xref: /sqlite-3.40.0/src/window.c (revision 37874d7d)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* Fall through.  */
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
791       p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
792       if( p->pSub ){
793         assert( ExprHasProperty(pExpr, EP_Static)==0 );
794         ExprSetProperty(pExpr, EP_Static);
795         sqlite3ExprDelete(pParse->db, pExpr);
796         ExprClearProperty(pExpr, EP_Static);
797         memset(pExpr, 0, sizeof(Expr));
798 
799         pExpr->op = TK_COLUMN;
800         pExpr->iColumn = p->pSub->nExpr-1;
801         pExpr->iTable = p->pWin->iEphCsr;
802         pExpr->y.pTab = p->pTab;
803       }
804 
805       break;
806     }
807 
808     default: /* no-op */
809       break;
810   }
811 
812   return WRC_Continue;
813 }
814 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
815   struct WindowRewrite *p = pWalker->u.pRewrite;
816   Select *pSave = p->pSubSelect;
817   if( pSave==pSelect ){
818     return WRC_Continue;
819   }else{
820     p->pSubSelect = pSelect;
821     sqlite3WalkSelect(pWalker, pSelect);
822     p->pSubSelect = pSave;
823   }
824   return WRC_Prune;
825 }
826 
827 
828 /*
829 ** Iterate through each expression in expression-list pEList. For each:
830 **
831 **   * TK_COLUMN,
832 **   * aggregate function, or
833 **   * window function with a Window object that is not a member of the
834 **     Window list passed as the second argument (pWin).
835 **
836 ** Append the node to output expression-list (*ppSub). And replace it
837 ** with a TK_COLUMN that reads the (N-1)th element of table
838 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
839 ** appending the new one.
840 */
841 static void selectWindowRewriteEList(
842   Parse *pParse,
843   Window *pWin,
844   SrcList *pSrc,
845   ExprList *pEList,               /* Rewrite expressions in this list */
846   Table *pTab,
847   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
848 ){
849   Walker sWalker;
850   WindowRewrite sRewrite;
851 
852   assert( pWin!=0 );
853   memset(&sWalker, 0, sizeof(Walker));
854   memset(&sRewrite, 0, sizeof(WindowRewrite));
855 
856   sRewrite.pSub = *ppSub;
857   sRewrite.pWin = pWin;
858   sRewrite.pSrc = pSrc;
859   sRewrite.pTab = pTab;
860 
861   sWalker.pParse = pParse;
862   sWalker.xExprCallback = selectWindowRewriteExprCb;
863   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
864   sWalker.u.pRewrite = &sRewrite;
865 
866   (void)sqlite3WalkExprList(&sWalker, pEList);
867 
868   *ppSub = sRewrite.pSub;
869 }
870 
871 /*
872 ** Append a copy of each expression in expression-list pAppend to
873 ** expression list pList. Return a pointer to the result list.
874 */
875 static ExprList *exprListAppendList(
876   Parse *pParse,          /* Parsing context */
877   ExprList *pList,        /* List to which to append. Might be NULL */
878   ExprList *pAppend,      /* List of values to append. Might be NULL */
879   int bIntToNull
880 ){
881   if( pAppend ){
882     int i;
883     int nInit = pList ? pList->nExpr : 0;
884     for(i=0; i<pAppend->nExpr; i++){
885       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
886       if( bIntToNull && pDup && pDup->op==TK_INTEGER ){
887         pDup->op = TK_NULL;
888         pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
889       }
890       pList = sqlite3ExprListAppend(pParse, pList, pDup);
891       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
892     }
893   }
894   return pList;
895 }
896 
897 /*
898 ** If the SELECT statement passed as the second argument does not invoke
899 ** any SQL window functions, this function is a no-op. Otherwise, it
900 ** rewrites the SELECT statement so that window function xStep functions
901 ** are invoked in the correct order as described under "SELECT REWRITING"
902 ** at the top of this file.
903 */
904 int sqlite3WindowRewrite(Parse *pParse, Select *p){
905   int rc = SQLITE_OK;
906   if( p->pWin && p->pPrior==0 ){
907     Vdbe *v = sqlite3GetVdbe(pParse);
908     sqlite3 *db = pParse->db;
909     Select *pSub = 0;             /* The subquery */
910     SrcList *pSrc = p->pSrc;
911     Expr *pWhere = p->pWhere;
912     ExprList *pGroupBy = p->pGroupBy;
913     Expr *pHaving = p->pHaving;
914     ExprList *pSort = 0;
915 
916     ExprList *pSublist = 0;       /* Expression list for sub-query */
917     Window *pMWin = p->pWin;      /* Master window object */
918     Window *pWin;                 /* Window object iterator */
919     Table *pTab;
920 
921     pTab = sqlite3DbMallocZero(db, sizeof(Table));
922     if( pTab==0 ){
923       return SQLITE_NOMEM;
924     }
925 
926     p->pSrc = 0;
927     p->pWhere = 0;
928     p->pGroupBy = 0;
929     p->pHaving = 0;
930     p->selFlags &= ~SF_Aggregate;
931 
932     /* Create the ORDER BY clause for the sub-select. This is the concatenation
933     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
934     ** redundant, remove the ORDER BY from the parent SELECT.  */
935     pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0);
936     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
937     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
938       int nSave = pSort->nExpr;
939       pSort->nExpr = p->pOrderBy->nExpr;
940       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
941         sqlite3ExprListDelete(db, p->pOrderBy);
942         p->pOrderBy = 0;
943       }
944       pSort->nExpr = nSave;
945     }
946 
947     /* Assign a cursor number for the ephemeral table used to buffer rows.
948     ** The OpenEphemeral instruction is coded later, after it is known how
949     ** many columns the table will have.  */
950     pMWin->iEphCsr = pParse->nTab++;
951     pParse->nTab += 3;
952 
953     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
954     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
955     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
956 
957     /* Append the PARTITION BY and ORDER BY expressions to the to the
958     ** sub-select expression list. They are required to figure out where
959     ** boundaries for partitions and sets of peer rows lie.  */
960     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
961     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
962 
963     /* Append the arguments passed to each window function to the
964     ** sub-select expression list. Also allocate two registers for each
965     ** window function - one for the accumulator, another for interim
966     ** results.  */
967     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
968       pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
969       pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList, 0);
970       if( pWin->pFilter ){
971         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
972         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
973       }
974       pWin->regAccum = ++pParse->nMem;
975       pWin->regResult = ++pParse->nMem;
976       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
977     }
978 
979     /* If there is no ORDER BY or PARTITION BY clause, and the window
980     ** function accepts zero arguments, and there are no other columns
981     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
982     ** that pSublist is still NULL here. Add a constant expression here to
983     ** keep everything legal in this case.
984     */
985     if( pSublist==0 ){
986       pSublist = sqlite3ExprListAppend(pParse, 0,
987           sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0)
988       );
989     }
990 
991     pSub = sqlite3SelectNew(
992         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
993     );
994     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
995     if( p->pSrc ){
996       Table *pTab2;
997       p->pSrc->a[0].pSelect = pSub;
998       sqlite3SrcListAssignCursors(pParse, p->pSrc);
999       pSub->selFlags |= SF_Expanded;
1000       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1001       if( pTab2==0 ){
1002         rc = SQLITE_NOMEM;
1003       }else{
1004         memcpy(pTab, pTab2, sizeof(Table));
1005         pTab->tabFlags |= TF_Ephemeral;
1006         p->pSrc->a[0].pTab = pTab;
1007         pTab = pTab2;
1008       }
1009       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr);
1010       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1011       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1012       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1013     }else{
1014       sqlite3SelectDelete(db, pSub);
1015     }
1016     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1017     sqlite3DbFree(db, pTab);
1018   }
1019 
1020   return rc;
1021 }
1022 
1023 /*
1024 ** Unlink the Window object from the Select to which it is attached,
1025 ** if it is attached.
1026 */
1027 void sqlite3WindowUnlinkFromSelect(Window *p){
1028   if( p->ppThis ){
1029     *p->ppThis = p->pNextWin;
1030     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1031     p->ppThis = 0;
1032   }
1033 }
1034 
1035 /*
1036 ** Free the Window object passed as the second argument.
1037 */
1038 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1039   if( p ){
1040     sqlite3WindowUnlinkFromSelect(p);
1041     sqlite3ExprDelete(db, p->pFilter);
1042     sqlite3ExprListDelete(db, p->pPartition);
1043     sqlite3ExprListDelete(db, p->pOrderBy);
1044     sqlite3ExprDelete(db, p->pEnd);
1045     sqlite3ExprDelete(db, p->pStart);
1046     sqlite3DbFree(db, p->zName);
1047     sqlite3DbFree(db, p->zBase);
1048     sqlite3DbFree(db, p);
1049   }
1050 }
1051 
1052 /*
1053 ** Free the linked list of Window objects starting at the second argument.
1054 */
1055 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1056   while( p ){
1057     Window *pNext = p->pNextWin;
1058     sqlite3WindowDelete(db, p);
1059     p = pNext;
1060   }
1061 }
1062 
1063 /*
1064 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1065 ** value should be a non-negative integer.  If the value is not a
1066 ** constant, change it to NULL.  The fact that it is then a non-negative
1067 ** integer will be caught later.  But it is important not to leave
1068 ** variable values in the expression tree.
1069 */
1070 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1071   if( 0==sqlite3ExprIsConstant(pExpr) ){
1072     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1073     sqlite3ExprDelete(pParse->db, pExpr);
1074     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1075   }
1076   return pExpr;
1077 }
1078 
1079 /*
1080 ** Allocate and return a new Window object describing a Window Definition.
1081 */
1082 Window *sqlite3WindowAlloc(
1083   Parse *pParse,    /* Parsing context */
1084   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1085   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1086   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1087   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1088   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1089   u8 eExclude       /* EXCLUDE clause */
1090 ){
1091   Window *pWin = 0;
1092   int bImplicitFrame = 0;
1093 
1094   /* Parser assures the following: */
1095   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1096   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1097            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1098   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1099            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1100   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1101   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1102 
1103   if( eType==0 ){
1104     bImplicitFrame = 1;
1105     eType = TK_RANGE;
1106   }
1107 
1108   /* Additionally, the
1109   ** starting boundary type may not occur earlier in the following list than
1110   ** the ending boundary type:
1111   **
1112   **   UNBOUNDED PRECEDING
1113   **   <expr> PRECEDING
1114   **   CURRENT ROW
1115   **   <expr> FOLLOWING
1116   **   UNBOUNDED FOLLOWING
1117   **
1118   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1119   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1120   ** frame boundary.
1121   */
1122   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1123    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1124   ){
1125     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1126     goto windowAllocErr;
1127   }
1128 
1129   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1130   if( pWin==0 ) goto windowAllocErr;
1131   pWin->eFrmType = eType;
1132   pWin->eStart = eStart;
1133   pWin->eEnd = eEnd;
1134   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1135     eExclude = TK_NO;
1136   }
1137   pWin->eExclude = eExclude;
1138   pWin->bImplicitFrame = bImplicitFrame;
1139   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1140   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1141   return pWin;
1142 
1143 windowAllocErr:
1144   sqlite3ExprDelete(pParse->db, pEnd);
1145   sqlite3ExprDelete(pParse->db, pStart);
1146   return 0;
1147 }
1148 
1149 /*
1150 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1151 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1152 ** equivalent nul-terminated string.
1153 */
1154 Window *sqlite3WindowAssemble(
1155   Parse *pParse,
1156   Window *pWin,
1157   ExprList *pPartition,
1158   ExprList *pOrderBy,
1159   Token *pBase
1160 ){
1161   if( pWin ){
1162     pWin->pPartition = pPartition;
1163     pWin->pOrderBy = pOrderBy;
1164     if( pBase ){
1165       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1166     }
1167   }else{
1168     sqlite3ExprListDelete(pParse->db, pPartition);
1169     sqlite3ExprListDelete(pParse->db, pOrderBy);
1170   }
1171   return pWin;
1172 }
1173 
1174 /*
1175 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1176 ** is the base window. Earlier windows from the same WINDOW clause are
1177 ** stored in the linked list starting at pWin->pNextWin. This function
1178 ** either updates *pWin according to the base specification, or else
1179 ** leaves an error in pParse.
1180 */
1181 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1182   if( pWin->zBase ){
1183     sqlite3 *db = pParse->db;
1184     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1185     if( pExist ){
1186       const char *zErr = 0;
1187       /* Check for errors */
1188       if( pWin->pPartition ){
1189         zErr = "PARTITION clause";
1190       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1191         zErr = "ORDER BY clause";
1192       }else if( pExist->bImplicitFrame==0 ){
1193         zErr = "frame specification";
1194       }
1195       if( zErr ){
1196         sqlite3ErrorMsg(pParse,
1197             "cannot override %s of window: %s", zErr, pWin->zBase
1198         );
1199       }else{
1200         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1201         if( pExist->pOrderBy ){
1202           assert( pWin->pOrderBy==0 );
1203           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1204         }
1205         sqlite3DbFree(db, pWin->zBase);
1206         pWin->zBase = 0;
1207       }
1208     }
1209   }
1210 }
1211 
1212 /*
1213 ** Attach window object pWin to expression p.
1214 */
1215 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1216   if( p ){
1217     assert( p->op==TK_FUNCTION );
1218     assert( pWin );
1219     p->y.pWin = pWin;
1220     ExprSetProperty(p, EP_WinFunc);
1221     pWin->pOwner = p;
1222     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1223       sqlite3ErrorMsg(pParse,
1224           "DISTINCT is not supported for window functions"
1225       );
1226     }
1227   }else{
1228     sqlite3WindowDelete(pParse->db, pWin);
1229   }
1230 }
1231 
1232 /*
1233 ** Possibly link window pWin into the list at pSel->pWin (window functions
1234 ** to be processed as part of SELECT statement pSel). The window is linked
1235 ** in if either (a) there are no other windows already linked to this
1236 ** SELECT, or (b) the windows already linked use a compatible window frame.
1237 */
1238 void sqlite3WindowLink(Select *pSel, Window *pWin){
1239   if( 0==pSel->pWin
1240    || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0)
1241   ){
1242     pWin->pNextWin = pSel->pWin;
1243     if( pSel->pWin ){
1244       pSel->pWin->ppThis = &pWin->pNextWin;
1245     }
1246     pSel->pWin = pWin;
1247     pWin->ppThis = &pSel->pWin;
1248   }
1249 }
1250 
1251 /*
1252 ** Return 0 if the two window objects are identical, or non-zero otherwise.
1253 ** Identical window objects can be processed in a single scan.
1254 */
1255 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1256   if( p1->eFrmType!=p2->eFrmType ) return 1;
1257   if( p1->eStart!=p2->eStart ) return 1;
1258   if( p1->eEnd!=p2->eEnd ) return 1;
1259   if( p1->eExclude!=p2->eExclude ) return 1;
1260   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1261   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1262   if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1;
1263   if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1;
1264   if( bFilter ){
1265     if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1;
1266   }
1267   return 0;
1268 }
1269 
1270 
1271 /*
1272 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1273 ** to begin iterating through the sub-query results. It is used to allocate
1274 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1275 */
1276 void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){
1277   Window *pWin;
1278   Vdbe *v = sqlite3GetVdbe(pParse);
1279 
1280   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1281   ** said registers to NULL.  */
1282   if( pMWin->pPartition ){
1283     int nExpr = pMWin->pPartition->nExpr;
1284     pMWin->regPart = pParse->nMem+1;
1285     pParse->nMem += nExpr;
1286     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1287   }
1288 
1289   pMWin->regOne = ++pParse->nMem;
1290   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1291 
1292   if( pMWin->eExclude ){
1293     pMWin->regStartRowid = ++pParse->nMem;
1294     pMWin->regEndRowid = ++pParse->nMem;
1295     pMWin->csrApp = pParse->nTab++;
1296     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1297     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1298     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1299     return;
1300   }
1301 
1302   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1303     FuncDef *p = pWin->pFunc;
1304     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1305       /* The inline versions of min() and max() require a single ephemeral
1306       ** table and 3 registers. The registers are used as follows:
1307       **
1308       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1309       **   regApp+1: integer value used to ensure keys are unique
1310       **   regApp+2: output of MakeRecord
1311       */
1312       ExprList *pList = pWin->pOwner->x.pList;
1313       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1314       pWin->csrApp = pParse->nTab++;
1315       pWin->regApp = pParse->nMem+1;
1316       pParse->nMem += 3;
1317       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1318         assert( pKeyInfo->aSortFlags[0]==0 );
1319         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1320       }
1321       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1322       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1323       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1324     }
1325     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1326       /* Allocate two registers at pWin->regApp. These will be used to
1327       ** store the start and end index of the current frame.  */
1328       pWin->regApp = pParse->nMem+1;
1329       pWin->csrApp = pParse->nTab++;
1330       pParse->nMem += 2;
1331       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1332     }
1333     else if( p->zName==leadName || p->zName==lagName ){
1334       pWin->csrApp = pParse->nTab++;
1335       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1336     }
1337   }
1338 }
1339 
1340 #define WINDOW_STARTING_INT  0
1341 #define WINDOW_ENDING_INT    1
1342 #define WINDOW_NTH_VALUE_INT 2
1343 #define WINDOW_STARTING_NUM  3
1344 #define WINDOW_ENDING_NUM    4
1345 
1346 /*
1347 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1348 ** value of the second argument to nth_value() (eCond==2) has just been
1349 ** evaluated and the result left in register reg. This function generates VM
1350 ** code to check that the value is a non-negative integer and throws an
1351 ** exception if it is not.
1352 */
1353 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1354   static const char *azErr[] = {
1355     "frame starting offset must be a non-negative integer",
1356     "frame ending offset must be a non-negative integer",
1357     "second argument to nth_value must be a positive integer",
1358     "frame starting offset must be a non-negative number",
1359     "frame ending offset must be a non-negative number",
1360   };
1361   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1362   Vdbe *v = sqlite3GetVdbe(pParse);
1363   int regZero = sqlite3GetTempReg(pParse);
1364   assert( eCond>=0 && eCond<ArraySize(azErr) );
1365   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1366   if( eCond>=WINDOW_STARTING_NUM ){
1367     int regString = sqlite3GetTempReg(pParse);
1368     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1369     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1370     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1371     VdbeCoverage(v);
1372     assert( eCond==3 || eCond==4 );
1373     VdbeCoverageIf(v, eCond==3);
1374     VdbeCoverageIf(v, eCond==4);
1375   }else{
1376     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1377     VdbeCoverage(v);
1378     assert( eCond==0 || eCond==1 || eCond==2 );
1379     VdbeCoverageIf(v, eCond==0);
1380     VdbeCoverageIf(v, eCond==1);
1381     VdbeCoverageIf(v, eCond==2);
1382   }
1383   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1384   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1385   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1386   VdbeCoverageNeverNullIf(v, eCond==2);
1387   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1388   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1389   sqlite3MayAbort(pParse);
1390   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1391   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1392   sqlite3ReleaseTempReg(pParse, regZero);
1393 }
1394 
1395 /*
1396 ** Return the number of arguments passed to the window-function associated
1397 ** with the object passed as the only argument to this function.
1398 */
1399 static int windowArgCount(Window *pWin){
1400   ExprList *pList = pWin->pOwner->x.pList;
1401   return (pList ? pList->nExpr : 0);
1402 }
1403 
1404 /*
1405 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1406 ** xInverse (if bInverse is non-zero) for each window function in the
1407 ** linked list starting at pMWin. Or, for built-in window functions
1408 ** that do not use the standard function API, generate the required
1409 ** inline VM code.
1410 **
1411 ** If argument csr is greater than or equal to 0, then argument reg is
1412 ** the first register in an array of registers guaranteed to be large
1413 ** enough to hold the array of arguments for each function. In this case
1414 ** the arguments are extracted from the current row of csr into the
1415 ** array of registers before invoking OP_AggStep or OP_AggInverse
1416 **
1417 ** Or, if csr is less than zero, then the array of registers at reg is
1418 ** already populated with all columns from the current row of the sub-query.
1419 **
1420 ** If argument regPartSize is non-zero, then it is a register containing the
1421 ** number of rows in the current partition.
1422 */
1423 static void windowAggStep(
1424   Parse *pParse,
1425   Window *pMWin,                  /* Linked list of window functions */
1426   int csr,                        /* Read arguments from this cursor */
1427   int bInverse,                   /* True to invoke xInverse instead of xStep */
1428   int reg                         /* Array of registers */
1429 ){
1430   Vdbe *v = sqlite3GetVdbe(pParse);
1431   Window *pWin;
1432   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1433     FuncDef *pFunc = pWin->pFunc;
1434     int regArg;
1435     int nArg = windowArgCount(pWin);
1436     int i;
1437 
1438     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1439 
1440     for(i=0; i<nArg; i++){
1441       if( i!=1 || pFunc->zName!=nth_valueName ){
1442         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1443       }else{
1444         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1445       }
1446     }
1447     regArg = reg;
1448 
1449     if( pMWin->regStartRowid==0
1450      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1451      && (pWin->eStart!=TK_UNBOUNDED)
1452     ){
1453       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1454       VdbeCoverage(v);
1455       if( bInverse==0 ){
1456         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1457         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1458         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1459         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1460       }else{
1461         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1462         VdbeCoverageNeverTaken(v);
1463         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1464         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1465       }
1466       sqlite3VdbeJumpHere(v, addrIsNull);
1467     }else if( pWin->regApp ){
1468       assert( pFunc->zName==nth_valueName
1469            || pFunc->zName==first_valueName
1470       );
1471       assert( bInverse==0 || bInverse==1 );
1472       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1473     }else if( pFunc->xSFunc!=noopStepFunc ){
1474       int addrIf = 0;
1475       if( pWin->pFilter ){
1476         int regTmp;
1477         assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr );
1478         assert( nArg || pWin->pOwner->x.pList==0 );
1479         regTmp = sqlite3GetTempReg(pParse);
1480         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1481         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1482         VdbeCoverage(v);
1483         sqlite3ReleaseTempReg(pParse, regTmp);
1484       }
1485       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1486         CollSeq *pColl;
1487         assert( nArg>0 );
1488         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1489         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1490       }
1491       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1492                         bInverse, regArg, pWin->regAccum);
1493       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1494       sqlite3VdbeChangeP5(v, (u8)nArg);
1495       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1496     }
1497   }
1498 }
1499 
1500 typedef struct WindowCodeArg WindowCodeArg;
1501 typedef struct WindowCsrAndReg WindowCsrAndReg;
1502 struct WindowCsrAndReg {
1503   int csr;
1504   int reg;
1505 };
1506 
1507 struct WindowCodeArg {
1508   Parse *pParse;
1509   Window *pMWin;
1510   Vdbe *pVdbe;
1511   int regGosub;
1512   int addrGosub;
1513   int regArg;
1514   int eDelete;
1515 
1516   WindowCsrAndReg start;
1517   WindowCsrAndReg current;
1518   WindowCsrAndReg end;
1519 };
1520 
1521 /*
1522 ** Values that may be passed as the second argument to windowCodeOp().
1523 */
1524 #define WINDOW_RETURN_ROW 1
1525 #define WINDOW_AGGINVERSE 2
1526 #define WINDOW_AGGSTEP    3
1527 
1528 /*
1529 ** Generate VM code to read the window frames peer values from cursor csr into
1530 ** an array of registers starting at reg.
1531 */
1532 static void windowReadPeerValues(
1533   WindowCodeArg *p,
1534   int csr,
1535   int reg
1536 ){
1537   Window *pMWin = p->pMWin;
1538   ExprList *pOrderBy = pMWin->pOrderBy;
1539   if( pOrderBy ){
1540     Vdbe *v = sqlite3GetVdbe(p->pParse);
1541     ExprList *pPart = pMWin->pPartition;
1542     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1543     int i;
1544     for(i=0; i<pOrderBy->nExpr; i++){
1545       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1546     }
1547   }
1548 }
1549 
1550 /*
1551 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1552 ** (bFin==1) for each window function in the linked list starting at
1553 ** pMWin. Or, for built-in window-functions that do not use the standard
1554 ** API, generate the equivalent VM code.
1555 */
1556 static void windowAggFinal(WindowCodeArg *p, int bFin){
1557   Parse *pParse = p->pParse;
1558   Window *pMWin = p->pMWin;
1559   Vdbe *v = sqlite3GetVdbe(pParse);
1560   Window *pWin;
1561 
1562   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1563     if( pMWin->regStartRowid==0
1564      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1565      && (pWin->eStart!=TK_UNBOUNDED)
1566     ){
1567       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1568       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1569       VdbeCoverage(v);
1570       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1571       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1572     }else if( pWin->regApp ){
1573       assert( pMWin->regStartRowid==0 );
1574     }else{
1575       int nArg = windowArgCount(pWin);
1576       if( bFin ){
1577         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1578         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1579         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1580         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1581       }else{
1582         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1583         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1584       }
1585     }
1586   }
1587 }
1588 
1589 /*
1590 ** Generate code to calculate the current values of all window functions in the
1591 ** p->pMWin list by doing a full scan of the current window frame. Store the
1592 ** results in the Window.regResult registers, ready to return the upper
1593 ** layer.
1594 */
1595 static void windowFullScan(WindowCodeArg *p){
1596   Window *pWin;
1597   Parse *pParse = p->pParse;
1598   Window *pMWin = p->pMWin;
1599   Vdbe *v = p->pVdbe;
1600 
1601   int regCRowid = 0;              /* Current rowid value */
1602   int regCPeer = 0;               /* Current peer values */
1603   int regRowid = 0;               /* AggStep rowid value */
1604   int regPeer = 0;                /* AggStep peer values */
1605 
1606   int nPeer;
1607   int lblNext;
1608   int lblBrk;
1609   int addrNext;
1610   int csr;
1611 
1612   assert( pMWin!=0 );
1613   csr = pMWin->csrApp;
1614   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1615 
1616   lblNext = sqlite3VdbeMakeLabel(pParse);
1617   lblBrk = sqlite3VdbeMakeLabel(pParse);
1618 
1619   regCRowid = sqlite3GetTempReg(pParse);
1620   regRowid = sqlite3GetTempReg(pParse);
1621   if( nPeer ){
1622     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1623     regPeer = sqlite3GetTempRange(pParse, nPeer);
1624   }
1625 
1626   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1627   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1628 
1629   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1630     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1631   }
1632 
1633   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1634   VdbeCoverage(v);
1635   addrNext = sqlite3VdbeCurrentAddr(v);
1636   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1637   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1638   VdbeCoverageNeverNull(v);
1639 
1640   if( pMWin->eExclude==TK_CURRENT ){
1641     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1642     VdbeCoverageNeverNull(v);
1643   }else if( pMWin->eExclude!=TK_NO ){
1644     int addr;
1645     int addrEq = 0;
1646     KeyInfo *pKeyInfo = 0;
1647 
1648     if( pMWin->pOrderBy ){
1649       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1650     }
1651     if( pMWin->eExclude==TK_TIES ){
1652       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1653       VdbeCoverageNeverNull(v);
1654     }
1655     if( pKeyInfo ){
1656       windowReadPeerValues(p, csr, regPeer);
1657       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1658       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1659       addr = sqlite3VdbeCurrentAddr(v)+1;
1660       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1661       VdbeCoverageEqNe(v);
1662     }else{
1663       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1664     }
1665     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1666   }
1667 
1668   windowAggStep(pParse, pMWin, csr, 0, p->regArg);
1669 
1670   sqlite3VdbeResolveLabel(v, lblNext);
1671   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1672   VdbeCoverage(v);
1673   sqlite3VdbeJumpHere(v, addrNext-1);
1674   sqlite3VdbeJumpHere(v, addrNext+1);
1675   sqlite3ReleaseTempReg(pParse, regRowid);
1676   sqlite3ReleaseTempReg(pParse, regCRowid);
1677   if( nPeer ){
1678     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1679     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1680   }
1681 
1682   windowAggFinal(p, 1);
1683 }
1684 
1685 /*
1686 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1687 ** return the current row of Window.iEphCsr. If all window functions are
1688 ** aggregate window functions that use the standard API, a single
1689 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1690 ** for per-row processing is only generated for the following built-in window
1691 ** functions:
1692 **
1693 **   nth_value()
1694 **   first_value()
1695 **   lag()
1696 **   lead()
1697 */
1698 static void windowReturnOneRow(WindowCodeArg *p){
1699   Window *pMWin = p->pMWin;
1700   Vdbe *v = p->pVdbe;
1701 
1702   if( pMWin->regStartRowid ){
1703     windowFullScan(p);
1704   }else{
1705     Parse *pParse = p->pParse;
1706     Window *pWin;
1707 
1708     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1709       FuncDef *pFunc = pWin->pFunc;
1710       if( pFunc->zName==nth_valueName
1711        || pFunc->zName==first_valueName
1712       ){
1713         int csr = pWin->csrApp;
1714         int lbl = sqlite3VdbeMakeLabel(pParse);
1715         int tmpReg = sqlite3GetTempReg(pParse);
1716         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1717 
1718         if( pFunc->zName==nth_valueName ){
1719           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1720           windowCheckValue(pParse, tmpReg, 2);
1721         }else{
1722           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1723         }
1724         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1725         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1726         VdbeCoverageNeverNull(v);
1727         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1728         VdbeCoverageNeverTaken(v);
1729         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1730         sqlite3VdbeResolveLabel(v, lbl);
1731         sqlite3ReleaseTempReg(pParse, tmpReg);
1732       }
1733       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1734         int nArg = pWin->pOwner->x.pList->nExpr;
1735         int csr = pWin->csrApp;
1736         int lbl = sqlite3VdbeMakeLabel(pParse);
1737         int tmpReg = sqlite3GetTempReg(pParse);
1738         int iEph = pMWin->iEphCsr;
1739 
1740         if( nArg<3 ){
1741           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1742         }else{
1743           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1744         }
1745         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1746         if( nArg<2 ){
1747           int val = (pFunc->zName==leadName ? 1 : -1);
1748           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1749         }else{
1750           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1751           int tmpReg2 = sqlite3GetTempReg(pParse);
1752           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1753           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1754           sqlite3ReleaseTempReg(pParse, tmpReg2);
1755         }
1756 
1757         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1758         VdbeCoverage(v);
1759         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1760         sqlite3VdbeResolveLabel(v, lbl);
1761         sqlite3ReleaseTempReg(pParse, tmpReg);
1762       }
1763     }
1764   }
1765   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1766 }
1767 
1768 /*
1769 ** Generate code to set the accumulator register for each window function
1770 ** in the linked list passed as the second argument to NULL. And perform
1771 ** any equivalent initialization required by any built-in window functions
1772 ** in the list.
1773 */
1774 static int windowInitAccum(Parse *pParse, Window *pMWin){
1775   Vdbe *v = sqlite3GetVdbe(pParse);
1776   int regArg;
1777   int nArg = 0;
1778   Window *pWin;
1779   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1780     FuncDef *pFunc = pWin->pFunc;
1781     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1782     nArg = MAX(nArg, windowArgCount(pWin));
1783     if( pMWin->regStartRowid==0 ){
1784       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1785         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1786         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1787       }
1788 
1789       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1790         assert( pWin->eStart!=TK_UNBOUNDED );
1791         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1792         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1793       }
1794     }
1795   }
1796   regArg = pParse->nMem+1;
1797   pParse->nMem += nArg;
1798   return regArg;
1799 }
1800 
1801 /*
1802 ** Return true if the current frame should be cached in the ephemeral table,
1803 ** even if there are no xInverse() calls required.
1804 */
1805 static int windowCacheFrame(Window *pMWin){
1806   Window *pWin;
1807   if( pMWin->regStartRowid ) return 1;
1808   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1809     FuncDef *pFunc = pWin->pFunc;
1810     if( (pFunc->zName==nth_valueName)
1811      || (pFunc->zName==first_valueName)
1812      || (pFunc->zName==leadName)
1813      || (pFunc->zName==lagName)
1814     ){
1815       return 1;
1816     }
1817   }
1818   return 0;
1819 }
1820 
1821 /*
1822 ** regOld and regNew are each the first register in an array of size
1823 ** pOrderBy->nExpr. This function generates code to compare the two
1824 ** arrays of registers using the collation sequences and other comparison
1825 ** parameters specified by pOrderBy.
1826 **
1827 ** If the two arrays are not equal, the contents of regNew is copied to
1828 ** regOld and control falls through. Otherwise, if the contents of the arrays
1829 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
1830 */
1831 static void windowIfNewPeer(
1832   Parse *pParse,
1833   ExprList *pOrderBy,
1834   int regNew,                     /* First in array of new values */
1835   int regOld,                     /* First in array of old values */
1836   int addr                        /* Jump here */
1837 ){
1838   Vdbe *v = sqlite3GetVdbe(pParse);
1839   if( pOrderBy ){
1840     int nVal = pOrderBy->nExpr;
1841     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
1842     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
1843     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1844     sqlite3VdbeAddOp3(v, OP_Jump,
1845       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
1846     );
1847     VdbeCoverageEqNe(v);
1848     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
1849   }else{
1850     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
1851   }
1852 }
1853 
1854 /*
1855 ** This function is called as part of generating VM programs for RANGE
1856 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
1857 ** the ORDER BY term in the window, it generates code equivalent to:
1858 **
1859 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
1860 **
1861 ** A special type of arithmetic is used such that if csr.peerVal is not
1862 ** a numeric type (real or integer), then the result of the addition is
1863 ** a copy of csr1.peerVal.
1864 */
1865 static void windowCodeRangeTest(
1866   WindowCodeArg *p,
1867   int op,                          /* OP_Ge or OP_Gt */
1868   int csr1,
1869   int regVal,
1870   int csr2,
1871   int lbl
1872 ){
1873   Parse *pParse = p->pParse;
1874   Vdbe *v = sqlite3GetVdbe(pParse);
1875   int reg1 = sqlite3GetTempReg(pParse);
1876   int reg2 = sqlite3GetTempReg(pParse);
1877   int arith = OP_Add;
1878   int addrGe;
1879   ExprList *pOrderBy = p->pMWin->pOrderBy;
1880 
1881   int regString = ++pParse->nMem;
1882 
1883   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
1884   assert( pOrderBy && pOrderBy->nExpr==1 );
1885   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
1886     switch( op ){
1887       case OP_Ge: op = OP_Le; break;
1888       case OP_Gt: op = OP_Lt; break;
1889       default: assert( op==OP_Le ); op = OP_Ge; break;
1890     }
1891     arith = OP_Subtract;
1892   }
1893 
1894   windowReadPeerValues(p, csr1, reg1);
1895   windowReadPeerValues(p, csr2, reg2);
1896 
1897   /* Check if the peer value for csr1 value is a text or blob by comparing
1898   ** it to the smallest possible string - ''. If it is, jump over the
1899   ** OP_Add or OP_Subtract operation and proceed directly to the comparison. */
1900   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1901   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
1902   VdbeCoverage(v);
1903   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
1904   sqlite3VdbeJumpHere(v, addrGe);
1905   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
1906     int addr;
1907     addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
1908     switch( op ){
1909       case OP_Ge: sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); break;
1910       case OP_Gt: sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); break;
1911       case OP_Le: sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); break;
1912       default: assert( op==OP_Lt ); /* no-op */
1913     }
1914     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1915     sqlite3VdbeJumpHere(v, addr);
1916     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
1917     if( op==OP_Gt || op==OP_Ge ){
1918       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
1919     }
1920   }
1921   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
1922   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1923   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
1924   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
1925   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
1926   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
1927   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
1928 
1929   sqlite3ReleaseTempReg(pParse, reg1);
1930   sqlite3ReleaseTempReg(pParse, reg2);
1931 }
1932 
1933 /*
1934 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
1935 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
1936 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
1937 ** details.
1938 */
1939 static int windowCodeOp(
1940  WindowCodeArg *p,                /* Context object */
1941  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
1942  int regCountdown,                /* Register for OP_IfPos countdown */
1943  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
1944 ){
1945   int csr, reg;
1946   Parse *pParse = p->pParse;
1947   Window *pMWin = p->pMWin;
1948   int ret = 0;
1949   Vdbe *v = p->pVdbe;
1950   int addrIf = 0;
1951   int addrContinue = 0;
1952   int addrGoto = 0;
1953   int bPeer = (pMWin->eFrmType!=TK_ROWS);
1954 
1955   int lblDone = sqlite3VdbeMakeLabel(pParse);
1956   int addrNextRange = 0;
1957 
1958   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
1959   ** starts with UNBOUNDED PRECEDING. */
1960   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
1961     assert( regCountdown==0 && jumpOnEof==0 );
1962     return 0;
1963   }
1964 
1965   if( regCountdown>0 ){
1966     if( pMWin->eFrmType==TK_RANGE ){
1967       addrNextRange = sqlite3VdbeCurrentAddr(v);
1968       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
1969       if( op==WINDOW_AGGINVERSE ){
1970         if( pMWin->eStart==TK_FOLLOWING ){
1971           windowCodeRangeTest(
1972               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
1973           );
1974         }else{
1975           windowCodeRangeTest(
1976               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
1977           );
1978         }
1979       }else{
1980         windowCodeRangeTest(
1981             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
1982         );
1983       }
1984     }else{
1985       addrIf = sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, 0, 1);
1986       VdbeCoverage(v);
1987     }
1988   }
1989 
1990   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
1991     windowAggFinal(p, 0);
1992   }
1993   addrContinue = sqlite3VdbeCurrentAddr(v);
1994   switch( op ){
1995     case WINDOW_RETURN_ROW:
1996       csr = p->current.csr;
1997       reg = p->current.reg;
1998       windowReturnOneRow(p);
1999       break;
2000 
2001     case WINDOW_AGGINVERSE:
2002       csr = p->start.csr;
2003       reg = p->start.reg;
2004       if( pMWin->regStartRowid ){
2005         assert( pMWin->regEndRowid );
2006         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2007       }else{
2008         windowAggStep(pParse, pMWin, csr, 1, p->regArg);
2009       }
2010       break;
2011 
2012     default:
2013       assert( op==WINDOW_AGGSTEP );
2014       csr = p->end.csr;
2015       reg = p->end.reg;
2016       if( pMWin->regStartRowid ){
2017         assert( pMWin->regEndRowid );
2018         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2019       }else{
2020         windowAggStep(pParse, pMWin, csr, 0, p->regArg);
2021       }
2022       break;
2023   }
2024 
2025   if( op==p->eDelete ){
2026     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2027     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2028   }
2029 
2030   if( jumpOnEof ){
2031     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2032     VdbeCoverage(v);
2033     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2034   }else{
2035     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2036     VdbeCoverage(v);
2037     if( bPeer ){
2038       addrGoto = sqlite3VdbeAddOp0(v, OP_Goto);
2039     }
2040   }
2041 
2042   if( bPeer ){
2043     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2044     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2045     windowReadPeerValues(p, csr, regTmp);
2046     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2047     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2048   }
2049 
2050   if( addrNextRange ){
2051     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2052   }
2053   sqlite3VdbeResolveLabel(v, lblDone);
2054   if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto);
2055   if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
2056   return ret;
2057 }
2058 
2059 
2060 /*
2061 ** Allocate and return a duplicate of the Window object indicated by the
2062 ** third argument. Set the Window.pOwner field of the new object to
2063 ** pOwner.
2064 */
2065 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2066   Window *pNew = 0;
2067   if( ALWAYS(p) ){
2068     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2069     if( pNew ){
2070       pNew->zName = sqlite3DbStrDup(db, p->zName);
2071       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2072       pNew->pFunc = p->pFunc;
2073       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2074       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2075       pNew->eFrmType = p->eFrmType;
2076       pNew->eEnd = p->eEnd;
2077       pNew->eStart = p->eStart;
2078       pNew->eExclude = p->eExclude;
2079       pNew->regResult = p->regResult;
2080       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2081       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2082       pNew->pOwner = pOwner;
2083     }
2084   }
2085   return pNew;
2086 }
2087 
2088 /*
2089 ** Return a copy of the linked list of Window objects passed as the
2090 ** second argument.
2091 */
2092 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2093   Window *pWin;
2094   Window *pRet = 0;
2095   Window **pp = &pRet;
2096 
2097   for(pWin=p; pWin; pWin=pWin->pNextWin){
2098     *pp = sqlite3WindowDup(db, 0, pWin);
2099     if( *pp==0 ) break;
2100     pp = &((*pp)->pNextWin);
2101   }
2102 
2103   return pRet;
2104 }
2105 
2106 /*
2107 ** Return true if it can be determined at compile time that expression
2108 ** pExpr evaluates to a value that, when cast to an integer, is greater
2109 ** than zero. False otherwise.
2110 **
2111 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2112 ** flag and returns zero.
2113 */
2114 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2115   int ret = 0;
2116   sqlite3 *db = pParse->db;
2117   sqlite3_value *pVal = 0;
2118   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2119   if( pVal && sqlite3_value_int(pVal)>0 ){
2120     ret = 1;
2121   }
2122   sqlite3ValueFree(pVal);
2123   return ret;
2124 }
2125 
2126 /*
2127 ** sqlite3WhereBegin() has already been called for the SELECT statement
2128 ** passed as the second argument when this function is invoked. It generates
2129 ** code to populate the Window.regResult register for each window function
2130 ** and invoke the sub-routine at instruction addrGosub once for each row.
2131 ** sqlite3WhereEnd() is always called before returning.
2132 **
2133 ** This function handles several different types of window frames, which
2134 ** require slightly different processing. The following pseudo code is
2135 ** used to implement window frames of the form:
2136 **
2137 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2138 **
2139 ** Other window frame types use variants of the following:
2140 **
2141 **     ... loop started by sqlite3WhereBegin() ...
2142 **       if( new partition ){
2143 **         Gosub flush
2144 **       }
2145 **       Insert new row into eph table.
2146 **
2147 **       if( first row of partition ){
2148 **         // Rewind three cursors, all open on the eph table.
2149 **         Rewind(csrEnd);
2150 **         Rewind(csrStart);
2151 **         Rewind(csrCurrent);
2152 **
2153 **         regEnd = <expr2>          // FOLLOWING expression
2154 **         regStart = <expr1>        // PRECEDING expression
2155 **       }else{
2156 **         // First time this branch is taken, the eph table contains two
2157 **         // rows. The first row in the partition, which all three cursors
2158 **         // currently point to, and the following row.
2159 **         AGGSTEP
2160 **         if( (regEnd--)<=0 ){
2161 **           RETURN_ROW
2162 **           if( (regStart--)<=0 ){
2163 **             AGGINVERSE
2164 **           }
2165 **         }
2166 **       }
2167 **     }
2168 **     flush:
2169 **       AGGSTEP
2170 **       while( 1 ){
2171 **         RETURN ROW
2172 **         if( csrCurrent is EOF ) break;
2173 **         if( (regStart--)<=0 ){
2174 **           AggInverse(csrStart)
2175 **           Next(csrStart)
2176 **         }
2177 **       }
2178 **
2179 ** The pseudo-code above uses the following shorthand:
2180 **
2181 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2182 **               with arguments read from the current row of cursor csrEnd, then
2183 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2184 **
2185 **   RETURN_ROW: return a row to the caller based on the contents of the
2186 **               current row of csrCurrent and the current state of all
2187 **               aggregates. Then step cursor csrCurrent forward one row.
2188 **
2189 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2190 **               functions with arguments read from the current row of cursor
2191 **               csrStart. Then step csrStart forward one row.
2192 **
2193 ** There are two other ROWS window frames that are handled significantly
2194 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2195 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2196 ** cases because they change the order in which the three cursors (csrStart,
2197 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2198 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2199 ** three.
2200 **
2201 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2202 **
2203 **     ... loop started by sqlite3WhereBegin() ...
2204 **       if( new partition ){
2205 **         Gosub flush
2206 **       }
2207 **       Insert new row into eph table.
2208 **       if( first row of partition ){
2209 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2210 **         regEnd = <expr2>
2211 **         regStart = <expr1>
2212 **       }else{
2213 **         if( (regEnd--)<=0 ){
2214 **           AGGSTEP
2215 **         }
2216 **         RETURN_ROW
2217 **         if( (regStart--)<=0 ){
2218 **           AGGINVERSE
2219 **         }
2220 **       }
2221 **     }
2222 **     flush:
2223 **       if( (regEnd--)<=0 ){
2224 **         AGGSTEP
2225 **       }
2226 **       RETURN_ROW
2227 **
2228 **
2229 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2230 **
2231 **     ... loop started by sqlite3WhereBegin() ...
2232 **     if( new partition ){
2233 **       Gosub flush
2234 **     }
2235 **     Insert new row into eph table.
2236 **     if( first row of partition ){
2237 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2238 **       regEnd = <expr2>
2239 **       regStart = regEnd - <expr1>
2240 **     }else{
2241 **       AGGSTEP
2242 **       if( (regEnd--)<=0 ){
2243 **         RETURN_ROW
2244 **       }
2245 **       if( (regStart--)<=0 ){
2246 **         AGGINVERSE
2247 **       }
2248 **     }
2249 **   }
2250 **   flush:
2251 **     AGGSTEP
2252 **     while( 1 ){
2253 **       if( (regEnd--)<=0 ){
2254 **         RETURN_ROW
2255 **         if( eof ) break;
2256 **       }
2257 **       if( (regStart--)<=0 ){
2258 **         AGGINVERSE
2259 **         if( eof ) break
2260 **       }
2261 **     }
2262 **     while( !eof csrCurrent ){
2263 **       RETURN_ROW
2264 **     }
2265 **
2266 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2267 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2268 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2269 ** This is optimized of course - branches that will never be taken and
2270 ** conditions that are always true are omitted from the VM code. The only
2271 ** exceptional case is:
2272 **
2273 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2274 **
2275 **     ... loop started by sqlite3WhereBegin() ...
2276 **     if( new partition ){
2277 **       Gosub flush
2278 **     }
2279 **     Insert new row into eph table.
2280 **     if( first row of partition ){
2281 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2282 **       regStart = <expr1>
2283 **     }else{
2284 **       AGGSTEP
2285 **     }
2286 **   }
2287 **   flush:
2288 **     AGGSTEP
2289 **     while( 1 ){
2290 **       if( (regStart--)<=0 ){
2291 **         AGGINVERSE
2292 **         if( eof ) break
2293 **       }
2294 **       RETURN_ROW
2295 **     }
2296 **     while( !eof csrCurrent ){
2297 **       RETURN_ROW
2298 **     }
2299 **
2300 ** Also requiring special handling are the cases:
2301 **
2302 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2303 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2304 **
2305 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2306 ** To handle this case, the pseudo-code programs depicted above are modified
2307 ** slightly to be:
2308 **
2309 **     ... loop started by sqlite3WhereBegin() ...
2310 **     if( new partition ){
2311 **       Gosub flush
2312 **     }
2313 **     Insert new row into eph table.
2314 **     if( first row of partition ){
2315 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2316 **       regEnd = <expr2>
2317 **       regStart = <expr1>
2318 **       if( regEnd < regStart ){
2319 **         RETURN_ROW
2320 **         delete eph table contents
2321 **         continue
2322 **       }
2323 **     ...
2324 **
2325 ** The new "continue" statement in the above jumps to the next iteration
2326 ** of the outer loop - the one started by sqlite3WhereBegin().
2327 **
2328 ** The various GROUPS cases are implemented using the same patterns as
2329 ** ROWS. The VM code is modified slightly so that:
2330 **
2331 **   1. The else branch in the main loop is only taken if the row just
2332 **      added to the ephemeral table is the start of a new group. In
2333 **      other words, it becomes:
2334 **
2335 **         ... loop started by sqlite3WhereBegin() ...
2336 **         if( new partition ){
2337 **           Gosub flush
2338 **         }
2339 **         Insert new row into eph table.
2340 **         if( first row of partition ){
2341 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2342 **           regEnd = <expr2>
2343 **           regStart = <expr1>
2344 **         }else if( new group ){
2345 **           ...
2346 **         }
2347 **       }
2348 **
2349 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2350 **      AGGINVERSE step processes the current row of the relevant cursor and
2351 **      all subsequent rows belonging to the same group.
2352 **
2353 ** RANGE window frames are a little different again. As for GROUPS, the
2354 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2355 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2356 ** basic cases:
2357 **
2358 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2359 **
2360 **     ... loop started by sqlite3WhereBegin() ...
2361 **       if( new partition ){
2362 **         Gosub flush
2363 **       }
2364 **       Insert new row into eph table.
2365 **       if( first row of partition ){
2366 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2367 **         regEnd = <expr2>
2368 **         regStart = <expr1>
2369 **       }else{
2370 **         AGGSTEP
2371 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2372 **           RETURN_ROW
2373 **           while( csrStart.key + regStart) < csrCurrent.key ){
2374 **             AGGINVERSE
2375 **           }
2376 **         }
2377 **       }
2378 **     }
2379 **     flush:
2380 **       AGGSTEP
2381 **       while( 1 ){
2382 **         RETURN ROW
2383 **         if( csrCurrent is EOF ) break;
2384 **           while( csrStart.key + regStart) < csrCurrent.key ){
2385 **             AGGINVERSE
2386 **           }
2387 **         }
2388 **       }
2389 **
2390 ** In the above notation, "csr.key" means the current value of the ORDER BY
2391 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2392 ** or <expr PRECEDING) read from cursor csr.
2393 **
2394 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2395 **
2396 **     ... loop started by sqlite3WhereBegin() ...
2397 **       if( new partition ){
2398 **         Gosub flush
2399 **       }
2400 **       Insert new row into eph table.
2401 **       if( first row of partition ){
2402 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2403 **         regEnd = <expr2>
2404 **         regStart = <expr1>
2405 **       }else{
2406 **         if( (csrEnd.key + regEnd) <= csrCurrent.key ){
2407 **           AGGSTEP
2408 **         }
2409 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2410 **           AGGINVERSE
2411 **         }
2412 **         RETURN_ROW
2413 **       }
2414 **     }
2415 **     flush:
2416 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2417 **         AGGSTEP
2418 **       }
2419 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2420 **         AGGINVERSE
2421 **       }
2422 **       RETURN_ROW
2423 **
2424 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2425 **
2426 **     ... loop started by sqlite3WhereBegin() ...
2427 **       if( new partition ){
2428 **         Gosub flush
2429 **       }
2430 **       Insert new row into eph table.
2431 **       if( first row of partition ){
2432 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2433 **         regEnd = <expr2>
2434 **         regStart = <expr1>
2435 **       }else{
2436 **         AGGSTEP
2437 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2438 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2439 **             AGGINVERSE
2440 **           }
2441 **           RETURN_ROW
2442 **         }
2443 **       }
2444 **     }
2445 **     flush:
2446 **       AGGSTEP
2447 **       while( 1 ){
2448 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2449 **           AGGINVERSE
2450 **           if( eof ) break "while( 1 )" loop.
2451 **         }
2452 **         RETURN_ROW
2453 **       }
2454 **       while( !eof csrCurrent ){
2455 **         RETURN_ROW
2456 **       }
2457 **
2458 ** The text above leaves out many details. Refer to the code and comments
2459 ** below for a more complete picture.
2460 */
2461 void sqlite3WindowCodeStep(
2462   Parse *pParse,                  /* Parse context */
2463   Select *p,                      /* Rewritten SELECT statement */
2464   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2465   int regGosub,                   /* Register for OP_Gosub */
2466   int addrGosub                   /* OP_Gosub here to return each row */
2467 ){
2468   Window *pMWin = p->pWin;
2469   ExprList *pOrderBy = pMWin->pOrderBy;
2470   Vdbe *v = sqlite3GetVdbe(pParse);
2471   int csrWrite;                   /* Cursor used to write to eph. table */
2472   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2473   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2474   int iInput;                               /* To iterate through sub cols */
2475   int addrNe;                     /* Address of OP_Ne */
2476   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2477   int addrInteger = 0;            /* Address of OP_Integer */
2478   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2479   int regStart = 0;               /* Value of <expr> PRECEDING */
2480   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2481   int regNew;                     /* Array of registers holding new input row */
2482   int regRecord;                  /* regNew array in record form */
2483   int regRowid;                   /* Rowid for regRecord in eph table */
2484   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2485   int regPeer = 0;                /* Peer values for current row */
2486   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2487   WindowCodeArg s;                /* Context object for sub-routines */
2488   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2489 
2490   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2491        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2492   );
2493   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2494        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2495   );
2496   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2497        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2498        || pMWin->eExclude==TK_NO
2499   );
2500 
2501   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2502 
2503   /* Fill in the context object */
2504   memset(&s, 0, sizeof(WindowCodeArg));
2505   s.pParse = pParse;
2506   s.pMWin = pMWin;
2507   s.pVdbe = v;
2508   s.regGosub = regGosub;
2509   s.addrGosub = addrGosub;
2510   s.current.csr = pMWin->iEphCsr;
2511   csrWrite = s.current.csr+1;
2512   s.start.csr = s.current.csr+2;
2513   s.end.csr = s.current.csr+3;
2514 
2515   /* Figure out when rows may be deleted from the ephemeral table. There
2516   ** are four options - they may never be deleted (eDelete==0), they may
2517   ** be deleted as soon as they are no longer part of the window frame
2518   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2519   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2520   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2521   switch( pMWin->eStart ){
2522     case TK_FOLLOWING:
2523       if( pMWin->eFrmType!=TK_RANGE
2524        && windowExprGtZero(pParse, pMWin->pStart)
2525       ){
2526         s.eDelete = WINDOW_RETURN_ROW;
2527       }
2528       break;
2529     case TK_UNBOUNDED:
2530       if( windowCacheFrame(pMWin)==0 ){
2531         if( pMWin->eEnd==TK_PRECEDING ){
2532           if( pMWin->eFrmType!=TK_RANGE
2533            && windowExprGtZero(pParse, pMWin->pEnd)
2534           ){
2535             s.eDelete = WINDOW_AGGSTEP;
2536           }
2537         }else{
2538           s.eDelete = WINDOW_RETURN_ROW;
2539         }
2540       }
2541       break;
2542     default:
2543       s.eDelete = WINDOW_AGGINVERSE;
2544       break;
2545   }
2546 
2547   /* Allocate registers for the array of values from the sub-query, the
2548   ** samve values in record form, and the rowid used to insert said record
2549   ** into the ephemeral table.  */
2550   regNew = pParse->nMem+1;
2551   pParse->nMem += nInput;
2552   regRecord = ++pParse->nMem;
2553   regRowid = ++pParse->nMem;
2554 
2555   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2556   ** clause, allocate registers to store the results of evaluating each
2557   ** <expr>.  */
2558   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2559     regStart = ++pParse->nMem;
2560   }
2561   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2562     regEnd = ++pParse->nMem;
2563   }
2564 
2565   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2566   ** registers to store copies of the ORDER BY expressions (peer values)
2567   ** for the main loop, and for each cursor (start, current and end). */
2568   if( pMWin->eFrmType!=TK_ROWS ){
2569     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2570     regNewPeer = regNew + pMWin->nBufferCol;
2571     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2572     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2573     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2574     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2575     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2576   }
2577 
2578   /* Load the column values for the row returned by the sub-select
2579   ** into an array of registers starting at regNew. Assemble them into
2580   ** a record in register regRecord. */
2581   for(iInput=0; iInput<nInput; iInput++){
2582     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2583   }
2584   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2585 
2586   /* An input row has just been read into an array of registers starting
2587   ** at regNew. If the window has a PARTITION clause, this block generates
2588   ** VM code to check if the input row is the start of a new partition.
2589   ** If so, it does an OP_Gosub to an address to be filled in later. The
2590   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2591   if( pMWin->pPartition ){
2592     int addr;
2593     ExprList *pPart = pMWin->pPartition;
2594     int nPart = pPart->nExpr;
2595     int regNewPart = regNew + pMWin->nBufferCol;
2596     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2597 
2598     regFlushPart = ++pParse->nMem;
2599     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2600     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2601     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2602     VdbeCoverageEqNe(v);
2603     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2604     VdbeComment((v, "call flush_partition"));
2605     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2606   }
2607 
2608   /* Insert the new row into the ephemeral table */
2609   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2610   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2611   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2612   VdbeCoverageNeverNull(v);
2613 
2614   /* This block is run for the first row of each partition */
2615   s.regArg = windowInitAccum(pParse, pMWin);
2616 
2617   if( regStart ){
2618     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2619     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE ? 3 : 0));
2620   }
2621   if( regEnd ){
2622     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2623     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE ? 3 : 0));
2624   }
2625 
2626   if( pMWin->eStart==pMWin->eEnd && regStart ){
2627     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2628     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2629     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2630     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2631     windowAggFinal(&s, 0);
2632     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2633     VdbeCoverageNeverTaken(v);
2634     windowReturnOneRow(&s);
2635     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2636     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2637     sqlite3VdbeJumpHere(v, addrGe);
2638   }
2639   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2640     assert( pMWin->eEnd==TK_FOLLOWING );
2641     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2642   }
2643 
2644   if( pMWin->eStart!=TK_UNBOUNDED ){
2645     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2646     VdbeCoverageNeverTaken(v);
2647   }
2648   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2649   VdbeCoverageNeverTaken(v);
2650   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2651   VdbeCoverageNeverTaken(v);
2652   if( regPeer && pOrderBy ){
2653     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2654     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2655     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2656     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2657   }
2658 
2659   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2660 
2661   sqlite3VdbeJumpHere(v, addrNe);
2662 
2663   /* Beginning of the block executed for the second and subsequent rows. */
2664   if( regPeer ){
2665     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2666   }
2667   if( pMWin->eStart==TK_FOLLOWING ){
2668     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2669     if( pMWin->eEnd!=TK_UNBOUNDED ){
2670       if( pMWin->eFrmType==TK_RANGE ){
2671         int lbl = sqlite3VdbeMakeLabel(pParse);
2672         int addrNext = sqlite3VdbeCurrentAddr(v);
2673         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2674         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2675         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2676         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2677         sqlite3VdbeResolveLabel(v, lbl);
2678       }else{
2679         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2680         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2681       }
2682     }
2683   }else
2684   if( pMWin->eEnd==TK_PRECEDING ){
2685     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2686     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2687     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2688     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2689     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2690   }else{
2691     int addr = 0;
2692     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2693     if( pMWin->eEnd!=TK_UNBOUNDED ){
2694       if( pMWin->eFrmType==TK_RANGE ){
2695         int lbl = 0;
2696         addr = sqlite3VdbeCurrentAddr(v);
2697         if( regEnd ){
2698           lbl = sqlite3VdbeMakeLabel(pParse);
2699           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2700         }
2701         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2702         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2703         if( regEnd ){
2704           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2705           sqlite3VdbeResolveLabel(v, lbl);
2706         }
2707       }else{
2708         if( regEnd ){
2709           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2710           VdbeCoverage(v);
2711         }
2712         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2713         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2714         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2715       }
2716     }
2717   }
2718 
2719   /* End of the main input loop */
2720   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2721   sqlite3WhereEnd(pWInfo);
2722 
2723   /* Fall through */
2724   if( pMWin->pPartition ){
2725     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2726     sqlite3VdbeJumpHere(v, addrGosubFlush);
2727   }
2728 
2729   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2730   VdbeCoverage(v);
2731   if( pMWin->eEnd==TK_PRECEDING ){
2732     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2733     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2734     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2735     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2736   }else if( pMWin->eStart==TK_FOLLOWING ){
2737     int addrStart;
2738     int addrBreak1;
2739     int addrBreak2;
2740     int addrBreak3;
2741     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2742     if( pMWin->eFrmType==TK_RANGE ){
2743       addrStart = sqlite3VdbeCurrentAddr(v);
2744       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2745       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2746     }else
2747     if( pMWin->eEnd==TK_UNBOUNDED ){
2748       addrStart = sqlite3VdbeCurrentAddr(v);
2749       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
2750       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
2751     }else{
2752       assert( pMWin->eEnd==TK_FOLLOWING );
2753       addrStart = sqlite3VdbeCurrentAddr(v);
2754       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
2755       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2756     }
2757     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2758     sqlite3VdbeJumpHere(v, addrBreak2);
2759     addrStart = sqlite3VdbeCurrentAddr(v);
2760     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2761     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2762     sqlite3VdbeJumpHere(v, addrBreak1);
2763     sqlite3VdbeJumpHere(v, addrBreak3);
2764   }else{
2765     int addrBreak;
2766     int addrStart;
2767     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2768     addrStart = sqlite3VdbeCurrentAddr(v);
2769     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2770     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2771     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2772     sqlite3VdbeJumpHere(v, addrBreak);
2773   }
2774   sqlite3VdbeJumpHere(v, addrEmpty);
2775 
2776   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2777   if( pMWin->pPartition ){
2778     if( pMWin->regStartRowid ){
2779       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
2780       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
2781     }
2782     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
2783     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
2784   }
2785 }
2786 
2787 #endif /* SQLITE_OMIT_WINDOWFUNC */
2788