1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* Fall through. */ 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 791 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 792 if( p->pSub ){ 793 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 794 ExprSetProperty(pExpr, EP_Static); 795 sqlite3ExprDelete(pParse->db, pExpr); 796 ExprClearProperty(pExpr, EP_Static); 797 memset(pExpr, 0, sizeof(Expr)); 798 799 pExpr->op = TK_COLUMN; 800 pExpr->iColumn = p->pSub->nExpr-1; 801 pExpr->iTable = p->pWin->iEphCsr; 802 pExpr->y.pTab = p->pTab; 803 } 804 805 break; 806 } 807 808 default: /* no-op */ 809 break; 810 } 811 812 return WRC_Continue; 813 } 814 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 815 struct WindowRewrite *p = pWalker->u.pRewrite; 816 Select *pSave = p->pSubSelect; 817 if( pSave==pSelect ){ 818 return WRC_Continue; 819 }else{ 820 p->pSubSelect = pSelect; 821 sqlite3WalkSelect(pWalker, pSelect); 822 p->pSubSelect = pSave; 823 } 824 return WRC_Prune; 825 } 826 827 828 /* 829 ** Iterate through each expression in expression-list pEList. For each: 830 ** 831 ** * TK_COLUMN, 832 ** * aggregate function, or 833 ** * window function with a Window object that is not a member of the 834 ** Window list passed as the second argument (pWin). 835 ** 836 ** Append the node to output expression-list (*ppSub). And replace it 837 ** with a TK_COLUMN that reads the (N-1)th element of table 838 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 839 ** appending the new one. 840 */ 841 static void selectWindowRewriteEList( 842 Parse *pParse, 843 Window *pWin, 844 SrcList *pSrc, 845 ExprList *pEList, /* Rewrite expressions in this list */ 846 Table *pTab, 847 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 848 ){ 849 Walker sWalker; 850 WindowRewrite sRewrite; 851 852 assert( pWin!=0 ); 853 memset(&sWalker, 0, sizeof(Walker)); 854 memset(&sRewrite, 0, sizeof(WindowRewrite)); 855 856 sRewrite.pSub = *ppSub; 857 sRewrite.pWin = pWin; 858 sRewrite.pSrc = pSrc; 859 sRewrite.pTab = pTab; 860 861 sWalker.pParse = pParse; 862 sWalker.xExprCallback = selectWindowRewriteExprCb; 863 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 864 sWalker.u.pRewrite = &sRewrite; 865 866 (void)sqlite3WalkExprList(&sWalker, pEList); 867 868 *ppSub = sRewrite.pSub; 869 } 870 871 /* 872 ** Append a copy of each expression in expression-list pAppend to 873 ** expression list pList. Return a pointer to the result list. 874 */ 875 static ExprList *exprListAppendList( 876 Parse *pParse, /* Parsing context */ 877 ExprList *pList, /* List to which to append. Might be NULL */ 878 ExprList *pAppend, /* List of values to append. Might be NULL */ 879 int bIntToNull 880 ){ 881 if( pAppend ){ 882 int i; 883 int nInit = pList ? pList->nExpr : 0; 884 for(i=0; i<pAppend->nExpr; i++){ 885 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); 886 if( bIntToNull && pDup && pDup->op==TK_INTEGER ){ 887 pDup->op = TK_NULL; 888 pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 889 } 890 pList = sqlite3ExprListAppend(pParse, pList, pDup); 891 if( pList ) pList->a[nInit+i].sortOrder = pAppend->a[i].sortOrder; 892 } 893 } 894 return pList; 895 } 896 897 /* 898 ** If the SELECT statement passed as the second argument does not invoke 899 ** any SQL window functions, this function is a no-op. Otherwise, it 900 ** rewrites the SELECT statement so that window function xStep functions 901 ** are invoked in the correct order as described under "SELECT REWRITING" 902 ** at the top of this file. 903 */ 904 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 905 int rc = SQLITE_OK; 906 if( p->pWin && p->pPrior==0 ){ 907 Vdbe *v = sqlite3GetVdbe(pParse); 908 sqlite3 *db = pParse->db; 909 Select *pSub = 0; /* The subquery */ 910 SrcList *pSrc = p->pSrc; 911 Expr *pWhere = p->pWhere; 912 ExprList *pGroupBy = p->pGroupBy; 913 Expr *pHaving = p->pHaving; 914 ExprList *pSort = 0; 915 916 ExprList *pSublist = 0; /* Expression list for sub-query */ 917 Window *pMWin = p->pWin; /* Master window object */ 918 Window *pWin; /* Window object iterator */ 919 Table *pTab; 920 921 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 922 if( pTab==0 ){ 923 return SQLITE_NOMEM; 924 } 925 926 p->pSrc = 0; 927 p->pWhere = 0; 928 p->pGroupBy = 0; 929 p->pHaving = 0; 930 p->selFlags &= ~SF_Aggregate; 931 932 /* Create the ORDER BY clause for the sub-select. This is the concatenation 933 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 934 ** redundant, remove the ORDER BY from the parent SELECT. */ 935 pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0); 936 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 937 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 938 int nSave = pSort->nExpr; 939 pSort->nExpr = p->pOrderBy->nExpr; 940 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 941 sqlite3ExprListDelete(db, p->pOrderBy); 942 p->pOrderBy = 0; 943 } 944 pSort->nExpr = nSave; 945 } 946 947 /* Assign a cursor number for the ephemeral table used to buffer rows. 948 ** The OpenEphemeral instruction is coded later, after it is known how 949 ** many columns the table will have. */ 950 pMWin->iEphCsr = pParse->nTab++; 951 pParse->nTab += 3; 952 953 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 954 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 955 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 956 957 /* Append the PARTITION BY and ORDER BY expressions to the to the 958 ** sub-select expression list. They are required to figure out where 959 ** boundaries for partitions and sets of peer rows lie. */ 960 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 961 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 962 963 /* Append the arguments passed to each window function to the 964 ** sub-select expression list. Also allocate two registers for each 965 ** window function - one for the accumulator, another for interim 966 ** results. */ 967 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 968 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 969 pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList, 0); 970 if( pWin->pFilter ){ 971 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 972 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 973 } 974 pWin->regAccum = ++pParse->nMem; 975 pWin->regResult = ++pParse->nMem; 976 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 977 } 978 979 /* If there is no ORDER BY or PARTITION BY clause, and the window 980 ** function accepts zero arguments, and there are no other columns 981 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 982 ** that pSublist is still NULL here. Add a constant expression here to 983 ** keep everything legal in this case. 984 */ 985 if( pSublist==0 ){ 986 pSublist = sqlite3ExprListAppend(pParse, 0, 987 sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0) 988 ); 989 } 990 991 pSub = sqlite3SelectNew( 992 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 993 ); 994 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 995 if( p->pSrc ){ 996 Table *pTab2; 997 p->pSrc->a[0].pSelect = pSub; 998 sqlite3SrcListAssignCursors(pParse, p->pSrc); 999 pSub->selFlags |= SF_Expanded; 1000 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1001 if( pTab2==0 ){ 1002 rc = SQLITE_NOMEM; 1003 }else{ 1004 memcpy(pTab, pTab2, sizeof(Table)); 1005 pTab->tabFlags |= TF_Ephemeral; 1006 p->pSrc->a[0].pTab = pTab; 1007 pTab = pTab2; 1008 } 1009 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr); 1010 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1011 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1012 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1013 }else{ 1014 sqlite3SelectDelete(db, pSub); 1015 } 1016 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1017 sqlite3DbFree(db, pTab); 1018 } 1019 1020 return rc; 1021 } 1022 1023 /* 1024 ** Unlink the Window object from the Select to which it is attached, 1025 ** if it is attached. 1026 */ 1027 void sqlite3WindowUnlinkFromSelect(Window *p){ 1028 if( p->ppThis ){ 1029 *p->ppThis = p->pNextWin; 1030 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1031 p->ppThis = 0; 1032 } 1033 } 1034 1035 /* 1036 ** Free the Window object passed as the second argument. 1037 */ 1038 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1039 if( p ){ 1040 sqlite3WindowUnlinkFromSelect(p); 1041 sqlite3ExprDelete(db, p->pFilter); 1042 sqlite3ExprListDelete(db, p->pPartition); 1043 sqlite3ExprListDelete(db, p->pOrderBy); 1044 sqlite3ExprDelete(db, p->pEnd); 1045 sqlite3ExprDelete(db, p->pStart); 1046 sqlite3DbFree(db, p->zName); 1047 sqlite3DbFree(db, p->zBase); 1048 sqlite3DbFree(db, p); 1049 } 1050 } 1051 1052 /* 1053 ** Free the linked list of Window objects starting at the second argument. 1054 */ 1055 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1056 while( p ){ 1057 Window *pNext = p->pNextWin; 1058 sqlite3WindowDelete(db, p); 1059 p = pNext; 1060 } 1061 } 1062 1063 /* 1064 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1065 ** value should be a non-negative integer. If the value is not a 1066 ** constant, change it to NULL. The fact that it is then a non-negative 1067 ** integer will be caught later. But it is important not to leave 1068 ** variable values in the expression tree. 1069 */ 1070 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1071 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1072 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1073 sqlite3ExprDelete(pParse->db, pExpr); 1074 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1075 } 1076 return pExpr; 1077 } 1078 1079 /* 1080 ** Allocate and return a new Window object describing a Window Definition. 1081 */ 1082 Window *sqlite3WindowAlloc( 1083 Parse *pParse, /* Parsing context */ 1084 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1085 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1086 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1087 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1088 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1089 u8 eExclude /* EXCLUDE clause */ 1090 ){ 1091 Window *pWin = 0; 1092 int bImplicitFrame = 0; 1093 1094 /* Parser assures the following: */ 1095 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1096 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1097 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1098 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1099 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1100 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1101 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1102 1103 if( eType==0 ){ 1104 bImplicitFrame = 1; 1105 eType = TK_RANGE; 1106 } 1107 1108 /* Additionally, the 1109 ** starting boundary type may not occur earlier in the following list than 1110 ** the ending boundary type: 1111 ** 1112 ** UNBOUNDED PRECEDING 1113 ** <expr> PRECEDING 1114 ** CURRENT ROW 1115 ** <expr> FOLLOWING 1116 ** UNBOUNDED FOLLOWING 1117 ** 1118 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1119 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1120 ** frame boundary. 1121 */ 1122 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1123 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1124 ){ 1125 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1126 goto windowAllocErr; 1127 } 1128 1129 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1130 if( pWin==0 ) goto windowAllocErr; 1131 pWin->eFrmType = eType; 1132 pWin->eStart = eStart; 1133 pWin->eEnd = eEnd; 1134 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1135 eExclude = TK_NO; 1136 } 1137 pWin->eExclude = eExclude; 1138 pWin->bImplicitFrame = bImplicitFrame; 1139 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1140 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1141 return pWin; 1142 1143 windowAllocErr: 1144 sqlite3ExprDelete(pParse->db, pEnd); 1145 sqlite3ExprDelete(pParse->db, pStart); 1146 return 0; 1147 } 1148 1149 /* 1150 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1151 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1152 ** equivalent nul-terminated string. 1153 */ 1154 Window *sqlite3WindowAssemble( 1155 Parse *pParse, 1156 Window *pWin, 1157 ExprList *pPartition, 1158 ExprList *pOrderBy, 1159 Token *pBase 1160 ){ 1161 if( pWin ){ 1162 pWin->pPartition = pPartition; 1163 pWin->pOrderBy = pOrderBy; 1164 if( pBase ){ 1165 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1166 } 1167 }else{ 1168 sqlite3ExprListDelete(pParse->db, pPartition); 1169 sqlite3ExprListDelete(pParse->db, pOrderBy); 1170 } 1171 return pWin; 1172 } 1173 1174 /* 1175 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1176 ** is the base window. Earlier windows from the same WINDOW clause are 1177 ** stored in the linked list starting at pWin->pNextWin. This function 1178 ** either updates *pWin according to the base specification, or else 1179 ** leaves an error in pParse. 1180 */ 1181 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1182 if( pWin->zBase ){ 1183 sqlite3 *db = pParse->db; 1184 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1185 if( pExist ){ 1186 const char *zErr = 0; 1187 /* Check for errors */ 1188 if( pWin->pPartition ){ 1189 zErr = "PARTITION clause"; 1190 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1191 zErr = "ORDER BY clause"; 1192 }else if( pExist->bImplicitFrame==0 ){ 1193 zErr = "frame specification"; 1194 } 1195 if( zErr ){ 1196 sqlite3ErrorMsg(pParse, 1197 "cannot override %s of window: %s", zErr, pWin->zBase 1198 ); 1199 }else{ 1200 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1201 if( pExist->pOrderBy ){ 1202 assert( pWin->pOrderBy==0 ); 1203 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1204 } 1205 sqlite3DbFree(db, pWin->zBase); 1206 pWin->zBase = 0; 1207 } 1208 } 1209 } 1210 } 1211 1212 /* 1213 ** Attach window object pWin to expression p. 1214 */ 1215 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1216 if( p ){ 1217 assert( p->op==TK_FUNCTION ); 1218 assert( pWin ); 1219 p->y.pWin = pWin; 1220 ExprSetProperty(p, EP_WinFunc); 1221 pWin->pOwner = p; 1222 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1223 sqlite3ErrorMsg(pParse, 1224 "DISTINCT is not supported for window functions" 1225 ); 1226 } 1227 }else{ 1228 sqlite3WindowDelete(pParse->db, pWin); 1229 } 1230 } 1231 1232 /* 1233 ** Return 0 if the two window objects are identical, or non-zero otherwise. 1234 ** Identical window objects can be processed in a single scan. 1235 */ 1236 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1237 if( p1->eFrmType!=p2->eFrmType ) return 1; 1238 if( p1->eStart!=p2->eStart ) return 1; 1239 if( p1->eEnd!=p2->eEnd ) return 1; 1240 if( p1->eExclude!=p2->eExclude ) return 1; 1241 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1242 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1243 if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1; 1244 if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1; 1245 if( bFilter ){ 1246 if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1; 1247 } 1248 return 0; 1249 } 1250 1251 1252 /* 1253 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1254 ** to begin iterating through the sub-query results. It is used to allocate 1255 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1256 */ 1257 void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){ 1258 Window *pWin; 1259 Vdbe *v = sqlite3GetVdbe(pParse); 1260 1261 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1262 ** said registers to NULL. */ 1263 if( pMWin->pPartition ){ 1264 int nExpr = pMWin->pPartition->nExpr; 1265 pMWin->regPart = pParse->nMem+1; 1266 pParse->nMem += nExpr; 1267 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1268 } 1269 1270 pMWin->regOne = ++pParse->nMem; 1271 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1272 1273 if( pMWin->eExclude ){ 1274 pMWin->regStartRowid = ++pParse->nMem; 1275 pMWin->regEndRowid = ++pParse->nMem; 1276 pMWin->csrApp = pParse->nTab++; 1277 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1278 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1279 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1280 return; 1281 } 1282 1283 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1284 FuncDef *p = pWin->pFunc; 1285 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1286 /* The inline versions of min() and max() require a single ephemeral 1287 ** table and 3 registers. The registers are used as follows: 1288 ** 1289 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1290 ** regApp+1: integer value used to ensure keys are unique 1291 ** regApp+2: output of MakeRecord 1292 */ 1293 ExprList *pList = pWin->pOwner->x.pList; 1294 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1295 pWin->csrApp = pParse->nTab++; 1296 pWin->regApp = pParse->nMem+1; 1297 pParse->nMem += 3; 1298 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1299 assert( pKeyInfo->aSortOrder[0]==0 ); 1300 pKeyInfo->aSortOrder[0] = 1; 1301 } 1302 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1303 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1304 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1305 } 1306 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1307 /* Allocate two registers at pWin->regApp. These will be used to 1308 ** store the start and end index of the current frame. */ 1309 pWin->regApp = pParse->nMem+1; 1310 pWin->csrApp = pParse->nTab++; 1311 pParse->nMem += 2; 1312 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1313 } 1314 else if( p->zName==leadName || p->zName==lagName ){ 1315 pWin->csrApp = pParse->nTab++; 1316 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1317 } 1318 } 1319 } 1320 1321 #define WINDOW_STARTING_INT 0 1322 #define WINDOW_ENDING_INT 1 1323 #define WINDOW_NTH_VALUE_INT 2 1324 #define WINDOW_STARTING_NUM 3 1325 #define WINDOW_ENDING_NUM 4 1326 1327 /* 1328 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1329 ** value of the second argument to nth_value() (eCond==2) has just been 1330 ** evaluated and the result left in register reg. This function generates VM 1331 ** code to check that the value is a non-negative integer and throws an 1332 ** exception if it is not. 1333 */ 1334 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1335 static const char *azErr[] = { 1336 "frame starting offset must be a non-negative integer", 1337 "frame ending offset must be a non-negative integer", 1338 "second argument to nth_value must be a positive integer", 1339 "frame starting offset must be a non-negative number", 1340 "frame ending offset must be a non-negative number", 1341 }; 1342 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1343 Vdbe *v = sqlite3GetVdbe(pParse); 1344 int regZero = sqlite3GetTempReg(pParse); 1345 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1346 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1347 if( eCond>=WINDOW_STARTING_NUM ){ 1348 int regString = sqlite3GetTempReg(pParse); 1349 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1350 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1351 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1352 VdbeCoverage(v); 1353 assert( eCond==3 || eCond==4 ); 1354 VdbeCoverageIf(v, eCond==3); 1355 VdbeCoverageIf(v, eCond==4); 1356 }else{ 1357 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1358 VdbeCoverage(v); 1359 assert( eCond==0 || eCond==1 || eCond==2 ); 1360 VdbeCoverageIf(v, eCond==0); 1361 VdbeCoverageIf(v, eCond==1); 1362 VdbeCoverageIf(v, eCond==2); 1363 } 1364 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1365 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1366 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1367 VdbeCoverageNeverNullIf(v, eCond==2); 1368 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1369 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1370 sqlite3MayAbort(pParse); 1371 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1372 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1373 sqlite3ReleaseTempReg(pParse, regZero); 1374 } 1375 1376 /* 1377 ** Return the number of arguments passed to the window-function associated 1378 ** with the object passed as the only argument to this function. 1379 */ 1380 static int windowArgCount(Window *pWin){ 1381 ExprList *pList = pWin->pOwner->x.pList; 1382 return (pList ? pList->nExpr : 0); 1383 } 1384 1385 /* 1386 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1387 ** xInverse (if bInverse is non-zero) for each window function in the 1388 ** linked list starting at pMWin. Or, for built-in window functions 1389 ** that do not use the standard function API, generate the required 1390 ** inline VM code. 1391 ** 1392 ** If argument csr is greater than or equal to 0, then argument reg is 1393 ** the first register in an array of registers guaranteed to be large 1394 ** enough to hold the array of arguments for each function. In this case 1395 ** the arguments are extracted from the current row of csr into the 1396 ** array of registers before invoking OP_AggStep or OP_AggInverse 1397 ** 1398 ** Or, if csr is less than zero, then the array of registers at reg is 1399 ** already populated with all columns from the current row of the sub-query. 1400 ** 1401 ** If argument regPartSize is non-zero, then it is a register containing the 1402 ** number of rows in the current partition. 1403 */ 1404 static void windowAggStep( 1405 Parse *pParse, 1406 Window *pMWin, /* Linked list of window functions */ 1407 int csr, /* Read arguments from this cursor */ 1408 int bInverse, /* True to invoke xInverse instead of xStep */ 1409 int reg /* Array of registers */ 1410 ){ 1411 Vdbe *v = sqlite3GetVdbe(pParse); 1412 Window *pWin; 1413 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1414 FuncDef *pFunc = pWin->pFunc; 1415 int regArg; 1416 int nArg = windowArgCount(pWin); 1417 int i; 1418 1419 for(i=0; i<nArg; i++){ 1420 if( i!=1 || pFunc->zName!=nth_valueName ){ 1421 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1422 }else{ 1423 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1424 } 1425 } 1426 regArg = reg; 1427 1428 if( pMWin->regStartRowid==0 1429 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1430 && (pWin->eStart!=TK_UNBOUNDED) 1431 ){ 1432 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1433 VdbeCoverage(v); 1434 if( bInverse==0 ){ 1435 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1436 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1437 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1438 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1439 }else{ 1440 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1441 VdbeCoverageNeverTaken(v); 1442 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1443 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1444 } 1445 sqlite3VdbeJumpHere(v, addrIsNull); 1446 }else if( pWin->regApp ){ 1447 assert( pFunc->zName==nth_valueName 1448 || pFunc->zName==first_valueName 1449 ); 1450 assert( bInverse==0 || bInverse==1 ); 1451 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1452 }else if( pFunc->xSFunc!=noopStepFunc ){ 1453 int addrIf = 0; 1454 if( pWin->pFilter ){ 1455 int regTmp; 1456 assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr ); 1457 assert( nArg || pWin->pOwner->x.pList==0 ); 1458 regTmp = sqlite3GetTempReg(pParse); 1459 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1460 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1461 VdbeCoverage(v); 1462 sqlite3ReleaseTempReg(pParse, regTmp); 1463 } 1464 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1465 CollSeq *pColl; 1466 assert( nArg>0 ); 1467 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1468 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1469 } 1470 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1471 bInverse, regArg, pWin->regAccum); 1472 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1473 sqlite3VdbeChangeP5(v, (u8)nArg); 1474 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1475 } 1476 } 1477 } 1478 1479 typedef struct WindowCodeArg WindowCodeArg; 1480 typedef struct WindowCsrAndReg WindowCsrAndReg; 1481 struct WindowCsrAndReg { 1482 int csr; 1483 int reg; 1484 }; 1485 1486 struct WindowCodeArg { 1487 Parse *pParse; 1488 Window *pMWin; 1489 Vdbe *pVdbe; 1490 int regGosub; 1491 int addrGosub; 1492 int regArg; 1493 int eDelete; 1494 1495 WindowCsrAndReg start; 1496 WindowCsrAndReg current; 1497 WindowCsrAndReg end; 1498 }; 1499 1500 /* 1501 ** Values that may be passed as the second argument to windowCodeOp(). 1502 */ 1503 #define WINDOW_RETURN_ROW 1 1504 #define WINDOW_AGGINVERSE 2 1505 #define WINDOW_AGGSTEP 3 1506 1507 /* 1508 ** Generate VM code to read the window frames peer values from cursor csr into 1509 ** an array of registers starting at reg. 1510 */ 1511 static void windowReadPeerValues( 1512 WindowCodeArg *p, 1513 int csr, 1514 int reg 1515 ){ 1516 Window *pMWin = p->pMWin; 1517 ExprList *pOrderBy = pMWin->pOrderBy; 1518 if( pOrderBy ){ 1519 Vdbe *v = sqlite3GetVdbe(p->pParse); 1520 ExprList *pPart = pMWin->pPartition; 1521 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1522 int i; 1523 for(i=0; i<pOrderBy->nExpr; i++){ 1524 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1525 } 1526 } 1527 } 1528 1529 /* 1530 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1531 ** (bFin==1) for each window function in the linked list starting at 1532 ** pMWin. Or, for built-in window-functions that do not use the standard 1533 ** API, generate the equivalent VM code. 1534 */ 1535 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1536 Parse *pParse = p->pParse; 1537 Window *pMWin = p->pMWin; 1538 Vdbe *v = sqlite3GetVdbe(pParse); 1539 Window *pWin; 1540 1541 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1542 if( pMWin->regStartRowid==0 1543 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1544 && (pWin->eStart!=TK_UNBOUNDED) 1545 ){ 1546 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1547 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1548 VdbeCoverage(v); 1549 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1550 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1551 }else if( pWin->regApp ){ 1552 assert( pMWin->regStartRowid==0 ); 1553 }else{ 1554 int nArg = windowArgCount(pWin); 1555 if( bFin ){ 1556 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1557 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1558 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1559 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1560 }else{ 1561 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1562 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1563 } 1564 } 1565 } 1566 } 1567 1568 /* 1569 ** Generate code to calculate the current values of all window functions in the 1570 ** p->pMWin list by doing a full scan of the current window frame. Store the 1571 ** results in the Window.regResult registers, ready to return the upper 1572 ** layer. 1573 */ 1574 static void windowFullScan(WindowCodeArg *p){ 1575 Window *pWin; 1576 Parse *pParse = p->pParse; 1577 Window *pMWin = p->pMWin; 1578 Vdbe *v = p->pVdbe; 1579 1580 int regCRowid = 0; /* Current rowid value */ 1581 int regCPeer = 0; /* Current peer values */ 1582 int regRowid = 0; /* AggStep rowid value */ 1583 int regPeer = 0; /* AggStep peer values */ 1584 1585 int nPeer; 1586 int lblNext; 1587 int lblBrk; 1588 int addrNext; 1589 int csr; 1590 1591 assert( pMWin!=0 ); 1592 csr = pMWin->csrApp; 1593 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1594 1595 lblNext = sqlite3VdbeMakeLabel(pParse); 1596 lblBrk = sqlite3VdbeMakeLabel(pParse); 1597 1598 regCRowid = sqlite3GetTempReg(pParse); 1599 regRowid = sqlite3GetTempReg(pParse); 1600 if( nPeer ){ 1601 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1602 regPeer = sqlite3GetTempRange(pParse, nPeer); 1603 } 1604 1605 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1606 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1607 1608 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1609 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1610 } 1611 1612 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1613 VdbeCoverage(v); 1614 addrNext = sqlite3VdbeCurrentAddr(v); 1615 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1616 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1617 VdbeCoverageNeverNull(v); 1618 1619 if( pMWin->eExclude==TK_CURRENT ){ 1620 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1621 VdbeCoverageNeverNull(v); 1622 }else if( pMWin->eExclude!=TK_NO ){ 1623 int addr; 1624 int addrEq = 0; 1625 KeyInfo *pKeyInfo = 0; 1626 1627 if( pMWin->pOrderBy ){ 1628 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1629 } 1630 if( pMWin->eExclude==TK_TIES ){ 1631 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1632 VdbeCoverageNeverNull(v); 1633 } 1634 if( pKeyInfo ){ 1635 windowReadPeerValues(p, csr, regPeer); 1636 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1637 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1638 addr = sqlite3VdbeCurrentAddr(v)+1; 1639 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1640 VdbeCoverageEqNe(v); 1641 }else{ 1642 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1643 } 1644 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1645 } 1646 1647 windowAggStep(pParse, pMWin, csr, 0, p->regArg); 1648 1649 sqlite3VdbeResolveLabel(v, lblNext); 1650 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1651 VdbeCoverage(v); 1652 sqlite3VdbeJumpHere(v, addrNext-1); 1653 sqlite3VdbeJumpHere(v, addrNext+1); 1654 sqlite3ReleaseTempReg(pParse, regRowid); 1655 sqlite3ReleaseTempReg(pParse, regCRowid); 1656 if( nPeer ){ 1657 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1658 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1659 } 1660 1661 windowAggFinal(p, 1); 1662 } 1663 1664 /* 1665 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1666 ** return the current row of Window.iEphCsr. If all window functions are 1667 ** aggregate window functions that use the standard API, a single 1668 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1669 ** for per-row processing is only generated for the following built-in window 1670 ** functions: 1671 ** 1672 ** nth_value() 1673 ** first_value() 1674 ** lag() 1675 ** lead() 1676 */ 1677 static void windowReturnOneRow(WindowCodeArg *p){ 1678 Window *pMWin = p->pMWin; 1679 Vdbe *v = p->pVdbe; 1680 1681 if( pMWin->regStartRowid ){ 1682 windowFullScan(p); 1683 }else{ 1684 Parse *pParse = p->pParse; 1685 Window *pWin; 1686 1687 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1688 FuncDef *pFunc = pWin->pFunc; 1689 if( pFunc->zName==nth_valueName 1690 || pFunc->zName==first_valueName 1691 ){ 1692 int csr = pWin->csrApp; 1693 int lbl = sqlite3VdbeMakeLabel(pParse); 1694 int tmpReg = sqlite3GetTempReg(pParse); 1695 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1696 1697 if( pFunc->zName==nth_valueName ){ 1698 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1699 windowCheckValue(pParse, tmpReg, 2); 1700 }else{ 1701 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1702 } 1703 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1704 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1705 VdbeCoverageNeverNull(v); 1706 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1707 VdbeCoverageNeverTaken(v); 1708 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1709 sqlite3VdbeResolveLabel(v, lbl); 1710 sqlite3ReleaseTempReg(pParse, tmpReg); 1711 } 1712 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1713 int nArg = pWin->pOwner->x.pList->nExpr; 1714 int csr = pWin->csrApp; 1715 int lbl = sqlite3VdbeMakeLabel(pParse); 1716 int tmpReg = sqlite3GetTempReg(pParse); 1717 int iEph = pMWin->iEphCsr; 1718 1719 if( nArg<3 ){ 1720 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1721 }else{ 1722 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1723 } 1724 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1725 if( nArg<2 ){ 1726 int val = (pFunc->zName==leadName ? 1 : -1); 1727 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1728 }else{ 1729 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1730 int tmpReg2 = sqlite3GetTempReg(pParse); 1731 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1732 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1733 sqlite3ReleaseTempReg(pParse, tmpReg2); 1734 } 1735 1736 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1737 VdbeCoverage(v); 1738 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1739 sqlite3VdbeResolveLabel(v, lbl); 1740 sqlite3ReleaseTempReg(pParse, tmpReg); 1741 } 1742 } 1743 } 1744 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1745 } 1746 1747 /* 1748 ** Generate code to set the accumulator register for each window function 1749 ** in the linked list passed as the second argument to NULL. And perform 1750 ** any equivalent initialization required by any built-in window functions 1751 ** in the list. 1752 */ 1753 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1754 Vdbe *v = sqlite3GetVdbe(pParse); 1755 int regArg; 1756 int nArg = 0; 1757 Window *pWin; 1758 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1759 FuncDef *pFunc = pWin->pFunc; 1760 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1761 nArg = MAX(nArg, windowArgCount(pWin)); 1762 if( pMWin->regStartRowid==0 ){ 1763 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1764 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1765 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1766 } 1767 1768 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1769 assert( pWin->eStart!=TK_UNBOUNDED ); 1770 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1771 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1772 } 1773 } 1774 } 1775 regArg = pParse->nMem+1; 1776 pParse->nMem += nArg; 1777 return regArg; 1778 } 1779 1780 /* 1781 ** Return true if the current frame should be cached in the ephemeral table, 1782 ** even if there are no xInverse() calls required. 1783 */ 1784 static int windowCacheFrame(Window *pMWin){ 1785 Window *pWin; 1786 if( pMWin->regStartRowid ) return 1; 1787 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1788 FuncDef *pFunc = pWin->pFunc; 1789 if( (pFunc->zName==nth_valueName) 1790 || (pFunc->zName==first_valueName) 1791 || (pFunc->zName==leadName) 1792 || (pFunc->zName==lagName) 1793 ){ 1794 return 1; 1795 } 1796 } 1797 return 0; 1798 } 1799 1800 /* 1801 ** regOld and regNew are each the first register in an array of size 1802 ** pOrderBy->nExpr. This function generates code to compare the two 1803 ** arrays of registers using the collation sequences and other comparison 1804 ** parameters specified by pOrderBy. 1805 ** 1806 ** If the two arrays are not equal, the contents of regNew is copied to 1807 ** regOld and control falls through. Otherwise, if the contents of the arrays 1808 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 1809 */ 1810 static void windowIfNewPeer( 1811 Parse *pParse, 1812 ExprList *pOrderBy, 1813 int regNew, /* First in array of new values */ 1814 int regOld, /* First in array of old values */ 1815 int addr /* Jump here */ 1816 ){ 1817 Vdbe *v = sqlite3GetVdbe(pParse); 1818 if( pOrderBy ){ 1819 int nVal = pOrderBy->nExpr; 1820 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 1821 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 1822 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1823 sqlite3VdbeAddOp3(v, OP_Jump, 1824 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 1825 ); 1826 VdbeCoverageEqNe(v); 1827 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 1828 }else{ 1829 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 1830 } 1831 } 1832 1833 /* 1834 ** This function is called as part of generating VM programs for RANGE 1835 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 1836 ** the ORDER BY term in the window, it generates code equivalent to: 1837 ** 1838 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 1839 ** 1840 ** A special type of arithmetic is used such that if csr.peerVal is not 1841 ** a numeric type (real or integer), then the result of the addition is 1842 ** a copy of csr1.peerVal. 1843 */ 1844 static void windowCodeRangeTest( 1845 WindowCodeArg *p, 1846 int op, /* OP_Ge or OP_Gt */ 1847 int csr1, 1848 int regVal, 1849 int csr2, 1850 int lbl 1851 ){ 1852 Parse *pParse = p->pParse; 1853 Vdbe *v = sqlite3GetVdbe(pParse); 1854 int reg1 = sqlite3GetTempReg(pParse); 1855 int reg2 = sqlite3GetTempReg(pParse); 1856 int arith = OP_Add; 1857 int addrGe; 1858 1859 int regString = ++pParse->nMem; 1860 1861 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 1862 assert( p->pMWin->pOrderBy && p->pMWin->pOrderBy->nExpr==1 ); 1863 if( p->pMWin->pOrderBy->a[0].sortOrder ){ 1864 switch( op ){ 1865 case OP_Ge: op = OP_Le; break; 1866 case OP_Gt: op = OP_Lt; break; 1867 default: assert( op==OP_Le ); op = OP_Ge; break; 1868 } 1869 arith = OP_Subtract; 1870 } 1871 1872 windowReadPeerValues(p, csr1, reg1); 1873 windowReadPeerValues(p, csr2, reg2); 1874 1875 /* Check if the peer value for csr1 value is a text or blob by comparing 1876 ** it to the smallest possible string - ''. If it is, jump over the 1877 ** OP_Add or OP_Subtract operation and proceed directly to the comparison. */ 1878 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1879 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 1880 VdbeCoverage(v); 1881 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 1882 sqlite3VdbeJumpHere(v, addrGe); 1883 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 1884 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1885 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 1886 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 1887 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 1888 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 1889 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 1890 1891 sqlite3ReleaseTempReg(pParse, reg1); 1892 sqlite3ReleaseTempReg(pParse, reg2); 1893 } 1894 1895 /* 1896 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 1897 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 1898 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 1899 ** details. 1900 */ 1901 static int windowCodeOp( 1902 WindowCodeArg *p, /* Context object */ 1903 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 1904 int regCountdown, /* Register for OP_IfPos countdown */ 1905 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 1906 ){ 1907 int csr, reg; 1908 Parse *pParse = p->pParse; 1909 Window *pMWin = p->pMWin; 1910 int ret = 0; 1911 Vdbe *v = p->pVdbe; 1912 int addrIf = 0; 1913 int addrContinue = 0; 1914 int addrGoto = 0; 1915 int bPeer = (pMWin->eFrmType!=TK_ROWS); 1916 1917 int lblDone = sqlite3VdbeMakeLabel(pParse); 1918 int addrNextRange = 0; 1919 1920 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 1921 ** starts with UNBOUNDED PRECEDING. */ 1922 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 1923 assert( regCountdown==0 && jumpOnEof==0 ); 1924 return 0; 1925 } 1926 1927 if( regCountdown>0 ){ 1928 if( pMWin->eFrmType==TK_RANGE ){ 1929 addrNextRange = sqlite3VdbeCurrentAddr(v); 1930 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 1931 if( op==WINDOW_AGGINVERSE ){ 1932 if( pMWin->eStart==TK_FOLLOWING ){ 1933 windowCodeRangeTest( 1934 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 1935 ); 1936 }else{ 1937 windowCodeRangeTest( 1938 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 1939 ); 1940 } 1941 }else{ 1942 windowCodeRangeTest( 1943 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 1944 ); 1945 } 1946 }else{ 1947 addrIf = sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, 0, 1); 1948 VdbeCoverage(v); 1949 } 1950 } 1951 1952 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 1953 windowAggFinal(p, 0); 1954 } 1955 addrContinue = sqlite3VdbeCurrentAddr(v); 1956 switch( op ){ 1957 case WINDOW_RETURN_ROW: 1958 csr = p->current.csr; 1959 reg = p->current.reg; 1960 windowReturnOneRow(p); 1961 break; 1962 1963 case WINDOW_AGGINVERSE: 1964 csr = p->start.csr; 1965 reg = p->start.reg; 1966 if( pMWin->regStartRowid ){ 1967 assert( pMWin->regEndRowid ); 1968 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 1969 }else{ 1970 windowAggStep(pParse, pMWin, csr, 1, p->regArg); 1971 } 1972 break; 1973 1974 default: 1975 assert( op==WINDOW_AGGSTEP ); 1976 csr = p->end.csr; 1977 reg = p->end.reg; 1978 if( pMWin->regStartRowid ){ 1979 assert( pMWin->regEndRowid ); 1980 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 1981 }else{ 1982 windowAggStep(pParse, pMWin, csr, 0, p->regArg); 1983 } 1984 break; 1985 } 1986 1987 if( op==p->eDelete ){ 1988 sqlite3VdbeAddOp1(v, OP_Delete, csr); 1989 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 1990 } 1991 1992 if( jumpOnEof ){ 1993 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 1994 VdbeCoverage(v); 1995 ret = sqlite3VdbeAddOp0(v, OP_Goto); 1996 }else{ 1997 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 1998 VdbeCoverage(v); 1999 if( bPeer ){ 2000 addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); 2001 } 2002 } 2003 2004 if( bPeer ){ 2005 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2006 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2007 windowReadPeerValues(p, csr, regTmp); 2008 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2009 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2010 } 2011 2012 if( addrNextRange ){ 2013 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2014 } 2015 sqlite3VdbeResolveLabel(v, lblDone); 2016 if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto); 2017 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 2018 return ret; 2019 } 2020 2021 2022 /* 2023 ** Allocate and return a duplicate of the Window object indicated by the 2024 ** third argument. Set the Window.pOwner field of the new object to 2025 ** pOwner. 2026 */ 2027 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2028 Window *pNew = 0; 2029 if( ALWAYS(p) ){ 2030 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2031 if( pNew ){ 2032 pNew->zName = sqlite3DbStrDup(db, p->zName); 2033 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2034 pNew->pFunc = p->pFunc; 2035 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2036 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2037 pNew->eFrmType = p->eFrmType; 2038 pNew->eEnd = p->eEnd; 2039 pNew->eStart = p->eStart; 2040 pNew->eExclude = p->eExclude; 2041 pNew->regResult = p->regResult; 2042 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2043 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2044 pNew->pOwner = pOwner; 2045 } 2046 } 2047 return pNew; 2048 } 2049 2050 /* 2051 ** Return a copy of the linked list of Window objects passed as the 2052 ** second argument. 2053 */ 2054 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2055 Window *pWin; 2056 Window *pRet = 0; 2057 Window **pp = &pRet; 2058 2059 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2060 *pp = sqlite3WindowDup(db, 0, pWin); 2061 if( *pp==0 ) break; 2062 pp = &((*pp)->pNextWin); 2063 } 2064 2065 return pRet; 2066 } 2067 2068 /* 2069 ** Return true if it can be determined at compile time that expression 2070 ** pExpr evaluates to a value that, when cast to an integer, is greater 2071 ** than zero. False otherwise. 2072 ** 2073 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2074 ** flag and returns zero. 2075 */ 2076 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2077 int ret = 0; 2078 sqlite3 *db = pParse->db; 2079 sqlite3_value *pVal = 0; 2080 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2081 if( pVal && sqlite3_value_int(pVal)>0 ){ 2082 ret = 1; 2083 } 2084 sqlite3ValueFree(pVal); 2085 return ret; 2086 } 2087 2088 /* 2089 ** sqlite3WhereBegin() has already been called for the SELECT statement 2090 ** passed as the second argument when this function is invoked. It generates 2091 ** code to populate the Window.regResult register for each window function 2092 ** and invoke the sub-routine at instruction addrGosub once for each row. 2093 ** sqlite3WhereEnd() is always called before returning. 2094 ** 2095 ** This function handles several different types of window frames, which 2096 ** require slightly different processing. The following pseudo code is 2097 ** used to implement window frames of the form: 2098 ** 2099 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2100 ** 2101 ** Other window frame types use variants of the following: 2102 ** 2103 ** ... loop started by sqlite3WhereBegin() ... 2104 ** if( new partition ){ 2105 ** Gosub flush 2106 ** } 2107 ** Insert new row into eph table. 2108 ** 2109 ** if( first row of partition ){ 2110 ** // Rewind three cursors, all open on the eph table. 2111 ** Rewind(csrEnd); 2112 ** Rewind(csrStart); 2113 ** Rewind(csrCurrent); 2114 ** 2115 ** regEnd = <expr2> // FOLLOWING expression 2116 ** regStart = <expr1> // PRECEDING expression 2117 ** }else{ 2118 ** // First time this branch is taken, the eph table contains two 2119 ** // rows. The first row in the partition, which all three cursors 2120 ** // currently point to, and the following row. 2121 ** AGGSTEP 2122 ** if( (regEnd--)<=0 ){ 2123 ** RETURN_ROW 2124 ** if( (regStart--)<=0 ){ 2125 ** AGGINVERSE 2126 ** } 2127 ** } 2128 ** } 2129 ** } 2130 ** flush: 2131 ** AGGSTEP 2132 ** while( 1 ){ 2133 ** RETURN ROW 2134 ** if( csrCurrent is EOF ) break; 2135 ** if( (regStart--)<=0 ){ 2136 ** AggInverse(csrStart) 2137 ** Next(csrStart) 2138 ** } 2139 ** } 2140 ** 2141 ** The pseudo-code above uses the following shorthand: 2142 ** 2143 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2144 ** with arguments read from the current row of cursor csrEnd, then 2145 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2146 ** 2147 ** RETURN_ROW: return a row to the caller based on the contents of the 2148 ** current row of csrCurrent and the current state of all 2149 ** aggregates. Then step cursor csrCurrent forward one row. 2150 ** 2151 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2152 ** functions with arguments read from the current row of cursor 2153 ** csrStart. Then step csrStart forward one row. 2154 ** 2155 ** There are two other ROWS window frames that are handled significantly 2156 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2157 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2158 ** cases because they change the order in which the three cursors (csrStart, 2159 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2160 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2161 ** three. 2162 ** 2163 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2164 ** 2165 ** ... loop started by sqlite3WhereBegin() ... 2166 ** if( new partition ){ 2167 ** Gosub flush 2168 ** } 2169 ** Insert new row into eph table. 2170 ** if( first row of partition ){ 2171 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2172 ** regEnd = <expr2> 2173 ** regStart = <expr1> 2174 ** }else{ 2175 ** if( (regEnd--)<=0 ){ 2176 ** AGGSTEP 2177 ** } 2178 ** RETURN_ROW 2179 ** if( (regStart--)<=0 ){ 2180 ** AGGINVERSE 2181 ** } 2182 ** } 2183 ** } 2184 ** flush: 2185 ** if( (regEnd--)<=0 ){ 2186 ** AGGSTEP 2187 ** } 2188 ** RETURN_ROW 2189 ** 2190 ** 2191 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2192 ** 2193 ** ... loop started by sqlite3WhereBegin() ... 2194 ** if( new partition ){ 2195 ** Gosub flush 2196 ** } 2197 ** Insert new row into eph table. 2198 ** if( first row of partition ){ 2199 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2200 ** regEnd = <expr2> 2201 ** regStart = regEnd - <expr1> 2202 ** }else{ 2203 ** AGGSTEP 2204 ** if( (regEnd--)<=0 ){ 2205 ** RETURN_ROW 2206 ** } 2207 ** if( (regStart--)<=0 ){ 2208 ** AGGINVERSE 2209 ** } 2210 ** } 2211 ** } 2212 ** flush: 2213 ** AGGSTEP 2214 ** while( 1 ){ 2215 ** if( (regEnd--)<=0 ){ 2216 ** RETURN_ROW 2217 ** if( eof ) break; 2218 ** } 2219 ** if( (regStart--)<=0 ){ 2220 ** AGGINVERSE 2221 ** if( eof ) break 2222 ** } 2223 ** } 2224 ** while( !eof csrCurrent ){ 2225 ** RETURN_ROW 2226 ** } 2227 ** 2228 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2229 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2230 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2231 ** This is optimized of course - branches that will never be taken and 2232 ** conditions that are always true are omitted from the VM code. The only 2233 ** exceptional case is: 2234 ** 2235 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2236 ** 2237 ** ... loop started by sqlite3WhereBegin() ... 2238 ** if( new partition ){ 2239 ** Gosub flush 2240 ** } 2241 ** Insert new row into eph table. 2242 ** if( first row of partition ){ 2243 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2244 ** regStart = <expr1> 2245 ** }else{ 2246 ** AGGSTEP 2247 ** } 2248 ** } 2249 ** flush: 2250 ** AGGSTEP 2251 ** while( 1 ){ 2252 ** if( (regStart--)<=0 ){ 2253 ** AGGINVERSE 2254 ** if( eof ) break 2255 ** } 2256 ** RETURN_ROW 2257 ** } 2258 ** while( !eof csrCurrent ){ 2259 ** RETURN_ROW 2260 ** } 2261 ** 2262 ** Also requiring special handling are the cases: 2263 ** 2264 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2265 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2266 ** 2267 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2268 ** To handle this case, the pseudo-code programs depicted above are modified 2269 ** slightly to be: 2270 ** 2271 ** ... loop started by sqlite3WhereBegin() ... 2272 ** if( new partition ){ 2273 ** Gosub flush 2274 ** } 2275 ** Insert new row into eph table. 2276 ** if( first row of partition ){ 2277 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2278 ** regEnd = <expr2> 2279 ** regStart = <expr1> 2280 ** if( regEnd < regStart ){ 2281 ** RETURN_ROW 2282 ** delete eph table contents 2283 ** continue 2284 ** } 2285 ** ... 2286 ** 2287 ** The new "continue" statement in the above jumps to the next iteration 2288 ** of the outer loop - the one started by sqlite3WhereBegin(). 2289 ** 2290 ** The various GROUPS cases are implemented using the same patterns as 2291 ** ROWS. The VM code is modified slightly so that: 2292 ** 2293 ** 1. The else branch in the main loop is only taken if the row just 2294 ** added to the ephemeral table is the start of a new group. In 2295 ** other words, it becomes: 2296 ** 2297 ** ... loop started by sqlite3WhereBegin() ... 2298 ** if( new partition ){ 2299 ** Gosub flush 2300 ** } 2301 ** Insert new row into eph table. 2302 ** if( first row of partition ){ 2303 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2304 ** regEnd = <expr2> 2305 ** regStart = <expr1> 2306 ** }else if( new group ){ 2307 ** ... 2308 ** } 2309 ** } 2310 ** 2311 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2312 ** AGGINVERSE step processes the current row of the relevant cursor and 2313 ** all subsequent rows belonging to the same group. 2314 ** 2315 ** RANGE window frames are a little different again. As for GROUPS, the 2316 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2317 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2318 ** basic cases: 2319 ** 2320 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2321 ** 2322 ** ... loop started by sqlite3WhereBegin() ... 2323 ** if( new partition ){ 2324 ** Gosub flush 2325 ** } 2326 ** Insert new row into eph table. 2327 ** if( first row of partition ){ 2328 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2329 ** regEnd = <expr2> 2330 ** regStart = <expr1> 2331 ** }else{ 2332 ** AGGSTEP 2333 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2334 ** RETURN_ROW 2335 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2336 ** AGGINVERSE 2337 ** } 2338 ** } 2339 ** } 2340 ** } 2341 ** flush: 2342 ** AGGSTEP 2343 ** while( 1 ){ 2344 ** RETURN ROW 2345 ** if( csrCurrent is EOF ) break; 2346 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2347 ** AGGINVERSE 2348 ** } 2349 ** } 2350 ** } 2351 ** 2352 ** In the above notation, "csr.key" means the current value of the ORDER BY 2353 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2354 ** or <expr PRECEDING) read from cursor csr. 2355 ** 2356 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2357 ** 2358 ** ... loop started by sqlite3WhereBegin() ... 2359 ** if( new partition ){ 2360 ** Gosub flush 2361 ** } 2362 ** Insert new row into eph table. 2363 ** if( first row of partition ){ 2364 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2365 ** regEnd = <expr2> 2366 ** regStart = <expr1> 2367 ** }else{ 2368 ** if( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2369 ** AGGSTEP 2370 ** } 2371 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2372 ** AGGINVERSE 2373 ** } 2374 ** RETURN_ROW 2375 ** } 2376 ** } 2377 ** flush: 2378 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2379 ** AGGSTEP 2380 ** } 2381 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2382 ** AGGINVERSE 2383 ** } 2384 ** RETURN_ROW 2385 ** 2386 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2387 ** 2388 ** ... loop started by sqlite3WhereBegin() ... 2389 ** if( new partition ){ 2390 ** Gosub flush 2391 ** } 2392 ** Insert new row into eph table. 2393 ** if( first row of partition ){ 2394 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2395 ** regEnd = <expr2> 2396 ** regStart = <expr1> 2397 ** }else{ 2398 ** AGGSTEP 2399 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2400 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2401 ** AGGINVERSE 2402 ** } 2403 ** RETURN_ROW 2404 ** } 2405 ** } 2406 ** } 2407 ** flush: 2408 ** AGGSTEP 2409 ** while( 1 ){ 2410 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2411 ** AGGINVERSE 2412 ** if( eof ) break "while( 1 )" loop. 2413 ** } 2414 ** RETURN_ROW 2415 ** } 2416 ** while( !eof csrCurrent ){ 2417 ** RETURN_ROW 2418 ** } 2419 ** 2420 ** The text above leaves out many details. Refer to the code and comments 2421 ** below for a more complete picture. 2422 */ 2423 void sqlite3WindowCodeStep( 2424 Parse *pParse, /* Parse context */ 2425 Select *p, /* Rewritten SELECT statement */ 2426 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2427 int regGosub, /* Register for OP_Gosub */ 2428 int addrGosub /* OP_Gosub here to return each row */ 2429 ){ 2430 Window *pMWin = p->pWin; 2431 ExprList *pOrderBy = pMWin->pOrderBy; 2432 Vdbe *v = sqlite3GetVdbe(pParse); 2433 int csrWrite; /* Cursor used to write to eph. table */ 2434 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2435 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2436 int iInput; /* To iterate through sub cols */ 2437 int addrNe; /* Address of OP_Ne */ 2438 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2439 int addrInteger = 0; /* Address of OP_Integer */ 2440 int addrEmpty; /* Address of OP_Rewind in flush: */ 2441 int regStart = 0; /* Value of <expr> PRECEDING */ 2442 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2443 int regNew; /* Array of registers holding new input row */ 2444 int regRecord; /* regNew array in record form */ 2445 int regRowid; /* Rowid for regRecord in eph table */ 2446 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2447 int regPeer = 0; /* Peer values for current row */ 2448 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2449 WindowCodeArg s; /* Context object for sub-routines */ 2450 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2451 2452 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2453 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2454 ); 2455 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2456 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2457 ); 2458 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2459 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2460 || pMWin->eExclude==TK_NO 2461 ); 2462 2463 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2464 2465 /* Fill in the context object */ 2466 memset(&s, 0, sizeof(WindowCodeArg)); 2467 s.pParse = pParse; 2468 s.pMWin = pMWin; 2469 s.pVdbe = v; 2470 s.regGosub = regGosub; 2471 s.addrGosub = addrGosub; 2472 s.current.csr = pMWin->iEphCsr; 2473 csrWrite = s.current.csr+1; 2474 s.start.csr = s.current.csr+2; 2475 s.end.csr = s.current.csr+3; 2476 2477 /* Figure out when rows may be deleted from the ephemeral table. There 2478 ** are four options - they may never be deleted (eDelete==0), they may 2479 ** be deleted as soon as they are no longer part of the window frame 2480 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2481 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2482 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2483 switch( pMWin->eStart ){ 2484 case TK_FOLLOWING: 2485 if( pMWin->eFrmType!=TK_RANGE 2486 && windowExprGtZero(pParse, pMWin->pStart) 2487 ){ 2488 s.eDelete = WINDOW_RETURN_ROW; 2489 } 2490 break; 2491 case TK_UNBOUNDED: 2492 if( windowCacheFrame(pMWin)==0 ){ 2493 if( pMWin->eEnd==TK_PRECEDING ){ 2494 if( pMWin->eFrmType!=TK_RANGE 2495 && windowExprGtZero(pParse, pMWin->pEnd) 2496 ){ 2497 s.eDelete = WINDOW_AGGSTEP; 2498 } 2499 }else{ 2500 s.eDelete = WINDOW_RETURN_ROW; 2501 } 2502 } 2503 break; 2504 default: 2505 s.eDelete = WINDOW_AGGINVERSE; 2506 break; 2507 } 2508 2509 /* Allocate registers for the array of values from the sub-query, the 2510 ** samve values in record form, and the rowid used to insert said record 2511 ** into the ephemeral table. */ 2512 regNew = pParse->nMem+1; 2513 pParse->nMem += nInput; 2514 regRecord = ++pParse->nMem; 2515 regRowid = ++pParse->nMem; 2516 2517 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2518 ** clause, allocate registers to store the results of evaluating each 2519 ** <expr>. */ 2520 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2521 regStart = ++pParse->nMem; 2522 } 2523 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2524 regEnd = ++pParse->nMem; 2525 } 2526 2527 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2528 ** registers to store copies of the ORDER BY expressions (peer values) 2529 ** for the main loop, and for each cursor (start, current and end). */ 2530 if( pMWin->eFrmType!=TK_ROWS ){ 2531 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2532 regNewPeer = regNew + pMWin->nBufferCol; 2533 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2534 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2535 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2536 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2537 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2538 } 2539 2540 /* Load the column values for the row returned by the sub-select 2541 ** into an array of registers starting at regNew. Assemble them into 2542 ** a record in register regRecord. */ 2543 for(iInput=0; iInput<nInput; iInput++){ 2544 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2545 } 2546 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2547 2548 /* An input row has just been read into an array of registers starting 2549 ** at regNew. If the window has a PARTITION clause, this block generates 2550 ** VM code to check if the input row is the start of a new partition. 2551 ** If so, it does an OP_Gosub to an address to be filled in later. The 2552 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2553 if( pMWin->pPartition ){ 2554 int addr; 2555 ExprList *pPart = pMWin->pPartition; 2556 int nPart = pPart->nExpr; 2557 int regNewPart = regNew + pMWin->nBufferCol; 2558 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2559 2560 regFlushPart = ++pParse->nMem; 2561 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2562 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2563 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2564 VdbeCoverageEqNe(v); 2565 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2566 VdbeComment((v, "call flush_partition")); 2567 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2568 } 2569 2570 /* Insert the new row into the ephemeral table */ 2571 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid); 2572 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid); 2573 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid); 2574 VdbeCoverageNeverNull(v); 2575 2576 /* This block is run for the first row of each partition */ 2577 s.regArg = windowInitAccum(pParse, pMWin); 2578 2579 if( regStart ){ 2580 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2581 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); 2582 } 2583 if( regEnd ){ 2584 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2585 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE ? 3 : 0)); 2586 } 2587 2588 if( pMWin->eStart==pMWin->eEnd && regStart ){ 2589 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2590 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2591 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2592 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2593 windowAggFinal(&s, 0); 2594 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2595 VdbeCoverageNeverTaken(v); 2596 windowReturnOneRow(&s); 2597 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2598 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2599 sqlite3VdbeJumpHere(v, addrGe); 2600 } 2601 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2602 assert( pMWin->eEnd==TK_FOLLOWING ); 2603 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2604 } 2605 2606 if( pMWin->eStart!=TK_UNBOUNDED ){ 2607 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2608 VdbeCoverageNeverTaken(v); 2609 } 2610 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2611 VdbeCoverageNeverTaken(v); 2612 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2613 VdbeCoverageNeverTaken(v); 2614 if( regPeer && pOrderBy ){ 2615 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2616 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2617 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2618 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2619 } 2620 2621 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2622 2623 sqlite3VdbeJumpHere(v, addrNe); 2624 2625 /* Beginning of the block executed for the second and subsequent rows. */ 2626 if( regPeer ){ 2627 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2628 } 2629 if( pMWin->eStart==TK_FOLLOWING ){ 2630 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2631 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2632 if( pMWin->eFrmType==TK_RANGE ){ 2633 int lbl = sqlite3VdbeMakeLabel(pParse); 2634 int addrNext = sqlite3VdbeCurrentAddr(v); 2635 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2636 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2637 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2638 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2639 sqlite3VdbeResolveLabel(v, lbl); 2640 }else{ 2641 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2642 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2643 } 2644 } 2645 }else 2646 if( pMWin->eEnd==TK_PRECEDING ){ 2647 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2648 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2649 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2650 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2651 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2652 }else{ 2653 int addr = 0; 2654 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2655 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2656 if( pMWin->eFrmType==TK_RANGE ){ 2657 int lbl = 0; 2658 addr = sqlite3VdbeCurrentAddr(v); 2659 if( regEnd ){ 2660 lbl = sqlite3VdbeMakeLabel(pParse); 2661 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2662 } 2663 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2664 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2665 if( regEnd ){ 2666 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2667 sqlite3VdbeResolveLabel(v, lbl); 2668 } 2669 }else{ 2670 if( regEnd ){ 2671 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 2672 VdbeCoverage(v); 2673 } 2674 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2675 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2676 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 2677 } 2678 } 2679 } 2680 2681 /* End of the main input loop */ 2682 sqlite3VdbeResolveLabel(v, lblWhereEnd); 2683 sqlite3WhereEnd(pWInfo); 2684 2685 /* Fall through */ 2686 if( pMWin->pPartition ){ 2687 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 2688 sqlite3VdbeJumpHere(v, addrGosubFlush); 2689 } 2690 2691 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 2692 VdbeCoverage(v); 2693 if( pMWin->eEnd==TK_PRECEDING ){ 2694 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2695 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2696 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2697 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2698 }else if( pMWin->eStart==TK_FOLLOWING ){ 2699 int addrStart; 2700 int addrBreak1; 2701 int addrBreak2; 2702 int addrBreak3; 2703 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2704 if( pMWin->eFrmType==TK_RANGE ){ 2705 addrStart = sqlite3VdbeCurrentAddr(v); 2706 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2707 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2708 }else 2709 if( pMWin->eEnd==TK_UNBOUNDED ){ 2710 addrStart = sqlite3VdbeCurrentAddr(v); 2711 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 2712 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 2713 }else{ 2714 assert( pMWin->eEnd==TK_FOLLOWING ); 2715 addrStart = sqlite3VdbeCurrentAddr(v); 2716 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 2717 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 2718 } 2719 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2720 sqlite3VdbeJumpHere(v, addrBreak2); 2721 addrStart = sqlite3VdbeCurrentAddr(v); 2722 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2723 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2724 sqlite3VdbeJumpHere(v, addrBreak1); 2725 sqlite3VdbeJumpHere(v, addrBreak3); 2726 }else{ 2727 int addrBreak; 2728 int addrStart; 2729 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2730 addrStart = sqlite3VdbeCurrentAddr(v); 2731 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 2732 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2733 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 2734 sqlite3VdbeJumpHere(v, addrBreak); 2735 } 2736 sqlite3VdbeJumpHere(v, addrEmpty); 2737 2738 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2739 if( pMWin->pPartition ){ 2740 if( pMWin->regStartRowid ){ 2741 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 2742 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 2743 } 2744 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 2745 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 2746 } 2747 } 2748 2749 #endif /* SQLITE_OMIT_WINDOWFUNC */ 2750