the standard function API, generate the required
1605 ** inline VM code.
1606 **
1607 ** If argument csr is greater than or equal to 0, then argument reg is
1608 ** the first register in an array of registers guaranteed to be large
1609 ** enough to hold the array of arguments for each function. In this case
1610 ** the arguments are extracted from the current row of csr into the
1611 ** array of registers before invoking OP_AggStep or OP_AggInverse
1612 **
1613 ** Or, if csr is less than zero, then the array of registers at reg is
1614 ** already populated with all columns from the current row of the sub-query.
1615 **
1616 ** If argument regPartSize is non-zero, then it is a register containing the
1617 ** number of rows in the current partition.
1618 */
1619 static void windowAggStep(
1620   WindowCodeArg *p,
1621   Window *pMWin,                  /* Linked list of window functions */
1622   int csr,                        /* Read arguments from this cursor */
1623   int bInverse,                   /* True to invoke xInverse instead of xStep */
1624   int reg                         /* Array of registers */
1625 ){
1626   Parse *pParse = p->pParse;
1627   Vdbe *v = sqlite3GetVdbe(pParse);
1628   Window *pWin;
1629   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1630     FuncDef *pFunc = pWin->pFunc;
1631     int regArg;
1632     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1633     int i;
1634 
1635     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1636 
1637     /* All OVER clauses in the same window function aggregate step must
1638     ** be the same. */
1639     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1640 
1641     for(i=0; i<nArg; i++){
1642       if( i!=1 || pFunc->zName!=nth_valueName ){
1643         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1644       }else{
1645         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1646       }
1647     }
1648     regArg = reg;
1649 
1650     if( pMWin->regStartRowid==0
1651      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1652      && (pWin->eStart!=TK_UNBOUNDED)
1653     ){
1654       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1655       VdbeCoverage(v);
1656       if( bInverse==0 ){
1657         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1658         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1659         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1660         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1661       }else{
1662         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1663         VdbeCoverageNeverTaken(v);
1664         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1665         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1666       }
1667       sqlite3VdbeJumpHere(v, addrIsNull);
1668     }else if( pWin->regApp ){
1669       assert( pFunc->zName==nth_valueName
1670            || pFunc->zName==first_valueName
1671       );
1672       assert( bInverse==0 || bInverse==1 );
1673       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1674     }else if( pFunc->xSFunc!=noopStepFunc ){
1675       int addrIf = 0;
1676       if( pWin->pFilter ){
1677         int regTmp;
1678         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1679         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1680         regTmp = sqlite3GetTempReg(pParse);
1681         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1682         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1683         VdbeCoverage(v);
1684         sqlite3ReleaseTempReg(pParse, regTmp);
1685       }
1686 
1687       if( pWin->bExprArgs ){
1688         int iStart = sqlite3VdbeCurrentAddr(v);
1689         VdbeOp *pOp, *pEnd;
1690 
1691         nArg = pWin->pOwner->x.pList->nExpr;
1692         regArg = sqlite3GetTempRange(pParse, nArg);
1693         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1694 
1695         pEnd = sqlite3VdbeGetOp(v, -1);
1696         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1697           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1698             pOp->p1 = csr;
1699           }
1700         }
1701       }
1702       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1703         CollSeq *pColl;
1704         assert( nArg>0 );
1705         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1706         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1707       }
1708       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1709                         bInverse, regArg, pWin->regAccum);
1710       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1711       sqlite3VdbeChangeP5(v, (u8)nArg);
1712       if( pWin->bExprArgs ){
1713         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1714       }
1715       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1716     }
1717   }
1718 }
1719 
1720 /*
1721 ** Values that may be passed as the second argument to windowCodeOp().
1722 */
1723 #define WINDOW_RETURN_ROW 1
1724 #define WINDOW_AGGINVERSE 2
1725 #define WINDOW_AGGSTEP    3
1726 
1727 /*
1728 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1729 ** (bFin==1) for each window function in the linked list starting at
1730 ** pMWin. Or, for built-in window-functions that do not use the standard
1731 ** API, generate the equivalent VM code.
1732 */
1733 static void windowAggFinal(WindowCodeArg *p, int bFin){
1734   Parse *pParse = p->pParse;
1735   Window *pMWin = p->pMWin;
1736   Vdbe *v = sqlite3GetVdbe(pParse);
1737   Window *pWin;
1738 
1739   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1740     if( pMWin->regStartRowid==0
1741      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1742      && (pWin->eStart!=TK_UNBOUNDED)
1743     ){
1744       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1745       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1746       VdbeCoverage(v);
1747       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1748       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1749     }else if( pWin->regApp ){
1750       assert( pMWin->regStartRowid==0 );
1751     }else{
1752       int nArg = windowArgCount(pWin);
1753       if( bFin ){
1754         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1755         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1756         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1757         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1758       }else{
1759         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1760         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1761       }
1762     }
1763   }
1764 }
1765 
1766 /*
1767 ** Generate code to calculate the current values of all window functions in the
1768 ** p->pMWin list by doing a full scan of the current window frame. Store the
1769 ** results in the Window.regResult registers, ready to return the upper
1770 ** layer.
1771 */
1772 static void windowFullScan(WindowCodeArg *p){
1773   Window *pWin;
1774   Parse *pParse = p->pParse;
1775   Window *pMWin = p->pMWin;
1776   Vdbe *v = p->pVdbe;
1777 
1778   int regCRowid = 0;              /* Current rowid value */
1779   int regCPeer = 0;               /* Current peer values */
1780   int regRowid = 0;               /* AggStep rowid value */
1781   int regPeer = 0;                /* AggStep peer values */
1782 
1783   int nPeer;
1784   int lblNext;
1785   int lblBrk;
1786   int addrNext;
1787   int csr;
1788 
1789   VdbeModuleComment((v, "windowFullScan begin"));
1790 
1791   assert( pMWin!=0 );
1792   csr = pMWin->csrApp;
1793   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1794 
1795   lblNext = sqlite3VdbeMakeLabel(pParse);
1796   lblBrk = sqlite3VdbeMakeLabel(pParse);
1797 
1798   regCRowid = sqlite3GetTempReg(pParse);
1799   regRowid = sqlite3GetTempReg(pParse);
1800   if( nPeer ){
1801     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1802     regPeer = sqlite3GetTempRange(pParse, nPeer);
1803   }
1804 
1805   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1806   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1807 
1808   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1809     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1810   }
1811 
1812   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1813   VdbeCoverage(v);
1814   addrNext = sqlite3VdbeCurrentAddr(v);
1815   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1816   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1817   VdbeCoverageNeverNull(v);
1818 
1819   if( pMWin->eExclude==TK_CURRENT ){
1820     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1821     VdbeCoverageNeverNull(v);
1822   }else if( pMWin->eExclude!=TK_NO ){
1823     int addr;
1824     int addrEq = 0;
1825     KeyInfo *pKeyInfo = 0;
1826 
1827     if( pMWin->pOrderBy ){
1828       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1829     }
1830     if( pMWin->eExclude==TK_TIES ){
1831       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1832       VdbeCoverageNeverNull(v);
1833     }
1834     if( pKeyInfo ){
1835       windowReadPeerValues(p, csr, regPeer);
1836       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1837       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1838       addr = sqlite3VdbeCurrentAddr(v)+1;
1839       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1840       VdbeCoverageEqNe(v);
1841     }else{
1842       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1843     }
1844     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1845   }
1846 
1847   windowAggStep(p, pMWin, csr, 0, p->regArg);
1848 
1849   sqlite3VdbeResolveLabel(v, lblNext);
1850   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1851   VdbeCoverage(v);
1852   sqlite3VdbeJumpHere(v, addrNext-1);
1853   sqlite3VdbeJumpHere(v, addrNext+1);
1854   sqlite3ReleaseTempReg(pParse, regRowid);
1855   sqlite3ReleaseTempReg(pParse, regCRowid);
1856   if( nPeer ){
1857     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1858     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1859   }
1860 
1861   windowAggFinal(p, 1);
1862   VdbeModuleComment((v, "windowFullScan end"));
1863 }
1864 
1865 /*
1866 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1867 ** return the current row of Window.iEphCsr. If all window functions are
1868 ** aggregate window functions that use the standard API, a single
1869 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1870 ** for per-row processing is only generated for the following built-in window
1871 ** functions:
1872 **
1873 **   nth_value()
1874 **   first_value()
1875 **   lag()
1876 **   lead()
1877 */
1878 static void windowReturnOneRow(WindowCodeArg *p){
1879   Window *pMWin = p->pMWin;
1880   Vdbe *v = p->pVdbe;
1881 
1882   if( pMWin->regStartRowid ){
1883     windowFullScan(p);
1884   }else{
1885     Parse *pParse = p->pParse;
1886     Window *pWin;
1887 
1888     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1889       FuncDef *pFunc = pWin->pFunc;
1890       if( pFunc->zName==nth_valueName
1891        || pFunc->zName==first_valueName
1892       ){
1893         int csr = pWin->csrApp;
1894         int lbl = sqlite3VdbeMakeLabel(pParse);
1895         int tmpReg = sqlite3GetTempReg(pParse);
1896         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1897 
1898         if( pFunc->zName==nth_valueName ){
1899           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1900           windowCheckValue(pParse, tmpReg, 2);
1901         }else{
1902           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1903         }
1904         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1905         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1906         VdbeCoverageNeverNull(v);
1907         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1908         VdbeCoverageNeverTaken(v);
1909         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1910         sqlite3VdbeResolveLabel(v, lbl);
1911         sqlite3ReleaseTempReg(pParse, tmpReg);
1912       }
1913       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1914         int nArg = pWin->pOwner->x.pList->nExpr;
1915         int csr = pWin->csrApp;
1916         int lbl = sqlite3VdbeMakeLabel(pParse);
1917         int tmpReg = sqlite3GetTempReg(pParse);
1918         int iEph = pMWin->iEphCsr;
1919 
1920         if( nArg<3 ){
1921           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1922         }else{
1923           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1924         }
1925         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1926         if( nArg<2 ){
1927           int val = (pFunc->zName==leadName ? 1 : -1);
1928           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1929         }else{
1930           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1931           int tmpReg2 = sqlite3GetTempReg(pParse);
1932           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1933           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1934           sqlite3ReleaseTempReg(pParse, tmpReg2);
1935         }
1936 
1937         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1938         VdbeCoverage(v);
1939         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1940         sqlite3VdbeResolveLabel(v, lbl);
1941         sqlite3ReleaseTempReg(pParse, tmpReg);
1942       }
1943     }
1944   }
1945   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1946 }
1947 
1948 /*
1949 ** Generate code to set the accumulator register for each window function
1950 ** in the linked list passed as the second argument to NULL. And perform
1951 ** any equivalent initialization required by any built-in window functions
1952 ** in the list.
1953 */
1954 static int windowInitAccum(Parse *pParse, Window *pMWin){
1955   Vdbe *v = sqlite3GetVdbe(pParse);
1956   int regArg;
1957   int nArg = 0;
1958   Window *pWin;
1959   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1960     FuncDef *pFunc = pWin->pFunc;
1961     assert( pWin->regAccum );
1962     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1963     nArg = MAX(nArg, windowArgCount(pWin));
1964     if( pMWin->regStartRowid==0 ){
1965       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1966         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1967         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1968       }
1969 
1970       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1971         assert( pWin->eStart!=TK_UNBOUNDED );
1972         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1973         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1974       }
1975     }
1976   }
1977   regArg = pParse->nMem+1;
1978   pParse->nMem += nArg;
1979   return regArg;
1980 }
1981 
1982 /*
1983 ** Return true if the current frame should be cached in the ephemeral table,
1984 ** even if there are no xInverse() calls required.
1985 */
1986 static int windowCacheFrame(Window *pMWin){
1987   Window *pWin;
1988   if( pMWin->regStartRowid ) return 1;
1989   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1990     FuncDef *pFunc = pWin->pFunc;
1991     if( (pFunc->zName==nth_valueName)
1992      || (pFunc->zName==first_valueName)
1993      || (pFunc->zName==leadName)
1994      || (pFunc->zName==lagName)
1995     ){
1996       return 1;
1997     }
1998   }
1999   return 0;
2000 }
2001 
2002 /*
2003 ** regOld and regNew are each the first register in an array of size
2004 ** pOrderBy->nExpr. This function generates code to compare the two
2005 ** arrays of registers using the collation sequences and other comparison
2006 ** parameters specified by pOrderBy.
2007 **
2008 ** If the two arrays are not equal, the contents of regNew is copied to
2009 ** regOld and control falls through. Otherwise, if the contents of the arrays
2010 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2011 */
2012 static void windowIfNewPeer(
2013   Parse *pParse,
2014   ExprList *pOrderBy,
2015   int regNew,                     /* First in array of new values */
2016   int regOld,                     /* First in array of old values */
2017   int addr                        /* Jump here */
2018 ){
2019   Vdbe *v = sqlite3GetVdbe(pParse);
2020   if( pOrderBy ){
2021     int nVal = pOrderBy->nExpr;
2022     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2023     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2024     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2025     sqlite3VdbeAddOp3(v, OP_Jump,
2026       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2027     );
2028     VdbeCoverageEqNe(v);
2029     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2030   }else{
2031     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2032   }
2033 }
2034 
2035 /*
2036 ** This function is called as part of generating VM programs for RANGE
2037 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2038 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2039 ** code equivalent to:
2040 **
2041 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2042 **
2043 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2044 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2045 **
2046 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2047 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2048 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2049 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2050 ** is OP_Ge, the generated code is equivalent to:
2051 **
2052 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2053 **
2054 ** A special type of arithmetic is used such that if csr1.peerVal is not
2055 ** a numeric type (real or integer), then the result of the addition
2056 ** or subtraction is a a copy of csr1.peerVal.
2057 */
2058 static void windowCodeRangeTest(
2059   WindowCodeArg *p,
2060   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2061   int csr1,                       /* Cursor number for cursor 1 */
2062   int regVal,                     /* Register containing non-negative number */
2063   int csr2,                       /* Cursor number for cursor 2 */
2064   int lbl                         /* Jump destination if condition is true */
2065 ){
2066   Parse *pParse = p->pParse;
2067   Vdbe *v = sqlite3GetVdbe(pParse);
2068   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2069   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2070   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2071   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2072   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2073   int addrGe;                               /* Jump destination */
2074   int addrDone = sqlite3VdbeMakeLabel(pParse);   /* Address past OP_Ge */
2075   CollSeq *pColl;
2076 
2077   /* Read the peer-value from each cursor into a register */
2078   windowReadPeerValues(p, csr1, reg1);
2079   windowReadPeerValues(p, csr2, reg2);
2080 
2081   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2082   assert( pOrderBy && pOrderBy->nExpr==1 );
2083   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2084     switch( op ){
2085       case OP_Ge: op = OP_Le; break;
2086       case OP_Gt: op = OP_Lt; break;
2087       default: assert( op==OP_Le ); op = OP_Ge; break;
2088     }
2089     arith = OP_Subtract;
2090   }
2091 
2092   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2093       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2094       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2095   ));
2096 
2097   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2098   ** consider NULL values to be larger than all other values, instead of
2099   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2100   ** (and adding that capability causes a performance regression), so
2101   ** instead if the BIGNULL flag is set then cases where either reg1 or
2102   ** reg2 are NULL are handled separately in the following block. The code
2103   ** generated is equivalent to:
2104   **
2105   **   if( reg1 IS NULL ){
2106   **     if( op==OP_Ge ) goto lbl;
2107   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2108   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2109   **   }else if( reg2 IS NULL ){
2110   **     if( op==OP_Le ) goto lbl;
2111   **   }
2112   **
2113   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2114   ** not taken, control jumps over the comparison operator coded below this
2115   ** block.  */
2116   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2117     /* This block runs if reg1 contains a NULL. */
2118     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2119     switch( op ){
2120       case OP_Ge:
2121         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2122         break;
2123       case OP_Gt:
2124         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2125         VdbeCoverage(v);
2126         break;
2127       case OP_Le:
2128         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2129         VdbeCoverage(v);
2130         break;
2131       default: assert( op==OP_Lt ); /* no-op */ break;
2132     }
2133     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
2134 
2135     /* This block runs if reg1 is not NULL, but reg2 is. */
2136     sqlite3VdbeJumpHere(v, addr);
2137     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2138     if( op==OP_Gt || op==OP_Ge ){
2139       sqlite3VdbeChangeP2(v, -1, addrDone);
2140     }
2141   }
2142 
2143   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2144   ** This block adds (or subtracts for DESC) the numeric value in regVal
2145   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2146   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2147   **
2148   **   if( reg1>='' ) goto addrGe;
2149   **   reg1 = reg1 +/- regVal
2150   **   addrGe:
2151   **
2152   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2153   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2154   ** then the arithmetic is performed, but since adding or subtracting from
2155   ** NULL is always NULL anyway, this case is handled as required too.  */
2156   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2157   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2158   VdbeCoverage(v);
2159   if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
2160     sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2161   }
2162   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2163   sqlite3VdbeJumpHere(v, addrGe);
2164 
2165   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2166   ** control skips over this test if the BIGNULL flag is set and either
2167   ** reg1 or reg2 contain a NULL value.  */
2168   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2169   pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
2170   sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
2171   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2172   sqlite3VdbeResolveLabel(v, addrDone);
2173 
2174   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2175   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2176   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2177   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2178   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2179   sqlite3ReleaseTempReg(pParse, reg1);
2180   sqlite3ReleaseTempReg(pParse, reg2);
2181 
2182   VdbeModuleComment((v, "CodeRangeTest: end"));
2183 }
2184 
2185 /*
2186 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2187 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2188 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2189 ** details.
2190 */
2191 static int windowCodeOp(
2192  WindowCodeArg *p,                /* Context object */
2193  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2194  int regCountdown,                /* Register for OP_IfPos countdown */
2195  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2196 ){
2197   int csr, reg;
2198   Parse *pParse = p->pParse;
2199   Window *pMWin = p->pMWin;
2200   int ret = 0;
2201   Vdbe *v = p->pVdbe;
2202   int addrContinue = 0;
2203   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2204 
2205   int lblDone = sqlite3VdbeMakeLabel(pParse);
2206   int addrNextRange = 0;
2207 
2208   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2209   ** starts with UNBOUNDED PRECEDING. */
2210   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2211     assert( regCountdown==0 && jumpOnEof==0 );
2212     return 0;
2213   }
2214 
2215   if( regCountdown>0 ){
2216     if( pMWin->eFrmType==TK_RANGE ){
2217       addrNextRange = sqlite3VdbeCurrentAddr(v);
2218       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2219       if( op==WINDOW_AGGINVERSE ){
2220         if( pMWin->eStart==TK_FOLLOWING ){
2221           windowCodeRangeTest(
2222               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2223           );
2224         }else{
2225           windowCodeRangeTest(
2226               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2227           );
2228         }
2229       }else{
2230         windowCodeRangeTest(
2231             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2232         );
2233       }
2234     }else{
2235       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2236       VdbeCoverage(v);
2237     }
2238   }
2239 
2240   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2241     windowAggFinal(p, 0);
2242   }
2243   addrContinue = sqlite3VdbeCurrentAddr(v);
2244 
2245   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2246   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2247   ** start cursor does not advance past the end cursor within the
2248   ** temporary table. It otherwise might, if (a>b).  */
2249   if( pMWin->eStart==pMWin->eEnd && regCountdown
2250    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2251   ){
2252     int regRowid1 = sqlite3GetTempReg(pParse);
2253     int regRowid2 = sqlite3GetTempReg(pParse);
2254     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2255     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2256     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2257     VdbeCoverage(v);
2258     sqlite3ReleaseTempReg(pParse, regRowid1);
2259     sqlite3ReleaseTempReg(pParse, regRowid2);
2260     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2261   }
2262 
2263   switch( op ){
2264     case WINDOW_RETURN_ROW:
2265       csr = p->current.csr;
2266       reg = p->current.reg;
2267       windowReturnOneRow(p);
2268       break;
2269 
2270     case WINDOW_AGGINVERSE:
2271       csr = p->start.csr;
2272       reg = p->start.reg;
2273       if( pMWin->regStartRowid ){
2274         assert( pMWin->regEndRowid );
2275         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2276       }else{
2277         windowAggStep(p, pMWin, csr, 1, p->regArg);
2278       }
2279       break;
2280 
2281     default:
2282       assert( op==WINDOW_AGGSTEP );
2283       csr = p->end.csr;
2284       reg = p->end.reg;
2285       if( pMWin->regStartRowid ){
2286         assert( pMWin->regEndRowid );
2287         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2288       }else{
2289         windowAggStep(p, pMWin, csr, 0, p->regArg);
2290       }
2291       break;
2292   }
2293 
2294   if( op==p->eDelete ){
2295     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2296     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2297   }
2298 
2299   if( jumpOnEof ){
2300     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2301     VdbeCoverage(v);
2302     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2303   }else{
2304     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2305     VdbeCoverage(v);
2306     if( bPeer ){
2307       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2308     }
2309   }
2310 
2311   if( bPeer ){
2312     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2313     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2314     windowReadPeerValues(p, csr, regTmp);
2315     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2316     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2317   }
2318 
2319   if( addrNextRange ){
2320     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2321   }
2322   sqlite3VdbeResolveLabel(v, lblDone);
2323   return ret;
2324 }
2325 
2326 
2327 /*
2328 ** Allocate and return a duplicate of the Window object indicated by the
2329 ** third argument. Set the Window.pOwner field of the new object to
2330 ** pOwner.
2331 */
2332 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2333   Window *pNew = 0;
2334   if( ALWAYS(p) ){
2335     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2336     if( pNew ){
2337       pNew->zName = sqlite3DbStrDup(db, p->zName);
2338       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2339       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2340       pNew->pFunc = p->pFunc;
2341       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2342       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2343       pNew->eFrmType = p->eFrmType;
2344       pNew->eEnd = p->eEnd;
2345       pNew->eStart = p->eStart;
2346       pNew->eExclude = p->eExclude;
2347       pNew->regResult = p->regResult;
2348       pNew->regAccum = p->regAccum;
2349       pNew->iArgCol = p->iArgCol;
2350       pNew->iEphCsr = p->iEphCsr;
2351       pNew->bExprArgs = p->bExprArgs;
2352       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2353       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2354       pNew->pOwner = pOwner;
2355       pNew->bImplicitFrame = p->bImplicitFrame;
2356     }
2357   }
2358   return pNew;
2359 }
2360 
2361 /*
2362 ** Return a copy of the linked list of Window objects passed as the
2363 ** second argument.
2364 */
2365 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2366   Window *pWin;
2367   Window *pRet = 0;
2368   Window **pp = &pRet;
2369 
2370   for(pWin=p; pWin; pWin=pWin->pNextWin){
2371     *pp = sqlite3WindowDup(db, 0, pWin);
2372     if( *pp==0 ) break;
2373     pp = &((*pp)->pNextWin);
2374   }
2375 
2376   return pRet;
2377 }
2378 
2379 /*
2380 ** Return true if it can be determined at compile time that expression
2381 ** pExpr evaluates to a value that, when cast to an integer, is greater
2382 ** than zero. False otherwise.
2383 **
2384 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2385 ** flag and returns zero.
2386 */
2387 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2388   int ret = 0;
2389   sqlite3 *db = pParse->db;
2390   sqlite3_value *pVal = 0;
2391   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2392   if( pVal && sqlite3_value_int(pVal)>0 ){
2393     ret = 1;
2394   }
2395   sqlite3ValueFree(pVal);
2396   return ret;
2397 }
2398 
2399 /*
2400 ** sqlite3WhereBegin() has already been called for the SELECT statement
2401 ** passed as the second argument when this function is invoked. It generates
2402 ** code to populate the Window.regResult register for each window function
2403 ** and invoke the sub-routine at instruction addrGosub once for each row.
2404 ** sqlite3WhereEnd() is always called before returning.
2405 **
2406 ** This function handles several different types of window frames, which
2407 ** require slightly different processing. The following pseudo code is
2408 ** used to implement window frames of the form:
2409 **
2410 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2411 **
2412 ** Other window frame types use variants of the following:
2413 **
2414 **     ... loop started by sqlite3WhereBegin() ...
2415 **       if( new partition ){
2416 **         Gosub flush
2417 **       }
2418 **       Insert new row into eph table.
2419 **
2420 **       if( first row of partition ){
2421 **         // Rewind three cursors, all open on the eph table.
2422 **         Rewind(csrEnd);
2423 **         Rewind(csrStart);
2424 **         Rewind(csrCurrent);
2425 **
2426 **         regEnd = <expr2>          // FOLLOWING expression
2427 **         regStart = <expr1>        // PRECEDING expression
2428 **       }else{
2429 **         // First time this branch is taken, the eph table contains two
2430 **         // rows. The first row in the partition, which all three cursors
2431 **         // currently point to, and the following row.
2432 **         AGGSTEP
2433 **         if( (regEnd--)<=0 ){
2434 **           RETURN_ROW
2435 **           if( (regStart--)<=0 ){
2436 **             AGGINVERSE
2437 **           }
2438 **         }
2439 **       }
2440 **     }
2441 **     flush:
2442 **       AGGSTEP
2443 **       while( 1 ){
2444 **         RETURN ROW
2445 **         if( csrCurrent is EOF ) break;
2446 **         if( (regStart--)<=0 ){
2447 **           AggInverse(csrStart)
2448 **           Next(csrStart)
2449 **         }
2450 **       }
2451 **
2452 ** The pseudo-code above uses the following shorthand:
2453 **
2454 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2455 **               with arguments read from the current row of cursor csrEnd, then
2456 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2457 **
2458 **   RETURN_ROW: return a row to the caller based on the contents of the
2459 **               current row of csrCurrent and the current state of all
2460 **               aggregates. Then step cursor csrCurrent forward one row.
2461 **
2462 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2463 **               functions with arguments read from the current row of cursor
2464 **               csrStart. Then step csrStart forward one row.
2465 **
2466 ** There are two other ROWS window frames that are handled significantly
2467 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2468 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2469 ** cases because they change the order in which the three cursors (csrStart,
2470 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2471 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2472 ** three.
2473 **
2474 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2475 **
2476 **     ... loop started by sqlite3WhereBegin() ...
2477 **       if( new partition ){
2478 **         Gosub flush
2479 **       }
2480 **       Insert new row into eph table.
2481 **       if( first row of partition ){
2482 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2483 **         regEnd = <expr2>
2484 **         regStart = <expr1>
2485 **       }else{
2486 **         if( (regEnd--)<=0 ){
2487 **           AGGSTEP
2488 **         }
2489 **         RETURN_ROW
2490 **         if( (regStart--)<=0 ){
2491 **           AGGINVERSE
2492 **         }
2493 **       }
2494 **     }
2495 **     flush:
2496 **       if( (regEnd--)<=0 ){
2497 **         AGGSTEP
2498 **       }
2499 **       RETURN_ROW
2500 **
2501 **
2502 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2503 **
2504 **     ... loop started by sqlite3WhereBegin() ...
2505 **     if( new partition ){
2506 **       Gosub flush
2507 **     }
2508 **     Insert new row into eph table.
2509 **     if( first row of partition ){
2510 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2511 **       regEnd = <expr2>
2512 **       regStart = regEnd - <expr1>
2513 **     }else{
2514 **       AGGSTEP
2515 **       if( (regEnd--)<=0 ){
2516 **         RETURN_ROW
2517 **       }
2518 **       if( (regStart--)<=0 ){
2519 **         AGGINVERSE
2520 **       }
2521 **     }
2522 **   }
2523 **   flush:
2524 **     AGGSTEP
2525 **     while( 1 ){
2526 **       if( (regEnd--)<=0 ){
2527 **         RETURN_ROW
2528 **         if( eof ) break;
2529 **       }
2530 **       if( (regStart--)<=0 ){
2531 **         AGGINVERSE
2532 **         if( eof ) break
2533 **       }
2534 **     }
2535 **     while( !eof csrCurrent ){
2536 **       RETURN_ROW
2537 **     }
2538 **
2539 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2540 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2541 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2542 ** This is optimized of course - branches that will never be taken and
2543 ** conditions that are always true are omitted from the VM code. The only
2544 ** exceptional case is:
2545 **
2546 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2547 **
2548 **     ... loop started by sqlite3WhereBegin() ...
2549 **     if( new partition ){
2550 **       Gosub flush
2551 **     }
2552 **     Insert new row into eph table.
2553 **     if( first row of partition ){
2554 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2555 **       regStart = <expr1>
2556 **     }else{
2557 **       AGGSTEP
2558 **     }
2559 **   }
2560 **   flush:
2561 **     AGGSTEP
2562 **     while( 1 ){
2563 **       if( (regStart--)<=0 ){
2564 **         AGGINVERSE
2565 **         if( eof ) break
2566 **       }
2567 **       RETURN_ROW
2568 **     }
2569 **     while( !eof csrCurrent ){
2570 **       RETURN_ROW
2571 **     }
2572 **
2573 ** Also requiring special handling are the cases:
2574 **
2575 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2576 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2577 **
2578 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2579 ** To handle this case, the pseudo-code programs depicted above are modified
2580 ** slightly to be:
2581 **
2582 **     ... loop started by sqlite3WhereBegin() ...
2583 **     if( new partition ){
2584 **       Gosub flush
2585 **     }
2586 **     Insert new row into eph table.
2587 **     if( first row of partition ){
2588 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2589 **       regEnd = <expr2>
2590 **       regStart = <expr1>
2591 **       if( regEnd < regStart ){
2592 **         RETURN_ROW
2593 **         delete eph table contents
2594 **         continue
2595 **       }
2596 **     ...
2597 **
2598 ** The new "continue" statement in the above jumps to the next iteration
2599 ** of the outer loop - the one started by sqlite3WhereBegin().
2600 **
2601 ** The various GROUPS cases are implemented using the same patterns as
2602 ** ROWS. The VM code is modified slightly so that:
2603 **
2604 **   1. The else branch in the main loop is only taken if the row just
2605 **      added to the ephemeral table is the start of a new group. In
2606 **      other words, it becomes:
2607 **
2608 **         ... loop started by sqlite3WhereBegin() ...
2609 **         if( new partition ){
2610 **           Gosub flush
2611 **         }
2612 **         Insert new row into eph table.
2613 **         if( first row of partition ){
2614 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2615 **           regEnd = <expr2>
2616 **           regStart = <expr1>
2617 **         }else if( new group ){
2618 **           ...
2619 **         }
2620 **       }
2621 **
2622 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2623 **      AGGINVERSE step processes the current row of the relevant cursor and
2624 **      all subsequent rows belonging to the same group.
2625 **
2626 ** RANGE window frames are a little different again. As for GROUPS, the
2627 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2628 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2629 ** basic cases:
2630 **
2631 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2632 **
2633 **     ... loop started by sqlite3WhereBegin() ...
2634 **       if( new partition ){
2635 **         Gosub flush
2636 **       }
2637 **       Insert new row into eph table.
2638 **       if( first row of partition ){
2639 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2640 **         regEnd = <expr2>
2641 **         regStart = <expr1>
2642 **       }else{
2643 **         AGGSTEP
2644 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2645 **           RETURN_ROW
2646 **           while( csrStart.key + regStart) < csrCurrent.key ){
2647 **             AGGINVERSE
2648 **           }
2649 **         }
2650 **       }
2651 **     }
2652 **     flush:
2653 **       AGGSTEP
2654 **       while( 1 ){
2655 **         RETURN ROW
2656 **         if( csrCurrent is EOF ) break;
2657 **           while( csrStart.key + regStart) < csrCurrent.key ){
2658 **             AGGINVERSE
2659 **           }
2660 **         }
2661 **       }
2662 **
2663 ** In the above notation, "csr.key" means the current value of the ORDER BY
2664 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2665 ** or <expr PRECEDING) read from cursor csr.
2666 **
2667 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2668 **
2669 **     ... loop started by sqlite3WhereBegin() ...
2670 **       if( new partition ){
2671 **         Gosub flush
2672 **       }
2673 **       Insert new row into eph table.
2674 **       if( first row of partition ){
2675 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2676 **         regEnd = <expr2>
2677 **         regStart = <expr1>
2678 **       }else{
2679 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2680 **           AGGSTEP
2681 **         }
2682 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2683 **           AGGINVERSE
2684 **         }
2685 **         RETURN_ROW
2686 **       }
2687 **     }
2688 **     flush:
2689 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2690 **         AGGSTEP
2691 **       }
2692 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2693 **         AGGINVERSE
2694 **       }
2695 **       RETURN_ROW
2696 **
2697 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2698 **
2699 **     ... loop started by sqlite3WhereBegin() ...
2700 **       if( new partition ){
2701 **         Gosub flush
2702 **       }
2703 **       Insert new row into eph table.
2704 **       if( first row of partition ){
2705 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2706 **         regEnd = <expr2>
2707 **         regStart = <expr1>
2708 **       }else{
2709 **         AGGSTEP
2710 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2711 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2712 **             AGGINVERSE
2713 **           }
2714 **           RETURN_ROW
2715 **         }
2716 **       }
2717 **     }
2718 **     flush:
2719 **       AGGSTEP
2720 **       while( 1 ){
2721 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2722 **           AGGINVERSE
2723 **           if( eof ) break "while( 1 )" loop.
2724 **         }
2725 **         RETURN_ROW
2726 **       }
2727 **       while( !eof csrCurrent ){
2728 **         RETURN_ROW
2729 **       }
2730 **
2731 ** The text above leaves out many details. Refer to the code and comments
2732 ** below for a more complete picture.
2733 */
2734 void sqlite3WindowCodeStep(
2735   Parse *pParse,                  /* Parse context */
2736   Select *p,                      /* Rewritten SELECT statement */
2737   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2738   int regGosub,                   /* Register for OP_Gosub */
2739   int addrGosub                   /* OP_Gosub here to return each row */
2740 ){
2741   Window *pMWin = p->pWin;
2742   ExprList *pOrderBy = pMWin->pOrderBy;
2743   Vdbe *v = sqlite3GetVdbe(pParse);
2744   int csrWrite;                   /* Cursor used to write to eph. table */
2745   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2746   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2747   int iInput;                               /* To iterate through sub cols */
2748   int addrNe;                     /* Address of OP_Ne */
2749   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2750   int addrInteger = 0;            /* Address of OP_Integer */
2751   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2752   int regNew;                     /* Array of registers holding new input row */
2753   int regRecord;                  /* regNew array in record form */
2754   int regRowid;                   /* Rowid for regRecord in eph table */
2755   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2756   int regPeer = 0;                /* Peer values for current row */
2757   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2758   WindowCodeArg s;                /* Context object for sub-routines */
2759   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2760   int regStart = 0;               /* Value of <expr> PRECEDING */
2761   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2762 
2763   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2764        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2765   );
2766   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2767        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2768   );
2769   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2770        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2771        || pMWin->eExclude==TK_NO
2772   );
2773 
2774   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2775 
2776   /* Fill in the context object */
2777   memset(&s, 0, sizeof(WindowCodeArg));
2778   s.pParse = pParse;
2779   s.pMWin = pMWin;
2780   s.pVdbe = v;
2781   s.regGosub = regGosub;
2782   s.addrGosub = addrGosub;
2783   s.current.csr = pMWin->iEphCsr;
2784   csrWrite = s.current.csr+1;
2785   s.start.csr = s.current.csr+2;
2786   s.end.csr = s.current.csr+3;
2787 
2788   /* Figure out when rows may be deleted from the ephemeral table. There
2789   ** are four options - they may never be deleted (eDelete==0), they may
2790   ** be deleted as soon as they are no longer part of the window frame
2791   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2792   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2793   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2794   switch( pMWin->eStart ){
2795     case TK_FOLLOWING:
2796       if( pMWin->eFrmType!=TK_RANGE
2797        && windowExprGtZero(pParse, pMWin->pStart)
2798       ){
2799         s.eDelete = WINDOW_RETURN_ROW;
2800       }
2801       break;
2802     case TK_UNBOUNDED:
2803       if( windowCacheFrame(pMWin)==0 ){
2804         if( pMWin->eEnd==TK_PRECEDING ){
2805           if( pMWin->eFrmType!=TK_RANGE
2806            && windowExprGtZero(pParse, pMWin->pEnd)
2807           ){
2808             s.eDelete = WINDOW_AGGSTEP;
2809           }
2810         }else{
2811           s.eDelete = WINDOW_RETURN_ROW;
2812         }
2813       }
2814       break;
2815     default:
2816       s.eDelete = WINDOW_AGGINVERSE;
2817       break;
2818   }
2819 
2820   /* Allocate registers for the array of values from the sub-query, the
2821   ** samve values in record form, and the rowid used to insert said record
2822   ** into the ephemeral table.  */
2823   regNew = pParse->nMem+1;
2824   pParse->nMem += nInput;
2825   regRecord = ++pParse->nMem;
2826   regRowid = ++pParse->nMem;
2827 
2828   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2829   ** clause, allocate registers to store the results of evaluating each
2830   ** <expr>.  */
2831   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2832     regStart = ++pParse->nMem;
2833   }
2834   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2835     regEnd = ++pParse->nMem;
2836   }
2837 
2838   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2839   ** registers to store copies of the ORDER BY expressions (peer values)
2840   ** for the main loop, and for each cursor (start, current and end). */
2841   if( pMWin->eFrmType!=TK_ROWS ){
2842     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2843     regNewPeer = regNew + pMWin->nBufferCol;
2844     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2845     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2846     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2847     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2848     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2849   }
2850 
2851   /* Load the column values for the row returned by the sub-select
2852   ** into an array of registers starting at regNew. Assemble them into
2853   ** a record in register regRecord. */
2854   for(iInput=0; iInput<nInput; iInput++){
2855     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2856   }
2857   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2858 
2859   /* An input row has just been read into an array of registers starting
2860   ** at regNew. If the window has a PARTITION clause, this block generates
2861   ** VM code to check if the input row is the start of a new partition.
2862   ** If so, it does an OP_Gosub to an address to be filled in later. The
2863   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2864   if( pMWin->pPartition ){
2865     int addr;
2866     ExprList *pPart = pMWin->pPartition;
2867     int nPart = pPart->nExpr;
2868     int regNewPart = regNew + pMWin->nBufferCol;
2869     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2870 
2871     regFlushPart = ++pParse->nMem;
2872     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2873     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2874     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2875     VdbeCoverageEqNe(v);
2876     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2877     VdbeComment((v, "call flush_partition"));
2878     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2879   }
2880 
2881   /* Insert the new row into the ephemeral table */
2882   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2883   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2884   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2885   VdbeCoverageNeverNull(v);
2886 
2887   /* This block is run for the first row of each partition */
2888   s.regArg = windowInitAccum(pParse, pMWin);
2889 
2890   if( regStart ){
2891     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2892     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2893   }
2894   if( regEnd ){
2895     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2896     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2897   }
2898 
2899   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2900     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2901     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2902     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2903     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2904     windowAggFinal(&s, 0);
2905     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2906     VdbeCoverageNeverTaken(v);
2907     windowReturnOneRow(&s);
2908     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2909     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2910     sqlite3VdbeJumpHere(v, addrGe);
2911   }
2912   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2913     assert( pMWin->eEnd==TK_FOLLOWING );
2914     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2915   }
2916 
2917   if( pMWin->eStart!=TK_UNBOUNDED ){
2918     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2919     VdbeCoverageNeverTaken(v);
2920   }
2921   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2922   VdbeCoverageNeverTaken(v);
2923   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2924   VdbeCoverageNeverTaken(v);
2925   if( regPeer && pOrderBy ){
2926     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2927     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2928     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2929     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2930   }
2931 
2932   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2933 
2934   sqlite3VdbeJumpHere(v, addrNe);
2935 
2936   /* Beginning of the block executed for the second and subsequent rows. */
2937   if( regPeer ){
2938     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2939   }
2940   if( pMWin->eStart==TK_FOLLOWING ){
2941     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2942     if( pMWin->eEnd!=TK_UNBOUNDED ){
2943       if( pMWin->eFrmType==TK_RANGE ){
2944         int lbl = sqlite3VdbeMakeLabel(pParse);
2945         int addrNext = sqlite3VdbeCurrentAddr(v);
2946         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2947         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2948         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2949         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2950         sqlite3VdbeResolveLabel(v, lbl);
2951       }else{
2952         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2953         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2954       }
2955     }
2956   }else
2957   if( pMWin->eEnd==TK_PRECEDING ){
2958     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2959     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2960     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2961     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2962     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2963   }else{
2964     int addr = 0;
2965     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2966     if( pMWin->eEnd!=TK_UNBOUNDED ){
2967       if( pMWin->eFrmType==TK_RANGE ){
2968         int lbl = 0;
2969         addr = sqlite3VdbeCurrentAddr(v);
2970         if( regEnd ){
2971           lbl = sqlite3VdbeMakeLabel(pParse);
2972           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2973         }
2974         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2975         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2976         if( regEnd ){
2977           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2978           sqlite3VdbeResolveLabel(v, lbl);
2979         }
2980       }else{
2981         if( regEnd ){
2982           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2983           VdbeCoverage(v);
2984         }
2985         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2986         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2987         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2988       }
2989     }
2990   }
2991 
2992   /* End of the main input loop */
2993   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2994   sqlite3WhereEnd(pWInfo);
2995 
2996   /* Fall through */
2997   if( pMWin->pPartition ){
2998     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2999     sqlite3VdbeJumpHere(v, addrGosubFlush);
3000   }
3001 
3002   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
3003   VdbeCoverage(v);
3004   if( pMWin->eEnd==TK_PRECEDING ){
3005     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
3006     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
3007     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3008     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3009   }else if( pMWin->eStart==TK_FOLLOWING ){
3010     int addrStart;
3011     int addrBreak1;
3012     int addrBreak2;
3013     int addrBreak3;
3014     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3015     if( pMWin->eFrmType==TK_RANGE ){
3016       addrStart = sqlite3VdbeCurrentAddr(v);
3017       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3018       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3019     }else
3020     if( pMWin->eEnd==TK_UNBOUNDED ){
3021       addrStart = sqlite3VdbeCurrentAddr(v);
3022       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3023       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3024     }else{
3025       assert( pMWin->eEnd==TK_FOLLOWING );
3026       addrStart = sqlite3VdbeCurrentAddr(v);
3027       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3028       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3029     }
3030     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3031     sqlite3VdbeJumpHere(v, addrBreak2);
3032     addrStart = sqlite3VdbeCurrentAddr(v);
3033     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3034     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3035     sqlite3VdbeJumpHere(v, addrBreak1);
3036     sqlite3VdbeJumpHere(v, addrBreak3);
3037   }else{
3038     int addrBreak;
3039     int addrStart;
3040     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3041     addrStart = sqlite3VdbeCurrentAddr(v);
3042     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3043     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3044     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3045     sqlite3VdbeJumpHere(v, addrBreak);
3046   }
3047   sqlite3VdbeJumpHere(v, addrEmpty);
3048 
3049   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3050   if( pMWin->pPartition ){
3051     if( pMWin->regStartRowid ){
3052       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3053       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3054     }
3055     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3056     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3057   }
3058 }
3059 
3060 #endif /* SQLITE_OMIT_WINDOWFUNC */
3061