xref: /sqlite-3.40.0/src/window.c (revision 29368eab)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* Fall through.  */
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( p->pSub ){
792         int i;
793         for(i=0; i<p->pSub->nExpr; i++){
794           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795             iCol = i;
796             break;
797           }
798         }
799       }
800       if( iCol<0 ){
801         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
803         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
804       }
805       if( p->pSub ){
806         assert( ExprHasProperty(pExpr, EP_Static)==0 );
807         ExprSetProperty(pExpr, EP_Static);
808         sqlite3ExprDelete(pParse->db, pExpr);
809         ExprClearProperty(pExpr, EP_Static);
810         memset(pExpr, 0, sizeof(Expr));
811 
812         pExpr->op = TK_COLUMN;
813         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
814         pExpr->iTable = p->pWin->iEphCsr;
815         pExpr->y.pTab = p->pTab;
816       }
817       if( pParse->db->mallocFailed ) return WRC_Abort;
818       break;
819     }
820 
821     default: /* no-op */
822       break;
823   }
824 
825   return WRC_Continue;
826 }
827 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
828   struct WindowRewrite *p = pWalker->u.pRewrite;
829   Select *pSave = p->pSubSelect;
830   if( pSave==pSelect ){
831     return WRC_Continue;
832   }else{
833     p->pSubSelect = pSelect;
834     sqlite3WalkSelect(pWalker, pSelect);
835     p->pSubSelect = pSave;
836   }
837   return WRC_Prune;
838 }
839 
840 
841 /*
842 ** Iterate through each expression in expression-list pEList. For each:
843 **
844 **   * TK_COLUMN,
845 **   * aggregate function, or
846 **   * window function with a Window object that is not a member of the
847 **     Window list passed as the second argument (pWin).
848 **
849 ** Append the node to output expression-list (*ppSub). And replace it
850 ** with a TK_COLUMN that reads the (N-1)th element of table
851 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
852 ** appending the new one.
853 */
854 static void selectWindowRewriteEList(
855   Parse *pParse,
856   Window *pWin,
857   SrcList *pSrc,
858   ExprList *pEList,               /* Rewrite expressions in this list */
859   Table *pTab,
860   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
861 ){
862   Walker sWalker;
863   WindowRewrite sRewrite;
864 
865   assert( pWin!=0 );
866   memset(&sWalker, 0, sizeof(Walker));
867   memset(&sRewrite, 0, sizeof(WindowRewrite));
868 
869   sRewrite.pSub = *ppSub;
870   sRewrite.pWin = pWin;
871   sRewrite.pSrc = pSrc;
872   sRewrite.pTab = pTab;
873 
874   sWalker.pParse = pParse;
875   sWalker.xExprCallback = selectWindowRewriteExprCb;
876   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
877   sWalker.u.pRewrite = &sRewrite;
878 
879   (void)sqlite3WalkExprList(&sWalker, pEList);
880 
881   *ppSub = sRewrite.pSub;
882 }
883 
884 /*
885 ** Append a copy of each expression in expression-list pAppend to
886 ** expression list pList. Return a pointer to the result list.
887 */
888 static ExprList *exprListAppendList(
889   Parse *pParse,          /* Parsing context */
890   ExprList *pList,        /* List to which to append. Might be NULL */
891   ExprList *pAppend,      /* List of values to append. Might be NULL */
892   int bIntToNull
893 ){
894   if( pAppend ){
895     int i;
896     int nInit = pList ? pList->nExpr : 0;
897     for(i=0; i<pAppend->nExpr; i++){
898       int iDummy;
899       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
900       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
901       if( bIntToNull && pDup && sqlite3ExprIsInteger(pDup, &iDummy) ){
902         pDup->op = TK_NULL;
903         pDup->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
904         pDup->u.zToken = 0;
905       }
906       pList = sqlite3ExprListAppend(pParse, pList, pDup);
907       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
908     }
909   }
910   return pList;
911 }
912 
913 /*
914 ** If the SELECT statement passed as the second argument does not invoke
915 ** any SQL window functions, this function is a no-op. Otherwise, it
916 ** rewrites the SELECT statement so that window function xStep functions
917 ** are invoked in the correct order as described under "SELECT REWRITING"
918 ** at the top of this file.
919 */
920 int sqlite3WindowRewrite(Parse *pParse, Select *p){
921   int rc = SQLITE_OK;
922   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
923     Vdbe *v = sqlite3GetVdbe(pParse);
924     sqlite3 *db = pParse->db;
925     Select *pSub = 0;             /* The subquery */
926     SrcList *pSrc = p->pSrc;
927     Expr *pWhere = p->pWhere;
928     ExprList *pGroupBy = p->pGroupBy;
929     Expr *pHaving = p->pHaving;
930     ExprList *pSort = 0;
931 
932     ExprList *pSublist = 0;       /* Expression list for sub-query */
933     Window *pMWin = p->pWin;      /* Master window object */
934     Window *pWin;                 /* Window object iterator */
935     Table *pTab;
936 
937     pTab = sqlite3DbMallocZero(db, sizeof(Table));
938     if( pTab==0 ){
939       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
940     }
941 
942     p->pSrc = 0;
943     p->pWhere = 0;
944     p->pGroupBy = 0;
945     p->pHaving = 0;
946     p->selFlags &= ~SF_Aggregate;
947     p->selFlags |= SF_WinRewrite;
948 
949     /* Create the ORDER BY clause for the sub-select. This is the concatenation
950     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
951     ** redundant, remove the ORDER BY from the parent SELECT.  */
952     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
953     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
954     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
955       int nSave = pSort->nExpr;
956       pSort->nExpr = p->pOrderBy->nExpr;
957       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
958         sqlite3ExprListDelete(db, p->pOrderBy);
959         p->pOrderBy = 0;
960       }
961       pSort->nExpr = nSave;
962     }
963 
964     /* Assign a cursor number for the ephemeral table used to buffer rows.
965     ** The OpenEphemeral instruction is coded later, after it is known how
966     ** many columns the table will have.  */
967     pMWin->iEphCsr = pParse->nTab++;
968     pParse->nTab += 3;
969 
970     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
971     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
972     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
973 
974     /* Append the PARTITION BY and ORDER BY expressions to the to the
975     ** sub-select expression list. They are required to figure out where
976     ** boundaries for partitions and sets of peer rows lie.  */
977     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
978     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
979 
980     /* Append the arguments passed to each window function to the
981     ** sub-select expression list. Also allocate two registers for each
982     ** window function - one for the accumulator, another for interim
983     ** results.  */
984     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
985       ExprList *pArgs = pWin->pOwner->x.pList;
986       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
987         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
988         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
989         pWin->bExprArgs = 1;
990       }else{
991         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
992         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
993       }
994       if( pWin->pFilter ){
995         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
996         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
997       }
998       pWin->regAccum = ++pParse->nMem;
999       pWin->regResult = ++pParse->nMem;
1000       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1001     }
1002 
1003     /* If there is no ORDER BY or PARTITION BY clause, and the window
1004     ** function accepts zero arguments, and there are no other columns
1005     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1006     ** that pSublist is still NULL here. Add a constant expression here to
1007     ** keep everything legal in this case.
1008     */
1009     if( pSublist==0 ){
1010       pSublist = sqlite3ExprListAppend(pParse, 0,
1011         sqlite3Expr(db, TK_INTEGER, "0")
1012       );
1013     }
1014 
1015     pSub = sqlite3SelectNew(
1016         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1017     );
1018     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1019     if( p->pSrc ){
1020       Table *pTab2;
1021       p->pSrc->a[0].pSelect = pSub;
1022       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1023       pSub->selFlags |= SF_Expanded;
1024       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1025       if( pTab2==0 ){
1026         /* Might actually be some other kind of error, but in that case
1027         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1028         ** the correct error message regardless. */
1029         rc = SQLITE_NOMEM;
1030       }else{
1031         memcpy(pTab, pTab2, sizeof(Table));
1032         pTab->tabFlags |= TF_Ephemeral;
1033         p->pSrc->a[0].pTab = pTab;
1034         pTab = pTab2;
1035       }
1036       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr);
1037       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1038       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1039       sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1040     }else{
1041       sqlite3SelectDelete(db, pSub);
1042     }
1043     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1044     sqlite3DbFree(db, pTab);
1045   }
1046 
1047   if( rc ){
1048     if( pParse->nErr==0 ){
1049       assert( pParse->db->mallocFailed );
1050       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1051     }
1052     sqlite3SelectReset(pParse, p);
1053   }
1054   return rc;
1055 }
1056 
1057 /*
1058 ** Unlink the Window object from the Select to which it is attached,
1059 ** if it is attached.
1060 */
1061 void sqlite3WindowUnlinkFromSelect(Window *p){
1062   if( p->ppThis ){
1063     *p->ppThis = p->pNextWin;
1064     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1065     p->ppThis = 0;
1066   }
1067 }
1068 
1069 /*
1070 ** Free the Window object passed as the second argument.
1071 */
1072 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1073   if( p ){
1074     sqlite3WindowUnlinkFromSelect(p);
1075     sqlite3ExprDelete(db, p->pFilter);
1076     sqlite3ExprListDelete(db, p->pPartition);
1077     sqlite3ExprListDelete(db, p->pOrderBy);
1078     sqlite3ExprDelete(db, p->pEnd);
1079     sqlite3ExprDelete(db, p->pStart);
1080     sqlite3DbFree(db, p->zName);
1081     sqlite3DbFree(db, p->zBase);
1082     sqlite3DbFree(db, p);
1083   }
1084 }
1085 
1086 /*
1087 ** Free the linked list of Window objects starting at the second argument.
1088 */
1089 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1090   while( p ){
1091     Window *pNext = p->pNextWin;
1092     sqlite3WindowDelete(db, p);
1093     p = pNext;
1094   }
1095 }
1096 
1097 /*
1098 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1099 ** value should be a non-negative integer.  If the value is not a
1100 ** constant, change it to NULL.  The fact that it is then a non-negative
1101 ** integer will be caught later.  But it is important not to leave
1102 ** variable values in the expression tree.
1103 */
1104 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1105   if( 0==sqlite3ExprIsConstant(pExpr) ){
1106     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1107     sqlite3ExprDelete(pParse->db, pExpr);
1108     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1109   }
1110   return pExpr;
1111 }
1112 
1113 /*
1114 ** Allocate and return a new Window object describing a Window Definition.
1115 */
1116 Window *sqlite3WindowAlloc(
1117   Parse *pParse,    /* Parsing context */
1118   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1119   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1120   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1121   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1122   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1123   u8 eExclude       /* EXCLUDE clause */
1124 ){
1125   Window *pWin = 0;
1126   int bImplicitFrame = 0;
1127 
1128   /* Parser assures the following: */
1129   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1130   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1131            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1132   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1133            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1134   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1135   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1136 
1137   if( eType==0 ){
1138     bImplicitFrame = 1;
1139     eType = TK_RANGE;
1140   }
1141 
1142   /* Additionally, the
1143   ** starting boundary type may not occur earlier in the following list than
1144   ** the ending boundary type:
1145   **
1146   **   UNBOUNDED PRECEDING
1147   **   <expr> PRECEDING
1148   **   CURRENT ROW
1149   **   <expr> FOLLOWING
1150   **   UNBOUNDED FOLLOWING
1151   **
1152   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1153   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1154   ** frame boundary.
1155   */
1156   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1157    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1158   ){
1159     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1160     goto windowAllocErr;
1161   }
1162 
1163   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1164   if( pWin==0 ) goto windowAllocErr;
1165   pWin->eFrmType = eType;
1166   pWin->eStart = eStart;
1167   pWin->eEnd = eEnd;
1168   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1169     eExclude = TK_NO;
1170   }
1171   pWin->eExclude = eExclude;
1172   pWin->bImplicitFrame = bImplicitFrame;
1173   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1174   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1175   return pWin;
1176 
1177 windowAllocErr:
1178   sqlite3ExprDelete(pParse->db, pEnd);
1179   sqlite3ExprDelete(pParse->db, pStart);
1180   return 0;
1181 }
1182 
1183 /*
1184 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1185 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1186 ** equivalent nul-terminated string.
1187 */
1188 Window *sqlite3WindowAssemble(
1189   Parse *pParse,
1190   Window *pWin,
1191   ExprList *pPartition,
1192   ExprList *pOrderBy,
1193   Token *pBase
1194 ){
1195   if( pWin ){
1196     pWin->pPartition = pPartition;
1197     pWin->pOrderBy = pOrderBy;
1198     if( pBase ){
1199       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1200     }
1201   }else{
1202     sqlite3ExprListDelete(pParse->db, pPartition);
1203     sqlite3ExprListDelete(pParse->db, pOrderBy);
1204   }
1205   return pWin;
1206 }
1207 
1208 /*
1209 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1210 ** is the base window. Earlier windows from the same WINDOW clause are
1211 ** stored in the linked list starting at pWin->pNextWin. This function
1212 ** either updates *pWin according to the base specification, or else
1213 ** leaves an error in pParse.
1214 */
1215 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1216   if( pWin->zBase ){
1217     sqlite3 *db = pParse->db;
1218     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1219     if( pExist ){
1220       const char *zErr = 0;
1221       /* Check for errors */
1222       if( pWin->pPartition ){
1223         zErr = "PARTITION clause";
1224       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1225         zErr = "ORDER BY clause";
1226       }else if( pExist->bImplicitFrame==0 ){
1227         zErr = "frame specification";
1228       }
1229       if( zErr ){
1230         sqlite3ErrorMsg(pParse,
1231             "cannot override %s of window: %s", zErr, pWin->zBase
1232         );
1233       }else{
1234         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1235         if( pExist->pOrderBy ){
1236           assert( pWin->pOrderBy==0 );
1237           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1238         }
1239         sqlite3DbFree(db, pWin->zBase);
1240         pWin->zBase = 0;
1241       }
1242     }
1243   }
1244 }
1245 
1246 /*
1247 ** Attach window object pWin to expression p.
1248 */
1249 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1250   if( p ){
1251     assert( p->op==TK_FUNCTION );
1252     assert( pWin );
1253     p->y.pWin = pWin;
1254     ExprSetProperty(p, EP_WinFunc);
1255     pWin->pOwner = p;
1256     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1257       sqlite3ErrorMsg(pParse,
1258           "DISTINCT is not supported for window functions"
1259       );
1260     }
1261   }else{
1262     sqlite3WindowDelete(pParse->db, pWin);
1263   }
1264 }
1265 
1266 /*
1267 ** Possibly link window pWin into the list at pSel->pWin (window functions
1268 ** to be processed as part of SELECT statement pSel). The window is linked
1269 ** in if either (a) there are no other windows already linked to this
1270 ** SELECT, or (b) the windows already linked use a compatible window frame.
1271 */
1272 void sqlite3WindowLink(Select *pSel, Window *pWin){
1273   if( pSel!=0
1274    && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0))
1275   ){
1276     pWin->pNextWin = pSel->pWin;
1277     if( pSel->pWin ){
1278       pSel->pWin->ppThis = &pWin->pNextWin;
1279     }
1280     pSel->pWin = pWin;
1281     pWin->ppThis = &pSel->pWin;
1282   }
1283 }
1284 
1285 /*
1286 ** Return 0 if the two window objects are identical, or non-zero otherwise.
1287 ** Identical window objects can be processed in a single scan.
1288 */
1289 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1290   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1291   if( p1->eFrmType!=p2->eFrmType ) return 1;
1292   if( p1->eStart!=p2->eStart ) return 1;
1293   if( p1->eEnd!=p2->eEnd ) return 1;
1294   if( p1->eExclude!=p2->eExclude ) return 1;
1295   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1296   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1297   if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1;
1298   if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1;
1299   if( bFilter ){
1300     if( sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1) ) return 1;
1301   }
1302   return 0;
1303 }
1304 
1305 
1306 /*
1307 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1308 ** to begin iterating through the sub-query results. It is used to allocate
1309 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1310 */
1311 void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){
1312   Window *pWin;
1313   Vdbe *v = sqlite3GetVdbe(pParse);
1314 
1315   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1316   ** said registers to NULL.  */
1317   if( pMWin->pPartition ){
1318     int nExpr = pMWin->pPartition->nExpr;
1319     pMWin->regPart = pParse->nMem+1;
1320     pParse->nMem += nExpr;
1321     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1322   }
1323 
1324   pMWin->regOne = ++pParse->nMem;
1325   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1326 
1327   if( pMWin->eExclude ){
1328     pMWin->regStartRowid = ++pParse->nMem;
1329     pMWin->regEndRowid = ++pParse->nMem;
1330     pMWin->csrApp = pParse->nTab++;
1331     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1332     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1333     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1334     return;
1335   }
1336 
1337   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1338     FuncDef *p = pWin->pFunc;
1339     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1340       /* The inline versions of min() and max() require a single ephemeral
1341       ** table and 3 registers. The registers are used as follows:
1342       **
1343       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1344       **   regApp+1: integer value used to ensure keys are unique
1345       **   regApp+2: output of MakeRecord
1346       */
1347       ExprList *pList = pWin->pOwner->x.pList;
1348       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1349       pWin->csrApp = pParse->nTab++;
1350       pWin->regApp = pParse->nMem+1;
1351       pParse->nMem += 3;
1352       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1353         assert( pKeyInfo->aSortFlags[0]==0 );
1354         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1355       }
1356       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1357       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1358       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1359     }
1360     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1361       /* Allocate two registers at pWin->regApp. These will be used to
1362       ** store the start and end index of the current frame.  */
1363       pWin->regApp = pParse->nMem+1;
1364       pWin->csrApp = pParse->nTab++;
1365       pParse->nMem += 2;
1366       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1367     }
1368     else if( p->zName==leadName || p->zName==lagName ){
1369       pWin->csrApp = pParse->nTab++;
1370       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1371     }
1372   }
1373 }
1374 
1375 #define WINDOW_STARTING_INT  0
1376 #define WINDOW_ENDING_INT    1
1377 #define WINDOW_NTH_VALUE_INT 2
1378 #define WINDOW_STARTING_NUM  3
1379 #define WINDOW_ENDING_NUM    4
1380 
1381 /*
1382 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1383 ** value of the second argument to nth_value() (eCond==2) has just been
1384 ** evaluated and the result left in register reg. This function generates VM
1385 ** code to check that the value is a non-negative integer and throws an
1386 ** exception if it is not.
1387 */
1388 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1389   static const char *azErr[] = {
1390     "frame starting offset must be a non-negative integer",
1391     "frame ending offset must be a non-negative integer",
1392     "second argument to nth_value must be a positive integer",
1393     "frame starting offset must be a non-negative number",
1394     "frame ending offset must be a non-negative number",
1395   };
1396   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1397   Vdbe *v = sqlite3GetVdbe(pParse);
1398   int regZero = sqlite3GetTempReg(pParse);
1399   assert( eCond>=0 && eCond<ArraySize(azErr) );
1400   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1401   if( eCond>=WINDOW_STARTING_NUM ){
1402     int regString = sqlite3GetTempReg(pParse);
1403     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1404     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1405     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1406     VdbeCoverage(v);
1407     assert( eCond==3 || eCond==4 );
1408     VdbeCoverageIf(v, eCond==3);
1409     VdbeCoverageIf(v, eCond==4);
1410   }else{
1411     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1412     VdbeCoverage(v);
1413     assert( eCond==0 || eCond==1 || eCond==2 );
1414     VdbeCoverageIf(v, eCond==0);
1415     VdbeCoverageIf(v, eCond==1);
1416     VdbeCoverageIf(v, eCond==2);
1417   }
1418   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1419   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1420   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1421   VdbeCoverageNeverNullIf(v, eCond==2);
1422   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1423   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1424   sqlite3MayAbort(pParse);
1425   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1426   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1427   sqlite3ReleaseTempReg(pParse, regZero);
1428 }
1429 
1430 /*
1431 ** Return the number of arguments passed to the window-function associated
1432 ** with the object passed as the only argument to this function.
1433 */
1434 static int windowArgCount(Window *pWin){
1435   ExprList *pList = pWin->pOwner->x.pList;
1436   return (pList ? pList->nExpr : 0);
1437 }
1438 
1439 typedef struct WindowCodeArg WindowCodeArg;
1440 typedef struct WindowCsrAndReg WindowCsrAndReg;
1441 
1442 /*
1443 ** See comments above struct WindowCodeArg.
1444 */
1445 struct WindowCsrAndReg {
1446   int csr;                        /* Cursor number */
1447   int reg;                        /* First in array of peer values */
1448 };
1449 
1450 /*
1451 ** A single instance of this structure is allocated on the stack by
1452 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1453 ** routines. This is to reduce the number of arguments required by each
1454 ** helper function.
1455 **
1456 ** regArg:
1457 **   Each window function requires an accumulator register (just as an
1458 **   ordinary aggregate function does). This variable is set to the first
1459 **   in an array of accumulator registers - one for each window function
1460 **   in the WindowCodeArg.pMWin list.
1461 **
1462 ** eDelete:
1463 **   The window functions implementation sometimes caches the input rows
1464 **   that it processes in a temporary table. If it is not zero, this
1465 **   variable indicates when rows may be removed from the temp table (in
1466 **   order to reduce memory requirements - it would always be safe just
1467 **   to leave them there). Possible values for eDelete are:
1468 **
1469 **      WINDOW_RETURN_ROW:
1470 **        An input row can be discarded after it is returned to the caller.
1471 **
1472 **      WINDOW_AGGINVERSE:
1473 **        An input row can be discarded after the window functions xInverse()
1474 **        callbacks have been invoked in it.
1475 **
1476 **      WINDOW_AGGSTEP:
1477 **        An input row can be discarded after the window functions xStep()
1478 **        callbacks have been invoked in it.
1479 **
1480 ** start,current,end
1481 **   Consider a window-frame similar to the following:
1482 **
1483 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1484 **
1485 **   The windows functions implmentation caches the input rows in a temp
1486 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1487 **   aggressively removes rows once they are no longer required, but that's
1488 **   a mere detail). It keeps three cursors open on the temp table. One
1489 **   (current) that points to the next row to return to the query engine
1490 **   once its window function values have been calculated. Another (end)
1491 **   points to the next row to call the xStep() method of each window function
1492 **   on (so that it is 2 groups ahead of current). And a third (start) that
1493 **   points to the next row to call the xInverse() method of each window
1494 **   function on.
1495 **
1496 **   Each cursor (start, current and end) consists of a VDBE cursor
1497 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1498 **   WindowCodeArg.reg) that always contains a copy of the peer values
1499 **   read from the corresponding cursor.
1500 **
1501 **   Depending on the window-frame in question, all three cursors may not
1502 **   be required. In this case both WindowCodeArg.csr and reg are set to
1503 **   0.
1504 */
1505 struct WindowCodeArg {
1506   Parse *pParse;             /* Parse context */
1507   Window *pMWin;             /* First in list of functions being processed */
1508   Vdbe *pVdbe;               /* VDBE object */
1509   int addrGosub;             /* OP_Gosub to this address to return one row */
1510   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1511   int regArg;                /* First in array of accumulator registers */
1512   int eDelete;               /* See above */
1513 
1514   WindowCsrAndReg start;
1515   WindowCsrAndReg current;
1516   WindowCsrAndReg end;
1517 };
1518 
1519 /*
1520 ** Generate VM code to read the window frames peer values from cursor csr into
1521 ** an array of registers starting at reg.
1522 */
1523 static void windowReadPeerValues(
1524   WindowCodeArg *p,
1525   int csr,
1526   int reg
1527 ){
1528   Window *pMWin = p->pMWin;
1529   ExprList *pOrderBy = pMWin->pOrderBy;
1530   if( pOrderBy ){
1531     Vdbe *v = sqlite3GetVdbe(p->pParse);
1532     ExprList *pPart = pMWin->pPartition;
1533     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1534     int i;
1535     for(i=0; i<pOrderBy->nExpr; i++){
1536       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1537     }
1538   }
1539 }
1540 
1541 /*
1542 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1543 ** xInverse (if bInverse is non-zero) for each window function in the
1544 ** linked list starting at pMWin. Or, for built-in window functions
1545 ** that do not use the standard function API, generate the required
1546 ** inline VM code.
1547 **
1548 ** If argument csr is greater than or equal to 0, then argument reg is
1549 ** the first register in an array of registers guaranteed to be large
1550 ** enough to hold the array of arguments for each function. In this case
1551 ** the arguments are extracted from the current row of csr into the
1552 ** array of registers before invoking OP_AggStep or OP_AggInverse
1553 **
1554 ** Or, if csr is less than zero, then the array of registers at reg is
1555 ** already populated with all columns from the current row of the sub-query.
1556 **
1557 ** If argument regPartSize is non-zero, then it is a register containing the
1558 ** number of rows in the current partition.
1559 */
1560 static void windowAggStep(
1561   WindowCodeArg *p,
1562   Window *pMWin,                  /* Linked list of window functions */
1563   int csr,                        /* Read arguments from this cursor */
1564   int bInverse,                   /* True to invoke xInverse instead of xStep */
1565   int reg                         /* Array of registers */
1566 ){
1567   Parse *pParse = p->pParse;
1568   Vdbe *v = sqlite3GetVdbe(pParse);
1569   Window *pWin;
1570   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1571     FuncDef *pFunc = pWin->pFunc;
1572     int regArg;
1573     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1574     int i;
1575 
1576     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1577 
1578     /* All OVER clauses in the same window function aggregate step must
1579     ** be the same. */
1580     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)==0 );
1581 
1582     for(i=0; i<nArg; i++){
1583       if( i!=1 || pFunc->zName!=nth_valueName ){
1584         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1585       }else{
1586         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1587       }
1588     }
1589     regArg = reg;
1590 
1591     if( pMWin->regStartRowid==0
1592      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1593      && (pWin->eStart!=TK_UNBOUNDED)
1594     ){
1595       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1596       VdbeCoverage(v);
1597       if( bInverse==0 ){
1598         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1599         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1600         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1601         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1602       }else{
1603         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1604         VdbeCoverageNeverTaken(v);
1605         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1606         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1607       }
1608       sqlite3VdbeJumpHere(v, addrIsNull);
1609     }else if( pWin->regApp ){
1610       assert( pFunc->zName==nth_valueName
1611            || pFunc->zName==first_valueName
1612       );
1613       assert( bInverse==0 || bInverse==1 );
1614       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1615     }else if( pFunc->xSFunc!=noopStepFunc ){
1616       int addrIf = 0;
1617       if( pWin->pFilter ){
1618         int regTmp;
1619         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1620         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1621         regTmp = sqlite3GetTempReg(pParse);
1622         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1623         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1624         VdbeCoverage(v);
1625         sqlite3ReleaseTempReg(pParse, regTmp);
1626       }
1627 
1628       if( pWin->bExprArgs ){
1629         int iStart = sqlite3VdbeCurrentAddr(v);
1630         VdbeOp *pOp, *pEnd;
1631 
1632         nArg = pWin->pOwner->x.pList->nExpr;
1633         regArg = sqlite3GetTempRange(pParse, nArg);
1634         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1635 
1636         pEnd = sqlite3VdbeGetOp(v, -1);
1637         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1638           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1639             pOp->p1 = csr;
1640           }
1641         }
1642       }
1643       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1644         CollSeq *pColl;
1645         assert( nArg>0 );
1646         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1647         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1648       }
1649       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1650                         bInverse, regArg, pWin->regAccum);
1651       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1652       sqlite3VdbeChangeP5(v, (u8)nArg);
1653       if( pWin->bExprArgs ){
1654         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1655       }
1656       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1657     }
1658   }
1659 }
1660 
1661 /*
1662 ** Values that may be passed as the second argument to windowCodeOp().
1663 */
1664 #define WINDOW_RETURN_ROW 1
1665 #define WINDOW_AGGINVERSE 2
1666 #define WINDOW_AGGSTEP    3
1667 
1668 /*
1669 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1670 ** (bFin==1) for each window function in the linked list starting at
1671 ** pMWin. Or, for built-in window-functions that do not use the standard
1672 ** API, generate the equivalent VM code.
1673 */
1674 static void windowAggFinal(WindowCodeArg *p, int bFin){
1675   Parse *pParse = p->pParse;
1676   Window *pMWin = p->pMWin;
1677   Vdbe *v = sqlite3GetVdbe(pParse);
1678   Window *pWin;
1679 
1680   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1681     if( pMWin->regStartRowid==0
1682      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1683      && (pWin->eStart!=TK_UNBOUNDED)
1684     ){
1685       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1686       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1687       VdbeCoverage(v);
1688       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1689       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1690     }else if( pWin->regApp ){
1691       assert( pMWin->regStartRowid==0 );
1692     }else{
1693       int nArg = windowArgCount(pWin);
1694       if( bFin ){
1695         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1696         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1697         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1698         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1699       }else{
1700         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1701         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1702       }
1703     }
1704   }
1705 }
1706 
1707 /*
1708 ** Generate code to calculate the current values of all window functions in the
1709 ** p->pMWin list by doing a full scan of the current window frame. Store the
1710 ** results in the Window.regResult registers, ready to return the upper
1711 ** layer.
1712 */
1713 static void windowFullScan(WindowCodeArg *p){
1714   Window *pWin;
1715   Parse *pParse = p->pParse;
1716   Window *pMWin = p->pMWin;
1717   Vdbe *v = p->pVdbe;
1718 
1719   int regCRowid = 0;              /* Current rowid value */
1720   int regCPeer = 0;               /* Current peer values */
1721   int regRowid = 0;               /* AggStep rowid value */
1722   int regPeer = 0;                /* AggStep peer values */
1723 
1724   int nPeer;
1725   int lblNext;
1726   int lblBrk;
1727   int addrNext;
1728   int csr;
1729 
1730   VdbeModuleComment((v, "windowFullScan begin"));
1731 
1732   assert( pMWin!=0 );
1733   csr = pMWin->csrApp;
1734   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1735 
1736   lblNext = sqlite3VdbeMakeLabel(pParse);
1737   lblBrk = sqlite3VdbeMakeLabel(pParse);
1738 
1739   regCRowid = sqlite3GetTempReg(pParse);
1740   regRowid = sqlite3GetTempReg(pParse);
1741   if( nPeer ){
1742     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1743     regPeer = sqlite3GetTempRange(pParse, nPeer);
1744   }
1745 
1746   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1747   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1748 
1749   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1750     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1751   }
1752 
1753   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1754   VdbeCoverage(v);
1755   addrNext = sqlite3VdbeCurrentAddr(v);
1756   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1757   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1758   VdbeCoverageNeverNull(v);
1759 
1760   if( pMWin->eExclude==TK_CURRENT ){
1761     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1762     VdbeCoverageNeverNull(v);
1763   }else if( pMWin->eExclude!=TK_NO ){
1764     int addr;
1765     int addrEq = 0;
1766     KeyInfo *pKeyInfo = 0;
1767 
1768     if( pMWin->pOrderBy ){
1769       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1770     }
1771     if( pMWin->eExclude==TK_TIES ){
1772       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1773       VdbeCoverageNeverNull(v);
1774     }
1775     if( pKeyInfo ){
1776       windowReadPeerValues(p, csr, regPeer);
1777       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1778       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1779       addr = sqlite3VdbeCurrentAddr(v)+1;
1780       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1781       VdbeCoverageEqNe(v);
1782     }else{
1783       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1784     }
1785     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1786   }
1787 
1788   windowAggStep(p, pMWin, csr, 0, p->regArg);
1789 
1790   sqlite3VdbeResolveLabel(v, lblNext);
1791   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1792   VdbeCoverage(v);
1793   sqlite3VdbeJumpHere(v, addrNext-1);
1794   sqlite3VdbeJumpHere(v, addrNext+1);
1795   sqlite3ReleaseTempReg(pParse, regRowid);
1796   sqlite3ReleaseTempReg(pParse, regCRowid);
1797   if( nPeer ){
1798     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1799     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1800   }
1801 
1802   windowAggFinal(p, 1);
1803   VdbeModuleComment((v, "windowFullScan end"));
1804 }
1805 
1806 /*
1807 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1808 ** return the current row of Window.iEphCsr. If all window functions are
1809 ** aggregate window functions that use the standard API, a single
1810 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1811 ** for per-row processing is only generated for the following built-in window
1812 ** functions:
1813 **
1814 **   nth_value()
1815 **   first_value()
1816 **   lag()
1817 **   lead()
1818 */
1819 static void windowReturnOneRow(WindowCodeArg *p){
1820   Window *pMWin = p->pMWin;
1821   Vdbe *v = p->pVdbe;
1822 
1823   if( pMWin->regStartRowid ){
1824     windowFullScan(p);
1825   }else{
1826     Parse *pParse = p->pParse;
1827     Window *pWin;
1828 
1829     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1830       FuncDef *pFunc = pWin->pFunc;
1831       if( pFunc->zName==nth_valueName
1832        || pFunc->zName==first_valueName
1833       ){
1834         int csr = pWin->csrApp;
1835         int lbl = sqlite3VdbeMakeLabel(pParse);
1836         int tmpReg = sqlite3GetTempReg(pParse);
1837         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1838 
1839         if( pFunc->zName==nth_valueName ){
1840           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1841           windowCheckValue(pParse, tmpReg, 2);
1842         }else{
1843           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1844         }
1845         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1846         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1847         VdbeCoverageNeverNull(v);
1848         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1849         VdbeCoverageNeverTaken(v);
1850         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1851         sqlite3VdbeResolveLabel(v, lbl);
1852         sqlite3ReleaseTempReg(pParse, tmpReg);
1853       }
1854       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1855         int nArg = pWin->pOwner->x.pList->nExpr;
1856         int csr = pWin->csrApp;
1857         int lbl = sqlite3VdbeMakeLabel(pParse);
1858         int tmpReg = sqlite3GetTempReg(pParse);
1859         int iEph = pMWin->iEphCsr;
1860 
1861         if( nArg<3 ){
1862           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1863         }else{
1864           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1865         }
1866         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1867         if( nArg<2 ){
1868           int val = (pFunc->zName==leadName ? 1 : -1);
1869           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1870         }else{
1871           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1872           int tmpReg2 = sqlite3GetTempReg(pParse);
1873           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1874           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1875           sqlite3ReleaseTempReg(pParse, tmpReg2);
1876         }
1877 
1878         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1879         VdbeCoverage(v);
1880         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1881         sqlite3VdbeResolveLabel(v, lbl);
1882         sqlite3ReleaseTempReg(pParse, tmpReg);
1883       }
1884     }
1885   }
1886   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1887 }
1888 
1889 /*
1890 ** Generate code to set the accumulator register for each window function
1891 ** in the linked list passed as the second argument to NULL. And perform
1892 ** any equivalent initialization required by any built-in window functions
1893 ** in the list.
1894 */
1895 static int windowInitAccum(Parse *pParse, Window *pMWin){
1896   Vdbe *v = sqlite3GetVdbe(pParse);
1897   int regArg;
1898   int nArg = 0;
1899   Window *pWin;
1900   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1901     FuncDef *pFunc = pWin->pFunc;
1902     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1903     nArg = MAX(nArg, windowArgCount(pWin));
1904     if( pMWin->regStartRowid==0 ){
1905       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1906         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1907         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1908       }
1909 
1910       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1911         assert( pWin->eStart!=TK_UNBOUNDED );
1912         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1913         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1914       }
1915     }
1916   }
1917   regArg = pParse->nMem+1;
1918   pParse->nMem += nArg;
1919   return regArg;
1920 }
1921 
1922 /*
1923 ** Return true if the current frame should be cached in the ephemeral table,
1924 ** even if there are no xInverse() calls required.
1925 */
1926 static int windowCacheFrame(Window *pMWin){
1927   Window *pWin;
1928   if( pMWin->regStartRowid ) return 1;
1929   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1930     FuncDef *pFunc = pWin->pFunc;
1931     if( (pFunc->zName==nth_valueName)
1932      || (pFunc->zName==first_valueName)
1933      || (pFunc->zName==leadName)
1934      || (pFunc->zName==lagName)
1935     ){
1936       return 1;
1937     }
1938   }
1939   return 0;
1940 }
1941 
1942 /*
1943 ** regOld and regNew are each the first register in an array of size
1944 ** pOrderBy->nExpr. This function generates code to compare the two
1945 ** arrays of registers using the collation sequences and other comparison
1946 ** parameters specified by pOrderBy.
1947 **
1948 ** If the two arrays are not equal, the contents of regNew is copied to
1949 ** regOld and control falls through. Otherwise, if the contents of the arrays
1950 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
1951 */
1952 static void windowIfNewPeer(
1953   Parse *pParse,
1954   ExprList *pOrderBy,
1955   int regNew,                     /* First in array of new values */
1956   int regOld,                     /* First in array of old values */
1957   int addr                        /* Jump here */
1958 ){
1959   Vdbe *v = sqlite3GetVdbe(pParse);
1960   if( pOrderBy ){
1961     int nVal = pOrderBy->nExpr;
1962     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
1963     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
1964     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1965     sqlite3VdbeAddOp3(v, OP_Jump,
1966       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
1967     );
1968     VdbeCoverageEqNe(v);
1969     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
1970   }else{
1971     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
1972   }
1973 }
1974 
1975 /*
1976 ** This function is called as part of generating VM programs for RANGE
1977 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
1978 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
1979 ** code equivalent to:
1980 **
1981 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
1982 **
1983 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
1984 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
1985 **
1986 ** If the sort-order for the ORDER BY term in the window is DESC, then the
1987 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
1988 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
1989 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
1990 ** is OP_Ge, the generated code is equivalent to:
1991 **
1992 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
1993 **
1994 ** A special type of arithmetic is used such that if csr1.peerVal is not
1995 ** a numeric type (real or integer), then the result of the addition addition
1996 ** or subtraction is a a copy of csr1.peerVal.
1997 */
1998 static void windowCodeRangeTest(
1999   WindowCodeArg *p,
2000   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2001   int csr1,                       /* Cursor number for cursor 1 */
2002   int regVal,                     /* Register containing non-negative number */
2003   int csr2,                       /* Cursor number for cursor 2 */
2004   int lbl                         /* Jump destination if condition is true */
2005 ){
2006   Parse *pParse = p->pParse;
2007   Vdbe *v = sqlite3GetVdbe(pParse);
2008   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2009   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2010   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2011   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2012   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2013   int addrGe;                               /* Jump destination */
2014 
2015   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2016   assert( pOrderBy && pOrderBy->nExpr==1 );
2017   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2018     switch( op ){
2019       case OP_Ge: op = OP_Le; break;
2020       case OP_Gt: op = OP_Lt; break;
2021       default: assert( op==OP_Le ); op = OP_Ge; break;
2022     }
2023     arith = OP_Subtract;
2024   }
2025 
2026   /* Read the peer-value from each cursor into a register */
2027   windowReadPeerValues(p, csr1, reg1);
2028   windowReadPeerValues(p, csr2, reg2);
2029 
2030   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2031       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2032       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2033   ));
2034 
2035   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2036   ** This block adds (or subtracts for DESC) the numeric value in regVal
2037   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2038   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2039   **
2040   **   if( reg1>='' ) goto addrGe;
2041   **   reg1 = reg1 +/- regVal
2042   **   addrGe:
2043   **
2044   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2045   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2046   ** then the arithmetic is performed, but since adding or subtracting from
2047   ** NULL is always NULL anyway, this case is handled as required too.  */
2048   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2049   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2050   VdbeCoverage(v);
2051   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2052   sqlite3VdbeJumpHere(v, addrGe);
2053 
2054   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2055   ** consider NULL values to be larger than all other values, instead of
2056   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2057   ** (and adding that capability causes a performance regression), so
2058   ** instead if the BIGNULL flag is set then cases where either reg1 or
2059   ** reg2 are NULL are handled separately in the following block. The code
2060   ** generated is equivalent to:
2061   **
2062   **   if( reg1 IS NULL ){
2063   **     if( op==OP_Ge ) goto lbl;
2064   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2065   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2066   **   }else if( reg2 IS NULL ){
2067   **     if( op==OP_Le ) goto lbl;
2068   **   }
2069   **
2070   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2071   ** not taken, control jumps over the comparison operator coded below this
2072   ** block.  */
2073   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2074     /* This block runs if reg1 contains a NULL. */
2075     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2076     switch( op ){
2077       case OP_Ge:
2078         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2079         break;
2080       case OP_Gt:
2081         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2082         VdbeCoverage(v);
2083         break;
2084       case OP_Le:
2085         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2086         VdbeCoverage(v);
2087         break;
2088       default: assert( op==OP_Lt ); /* no-op */ break;
2089     }
2090     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2091 
2092     /* This block runs if reg1 is not NULL, but reg2 is. */
2093     sqlite3VdbeJumpHere(v, addr);
2094     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2095     if( op==OP_Gt || op==OP_Ge ){
2096       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2097     }
2098   }
2099 
2100   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2101   ** control skips over this test if the BIGNULL flag is set and either
2102   ** reg1 or reg2 contain a NULL value.  */
2103   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2104   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2105 
2106   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2107   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2108   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2109   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2110   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2111   sqlite3ReleaseTempReg(pParse, reg1);
2112   sqlite3ReleaseTempReg(pParse, reg2);
2113 
2114   VdbeModuleComment((v, "CodeRangeTest: end"));
2115 }
2116 
2117 /*
2118 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2119 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2120 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2121 ** details.
2122 */
2123 static int windowCodeOp(
2124  WindowCodeArg *p,                /* Context object */
2125  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2126  int regCountdown,                /* Register for OP_IfPos countdown */
2127  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2128 ){
2129   int csr, reg;
2130   Parse *pParse = p->pParse;
2131   Window *pMWin = p->pMWin;
2132   int ret = 0;
2133   Vdbe *v = p->pVdbe;
2134   int addrContinue = 0;
2135   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2136 
2137   int lblDone = sqlite3VdbeMakeLabel(pParse);
2138   int addrNextRange = 0;
2139 
2140   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2141   ** starts with UNBOUNDED PRECEDING. */
2142   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2143     assert( regCountdown==0 && jumpOnEof==0 );
2144     return 0;
2145   }
2146 
2147   if( regCountdown>0 ){
2148     if( pMWin->eFrmType==TK_RANGE ){
2149       addrNextRange = sqlite3VdbeCurrentAddr(v);
2150       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2151       if( op==WINDOW_AGGINVERSE ){
2152         if( pMWin->eStart==TK_FOLLOWING ){
2153           windowCodeRangeTest(
2154               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2155           );
2156         }else{
2157           windowCodeRangeTest(
2158               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2159           );
2160         }
2161       }else{
2162         windowCodeRangeTest(
2163             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2164         );
2165       }
2166     }else{
2167       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2168       VdbeCoverage(v);
2169     }
2170   }
2171 
2172   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2173     windowAggFinal(p, 0);
2174   }
2175   addrContinue = sqlite3VdbeCurrentAddr(v);
2176 
2177   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2178   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2179   ** start cursor does not advance past the end cursor within the
2180   ** temporary table. It otherwise might, if (a>b).  */
2181   if( pMWin->eStart==pMWin->eEnd && regCountdown
2182    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2183   ){
2184     int regRowid1 = sqlite3GetTempReg(pParse);
2185     int regRowid2 = sqlite3GetTempReg(pParse);
2186     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2187     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2188     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2189     VdbeCoverage(v);
2190     sqlite3ReleaseTempReg(pParse, regRowid1);
2191     sqlite3ReleaseTempReg(pParse, regRowid2);
2192     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2193   }
2194 
2195   switch( op ){
2196     case WINDOW_RETURN_ROW:
2197       csr = p->current.csr;
2198       reg = p->current.reg;
2199       windowReturnOneRow(p);
2200       break;
2201 
2202     case WINDOW_AGGINVERSE:
2203       csr = p->start.csr;
2204       reg = p->start.reg;
2205       if( pMWin->regStartRowid ){
2206         assert( pMWin->regEndRowid );
2207         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2208       }else{
2209         windowAggStep(p, pMWin, csr, 1, p->regArg);
2210       }
2211       break;
2212 
2213     default:
2214       assert( op==WINDOW_AGGSTEP );
2215       csr = p->end.csr;
2216       reg = p->end.reg;
2217       if( pMWin->regStartRowid ){
2218         assert( pMWin->regEndRowid );
2219         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2220       }else{
2221         windowAggStep(p, pMWin, csr, 0, p->regArg);
2222       }
2223       break;
2224   }
2225 
2226   if( op==p->eDelete ){
2227     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2228     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2229   }
2230 
2231   if( jumpOnEof ){
2232     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2233     VdbeCoverage(v);
2234     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2235   }else{
2236     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2237     VdbeCoverage(v);
2238     if( bPeer ){
2239       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2240     }
2241   }
2242 
2243   if( bPeer ){
2244     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2245     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2246     windowReadPeerValues(p, csr, regTmp);
2247     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2248     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2249   }
2250 
2251   if( addrNextRange ){
2252     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2253   }
2254   sqlite3VdbeResolveLabel(v, lblDone);
2255   return ret;
2256 }
2257 
2258 
2259 /*
2260 ** Allocate and return a duplicate of the Window object indicated by the
2261 ** third argument. Set the Window.pOwner field of the new object to
2262 ** pOwner.
2263 */
2264 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2265   Window *pNew = 0;
2266   if( ALWAYS(p) ){
2267     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2268     if( pNew ){
2269       pNew->zName = sqlite3DbStrDup(db, p->zName);
2270       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2271       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2272       pNew->pFunc = p->pFunc;
2273       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2274       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2275       pNew->eFrmType = p->eFrmType;
2276       pNew->eEnd = p->eEnd;
2277       pNew->eStart = p->eStart;
2278       pNew->eExclude = p->eExclude;
2279       pNew->regResult = p->regResult;
2280       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2281       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2282       pNew->pOwner = pOwner;
2283       pNew->bImplicitFrame = p->bImplicitFrame;
2284     }
2285   }
2286   return pNew;
2287 }
2288 
2289 /*
2290 ** Return a copy of the linked list of Window objects passed as the
2291 ** second argument.
2292 */
2293 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2294   Window *pWin;
2295   Window *pRet = 0;
2296   Window **pp = &pRet;
2297 
2298   for(pWin=p; pWin; pWin=pWin->pNextWin){
2299     *pp = sqlite3WindowDup(db, 0, pWin);
2300     if( *pp==0 ) break;
2301     pp = &((*pp)->pNextWin);
2302   }
2303 
2304   return pRet;
2305 }
2306 
2307 /*
2308 ** Return true if it can be determined at compile time that expression
2309 ** pExpr evaluates to a value that, when cast to an integer, is greater
2310 ** than zero. False otherwise.
2311 **
2312 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2313 ** flag and returns zero.
2314 */
2315 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2316   int ret = 0;
2317   sqlite3 *db = pParse->db;
2318   sqlite3_value *pVal = 0;
2319   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2320   if( pVal && sqlite3_value_int(pVal)>0 ){
2321     ret = 1;
2322   }
2323   sqlite3ValueFree(pVal);
2324   return ret;
2325 }
2326 
2327 /*
2328 ** sqlite3WhereBegin() has already been called for the SELECT statement
2329 ** passed as the second argument when this function is invoked. It generates
2330 ** code to populate the Window.regResult register for each window function
2331 ** and invoke the sub-routine at instruction addrGosub once for each row.
2332 ** sqlite3WhereEnd() is always called before returning.
2333 **
2334 ** This function handles several different types of window frames, which
2335 ** require slightly different processing. The following pseudo code is
2336 ** used to implement window frames of the form:
2337 **
2338 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2339 **
2340 ** Other window frame types use variants of the following:
2341 **
2342 **     ... loop started by sqlite3WhereBegin() ...
2343 **       if( new partition ){
2344 **         Gosub flush
2345 **       }
2346 **       Insert new row into eph table.
2347 **
2348 **       if( first row of partition ){
2349 **         // Rewind three cursors, all open on the eph table.
2350 **         Rewind(csrEnd);
2351 **         Rewind(csrStart);
2352 **         Rewind(csrCurrent);
2353 **
2354 **         regEnd = <expr2>          // FOLLOWING expression
2355 **         regStart = <expr1>        // PRECEDING expression
2356 **       }else{
2357 **         // First time this branch is taken, the eph table contains two
2358 **         // rows. The first row in the partition, which all three cursors
2359 **         // currently point to, and the following row.
2360 **         AGGSTEP
2361 **         if( (regEnd--)<=0 ){
2362 **           RETURN_ROW
2363 **           if( (regStart--)<=0 ){
2364 **             AGGINVERSE
2365 **           }
2366 **         }
2367 **       }
2368 **     }
2369 **     flush:
2370 **       AGGSTEP
2371 **       while( 1 ){
2372 **         RETURN ROW
2373 **         if( csrCurrent is EOF ) break;
2374 **         if( (regStart--)<=0 ){
2375 **           AggInverse(csrStart)
2376 **           Next(csrStart)
2377 **         }
2378 **       }
2379 **
2380 ** The pseudo-code above uses the following shorthand:
2381 **
2382 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2383 **               with arguments read from the current row of cursor csrEnd, then
2384 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2385 **
2386 **   RETURN_ROW: return a row to the caller based on the contents of the
2387 **               current row of csrCurrent and the current state of all
2388 **               aggregates. Then step cursor csrCurrent forward one row.
2389 **
2390 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2391 **               functions with arguments read from the current row of cursor
2392 **               csrStart. Then step csrStart forward one row.
2393 **
2394 ** There are two other ROWS window frames that are handled significantly
2395 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2396 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2397 ** cases because they change the order in which the three cursors (csrStart,
2398 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2399 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2400 ** three.
2401 **
2402 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2403 **
2404 **     ... loop started by sqlite3WhereBegin() ...
2405 **       if( new partition ){
2406 **         Gosub flush
2407 **       }
2408 **       Insert new row into eph table.
2409 **       if( first row of partition ){
2410 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2411 **         regEnd = <expr2>
2412 **         regStart = <expr1>
2413 **       }else{
2414 **         if( (regEnd--)<=0 ){
2415 **           AGGSTEP
2416 **         }
2417 **         RETURN_ROW
2418 **         if( (regStart--)<=0 ){
2419 **           AGGINVERSE
2420 **         }
2421 **       }
2422 **     }
2423 **     flush:
2424 **       if( (regEnd--)<=0 ){
2425 **         AGGSTEP
2426 **       }
2427 **       RETURN_ROW
2428 **
2429 **
2430 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2431 **
2432 **     ... loop started by sqlite3WhereBegin() ...
2433 **     if( new partition ){
2434 **       Gosub flush
2435 **     }
2436 **     Insert new row into eph table.
2437 **     if( first row of partition ){
2438 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2439 **       regEnd = <expr2>
2440 **       regStart = regEnd - <expr1>
2441 **     }else{
2442 **       AGGSTEP
2443 **       if( (regEnd--)<=0 ){
2444 **         RETURN_ROW
2445 **       }
2446 **       if( (regStart--)<=0 ){
2447 **         AGGINVERSE
2448 **       }
2449 **     }
2450 **   }
2451 **   flush:
2452 **     AGGSTEP
2453 **     while( 1 ){
2454 **       if( (regEnd--)<=0 ){
2455 **         RETURN_ROW
2456 **         if( eof ) break;
2457 **       }
2458 **       if( (regStart--)<=0 ){
2459 **         AGGINVERSE
2460 **         if( eof ) break
2461 **       }
2462 **     }
2463 **     while( !eof csrCurrent ){
2464 **       RETURN_ROW
2465 **     }
2466 **
2467 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2468 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2469 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2470 ** This is optimized of course - branches that will never be taken and
2471 ** conditions that are always true are omitted from the VM code. The only
2472 ** exceptional case is:
2473 **
2474 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2475 **
2476 **     ... loop started by sqlite3WhereBegin() ...
2477 **     if( new partition ){
2478 **       Gosub flush
2479 **     }
2480 **     Insert new row into eph table.
2481 **     if( first row of partition ){
2482 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2483 **       regStart = <expr1>
2484 **     }else{
2485 **       AGGSTEP
2486 **     }
2487 **   }
2488 **   flush:
2489 **     AGGSTEP
2490 **     while( 1 ){
2491 **       if( (regStart--)<=0 ){
2492 **         AGGINVERSE
2493 **         if( eof ) break
2494 **       }
2495 **       RETURN_ROW
2496 **     }
2497 **     while( !eof csrCurrent ){
2498 **       RETURN_ROW
2499 **     }
2500 **
2501 ** Also requiring special handling are the cases:
2502 **
2503 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2504 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2505 **
2506 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2507 ** To handle this case, the pseudo-code programs depicted above are modified
2508 ** slightly to be:
2509 **
2510 **     ... loop started by sqlite3WhereBegin() ...
2511 **     if( new partition ){
2512 **       Gosub flush
2513 **     }
2514 **     Insert new row into eph table.
2515 **     if( first row of partition ){
2516 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2517 **       regEnd = <expr2>
2518 **       regStart = <expr1>
2519 **       if( regEnd < regStart ){
2520 **         RETURN_ROW
2521 **         delete eph table contents
2522 **         continue
2523 **       }
2524 **     ...
2525 **
2526 ** The new "continue" statement in the above jumps to the next iteration
2527 ** of the outer loop - the one started by sqlite3WhereBegin().
2528 **
2529 ** The various GROUPS cases are implemented using the same patterns as
2530 ** ROWS. The VM code is modified slightly so that:
2531 **
2532 **   1. The else branch in the main loop is only taken if the row just
2533 **      added to the ephemeral table is the start of a new group. In
2534 **      other words, it becomes:
2535 **
2536 **         ... loop started by sqlite3WhereBegin() ...
2537 **         if( new partition ){
2538 **           Gosub flush
2539 **         }
2540 **         Insert new row into eph table.
2541 **         if( first row of partition ){
2542 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2543 **           regEnd = <expr2>
2544 **           regStart = <expr1>
2545 **         }else if( new group ){
2546 **           ...
2547 **         }
2548 **       }
2549 **
2550 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2551 **      AGGINVERSE step processes the current row of the relevant cursor and
2552 **      all subsequent rows belonging to the same group.
2553 **
2554 ** RANGE window frames are a little different again. As for GROUPS, the
2555 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2556 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2557 ** basic cases:
2558 **
2559 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2560 **
2561 **     ... loop started by sqlite3WhereBegin() ...
2562 **       if( new partition ){
2563 **         Gosub flush
2564 **       }
2565 **       Insert new row into eph table.
2566 **       if( first row of partition ){
2567 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2568 **         regEnd = <expr2>
2569 **         regStart = <expr1>
2570 **       }else{
2571 **         AGGSTEP
2572 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2573 **           RETURN_ROW
2574 **           while( csrStart.key + regStart) < csrCurrent.key ){
2575 **             AGGINVERSE
2576 **           }
2577 **         }
2578 **       }
2579 **     }
2580 **     flush:
2581 **       AGGSTEP
2582 **       while( 1 ){
2583 **         RETURN ROW
2584 **         if( csrCurrent is EOF ) break;
2585 **           while( csrStart.key + regStart) < csrCurrent.key ){
2586 **             AGGINVERSE
2587 **           }
2588 **         }
2589 **       }
2590 **
2591 ** In the above notation, "csr.key" means the current value of the ORDER BY
2592 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2593 ** or <expr PRECEDING) read from cursor csr.
2594 **
2595 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2596 **
2597 **     ... loop started by sqlite3WhereBegin() ...
2598 **       if( new partition ){
2599 **         Gosub flush
2600 **       }
2601 **       Insert new row into eph table.
2602 **       if( first row of partition ){
2603 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2604 **         regEnd = <expr2>
2605 **         regStart = <expr1>
2606 **       }else{
2607 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2608 **           AGGSTEP
2609 **         }
2610 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2611 **           AGGINVERSE
2612 **         }
2613 **         RETURN_ROW
2614 **       }
2615 **     }
2616 **     flush:
2617 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2618 **         AGGSTEP
2619 **       }
2620 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2621 **         AGGINVERSE
2622 **       }
2623 **       RETURN_ROW
2624 **
2625 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2626 **
2627 **     ... loop started by sqlite3WhereBegin() ...
2628 **       if( new partition ){
2629 **         Gosub flush
2630 **       }
2631 **       Insert new row into eph table.
2632 **       if( first row of partition ){
2633 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2634 **         regEnd = <expr2>
2635 **         regStart = <expr1>
2636 **       }else{
2637 **         AGGSTEP
2638 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2639 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2640 **             AGGINVERSE
2641 **           }
2642 **           RETURN_ROW
2643 **         }
2644 **       }
2645 **     }
2646 **     flush:
2647 **       AGGSTEP
2648 **       while( 1 ){
2649 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2650 **           AGGINVERSE
2651 **           if( eof ) break "while( 1 )" loop.
2652 **         }
2653 **         RETURN_ROW
2654 **       }
2655 **       while( !eof csrCurrent ){
2656 **         RETURN_ROW
2657 **       }
2658 **
2659 ** The text above leaves out many details. Refer to the code and comments
2660 ** below for a more complete picture.
2661 */
2662 void sqlite3WindowCodeStep(
2663   Parse *pParse,                  /* Parse context */
2664   Select *p,                      /* Rewritten SELECT statement */
2665   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2666   int regGosub,                   /* Register for OP_Gosub */
2667   int addrGosub                   /* OP_Gosub here to return each row */
2668 ){
2669   Window *pMWin = p->pWin;
2670   ExprList *pOrderBy = pMWin->pOrderBy;
2671   Vdbe *v = sqlite3GetVdbe(pParse);
2672   int csrWrite;                   /* Cursor used to write to eph. table */
2673   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2674   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2675   int iInput;                               /* To iterate through sub cols */
2676   int addrNe;                     /* Address of OP_Ne */
2677   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2678   int addrInteger = 0;            /* Address of OP_Integer */
2679   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2680   int regNew;                     /* Array of registers holding new input row */
2681   int regRecord;                  /* regNew array in record form */
2682   int regRowid;                   /* Rowid for regRecord in eph table */
2683   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2684   int regPeer = 0;                /* Peer values for current row */
2685   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2686   WindowCodeArg s;                /* Context object for sub-routines */
2687   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2688   int regStart = 0;               /* Value of <expr> PRECEDING */
2689   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2690 
2691   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2692        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2693   );
2694   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2695        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2696   );
2697   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2698        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2699        || pMWin->eExclude==TK_NO
2700   );
2701 
2702   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2703 
2704   /* Fill in the context object */
2705   memset(&s, 0, sizeof(WindowCodeArg));
2706   s.pParse = pParse;
2707   s.pMWin = pMWin;
2708   s.pVdbe = v;
2709   s.regGosub = regGosub;
2710   s.addrGosub = addrGosub;
2711   s.current.csr = pMWin->iEphCsr;
2712   csrWrite = s.current.csr+1;
2713   s.start.csr = s.current.csr+2;
2714   s.end.csr = s.current.csr+3;
2715 
2716   /* Figure out when rows may be deleted from the ephemeral table. There
2717   ** are four options - they may never be deleted (eDelete==0), they may
2718   ** be deleted as soon as they are no longer part of the window frame
2719   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2720   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2721   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2722   switch( pMWin->eStart ){
2723     case TK_FOLLOWING:
2724       if( pMWin->eFrmType!=TK_RANGE
2725        && windowExprGtZero(pParse, pMWin->pStart)
2726       ){
2727         s.eDelete = WINDOW_RETURN_ROW;
2728       }
2729       break;
2730     case TK_UNBOUNDED:
2731       if( windowCacheFrame(pMWin)==0 ){
2732         if( pMWin->eEnd==TK_PRECEDING ){
2733           if( pMWin->eFrmType!=TK_RANGE
2734            && windowExprGtZero(pParse, pMWin->pEnd)
2735           ){
2736             s.eDelete = WINDOW_AGGSTEP;
2737           }
2738         }else{
2739           s.eDelete = WINDOW_RETURN_ROW;
2740         }
2741       }
2742       break;
2743     default:
2744       s.eDelete = WINDOW_AGGINVERSE;
2745       break;
2746   }
2747 
2748   /* Allocate registers for the array of values from the sub-query, the
2749   ** samve values in record form, and the rowid used to insert said record
2750   ** into the ephemeral table.  */
2751   regNew = pParse->nMem+1;
2752   pParse->nMem += nInput;
2753   regRecord = ++pParse->nMem;
2754   regRowid = ++pParse->nMem;
2755 
2756   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2757   ** clause, allocate registers to store the results of evaluating each
2758   ** <expr>.  */
2759   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2760     regStart = ++pParse->nMem;
2761   }
2762   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2763     regEnd = ++pParse->nMem;
2764   }
2765 
2766   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2767   ** registers to store copies of the ORDER BY expressions (peer values)
2768   ** for the main loop, and for each cursor (start, current and end). */
2769   if( pMWin->eFrmType!=TK_ROWS ){
2770     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2771     regNewPeer = regNew + pMWin->nBufferCol;
2772     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2773     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2774     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2775     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2776     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2777   }
2778 
2779   /* Load the column values for the row returned by the sub-select
2780   ** into an array of registers starting at regNew. Assemble them into
2781   ** a record in register regRecord. */
2782   for(iInput=0; iInput<nInput; iInput++){
2783     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2784   }
2785   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2786 
2787   /* An input row has just been read into an array of registers starting
2788   ** at regNew. If the window has a PARTITION clause, this block generates
2789   ** VM code to check if the input row is the start of a new partition.
2790   ** If so, it does an OP_Gosub to an address to be filled in later. The
2791   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2792   if( pMWin->pPartition ){
2793     int addr;
2794     ExprList *pPart = pMWin->pPartition;
2795     int nPart = pPart->nExpr;
2796     int regNewPart = regNew + pMWin->nBufferCol;
2797     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2798 
2799     regFlushPart = ++pParse->nMem;
2800     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2801     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2802     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2803     VdbeCoverageEqNe(v);
2804     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2805     VdbeComment((v, "call flush_partition"));
2806     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2807   }
2808 
2809   /* Insert the new row into the ephemeral table */
2810   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2811   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2812   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2813   VdbeCoverageNeverNull(v);
2814 
2815   /* This block is run for the first row of each partition */
2816   s.regArg = windowInitAccum(pParse, pMWin);
2817 
2818   if( regStart ){
2819     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2820     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2821   }
2822   if( regEnd ){
2823     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2824     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2825   }
2826 
2827   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2828     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2829     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2830     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2831     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2832     windowAggFinal(&s, 0);
2833     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2834     VdbeCoverageNeverTaken(v);
2835     windowReturnOneRow(&s);
2836     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2837     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2838     sqlite3VdbeJumpHere(v, addrGe);
2839   }
2840   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2841     assert( pMWin->eEnd==TK_FOLLOWING );
2842     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2843   }
2844 
2845   if( pMWin->eStart!=TK_UNBOUNDED ){
2846     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2847     VdbeCoverageNeverTaken(v);
2848   }
2849   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2850   VdbeCoverageNeverTaken(v);
2851   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2852   VdbeCoverageNeverTaken(v);
2853   if( regPeer && pOrderBy ){
2854     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2855     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2856     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2857     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2858   }
2859 
2860   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2861 
2862   sqlite3VdbeJumpHere(v, addrNe);
2863 
2864   /* Beginning of the block executed for the second and subsequent rows. */
2865   if( regPeer ){
2866     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2867   }
2868   if( pMWin->eStart==TK_FOLLOWING ){
2869     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2870     if( pMWin->eEnd!=TK_UNBOUNDED ){
2871       if( pMWin->eFrmType==TK_RANGE ){
2872         int lbl = sqlite3VdbeMakeLabel(pParse);
2873         int addrNext = sqlite3VdbeCurrentAddr(v);
2874         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2875         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2876         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2877         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2878         sqlite3VdbeResolveLabel(v, lbl);
2879       }else{
2880         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2881         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2882       }
2883     }
2884   }else
2885   if( pMWin->eEnd==TK_PRECEDING ){
2886     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2887     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2888     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2889     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2890     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2891   }else{
2892     int addr = 0;
2893     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2894     if( pMWin->eEnd!=TK_UNBOUNDED ){
2895       if( pMWin->eFrmType==TK_RANGE ){
2896         int lbl = 0;
2897         addr = sqlite3VdbeCurrentAddr(v);
2898         if( regEnd ){
2899           lbl = sqlite3VdbeMakeLabel(pParse);
2900           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2901         }
2902         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2903         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2904         if( regEnd ){
2905           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2906           sqlite3VdbeResolveLabel(v, lbl);
2907         }
2908       }else{
2909         if( regEnd ){
2910           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2911           VdbeCoverage(v);
2912         }
2913         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2914         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2915         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2916       }
2917     }
2918   }
2919 
2920   /* End of the main input loop */
2921   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2922   sqlite3WhereEnd(pWInfo);
2923 
2924   /* Fall through */
2925   if( pMWin->pPartition ){
2926     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2927     sqlite3VdbeJumpHere(v, addrGosubFlush);
2928   }
2929 
2930   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2931   VdbeCoverage(v);
2932   if( pMWin->eEnd==TK_PRECEDING ){
2933     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2934     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2935     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2936     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2937   }else if( pMWin->eStart==TK_FOLLOWING ){
2938     int addrStart;
2939     int addrBreak1;
2940     int addrBreak2;
2941     int addrBreak3;
2942     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2943     if( pMWin->eFrmType==TK_RANGE ){
2944       addrStart = sqlite3VdbeCurrentAddr(v);
2945       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2946       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2947     }else
2948     if( pMWin->eEnd==TK_UNBOUNDED ){
2949       addrStart = sqlite3VdbeCurrentAddr(v);
2950       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
2951       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
2952     }else{
2953       assert( pMWin->eEnd==TK_FOLLOWING );
2954       addrStart = sqlite3VdbeCurrentAddr(v);
2955       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
2956       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
2957     }
2958     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2959     sqlite3VdbeJumpHere(v, addrBreak2);
2960     addrStart = sqlite3VdbeCurrentAddr(v);
2961     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2962     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2963     sqlite3VdbeJumpHere(v, addrBreak1);
2964     sqlite3VdbeJumpHere(v, addrBreak3);
2965   }else{
2966     int addrBreak;
2967     int addrStart;
2968     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2969     addrStart = sqlite3VdbeCurrentAddr(v);
2970     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
2971     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2972     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
2973     sqlite3VdbeJumpHere(v, addrBreak);
2974   }
2975   sqlite3VdbeJumpHere(v, addrEmpty);
2976 
2977   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2978   if( pMWin->pPartition ){
2979     if( pMWin->regStartRowid ){
2980       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
2981       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
2982     }
2983     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
2984     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
2985   }
2986 }
2987 
2988 #endif /* SQLITE_OMIT_WINDOWFUNC */
2989