1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* no break */ deliberate_fall_through 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( p->pSub ){ 792 int i; 793 for(i=0; i<p->pSub->nExpr; i++){ 794 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 795 iCol = i; 796 break; 797 } 798 } 799 } 800 if( iCol<0 ){ 801 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 802 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 803 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 804 } 805 if( p->pSub ){ 806 int f = pExpr->flags & EP_Collate; 807 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 808 ExprSetProperty(pExpr, EP_Static); 809 sqlite3ExprDelete(pParse->db, pExpr); 810 ExprClearProperty(pExpr, EP_Static); 811 memset(pExpr, 0, sizeof(Expr)); 812 813 pExpr->op = TK_COLUMN; 814 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 815 pExpr->iTable = p->pWin->iEphCsr; 816 pExpr->y.pTab = p->pTab; 817 pExpr->flags = f; 818 } 819 if( pParse->db->mallocFailed ) return WRC_Abort; 820 break; 821 } 822 823 default: /* no-op */ 824 break; 825 } 826 827 return WRC_Continue; 828 } 829 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 830 struct WindowRewrite *p = pWalker->u.pRewrite; 831 Select *pSave = p->pSubSelect; 832 if( pSave==pSelect ){ 833 return WRC_Continue; 834 }else{ 835 p->pSubSelect = pSelect; 836 sqlite3WalkSelect(pWalker, pSelect); 837 p->pSubSelect = pSave; 838 } 839 return WRC_Prune; 840 } 841 842 843 /* 844 ** Iterate through each expression in expression-list pEList. For each: 845 ** 846 ** * TK_COLUMN, 847 ** * aggregate function, or 848 ** * window function with a Window object that is not a member of the 849 ** Window list passed as the second argument (pWin). 850 ** 851 ** Append the node to output expression-list (*ppSub). And replace it 852 ** with a TK_COLUMN that reads the (N-1)th element of table 853 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 854 ** appending the new one. 855 */ 856 static void selectWindowRewriteEList( 857 Parse *pParse, 858 Window *pWin, 859 SrcList *pSrc, 860 ExprList *pEList, /* Rewrite expressions in this list */ 861 Table *pTab, 862 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 863 ){ 864 Walker sWalker; 865 WindowRewrite sRewrite; 866 867 assert( pWin!=0 ); 868 memset(&sWalker, 0, sizeof(Walker)); 869 memset(&sRewrite, 0, sizeof(WindowRewrite)); 870 871 sRewrite.pSub = *ppSub; 872 sRewrite.pWin = pWin; 873 sRewrite.pSrc = pSrc; 874 sRewrite.pTab = pTab; 875 876 sWalker.pParse = pParse; 877 sWalker.xExprCallback = selectWindowRewriteExprCb; 878 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 879 sWalker.u.pRewrite = &sRewrite; 880 881 (void)sqlite3WalkExprList(&sWalker, pEList); 882 883 *ppSub = sRewrite.pSub; 884 } 885 886 /* 887 ** Append a copy of each expression in expression-list pAppend to 888 ** expression list pList. Return a pointer to the result list. 889 */ 890 static ExprList *exprListAppendList( 891 Parse *pParse, /* Parsing context */ 892 ExprList *pList, /* List to which to append. Might be NULL */ 893 ExprList *pAppend, /* List of values to append. Might be NULL */ 894 int bIntToNull 895 ){ 896 if( pAppend ){ 897 int i; 898 int nInit = pList ? pList->nExpr : 0; 899 for(i=0; i<pAppend->nExpr; i++){ 900 sqlite3 *db = pParse->db; 901 Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); 902 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 903 if( db->mallocFailed ){ 904 sqlite3ExprDelete(db, pDup); 905 break; 906 } 907 if( bIntToNull ){ 908 int iDummy; 909 Expr *pSub; 910 for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){ 911 assert( pSub ); 912 } 913 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 914 pSub->op = TK_NULL; 915 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 916 pSub->u.zToken = 0; 917 } 918 } 919 pList = sqlite3ExprListAppend(pParse, pList, pDup); 920 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 921 } 922 } 923 return pList; 924 } 925 926 /* 927 ** When rewriting a query, if the new subquery in the FROM clause 928 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 929 ** then we have to increase the Expr->op2 values of those nodes 930 ** due to the extra subquery layer that was added. 931 ** 932 ** See also the incrAggDepth() routine in resolve.c 933 */ 934 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 935 if( pExpr->op==TK_AGG_FUNCTION 936 && pExpr->op2>=pWalker->walkerDepth 937 ){ 938 pExpr->op2++; 939 } 940 return WRC_Continue; 941 } 942 943 /* 944 ** If the SELECT statement passed as the second argument does not invoke 945 ** any SQL window functions, this function is a no-op. Otherwise, it 946 ** rewrites the SELECT statement so that window function xStep functions 947 ** are invoked in the correct order as described under "SELECT REWRITING" 948 ** at the top of this file. 949 */ 950 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 951 int rc = SQLITE_OK; 952 if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){ 953 Vdbe *v = sqlite3GetVdbe(pParse); 954 sqlite3 *db = pParse->db; 955 Select *pSub = 0; /* The subquery */ 956 SrcList *pSrc = p->pSrc; 957 Expr *pWhere = p->pWhere; 958 ExprList *pGroupBy = p->pGroupBy; 959 Expr *pHaving = p->pHaving; 960 ExprList *pSort = 0; 961 962 ExprList *pSublist = 0; /* Expression list for sub-query */ 963 Window *pMWin = p->pWin; /* Main window object */ 964 Window *pWin; /* Window object iterator */ 965 Table *pTab; 966 Walker w; 967 968 u32 selFlags = p->selFlags; 969 970 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 971 if( pTab==0 ){ 972 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 973 } 974 sqlite3AggInfoPersistWalkerInit(&w, pParse); 975 sqlite3WalkSelect(&w, p); 976 977 p->pSrc = 0; 978 p->pWhere = 0; 979 p->pGroupBy = 0; 980 p->pHaving = 0; 981 p->selFlags &= ~SF_Aggregate; 982 p->selFlags |= SF_WinRewrite; 983 984 /* Create the ORDER BY clause for the sub-select. This is the concatenation 985 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 986 ** redundant, remove the ORDER BY from the parent SELECT. */ 987 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 988 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 989 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 990 int nSave = pSort->nExpr; 991 pSort->nExpr = p->pOrderBy->nExpr; 992 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 993 sqlite3ExprListDelete(db, p->pOrderBy); 994 p->pOrderBy = 0; 995 } 996 pSort->nExpr = nSave; 997 } 998 999 /* Assign a cursor number for the ephemeral table used to buffer rows. 1000 ** The OpenEphemeral instruction is coded later, after it is known how 1001 ** many columns the table will have. */ 1002 pMWin->iEphCsr = pParse->nTab++; 1003 pParse->nTab += 3; 1004 1005 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 1006 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1007 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1008 1009 /* Append the PARTITION BY and ORDER BY expressions to the to the 1010 ** sub-select expression list. They are required to figure out where 1011 ** boundaries for partitions and sets of peer rows lie. */ 1012 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1013 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1014 1015 /* Append the arguments passed to each window function to the 1016 ** sub-select expression list. Also allocate two registers for each 1017 ** window function - one for the accumulator, another for interim 1018 ** results. */ 1019 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1020 ExprList *pArgs = pWin->pOwner->x.pList; 1021 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1022 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1023 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1024 pWin->bExprArgs = 1; 1025 }else{ 1026 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1027 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1028 } 1029 if( pWin->pFilter ){ 1030 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1031 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1032 } 1033 pWin->regAccum = ++pParse->nMem; 1034 pWin->regResult = ++pParse->nMem; 1035 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1036 } 1037 1038 /* If there is no ORDER BY or PARTITION BY clause, and the window 1039 ** function accepts zero arguments, and there are no other columns 1040 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1041 ** that pSublist is still NULL here. Add a constant expression here to 1042 ** keep everything legal in this case. 1043 */ 1044 if( pSublist==0 ){ 1045 pSublist = sqlite3ExprListAppend(pParse, 0, 1046 sqlite3Expr(db, TK_INTEGER, "0") 1047 ); 1048 } 1049 1050 pSub = sqlite3SelectNew( 1051 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1052 ); 1053 SELECTTRACE(1,pParse,pSub, 1054 ("New window-function subquery in FROM clause of (%u/%p)\n", 1055 p->selId, p)); 1056 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1057 if( p->pSrc ){ 1058 Table *pTab2; 1059 p->pSrc->a[0].pSelect = pSub; 1060 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1061 pSub->selFlags |= SF_Expanded; 1062 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1063 pSub->selFlags |= (selFlags & SF_Aggregate); 1064 if( pTab2==0 ){ 1065 /* Might actually be some other kind of error, but in that case 1066 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1067 ** the correct error message regardless. */ 1068 rc = SQLITE_NOMEM; 1069 }else{ 1070 memcpy(pTab, pTab2, sizeof(Table)); 1071 pTab->tabFlags |= TF_Ephemeral; 1072 p->pSrc->a[0].pTab = pTab; 1073 pTab = pTab2; 1074 memset(&w, 0, sizeof(w)); 1075 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1076 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1077 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1078 sqlite3WalkSelect(&w, pSub); 1079 } 1080 }else{ 1081 sqlite3SelectDelete(db, pSub); 1082 } 1083 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1084 sqlite3DbFree(db, pTab); 1085 } 1086 1087 if( rc ){ 1088 if( pParse->nErr==0 ){ 1089 assert( pParse->db->mallocFailed ); 1090 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1091 } 1092 } 1093 return rc; 1094 } 1095 1096 /* 1097 ** Unlink the Window object from the Select to which it is attached, 1098 ** if it is attached. 1099 */ 1100 void sqlite3WindowUnlinkFromSelect(Window *p){ 1101 if( p->ppThis ){ 1102 *p->ppThis = p->pNextWin; 1103 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1104 p->ppThis = 0; 1105 } 1106 } 1107 1108 /* 1109 ** Free the Window object passed as the second argument. 1110 */ 1111 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1112 if( p ){ 1113 sqlite3WindowUnlinkFromSelect(p); 1114 sqlite3ExprDelete(db, p->pFilter); 1115 sqlite3ExprListDelete(db, p->pPartition); 1116 sqlite3ExprListDelete(db, p->pOrderBy); 1117 sqlite3ExprDelete(db, p->pEnd); 1118 sqlite3ExprDelete(db, p->pStart); 1119 sqlite3DbFree(db, p->zName); 1120 sqlite3DbFree(db, p->zBase); 1121 sqlite3DbFree(db, p); 1122 } 1123 } 1124 1125 /* 1126 ** Free the linked list of Window objects starting at the second argument. 1127 */ 1128 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1129 while( p ){ 1130 Window *pNext = p->pNextWin; 1131 sqlite3WindowDelete(db, p); 1132 p = pNext; 1133 } 1134 } 1135 1136 /* 1137 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1138 ** value should be a non-negative integer. If the value is not a 1139 ** constant, change it to NULL. The fact that it is then a non-negative 1140 ** integer will be caught later. But it is important not to leave 1141 ** variable values in the expression tree. 1142 */ 1143 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1144 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1145 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1146 sqlite3ExprDelete(pParse->db, pExpr); 1147 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1148 } 1149 return pExpr; 1150 } 1151 1152 /* 1153 ** Allocate and return a new Window object describing a Window Definition. 1154 */ 1155 Window *sqlite3WindowAlloc( 1156 Parse *pParse, /* Parsing context */ 1157 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1158 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1159 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1160 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1161 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1162 u8 eExclude /* EXCLUDE clause */ 1163 ){ 1164 Window *pWin = 0; 1165 int bImplicitFrame = 0; 1166 1167 /* Parser assures the following: */ 1168 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1169 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1170 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1171 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1172 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1173 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1174 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1175 1176 if( eType==0 ){ 1177 bImplicitFrame = 1; 1178 eType = TK_RANGE; 1179 } 1180 1181 /* Additionally, the 1182 ** starting boundary type may not occur earlier in the following list than 1183 ** the ending boundary type: 1184 ** 1185 ** UNBOUNDED PRECEDING 1186 ** <expr> PRECEDING 1187 ** CURRENT ROW 1188 ** <expr> FOLLOWING 1189 ** UNBOUNDED FOLLOWING 1190 ** 1191 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1192 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1193 ** frame boundary. 1194 */ 1195 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1196 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1197 ){ 1198 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1199 goto windowAllocErr; 1200 } 1201 1202 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1203 if( pWin==0 ) goto windowAllocErr; 1204 pWin->eFrmType = eType; 1205 pWin->eStart = eStart; 1206 pWin->eEnd = eEnd; 1207 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1208 eExclude = TK_NO; 1209 } 1210 pWin->eExclude = eExclude; 1211 pWin->bImplicitFrame = bImplicitFrame; 1212 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1213 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1214 return pWin; 1215 1216 windowAllocErr: 1217 sqlite3ExprDelete(pParse->db, pEnd); 1218 sqlite3ExprDelete(pParse->db, pStart); 1219 return 0; 1220 } 1221 1222 /* 1223 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1224 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1225 ** equivalent nul-terminated string. 1226 */ 1227 Window *sqlite3WindowAssemble( 1228 Parse *pParse, 1229 Window *pWin, 1230 ExprList *pPartition, 1231 ExprList *pOrderBy, 1232 Token *pBase 1233 ){ 1234 if( pWin ){ 1235 pWin->pPartition = pPartition; 1236 pWin->pOrderBy = pOrderBy; 1237 if( pBase ){ 1238 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1239 } 1240 }else{ 1241 sqlite3ExprListDelete(pParse->db, pPartition); 1242 sqlite3ExprListDelete(pParse->db, pOrderBy); 1243 } 1244 return pWin; 1245 } 1246 1247 /* 1248 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1249 ** is the base window. Earlier windows from the same WINDOW clause are 1250 ** stored in the linked list starting at pWin->pNextWin. This function 1251 ** either updates *pWin according to the base specification, or else 1252 ** leaves an error in pParse. 1253 */ 1254 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1255 if( pWin->zBase ){ 1256 sqlite3 *db = pParse->db; 1257 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1258 if( pExist ){ 1259 const char *zErr = 0; 1260 /* Check for errors */ 1261 if( pWin->pPartition ){ 1262 zErr = "PARTITION clause"; 1263 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1264 zErr = "ORDER BY clause"; 1265 }else if( pExist->bImplicitFrame==0 ){ 1266 zErr = "frame specification"; 1267 } 1268 if( zErr ){ 1269 sqlite3ErrorMsg(pParse, 1270 "cannot override %s of window: %s", zErr, pWin->zBase 1271 ); 1272 }else{ 1273 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1274 if( pExist->pOrderBy ){ 1275 assert( pWin->pOrderBy==0 ); 1276 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1277 } 1278 sqlite3DbFree(db, pWin->zBase); 1279 pWin->zBase = 0; 1280 } 1281 } 1282 } 1283 } 1284 1285 /* 1286 ** Attach window object pWin to expression p. 1287 */ 1288 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1289 if( p ){ 1290 assert( p->op==TK_FUNCTION ); 1291 assert( pWin ); 1292 p->y.pWin = pWin; 1293 ExprSetProperty(p, EP_WinFunc); 1294 pWin->pOwner = p; 1295 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1296 sqlite3ErrorMsg(pParse, 1297 "DISTINCT is not supported for window functions" 1298 ); 1299 } 1300 }else{ 1301 sqlite3WindowDelete(pParse->db, pWin); 1302 } 1303 } 1304 1305 /* 1306 ** Possibly link window pWin into the list at pSel->pWin (window functions 1307 ** to be processed as part of SELECT statement pSel). The window is linked 1308 ** in if either (a) there are no other windows already linked to this 1309 ** SELECT, or (b) the windows already linked use a compatible window frame. 1310 */ 1311 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1312 if( pSel ){ 1313 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ 1314 pWin->pNextWin = pSel->pWin; 1315 if( pSel->pWin ){ 1316 pSel->pWin->ppThis = &pWin->pNextWin; 1317 } 1318 pSel->pWin = pWin; 1319 pWin->ppThis = &pSel->pWin; 1320 }else{ 1321 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ 1322 pSel->selFlags |= SF_MultiPart; 1323 } 1324 } 1325 } 1326 } 1327 1328 /* 1329 ** Return 0 if the two window objects are identical, 1 if they are 1330 ** different, or 2 if it cannot be determined if the objects are identical 1331 ** or not. Identical window objects can be processed in a single scan. 1332 */ 1333 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1334 int res; 1335 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1336 if( p1->eFrmType!=p2->eFrmType ) return 1; 1337 if( p1->eStart!=p2->eStart ) return 1; 1338 if( p1->eEnd!=p2->eEnd ) return 1; 1339 if( p1->eExclude!=p2->eExclude ) return 1; 1340 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1341 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1342 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1343 return res; 1344 } 1345 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1346 return res; 1347 } 1348 if( bFilter ){ 1349 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1350 return res; 1351 } 1352 } 1353 return 0; 1354 } 1355 1356 1357 /* 1358 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1359 ** to begin iterating through the sub-query results. It is used to allocate 1360 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1361 */ 1362 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1363 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1364 Window *pMWin = pSelect->pWin; 1365 Window *pWin; 1366 Vdbe *v = sqlite3GetVdbe(pParse); 1367 1368 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1369 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1370 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1371 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1372 1373 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1374 ** said registers to NULL. */ 1375 if( pMWin->pPartition ){ 1376 int nExpr = pMWin->pPartition->nExpr; 1377 pMWin->regPart = pParse->nMem+1; 1378 pParse->nMem += nExpr; 1379 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1380 } 1381 1382 pMWin->regOne = ++pParse->nMem; 1383 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1384 1385 if( pMWin->eExclude ){ 1386 pMWin->regStartRowid = ++pParse->nMem; 1387 pMWin->regEndRowid = ++pParse->nMem; 1388 pMWin->csrApp = pParse->nTab++; 1389 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1390 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1391 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1392 return; 1393 } 1394 1395 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1396 FuncDef *p = pWin->pFunc; 1397 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1398 /* The inline versions of min() and max() require a single ephemeral 1399 ** table and 3 registers. The registers are used as follows: 1400 ** 1401 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1402 ** regApp+1: integer value used to ensure keys are unique 1403 ** regApp+2: output of MakeRecord 1404 */ 1405 ExprList *pList = pWin->pOwner->x.pList; 1406 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1407 pWin->csrApp = pParse->nTab++; 1408 pWin->regApp = pParse->nMem+1; 1409 pParse->nMem += 3; 1410 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1411 assert( pKeyInfo->aSortFlags[0]==0 ); 1412 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1413 } 1414 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1415 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1416 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1417 } 1418 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1419 /* Allocate two registers at pWin->regApp. These will be used to 1420 ** store the start and end index of the current frame. */ 1421 pWin->regApp = pParse->nMem+1; 1422 pWin->csrApp = pParse->nTab++; 1423 pParse->nMem += 2; 1424 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1425 } 1426 else if( p->zName==leadName || p->zName==lagName ){ 1427 pWin->csrApp = pParse->nTab++; 1428 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1429 } 1430 } 1431 } 1432 1433 #define WINDOW_STARTING_INT 0 1434 #define WINDOW_ENDING_INT 1 1435 #define WINDOW_NTH_VALUE_INT 2 1436 #define WINDOW_STARTING_NUM 3 1437 #define WINDOW_ENDING_NUM 4 1438 1439 /* 1440 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1441 ** value of the second argument to nth_value() (eCond==2) has just been 1442 ** evaluated and the result left in register reg. This function generates VM 1443 ** code to check that the value is a non-negative integer and throws an 1444 ** exception if it is not. 1445 */ 1446 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1447 static const char *azErr[] = { 1448 "frame starting offset must be a non-negative integer", 1449 "frame ending offset must be a non-negative integer", 1450 "second argument to nth_value must be a positive integer", 1451 "frame starting offset must be a non-negative number", 1452 "frame ending offset must be a non-negative number", 1453 }; 1454 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1455 Vdbe *v = sqlite3GetVdbe(pParse); 1456 int regZero = sqlite3GetTempReg(pParse); 1457 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1458 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1459 if( eCond>=WINDOW_STARTING_NUM ){ 1460 int regString = sqlite3GetTempReg(pParse); 1461 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1462 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1463 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1464 VdbeCoverage(v); 1465 assert( eCond==3 || eCond==4 ); 1466 VdbeCoverageIf(v, eCond==3); 1467 VdbeCoverageIf(v, eCond==4); 1468 }else{ 1469 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1470 VdbeCoverage(v); 1471 assert( eCond==0 || eCond==1 || eCond==2 ); 1472 VdbeCoverageIf(v, eCond==0); 1473 VdbeCoverageIf(v, eCond==1); 1474 VdbeCoverageIf(v, eCond==2); 1475 } 1476 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1477 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); 1478 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1479 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1480 VdbeCoverageNeverNullIf(v, eCond==2); 1481 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1482 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1483 sqlite3MayAbort(pParse); 1484 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1485 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1486 sqlite3ReleaseTempReg(pParse, regZero); 1487 } 1488 1489 /* 1490 ** Return the number of arguments passed to the window-function associated 1491 ** with the object passed as the only argument to this function. 1492 */ 1493 static int windowArgCount(Window *pWin){ 1494 ExprList *pList = pWin->pOwner->x.pList; 1495 return (pList ? pList->nExpr : 0); 1496 } 1497 1498 typedef struct WindowCodeArg WindowCodeArg; 1499 typedef struct WindowCsrAndReg WindowCsrAndReg; 1500 1501 /* 1502 ** See comments above struct WindowCodeArg. 1503 */ 1504 struct WindowCsrAndReg { 1505 int csr; /* Cursor number */ 1506 int reg; /* First in array of peer values */ 1507 }; 1508 1509 /* 1510 ** A single instance of this structure is allocated on the stack by 1511 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1512 ** routines. This is to reduce the number of arguments required by each 1513 ** helper function. 1514 ** 1515 ** regArg: 1516 ** Each window function requires an accumulator register (just as an 1517 ** ordinary aggregate function does). This variable is set to the first 1518 ** in an array of accumulator registers - one for each window function 1519 ** in the WindowCodeArg.pMWin list. 1520 ** 1521 ** eDelete: 1522 ** The window functions implementation sometimes caches the input rows 1523 ** that it processes in a temporary table. If it is not zero, this 1524 ** variable indicates when rows may be removed from the temp table (in 1525 ** order to reduce memory requirements - it would always be safe just 1526 ** to leave them there). Possible values for eDelete are: 1527 ** 1528 ** WINDOW_RETURN_ROW: 1529 ** An input row can be discarded after it is returned to the caller. 1530 ** 1531 ** WINDOW_AGGINVERSE: 1532 ** An input row can be discarded after the window functions xInverse() 1533 ** callbacks have been invoked in it. 1534 ** 1535 ** WINDOW_AGGSTEP: 1536 ** An input row can be discarded after the window functions xStep() 1537 ** callbacks have been invoked in it. 1538 ** 1539 ** start,current,end 1540 ** Consider a window-frame similar to the following: 1541 ** 1542 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1543 ** 1544 ** The windows functions implmentation caches the input rows in a temp 1545 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1546 ** aggressively removes rows once they are no longer required, but that's 1547 ** a mere detail). It keeps three cursors open on the temp table. One 1548 ** (current) that points to the next row to return to the query engine 1549 ** once its window function values have been calculated. Another (end) 1550 ** points to the next row to call the xStep() method of each window function 1551 ** on (so that it is 2 groups ahead of current). And a third (start) that 1552 ** points to the next row to call the xInverse() method of each window 1553 ** function on. 1554 ** 1555 ** Each cursor (start, current and end) consists of a VDBE cursor 1556 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1557 ** WindowCodeArg.reg) that always contains a copy of the peer values 1558 ** read from the corresponding cursor. 1559 ** 1560 ** Depending on the window-frame in question, all three cursors may not 1561 ** be required. In this case both WindowCodeArg.csr and reg are set to 1562 ** 0. 1563 */ 1564 struct WindowCodeArg { 1565 Parse *pParse; /* Parse context */ 1566 Window *pMWin; /* First in list of functions being processed */ 1567 Vdbe *pVdbe; /* VDBE object */ 1568 int addrGosub; /* OP_Gosub to this address to return one row */ 1569 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1570 int regArg; /* First in array of accumulator registers */ 1571 int eDelete; /* See above */ 1572 1573 WindowCsrAndReg start; 1574 WindowCsrAndReg current; 1575 WindowCsrAndReg end; 1576 }; 1577 1578 /* 1579 ** Generate VM code to read the window frames peer values from cursor csr into 1580 ** an array of registers starting at reg. 1581 */ 1582 static void windowReadPeerValues( 1583 WindowCodeArg *p, 1584 int csr, 1585 int reg 1586 ){ 1587 Window *pMWin = p->pMWin; 1588 ExprList *pOrderBy = pMWin->pOrderBy; 1589 if( pOrderBy ){ 1590 Vdbe *v = sqlite3GetVdbe(p->pParse); 1591 ExprList *pPart = pMWin->pPartition; 1592 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1593 int i; 1594 for(i=0; i<pOrderBy->nExpr; i++){ 1595 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1596 } 1597 } 1598 } 1599 1600 /* 1601 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1602 ** xInverse (if bInverse is non-zero) for each window function in the 1603 ** linked list starting at pMWin. Or, for built-in window functions 1604 ** that do not use the standard function API, generate the required 1605 ** inline VM code. 1606 ** 1607 ** If argument csr is greater than or equal to 0, then argument reg is 1608 ** the first register in an array of registers guaranteed to be large 1609 ** enough to hold the array of arguments for each function. In this case 1610 ** the arguments are extracted from the current row of csr into the 1611 ** array of registers before invoking OP_AggStep or OP_AggInverse 1612 ** 1613 ** Or, if csr is less than zero, then the array of registers at reg is 1614 ** already populated with all columns from the current row of the sub-query. 1615 ** 1616 ** If argument regPartSize is non-zero, then it is a register containing the 1617 ** number of rows in the current partition. 1618 */ 1619 static void windowAggStep( 1620 WindowCodeArg *p, 1621 Window *pMWin, /* Linked list of window functions */ 1622 int csr, /* Read arguments from this cursor */ 1623 int bInverse, /* True to invoke xInverse instead of xStep */ 1624 int reg /* Array of registers */ 1625 ){ 1626 Parse *pParse = p->pParse; 1627 Vdbe *v = sqlite3GetVdbe(pParse); 1628 Window *pWin; 1629 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1630 FuncDef *pFunc = pWin->pFunc; 1631 int regArg; 1632 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1633 int i; 1634 1635 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1636 1637 /* All OVER clauses in the same window function aggregate step must 1638 ** be the same. */ 1639 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1640 1641 for(i=0; i<nArg; i++){ 1642 if( i!=1 || pFunc->zName!=nth_valueName ){ 1643 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1644 }else{ 1645 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1646 } 1647 } 1648 regArg = reg; 1649 1650 if( pMWin->regStartRowid==0 1651 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1652 && (pWin->eStart!=TK_UNBOUNDED) 1653 ){ 1654 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1655 VdbeCoverage(v); 1656 if( bInverse==0 ){ 1657 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1658 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1659 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1660 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1661 }else{ 1662 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1663 VdbeCoverageNeverTaken(v); 1664 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1665 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1666 } 1667 sqlite3VdbeJumpHere(v, addrIsNull); 1668 }else if( pWin->regApp ){ 1669 assert( pFunc->zName==nth_valueName 1670 || pFunc->zName==first_valueName 1671 ); 1672 assert( bInverse==0 || bInverse==1 ); 1673 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1674 }else if( pFunc->xSFunc!=noopStepFunc ){ 1675 int addrIf = 0; 1676 if( pWin->pFilter ){ 1677 int regTmp; 1678 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1679 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1680 regTmp = sqlite3GetTempReg(pParse); 1681 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1682 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1683 VdbeCoverage(v); 1684 sqlite3ReleaseTempReg(pParse, regTmp); 1685 } 1686 1687 if( pWin->bExprArgs ){ 1688 int iStart = sqlite3VdbeCurrentAddr(v); 1689 VdbeOp *pOp, *pEnd; 1690 1691 nArg = pWin->pOwner->x.pList->nExpr; 1692 regArg = sqlite3GetTempRange(pParse, nArg); 1693 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1694 1695 pEnd = sqlite3VdbeGetOp(v, -1); 1696 for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){ 1697 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1698 pOp->p1 = csr; 1699 } 1700 } 1701 } 1702 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1703 CollSeq *pColl; 1704 assert( nArg>0 ); 1705 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1706 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1707 } 1708 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1709 bInverse, regArg, pWin->regAccum); 1710 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1711 sqlite3VdbeChangeP5(v, (u8)nArg); 1712 if( pWin->bExprArgs ){ 1713 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1714 } 1715 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1716 } 1717 } 1718 } 1719 1720 /* 1721 ** Values that may be passed as the second argument to windowCodeOp(). 1722 */ 1723 #define WINDOW_RETURN_ROW 1 1724 #define WINDOW_AGGINVERSE 2 1725 #define WINDOW_AGGSTEP 3 1726 1727 /* 1728 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1729 ** (bFin==1) for each window function in the linked list starting at 1730 ** pMWin. Or, for built-in window-functions that do not use the standard 1731 ** API, generate the equivalent VM code. 1732 */ 1733 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1734 Parse *pParse = p->pParse; 1735 Window *pMWin = p->pMWin; 1736 Vdbe *v = sqlite3GetVdbe(pParse); 1737 Window *pWin; 1738 1739 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1740 if( pMWin->regStartRowid==0 1741 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1742 && (pWin->eStart!=TK_UNBOUNDED) 1743 ){ 1744 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1745 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1746 VdbeCoverage(v); 1747 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1748 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1749 }else if( pWin->regApp ){ 1750 assert( pMWin->regStartRowid==0 ); 1751 }else{ 1752 int nArg = windowArgCount(pWin); 1753 if( bFin ){ 1754 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1755 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1756 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1757 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1758 }else{ 1759 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1760 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1761 } 1762 } 1763 } 1764 } 1765 1766 /* 1767 ** Generate code to calculate the current values of all window functions in the 1768 ** p->pMWin list by doing a full scan of the current window frame. Store the 1769 ** results in the Window.regResult registers, ready to return the upper 1770 ** layer. 1771 */ 1772 static void windowFullScan(WindowCodeArg *p){ 1773 Window *pWin; 1774 Parse *pParse = p->pParse; 1775 Window *pMWin = p->pMWin; 1776 Vdbe *v = p->pVdbe; 1777 1778 int regCRowid = 0; /* Current rowid value */ 1779 int regCPeer = 0; /* Current peer values */ 1780 int regRowid = 0; /* AggStep rowid value */ 1781 int regPeer = 0; /* AggStep peer values */ 1782 1783 int nPeer; 1784 int lblNext; 1785 int lblBrk; 1786 int addrNext; 1787 int csr; 1788 1789 VdbeModuleComment((v, "windowFullScan begin")); 1790 1791 assert( pMWin!=0 ); 1792 csr = pMWin->csrApp; 1793 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1794 1795 lblNext = sqlite3VdbeMakeLabel(pParse); 1796 lblBrk = sqlite3VdbeMakeLabel(pParse); 1797 1798 regCRowid = sqlite3GetTempReg(pParse); 1799 regRowid = sqlite3GetTempReg(pParse); 1800 if( nPeer ){ 1801 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1802 regPeer = sqlite3GetTempRange(pParse, nPeer); 1803 } 1804 1805 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1806 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1807 1808 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1809 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1810 } 1811 1812 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1813 VdbeCoverage(v); 1814 addrNext = sqlite3VdbeCurrentAddr(v); 1815 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1816 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1817 VdbeCoverageNeverNull(v); 1818 1819 if( pMWin->eExclude==TK_CURRENT ){ 1820 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1821 VdbeCoverageNeverNull(v); 1822 }else if( pMWin->eExclude!=TK_NO ){ 1823 int addr; 1824 int addrEq = 0; 1825 KeyInfo *pKeyInfo = 0; 1826 1827 if( pMWin->pOrderBy ){ 1828 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1829 } 1830 if( pMWin->eExclude==TK_TIES ){ 1831 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1832 VdbeCoverageNeverNull(v); 1833 } 1834 if( pKeyInfo ){ 1835 windowReadPeerValues(p, csr, regPeer); 1836 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1837 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1838 addr = sqlite3VdbeCurrentAddr(v)+1; 1839 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1840 VdbeCoverageEqNe(v); 1841 }else{ 1842 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1843 } 1844 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1845 } 1846 1847 windowAggStep(p, pMWin, csr, 0, p->regArg); 1848 1849 sqlite3VdbeResolveLabel(v, lblNext); 1850 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1851 VdbeCoverage(v); 1852 sqlite3VdbeJumpHere(v, addrNext-1); 1853 sqlite3VdbeJumpHere(v, addrNext+1); 1854 sqlite3ReleaseTempReg(pParse, regRowid); 1855 sqlite3ReleaseTempReg(pParse, regCRowid); 1856 if( nPeer ){ 1857 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1858 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1859 } 1860 1861 windowAggFinal(p, 1); 1862 VdbeModuleComment((v, "windowFullScan end")); 1863 } 1864 1865 /* 1866 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1867 ** return the current row of Window.iEphCsr. If all window functions are 1868 ** aggregate window functions that use the standard API, a single 1869 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1870 ** for per-row processing is only generated for the following built-in window 1871 ** functions: 1872 ** 1873 ** nth_value() 1874 ** first_value() 1875 ** lag() 1876 ** lead() 1877 */ 1878 static void windowReturnOneRow(WindowCodeArg *p){ 1879 Window *pMWin = p->pMWin; 1880 Vdbe *v = p->pVdbe; 1881 1882 if( pMWin->regStartRowid ){ 1883 windowFullScan(p); 1884 }else{ 1885 Parse *pParse = p->pParse; 1886 Window *pWin; 1887 1888 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1889 FuncDef *pFunc = pWin->pFunc; 1890 if( pFunc->zName==nth_valueName 1891 || pFunc->zName==first_valueName 1892 ){ 1893 int csr = pWin->csrApp; 1894 int lbl = sqlite3VdbeMakeLabel(pParse); 1895 int tmpReg = sqlite3GetTempReg(pParse); 1896 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1897 1898 if( pFunc->zName==nth_valueName ){ 1899 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1900 windowCheckValue(pParse, tmpReg, 2); 1901 }else{ 1902 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1903 } 1904 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1905 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1906 VdbeCoverageNeverNull(v); 1907 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1908 VdbeCoverageNeverTaken(v); 1909 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1910 sqlite3VdbeResolveLabel(v, lbl); 1911 sqlite3ReleaseTempReg(pParse, tmpReg); 1912 } 1913 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1914 int nArg = pWin->pOwner->x.pList->nExpr; 1915 int csr = pWin->csrApp; 1916 int lbl = sqlite3VdbeMakeLabel(pParse); 1917 int tmpReg = sqlite3GetTempReg(pParse); 1918 int iEph = pMWin->iEphCsr; 1919 1920 if( nArg<3 ){ 1921 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1922 }else{ 1923 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1924 } 1925 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1926 if( nArg<2 ){ 1927 int val = (pFunc->zName==leadName ? 1 : -1); 1928 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1929 }else{ 1930 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1931 int tmpReg2 = sqlite3GetTempReg(pParse); 1932 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1933 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1934 sqlite3ReleaseTempReg(pParse, tmpReg2); 1935 } 1936 1937 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1938 VdbeCoverage(v); 1939 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1940 sqlite3VdbeResolveLabel(v, lbl); 1941 sqlite3ReleaseTempReg(pParse, tmpReg); 1942 } 1943 } 1944 } 1945 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1946 } 1947 1948 /* 1949 ** Generate code to set the accumulator register for each window function 1950 ** in the linked list passed as the second argument to NULL. And perform 1951 ** any equivalent initialization required by any built-in window functions 1952 ** in the list. 1953 */ 1954 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1955 Vdbe *v = sqlite3GetVdbe(pParse); 1956 int regArg; 1957 int nArg = 0; 1958 Window *pWin; 1959 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1960 FuncDef *pFunc = pWin->pFunc; 1961 assert( pWin->regAccum ); 1962 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1963 nArg = MAX(nArg, windowArgCount(pWin)); 1964 if( pMWin->regStartRowid==0 ){ 1965 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1966 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1967 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1968 } 1969 1970 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1971 assert( pWin->eStart!=TK_UNBOUNDED ); 1972 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1973 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1974 } 1975 } 1976 } 1977 regArg = pParse->nMem+1; 1978 pParse->nMem += nArg; 1979 return regArg; 1980 } 1981 1982 /* 1983 ** Return true if the current frame should be cached in the ephemeral table, 1984 ** even if there are no xInverse() calls required. 1985 */ 1986 static int windowCacheFrame(Window *pMWin){ 1987 Window *pWin; 1988 if( pMWin->regStartRowid ) return 1; 1989 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1990 FuncDef *pFunc = pWin->pFunc; 1991 if( (pFunc->zName==nth_valueName) 1992 || (pFunc->zName==first_valueName) 1993 || (pFunc->zName==leadName) 1994 || (pFunc->zName==lagName) 1995 ){ 1996 return 1; 1997 } 1998 } 1999 return 0; 2000 } 2001 2002 /* 2003 ** regOld and regNew are each the first register in an array of size 2004 ** pOrderBy->nExpr. This function generates code to compare the two 2005 ** arrays of registers using the collation sequences and other comparison 2006 ** parameters specified by pOrderBy. 2007 ** 2008 ** If the two arrays are not equal, the contents of regNew is copied to 2009 ** regOld and control falls through. Otherwise, if the contents of the arrays 2010 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2011 */ 2012 static void windowIfNewPeer( 2013 Parse *pParse, 2014 ExprList *pOrderBy, 2015 int regNew, /* First in array of new values */ 2016 int regOld, /* First in array of old values */ 2017 int addr /* Jump here */ 2018 ){ 2019 Vdbe *v = sqlite3GetVdbe(pParse); 2020 if( pOrderBy ){ 2021 int nVal = pOrderBy->nExpr; 2022 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2023 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2024 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2025 sqlite3VdbeAddOp3(v, OP_Jump, 2026 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2027 ); 2028 VdbeCoverageEqNe(v); 2029 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2030 }else{ 2031 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2032 } 2033 } 2034 2035 /* 2036 ** This function is called as part of generating VM programs for RANGE 2037 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2038 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2039 ** code equivalent to: 2040 ** 2041 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2042 ** 2043 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2044 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2045 ** 2046 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2047 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2048 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2049 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2050 ** is OP_Ge, the generated code is equivalent to: 2051 ** 2052 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2053 ** 2054 ** A special type of arithmetic is used such that if csr1.peerVal is not 2055 ** a numeric type (real or integer), then the result of the addition 2056 ** or subtraction is a a copy of csr1.peerVal. 2057 */ 2058 static void windowCodeRangeTest( 2059 WindowCodeArg *p, 2060 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2061 int csr1, /* Cursor number for cursor 1 */ 2062 int regVal, /* Register containing non-negative number */ 2063 int csr2, /* Cursor number for cursor 2 */ 2064 int lbl /* Jump destination if condition is true */ 2065 ){ 2066 Parse *pParse = p->pParse; 2067 Vdbe *v = sqlite3GetVdbe(pParse); 2068 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2069 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2070 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2071 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2072 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2073 int addrGe; /* Jump destination */ 2074 int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ 2075 CollSeq *pColl; 2076 2077 /* Read the peer-value from each cursor into a register */ 2078 windowReadPeerValues(p, csr1, reg1); 2079 windowReadPeerValues(p, csr2, reg2); 2080 2081 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2082 assert( pOrderBy && pOrderBy->nExpr==1 ); 2083 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2084 switch( op ){ 2085 case OP_Ge: op = OP_Le; break; 2086 case OP_Gt: op = OP_Lt; break; 2087 default: assert( op==OP_Le ); op = OP_Ge; break; 2088 } 2089 arith = OP_Subtract; 2090 } 2091 2092 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2093 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2094 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2095 )); 2096 2097 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2098 ** consider NULL values to be larger than all other values, instead of 2099 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2100 ** (and adding that capability causes a performance regression), so 2101 ** instead if the BIGNULL flag is set then cases where either reg1 or 2102 ** reg2 are NULL are handled separately in the following block. The code 2103 ** generated is equivalent to: 2104 ** 2105 ** if( reg1 IS NULL ){ 2106 ** if( op==OP_Ge ) goto lbl; 2107 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2108 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2109 ** }else if( reg2 IS NULL ){ 2110 ** if( op==OP_Le ) goto lbl; 2111 ** } 2112 ** 2113 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2114 ** not taken, control jumps over the comparison operator coded below this 2115 ** block. */ 2116 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2117 /* This block runs if reg1 contains a NULL. */ 2118 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2119 switch( op ){ 2120 case OP_Ge: 2121 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2122 break; 2123 case OP_Gt: 2124 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2125 VdbeCoverage(v); 2126 break; 2127 case OP_Le: 2128 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2129 VdbeCoverage(v); 2130 break; 2131 default: assert( op==OP_Lt ); /* no-op */ break; 2132 } 2133 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 2134 2135 /* This block runs if reg1 is not NULL, but reg2 is. */ 2136 sqlite3VdbeJumpHere(v, addr); 2137 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2138 if( op==OP_Gt || op==OP_Ge ){ 2139 sqlite3VdbeChangeP2(v, -1, addrDone); 2140 } 2141 } 2142 2143 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2144 ** This block adds (or subtracts for DESC) the numeric value in regVal 2145 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2146 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2147 ** 2148 ** if( reg1>='' ) goto addrGe; 2149 ** reg1 = reg1 +/- regVal 2150 ** addrGe: 2151 ** 2152 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2153 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2154 ** then the arithmetic is performed, but since adding or subtracting from 2155 ** NULL is always NULL anyway, this case is handled as required too. */ 2156 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2157 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2158 VdbeCoverage(v); 2159 if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ 2160 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2161 } 2162 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2163 sqlite3VdbeJumpHere(v, addrGe); 2164 2165 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2166 ** control skips over this test if the BIGNULL flag is set and either 2167 ** reg1 or reg2 contain a NULL value. */ 2168 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2169 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); 2170 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); 2171 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2172 sqlite3VdbeResolveLabel(v, addrDone); 2173 2174 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2175 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2176 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2177 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2178 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2179 sqlite3ReleaseTempReg(pParse, reg1); 2180 sqlite3ReleaseTempReg(pParse, reg2); 2181 2182 VdbeModuleComment((v, "CodeRangeTest: end")); 2183 } 2184 2185 /* 2186 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2187 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2188 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2189 ** details. 2190 */ 2191 static int windowCodeOp( 2192 WindowCodeArg *p, /* Context object */ 2193 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2194 int regCountdown, /* Register for OP_IfPos countdown */ 2195 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2196 ){ 2197 int csr, reg; 2198 Parse *pParse = p->pParse; 2199 Window *pMWin = p->pMWin; 2200 int ret = 0; 2201 Vdbe *v = p->pVdbe; 2202 int addrContinue = 0; 2203 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2204 2205 int lblDone = sqlite3VdbeMakeLabel(pParse); 2206 int addrNextRange = 0; 2207 2208 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2209 ** starts with UNBOUNDED PRECEDING. */ 2210 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2211 assert( regCountdown==0 && jumpOnEof==0 ); 2212 return 0; 2213 } 2214 2215 if( regCountdown>0 ){ 2216 if( pMWin->eFrmType==TK_RANGE ){ 2217 addrNextRange = sqlite3VdbeCurrentAddr(v); 2218 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2219 if( op==WINDOW_AGGINVERSE ){ 2220 if( pMWin->eStart==TK_FOLLOWING ){ 2221 windowCodeRangeTest( 2222 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2223 ); 2224 }else{ 2225 windowCodeRangeTest( 2226 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2227 ); 2228 } 2229 }else{ 2230 windowCodeRangeTest( 2231 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2232 ); 2233 } 2234 }else{ 2235 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2236 VdbeCoverage(v); 2237 } 2238 } 2239 2240 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2241 windowAggFinal(p, 0); 2242 } 2243 addrContinue = sqlite3VdbeCurrentAddr(v); 2244 2245 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2246 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2247 ** start cursor does not advance past the end cursor within the 2248 ** temporary table. It otherwise might, if (a>b). */ 2249 if( pMWin->eStart==pMWin->eEnd && regCountdown 2250 && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE 2251 ){ 2252 int regRowid1 = sqlite3GetTempReg(pParse); 2253 int regRowid2 = sqlite3GetTempReg(pParse); 2254 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2255 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2256 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2257 VdbeCoverage(v); 2258 sqlite3ReleaseTempReg(pParse, regRowid1); 2259 sqlite3ReleaseTempReg(pParse, regRowid2); 2260 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2261 } 2262 2263 switch( op ){ 2264 case WINDOW_RETURN_ROW: 2265 csr = p->current.csr; 2266 reg = p->current.reg; 2267 windowReturnOneRow(p); 2268 break; 2269 2270 case WINDOW_AGGINVERSE: 2271 csr = p->start.csr; 2272 reg = p->start.reg; 2273 if( pMWin->regStartRowid ){ 2274 assert( pMWin->regEndRowid ); 2275 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2276 }else{ 2277 windowAggStep(p, pMWin, csr, 1, p->regArg); 2278 } 2279 break; 2280 2281 default: 2282 assert( op==WINDOW_AGGSTEP ); 2283 csr = p->end.csr; 2284 reg = p->end.reg; 2285 if( pMWin->regStartRowid ){ 2286 assert( pMWin->regEndRowid ); 2287 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2288 }else{ 2289 windowAggStep(p, pMWin, csr, 0, p->regArg); 2290 } 2291 break; 2292 } 2293 2294 if( op==p->eDelete ){ 2295 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2296 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2297 } 2298 2299 if( jumpOnEof ){ 2300 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2301 VdbeCoverage(v); 2302 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2303 }else{ 2304 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2305 VdbeCoverage(v); 2306 if( bPeer ){ 2307 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2308 } 2309 } 2310 2311 if( bPeer ){ 2312 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2313 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2314 windowReadPeerValues(p, csr, regTmp); 2315 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2316 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2317 } 2318 2319 if( addrNextRange ){ 2320 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2321 } 2322 sqlite3VdbeResolveLabel(v, lblDone); 2323 return ret; 2324 } 2325 2326 2327 /* 2328 ** Allocate and return a duplicate of the Window object indicated by the 2329 ** third argument. Set the Window.pOwner field of the new object to 2330 ** pOwner. 2331 */ 2332 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2333 Window *pNew = 0; 2334 if( ALWAYS(p) ){ 2335 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2336 if( pNew ){ 2337 pNew->zName = sqlite3DbStrDup(db, p->zName); 2338 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2339 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2340 pNew->pFunc = p->pFunc; 2341 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2342 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2343 pNew->eFrmType = p->eFrmType; 2344 pNew->eEnd = p->eEnd; 2345 pNew->eStart = p->eStart; 2346 pNew->eExclude = p->eExclude; 2347 pNew->regResult = p->regResult; 2348 pNew->regAccum = p->regAccum; 2349 pNew->iArgCol = p->iArgCol; 2350 pNew->iEphCsr = p->iEphCsr; 2351 pNew->bExprArgs = p->bExprArgs; 2352 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2353 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2354 pNew->pOwner = pOwner; 2355 pNew->bImplicitFrame = p->bImplicitFrame; 2356 } 2357 } 2358 return pNew; 2359 } 2360 2361 /* 2362 ** Return a copy of the linked list of Window objects passed as the 2363 ** second argument. 2364 */ 2365 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2366 Window *pWin; 2367 Window *pRet = 0; 2368 Window **pp = &pRet; 2369 2370 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2371 *pp = sqlite3WindowDup(db, 0, pWin); 2372 if( *pp==0 ) break; 2373 pp = &((*pp)->pNextWin); 2374 } 2375 2376 return pRet; 2377 } 2378 2379 /* 2380 ** Return true if it can be determined at compile time that expression 2381 ** pExpr evaluates to a value that, when cast to an integer, is greater 2382 ** than zero. False otherwise. 2383 ** 2384 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2385 ** flag and returns zero. 2386 */ 2387 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2388 int ret = 0; 2389 sqlite3 *db = pParse->db; 2390 sqlite3_value *pVal = 0; 2391 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2392 if( pVal && sqlite3_value_int(pVal)>0 ){ 2393 ret = 1; 2394 } 2395 sqlite3ValueFree(pVal); 2396 return ret; 2397 } 2398 2399 /* 2400 ** sqlite3WhereBegin() has already been called for the SELECT statement 2401 ** passed as the second argument when this function is invoked. It generates 2402 ** code to populate the Window.regResult register for each window function 2403 ** and invoke the sub-routine at instruction addrGosub once for each row. 2404 ** sqlite3WhereEnd() is always called before returning. 2405 ** 2406 ** This function handles several different types of window frames, which 2407 ** require slightly different processing. The following pseudo code is 2408 ** used to implement window frames of the form: 2409 ** 2410 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2411 ** 2412 ** Other window frame types use variants of the following: 2413 ** 2414 ** ... loop started by sqlite3WhereBegin() ... 2415 ** if( new partition ){ 2416 ** Gosub flush 2417 ** } 2418 ** Insert new row into eph table. 2419 ** 2420 ** if( first row of partition ){ 2421 ** // Rewind three cursors, all open on the eph table. 2422 ** Rewind(csrEnd); 2423 ** Rewind(csrStart); 2424 ** Rewind(csrCurrent); 2425 ** 2426 ** regEnd = <expr2> // FOLLOWING expression 2427 ** regStart = <expr1> // PRECEDING expression 2428 ** }else{ 2429 ** // First time this branch is taken, the eph table contains two 2430 ** // rows. The first row in the partition, which all three cursors 2431 ** // currently point to, and the following row. 2432 ** AGGSTEP 2433 ** if( (regEnd--)<=0 ){ 2434 ** RETURN_ROW 2435 ** if( (regStart--)<=0 ){ 2436 ** AGGINVERSE 2437 ** } 2438 ** } 2439 ** } 2440 ** } 2441 ** flush: 2442 ** AGGSTEP 2443 ** while( 1 ){ 2444 ** RETURN ROW 2445 ** if( csrCurrent is EOF ) break; 2446 ** if( (regStart--)<=0 ){ 2447 ** AggInverse(csrStart) 2448 ** Next(csrStart) 2449 ** } 2450 ** } 2451 ** 2452 ** The pseudo-code above uses the following shorthand: 2453 ** 2454 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2455 ** with arguments read from the current row of cursor csrEnd, then 2456 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2457 ** 2458 ** RETURN_ROW: return a row to the caller based on the contents of the 2459 ** current row of csrCurrent and the current state of all 2460 ** aggregates. Then step cursor csrCurrent forward one row. 2461 ** 2462 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2463 ** functions with arguments read from the current row of cursor 2464 ** csrStart. Then step csrStart forward one row. 2465 ** 2466 ** There are two other ROWS window frames that are handled significantly 2467 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2468 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2469 ** cases because they change the order in which the three cursors (csrStart, 2470 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2471 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2472 ** three. 2473 ** 2474 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2475 ** 2476 ** ... loop started by sqlite3WhereBegin() ... 2477 ** if( new partition ){ 2478 ** Gosub flush 2479 ** } 2480 ** Insert new row into eph table. 2481 ** if( first row of partition ){ 2482 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2483 ** regEnd = <expr2> 2484 ** regStart = <expr1> 2485 ** }else{ 2486 ** if( (regEnd--)<=0 ){ 2487 ** AGGSTEP 2488 ** } 2489 ** RETURN_ROW 2490 ** if( (regStart--)<=0 ){ 2491 ** AGGINVERSE 2492 ** } 2493 ** } 2494 ** } 2495 ** flush: 2496 ** if( (regEnd--)<=0 ){ 2497 ** AGGSTEP 2498 ** } 2499 ** RETURN_ROW 2500 ** 2501 ** 2502 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2503 ** 2504 ** ... loop started by sqlite3WhereBegin() ... 2505 ** if( new partition ){ 2506 ** Gosub flush 2507 ** } 2508 ** Insert new row into eph table. 2509 ** if( first row of partition ){ 2510 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2511 ** regEnd = <expr2> 2512 ** regStart = regEnd - <expr1> 2513 ** }else{ 2514 ** AGGSTEP 2515 ** if( (regEnd--)<=0 ){ 2516 ** RETURN_ROW 2517 ** } 2518 ** if( (regStart--)<=0 ){ 2519 ** AGGINVERSE 2520 ** } 2521 ** } 2522 ** } 2523 ** flush: 2524 ** AGGSTEP 2525 ** while( 1 ){ 2526 ** if( (regEnd--)<=0 ){ 2527 ** RETURN_ROW 2528 ** if( eof ) break; 2529 ** } 2530 ** if( (regStart--)<=0 ){ 2531 ** AGGINVERSE 2532 ** if( eof ) break 2533 ** } 2534 ** } 2535 ** while( !eof csrCurrent ){ 2536 ** RETURN_ROW 2537 ** } 2538 ** 2539 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2540 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2541 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2542 ** This is optimized of course - branches that will never be taken and 2543 ** conditions that are always true are omitted from the VM code. The only 2544 ** exceptional case is: 2545 ** 2546 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2547 ** 2548 ** ... loop started by sqlite3WhereBegin() ... 2549 ** if( new partition ){ 2550 ** Gosub flush 2551 ** } 2552 ** Insert new row into eph table. 2553 ** if( first row of partition ){ 2554 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2555 ** regStart = <expr1> 2556 ** }else{ 2557 ** AGGSTEP 2558 ** } 2559 ** } 2560 ** flush: 2561 ** AGGSTEP 2562 ** while( 1 ){ 2563 ** if( (regStart--)<=0 ){ 2564 ** AGGINVERSE 2565 ** if( eof ) break 2566 ** } 2567 ** RETURN_ROW 2568 ** } 2569 ** while( !eof csrCurrent ){ 2570 ** RETURN_ROW 2571 ** } 2572 ** 2573 ** Also requiring special handling are the cases: 2574 ** 2575 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2576 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2577 ** 2578 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2579 ** To handle this case, the pseudo-code programs depicted above are modified 2580 ** slightly to be: 2581 ** 2582 ** ... loop started by sqlite3WhereBegin() ... 2583 ** if( new partition ){ 2584 ** Gosub flush 2585 ** } 2586 ** Insert new row into eph table. 2587 ** if( first row of partition ){ 2588 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2589 ** regEnd = <expr2> 2590 ** regStart = <expr1> 2591 ** if( regEnd < regStart ){ 2592 ** RETURN_ROW 2593 ** delete eph table contents 2594 ** continue 2595 ** } 2596 ** ... 2597 ** 2598 ** The new "continue" statement in the above jumps to the next iteration 2599 ** of the outer loop - the one started by sqlite3WhereBegin(). 2600 ** 2601 ** The various GROUPS cases are implemented using the same patterns as 2602 ** ROWS. The VM code is modified slightly so that: 2603 ** 2604 ** 1. The else branch in the main loop is only taken if the row just 2605 ** added to the ephemeral table is the start of a new group. In 2606 ** other words, it becomes: 2607 ** 2608 ** ... loop started by sqlite3WhereBegin() ... 2609 ** if( new partition ){ 2610 ** Gosub flush 2611 ** } 2612 ** Insert new row into eph table. 2613 ** if( first row of partition ){ 2614 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2615 ** regEnd = <expr2> 2616 ** regStart = <expr1> 2617 ** }else if( new group ){ 2618 ** ... 2619 ** } 2620 ** } 2621 ** 2622 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2623 ** AGGINVERSE step processes the current row of the relevant cursor and 2624 ** all subsequent rows belonging to the same group. 2625 ** 2626 ** RANGE window frames are a little different again. As for GROUPS, the 2627 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2628 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2629 ** basic cases: 2630 ** 2631 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2632 ** 2633 ** ... loop started by sqlite3WhereBegin() ... 2634 ** if( new partition ){ 2635 ** Gosub flush 2636 ** } 2637 ** Insert new row into eph table. 2638 ** if( first row of partition ){ 2639 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2640 ** regEnd = <expr2> 2641 ** regStart = <expr1> 2642 ** }else{ 2643 ** AGGSTEP 2644 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2645 ** RETURN_ROW 2646 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2647 ** AGGINVERSE 2648 ** } 2649 ** } 2650 ** } 2651 ** } 2652 ** flush: 2653 ** AGGSTEP 2654 ** while( 1 ){ 2655 ** RETURN ROW 2656 ** if( csrCurrent is EOF ) break; 2657 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2658 ** AGGINVERSE 2659 ** } 2660 ** } 2661 ** } 2662 ** 2663 ** In the above notation, "csr.key" means the current value of the ORDER BY 2664 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2665 ** or <expr PRECEDING) read from cursor csr. 2666 ** 2667 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2668 ** 2669 ** ... loop started by sqlite3WhereBegin() ... 2670 ** if( new partition ){ 2671 ** Gosub flush 2672 ** } 2673 ** Insert new row into eph table. 2674 ** if( first row of partition ){ 2675 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2676 ** regEnd = <expr2> 2677 ** regStart = <expr1> 2678 ** }else{ 2679 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2680 ** AGGSTEP 2681 ** } 2682 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2683 ** AGGINVERSE 2684 ** } 2685 ** RETURN_ROW 2686 ** } 2687 ** } 2688 ** flush: 2689 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2690 ** AGGSTEP 2691 ** } 2692 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2693 ** AGGINVERSE 2694 ** } 2695 ** RETURN_ROW 2696 ** 2697 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2698 ** 2699 ** ... loop started by sqlite3WhereBegin() ... 2700 ** if( new partition ){ 2701 ** Gosub flush 2702 ** } 2703 ** Insert new row into eph table. 2704 ** if( first row of partition ){ 2705 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2706 ** regEnd = <expr2> 2707 ** regStart = <expr1> 2708 ** }else{ 2709 ** AGGSTEP 2710 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2711 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2712 ** AGGINVERSE 2713 ** } 2714 ** RETURN_ROW 2715 ** } 2716 ** } 2717 ** } 2718 ** flush: 2719 ** AGGSTEP 2720 ** while( 1 ){ 2721 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2722 ** AGGINVERSE 2723 ** if( eof ) break "while( 1 )" loop. 2724 ** } 2725 ** RETURN_ROW 2726 ** } 2727 ** while( !eof csrCurrent ){ 2728 ** RETURN_ROW 2729 ** } 2730 ** 2731 ** The text above leaves out many details. Refer to the code and comments 2732 ** below for a more complete picture. 2733 */ 2734 void sqlite3WindowCodeStep( 2735 Parse *pParse, /* Parse context */ 2736 Select *p, /* Rewritten SELECT statement */ 2737 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2738 int regGosub, /* Register for OP_Gosub */ 2739 int addrGosub /* OP_Gosub here to return each row */ 2740 ){ 2741 Window *pMWin = p->pWin; 2742 ExprList *pOrderBy = pMWin->pOrderBy; 2743 Vdbe *v = sqlite3GetVdbe(pParse); 2744 int csrWrite; /* Cursor used to write to eph. table */ 2745 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2746 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2747 int iInput; /* To iterate through sub cols */ 2748 int addrNe; /* Address of OP_Ne */ 2749 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2750 int addrInteger = 0; /* Address of OP_Integer */ 2751 int addrEmpty; /* Address of OP_Rewind in flush: */ 2752 int regNew; /* Array of registers holding new input row */ 2753 int regRecord; /* regNew array in record form */ 2754 int regRowid; /* Rowid for regRecord in eph table */ 2755 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2756 int regPeer = 0; /* Peer values for current row */ 2757 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2758 WindowCodeArg s; /* Context object for sub-routines */ 2759 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2760 int regStart = 0; /* Value of <expr> PRECEDING */ 2761 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2762 2763 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2764 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2765 ); 2766 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2767 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2768 ); 2769 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2770 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2771 || pMWin->eExclude==TK_NO 2772 ); 2773 2774 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2775 2776 /* Fill in the context object */ 2777 memset(&s, 0, sizeof(WindowCodeArg)); 2778 s.pParse = pParse; 2779 s.pMWin = pMWin; 2780 s.pVdbe = v; 2781 s.regGosub = regGosub; 2782 s.addrGosub = addrGosub; 2783 s.current.csr = pMWin->iEphCsr; 2784 csrWrite = s.current.csr+1; 2785 s.start.csr = s.current.csr+2; 2786 s.end.csr = s.current.csr+3; 2787 2788 /* Figure out when rows may be deleted from the ephemeral table. There 2789 ** are four options - they may never be deleted (eDelete==0), they may 2790 ** be deleted as soon as they are no longer part of the window frame 2791 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2792 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2793 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2794 switch( pMWin->eStart ){ 2795 case TK_FOLLOWING: 2796 if( pMWin->eFrmType!=TK_RANGE 2797 && windowExprGtZero(pParse, pMWin->pStart) 2798 ){ 2799 s.eDelete = WINDOW_RETURN_ROW; 2800 } 2801 break; 2802 case TK_UNBOUNDED: 2803 if( windowCacheFrame(pMWin)==0 ){ 2804 if( pMWin->eEnd==TK_PRECEDING ){ 2805 if( pMWin->eFrmType!=TK_RANGE 2806 && windowExprGtZero(pParse, pMWin->pEnd) 2807 ){ 2808 s.eDelete = WINDOW_AGGSTEP; 2809 } 2810 }else{ 2811 s.eDelete = WINDOW_RETURN_ROW; 2812 } 2813 } 2814 break; 2815 default: 2816 s.eDelete = WINDOW_AGGINVERSE; 2817 break; 2818 } 2819 2820 /* Allocate registers for the array of values from the sub-query, the 2821 ** samve values in record form, and the rowid used to insert said record 2822 ** into the ephemeral table. */ 2823 regNew = pParse->nMem+1; 2824 pParse->nMem += nInput; 2825 regRecord = ++pParse->nMem; 2826 regRowid = ++pParse->nMem; 2827 2828 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2829 ** clause, allocate registers to store the results of evaluating each 2830 ** <expr>. */ 2831 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2832 regStart = ++pParse->nMem; 2833 } 2834 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2835 regEnd = ++pParse->nMem; 2836 } 2837 2838 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2839 ** registers to store copies of the ORDER BY expressions (peer values) 2840 ** for the main loop, and for each cursor (start, current and end). */ 2841 if( pMWin->eFrmType!=TK_ROWS ){ 2842 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2843 regNewPeer = regNew + pMWin->nBufferCol; 2844 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2845 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2846 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2847 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2848 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2849 } 2850 2851 /* Load the column values for the row returned by the sub-select 2852 ** into an array of registers starting at regNew. Assemble them into 2853 ** a record in register regRecord. */ 2854 for(iInput=0; iInput<nInput; iInput++){ 2855 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2856 } 2857 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2858 2859 /* An input row has just been read into an array of registers starting 2860 ** at regNew. If the window has a PARTITION clause, this block generates 2861 ** VM code to check if the input row is the start of a new partition. 2862 ** If so, it does an OP_Gosub to an address to be filled in later. The 2863 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2864 if( pMWin->pPartition ){ 2865 int addr; 2866 ExprList *pPart = pMWin->pPartition; 2867 int nPart = pPart->nExpr; 2868 int regNewPart = regNew + pMWin->nBufferCol; 2869 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2870 2871 regFlushPart = ++pParse->nMem; 2872 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2873 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2874 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2875 VdbeCoverageEqNe(v); 2876 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2877 VdbeComment((v, "call flush_partition")); 2878 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2879 } 2880 2881 /* Insert the new row into the ephemeral table */ 2882 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2883 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2884 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2885 VdbeCoverageNeverNull(v); 2886 2887 /* This block is run for the first row of each partition */ 2888 s.regArg = windowInitAccum(pParse, pMWin); 2889 2890 if( regStart ){ 2891 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2892 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2893 } 2894 if( regEnd ){ 2895 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2896 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2897 } 2898 2899 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2900 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2901 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2902 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2903 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2904 windowAggFinal(&s, 0); 2905 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2906 VdbeCoverageNeverTaken(v); 2907 windowReturnOneRow(&s); 2908 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2909 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2910 sqlite3VdbeJumpHere(v, addrGe); 2911 } 2912 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2913 assert( pMWin->eEnd==TK_FOLLOWING ); 2914 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2915 } 2916 2917 if( pMWin->eStart!=TK_UNBOUNDED ){ 2918 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2919 VdbeCoverageNeverTaken(v); 2920 } 2921 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2922 VdbeCoverageNeverTaken(v); 2923 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2924 VdbeCoverageNeverTaken(v); 2925 if( regPeer && pOrderBy ){ 2926 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2927 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2928 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2929 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2930 } 2931 2932 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2933 2934 sqlite3VdbeJumpHere(v, addrNe); 2935 2936 /* Beginning of the block executed for the second and subsequent rows. */ 2937 if( regPeer ){ 2938 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2939 } 2940 if( pMWin->eStart==TK_FOLLOWING ){ 2941 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2942 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2943 if( pMWin->eFrmType==TK_RANGE ){ 2944 int lbl = sqlite3VdbeMakeLabel(pParse); 2945 int addrNext = sqlite3VdbeCurrentAddr(v); 2946 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2947 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2948 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2949 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2950 sqlite3VdbeResolveLabel(v, lbl); 2951 }else{ 2952 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2953 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2954 } 2955 } 2956 }else 2957 if( pMWin->eEnd==TK_PRECEDING ){ 2958 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2959 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2960 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2961 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2962 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2963 }else{ 2964 int addr = 0; 2965 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2966 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2967 if( pMWin->eFrmType==TK_RANGE ){ 2968 int lbl = 0; 2969 addr = sqlite3VdbeCurrentAddr(v); 2970 if( regEnd ){ 2971 lbl = sqlite3VdbeMakeLabel(pParse); 2972 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2973 } 2974 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2975 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2976 if( regEnd ){ 2977 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2978 sqlite3VdbeResolveLabel(v, lbl); 2979 } 2980 }else{ 2981 if( regEnd ){ 2982 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2983 VdbeCoverage(v); 2984 } 2985 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2986 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2987 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2988 } 2989 } 2990 } 2991 2992 /* End of the main input loop */ 2993 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2994 sqlite3WhereEnd(pWInfo); 2995 2996 /* Fall through */ 2997 if( pMWin->pPartition ){ 2998 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2999 sqlite3VdbeJumpHere(v, addrGosubFlush); 3000 } 3001 3002 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 3003 VdbeCoverage(v); 3004 if( pMWin->eEnd==TK_PRECEDING ){ 3005 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 3006 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3007 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3008 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3009 }else if( pMWin->eStart==TK_FOLLOWING ){ 3010 int addrStart; 3011 int addrBreak1; 3012 int addrBreak2; 3013 int addrBreak3; 3014 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3015 if( pMWin->eFrmType==TK_RANGE ){ 3016 addrStart = sqlite3VdbeCurrentAddr(v); 3017 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3018 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3019 }else 3020 if( pMWin->eEnd==TK_UNBOUNDED ){ 3021 addrStart = sqlite3VdbeCurrentAddr(v); 3022 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3023 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3024 }else{ 3025 assert( pMWin->eEnd==TK_FOLLOWING ); 3026 addrStart = sqlite3VdbeCurrentAddr(v); 3027 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3028 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3029 } 3030 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3031 sqlite3VdbeJumpHere(v, addrBreak2); 3032 addrStart = sqlite3VdbeCurrentAddr(v); 3033 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3034 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3035 sqlite3VdbeJumpHere(v, addrBreak1); 3036 sqlite3VdbeJumpHere(v, addrBreak3); 3037 }else{ 3038 int addrBreak; 3039 int addrStart; 3040 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3041 addrStart = sqlite3VdbeCurrentAddr(v); 3042 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3043 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3044 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3045 sqlite3VdbeJumpHere(v, addrBreak); 3046 } 3047 sqlite3VdbeJumpHere(v, addrEmpty); 3048 3049 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3050 if( pMWin->pPartition ){ 3051 if( pMWin->regStartRowid ){ 3052 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3053 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3054 } 3055 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3056 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3057 } 3058 } 3059 3060 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3061