xref: /sqlite-3.40.0/src/window.c (revision 17adf4e5)
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* no break */ deliberate_fall_through
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( pParse->db->mallocFailed ) return WRC_Abort;
792       if( p->pSub ){
793         int i;
794         for(i=0; i<p->pSub->nExpr; i++){
795           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
796             iCol = i;
797             break;
798           }
799         }
800       }
801       if( iCol<0 ){
802         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
803         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
804         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
805       }
806       if( p->pSub ){
807         int f = pExpr->flags & EP_Collate;
808         assert( ExprHasProperty(pExpr, EP_Static)==0 );
809         ExprSetProperty(pExpr, EP_Static);
810         sqlite3ExprDelete(pParse->db, pExpr);
811         ExprClearProperty(pExpr, EP_Static);
812         memset(pExpr, 0, sizeof(Expr));
813 
814         pExpr->op = TK_COLUMN;
815         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
816         pExpr->iTable = p->pWin->iEphCsr;
817         pExpr->y.pTab = p->pTab;
818         pExpr->flags = f;
819       }
820       if( pParse->db->mallocFailed ) return WRC_Abort;
821       break;
822     }
823 
824     default: /* no-op */
825       break;
826   }
827 
828   return WRC_Continue;
829 }
830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
831   struct WindowRewrite *p = pWalker->u.pRewrite;
832   Select *pSave = p->pSubSelect;
833   if( pSave==pSelect ){
834     return WRC_Continue;
835   }else{
836     p->pSubSelect = pSelect;
837     sqlite3WalkSelect(pWalker, pSelect);
838     p->pSubSelect = pSave;
839   }
840   return WRC_Prune;
841 }
842 
843 
844 /*
845 ** Iterate through each expression in expression-list pEList. For each:
846 **
847 **   * TK_COLUMN,
848 **   * aggregate function, or
849 **   * window function with a Window object that is not a member of the
850 **     Window list passed as the second argument (pWin).
851 **
852 ** Append the node to output expression-list (*ppSub). And replace it
853 ** with a TK_COLUMN that reads the (N-1)th element of table
854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
855 ** appending the new one.
856 */
857 static void selectWindowRewriteEList(
858   Parse *pParse,
859   Window *pWin,
860   SrcList *pSrc,
861   ExprList *pEList,               /* Rewrite expressions in this list */
862   Table *pTab,
863   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
864 ){
865   Walker sWalker;
866   WindowRewrite sRewrite;
867 
868   assert( pWin!=0 );
869   memset(&sWalker, 0, sizeof(Walker));
870   memset(&sRewrite, 0, sizeof(WindowRewrite));
871 
872   sRewrite.pSub = *ppSub;
873   sRewrite.pWin = pWin;
874   sRewrite.pSrc = pSrc;
875   sRewrite.pTab = pTab;
876 
877   sWalker.pParse = pParse;
878   sWalker.xExprCallback = selectWindowRewriteExprCb;
879   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
880   sWalker.u.pRewrite = &sRewrite;
881 
882   (void)sqlite3WalkExprList(&sWalker, pEList);
883 
884   *ppSub = sRewrite.pSub;
885 }
886 
887 /*
888 ** Append a copy of each expression in expression-list pAppend to
889 ** expression list pList. Return a pointer to the result list.
890 */
891 static ExprList *exprListAppendList(
892   Parse *pParse,          /* Parsing context */
893   ExprList *pList,        /* List to which to append. Might be NULL */
894   ExprList *pAppend,      /* List of values to append. Might be NULL */
895   int bIntToNull
896 ){
897   if( pAppend ){
898     int i;
899     int nInit = pList ? pList->nExpr : 0;
900     for(i=0; i<pAppend->nExpr; i++){
901       sqlite3 *db = pParse->db;
902       Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
903       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
904       if( db->mallocFailed ){
905         sqlite3ExprDelete(db, pDup);
906         break;
907       }
908       if( bIntToNull ){
909         int iDummy;
910         Expr *pSub;
911         for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){
912           assert( pSub );
913         }
914         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
915           pSub->op = TK_NULL;
916           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
917           pSub->u.zToken = 0;
918         }
919       }
920       pList = sqlite3ExprListAppend(pParse, pList, pDup);
921       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
922     }
923   }
924   return pList;
925 }
926 
927 /*
928 ** When rewriting a query, if the new subquery in the FROM clause
929 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
930 ** then we have to increase the Expr->op2 values of those nodes
931 ** due to the extra subquery layer that was added.
932 **
933 ** See also the incrAggDepth() routine in resolve.c
934 */
935 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
936   if( pExpr->op==TK_AGG_FUNCTION
937    && pExpr->op2>=pWalker->walkerDepth
938   ){
939     pExpr->op2++;
940   }
941   return WRC_Continue;
942 }
943 
944 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){
945   if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){
946     sqlite3ErrorMsg(pWalker->pParse,
947          "misuse of aggregate: %s()", pExpr->u.zToken);
948   }
949   return WRC_Continue;
950 }
951 
952 /*
953 ** If the SELECT statement passed as the second argument does not invoke
954 ** any SQL window functions, this function is a no-op. Otherwise, it
955 ** rewrites the SELECT statement so that window function xStep functions
956 ** are invoked in the correct order as described under "SELECT REWRITING"
957 ** at the top of this file.
958 */
959 int sqlite3WindowRewrite(Parse *pParse, Select *p){
960   int rc = SQLITE_OK;
961   if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) ){
962     Vdbe *v = sqlite3GetVdbe(pParse);
963     sqlite3 *db = pParse->db;
964     Select *pSub = 0;             /* The subquery */
965     SrcList *pSrc = p->pSrc;
966     Expr *pWhere = p->pWhere;
967     ExprList *pGroupBy = p->pGroupBy;
968     Expr *pHaving = p->pHaving;
969     ExprList *pSort = 0;
970 
971     ExprList *pSublist = 0;       /* Expression list for sub-query */
972     Window *pMWin = p->pWin;      /* Main window object */
973     Window *pWin;                 /* Window object iterator */
974     Table *pTab;
975     Walker w;
976 
977     u32 selFlags = p->selFlags;
978 
979     pTab = sqlite3DbMallocZero(db, sizeof(Table));
980     if( pTab==0 ){
981       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
982     }
983     sqlite3AggInfoPersistWalkerInit(&w, pParse);
984     sqlite3WalkSelect(&w, p);
985     if( (p->selFlags & SF_Aggregate)==0 ){
986       w.xExprCallback = disallowAggregatesInOrderByCb;
987       w.xSelectCallback = 0;
988       sqlite3WalkExprList(&w, p->pOrderBy);
989     }
990 
991     p->pSrc = 0;
992     p->pWhere = 0;
993     p->pGroupBy = 0;
994     p->pHaving = 0;
995     p->selFlags &= ~SF_Aggregate;
996     p->selFlags |= SF_WinRewrite;
997 
998     /* Create the ORDER BY clause for the sub-select. This is the concatenation
999     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
1000     ** redundant, remove the ORDER BY from the parent SELECT.  */
1001     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
1002     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
1003     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
1004       int nSave = pSort->nExpr;
1005       pSort->nExpr = p->pOrderBy->nExpr;
1006       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
1007         sqlite3ExprListDelete(db, p->pOrderBy);
1008         p->pOrderBy = 0;
1009       }
1010       pSort->nExpr = nSave;
1011     }
1012 
1013     /* Assign a cursor number for the ephemeral table used to buffer rows.
1014     ** The OpenEphemeral instruction is coded later, after it is known how
1015     ** many columns the table will have.  */
1016     pMWin->iEphCsr = pParse->nTab++;
1017     pParse->nTab += 3;
1018 
1019     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1020     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1021     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1022 
1023     /* Append the PARTITION BY and ORDER BY expressions to the to the
1024     ** sub-select expression list. They are required to figure out where
1025     ** boundaries for partitions and sets of peer rows lie.  */
1026     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1027     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1028 
1029     /* Append the arguments passed to each window function to the
1030     ** sub-select expression list. Also allocate two registers for each
1031     ** window function - one for the accumulator, another for interim
1032     ** results.  */
1033     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1034       ExprList *pArgs = pWin->pOwner->x.pList;
1035       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1036         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1037         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1038         pWin->bExprArgs = 1;
1039       }else{
1040         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1041         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1042       }
1043       if( pWin->pFilter ){
1044         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1045         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1046       }
1047       pWin->regAccum = ++pParse->nMem;
1048       pWin->regResult = ++pParse->nMem;
1049       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1050     }
1051 
1052     /* If there is no ORDER BY or PARTITION BY clause, and the window
1053     ** function accepts zero arguments, and there are no other columns
1054     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1055     ** that pSublist is still NULL here. Add a constant expression here to
1056     ** keep everything legal in this case.
1057     */
1058     if( pSublist==0 ){
1059       pSublist = sqlite3ExprListAppend(pParse, 0,
1060         sqlite3Expr(db, TK_INTEGER, "0")
1061       );
1062     }
1063 
1064     pSub = sqlite3SelectNew(
1065         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1066     );
1067     SELECTTRACE(1,pParse,pSub,
1068        ("New window-function subquery in FROM clause of (%u/%p)\n",
1069        p->selId, p));
1070     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1071     if( p->pSrc ){
1072       Table *pTab2;
1073       p->pSrc->a[0].pSelect = pSub;
1074       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1075       pSub->selFlags |= SF_Expanded;
1076       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1077       pSub->selFlags |= (selFlags & SF_Aggregate);
1078       if( pTab2==0 ){
1079         /* Might actually be some other kind of error, but in that case
1080         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1081         ** the correct error message regardless. */
1082         rc = SQLITE_NOMEM;
1083       }else{
1084         memcpy(pTab, pTab2, sizeof(Table));
1085         pTab->tabFlags |= TF_Ephemeral;
1086         p->pSrc->a[0].pTab = pTab;
1087         pTab = pTab2;
1088         memset(&w, 0, sizeof(w));
1089         w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1090         w.xSelectCallback = sqlite3WalkerDepthIncrease;
1091         w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1092         sqlite3WalkSelect(&w, pSub);
1093       }
1094     }else{
1095       sqlite3SelectDelete(db, pSub);
1096     }
1097     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1098     sqlite3DbFree(db, pTab);
1099   }
1100 
1101   if( rc ){
1102     if( pParse->nErr==0 ){
1103       assert( pParse->db->mallocFailed );
1104       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1105     }
1106   }
1107   return rc;
1108 }
1109 
1110 /*
1111 ** Unlink the Window object from the Select to which it is attached,
1112 ** if it is attached.
1113 */
1114 void sqlite3WindowUnlinkFromSelect(Window *p){
1115   if( p->ppThis ){
1116     *p->ppThis = p->pNextWin;
1117     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1118     p->ppThis = 0;
1119   }
1120 }
1121 
1122 /*
1123 ** Free the Window object passed as the second argument.
1124 */
1125 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1126   if( p ){
1127     sqlite3WindowUnlinkFromSelect(p);
1128     sqlite3ExprDelete(db, p->pFilter);
1129     sqlite3ExprListDelete(db, p->pPartition);
1130     sqlite3ExprListDelete(db, p->pOrderBy);
1131     sqlite3ExprDelete(db, p->pEnd);
1132     sqlite3ExprDelete(db, p->pStart);
1133     sqlite3DbFree(db, p->zName);
1134     sqlite3DbFree(db, p->zBase);
1135     sqlite3DbFree(db, p);
1136   }
1137 }
1138 
1139 /*
1140 ** Free the linked list of Window objects starting at the second argument.
1141 */
1142 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1143   while( p ){
1144     Window *pNext = p->pNextWin;
1145     sqlite3WindowDelete(db, p);
1146     p = pNext;
1147   }
1148 }
1149 
1150 /*
1151 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1152 ** value should be a non-negative integer.  If the value is not a
1153 ** constant, change it to NULL.  The fact that it is then a non-negative
1154 ** integer will be caught later.  But it is important not to leave
1155 ** variable values in the expression tree.
1156 */
1157 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1158   if( 0==sqlite3ExprIsConstant(pExpr) ){
1159     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1160     sqlite3ExprDelete(pParse->db, pExpr);
1161     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1162   }
1163   return pExpr;
1164 }
1165 
1166 /*
1167 ** Allocate and return a new Window object describing a Window Definition.
1168 */
1169 Window *sqlite3WindowAlloc(
1170   Parse *pParse,    /* Parsing context */
1171   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1172   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1173   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1174   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1175   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1176   u8 eExclude       /* EXCLUDE clause */
1177 ){
1178   Window *pWin = 0;
1179   int bImplicitFrame = 0;
1180 
1181   /* Parser assures the following: */
1182   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1183   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1184            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1185   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1186            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1187   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1188   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1189 
1190   if( eType==0 ){
1191     bImplicitFrame = 1;
1192     eType = TK_RANGE;
1193   }
1194 
1195   /* Additionally, the
1196   ** starting boundary type may not occur earlier in the following list than
1197   ** the ending boundary type:
1198   **
1199   **   UNBOUNDED PRECEDING
1200   **   <expr> PRECEDING
1201   **   CURRENT ROW
1202   **   <expr> FOLLOWING
1203   **   UNBOUNDED FOLLOWING
1204   **
1205   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1206   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1207   ** frame boundary.
1208   */
1209   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1210    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1211   ){
1212     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1213     goto windowAllocErr;
1214   }
1215 
1216   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1217   if( pWin==0 ) goto windowAllocErr;
1218   pWin->eFrmType = eType;
1219   pWin->eStart = eStart;
1220   pWin->eEnd = eEnd;
1221   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1222     eExclude = TK_NO;
1223   }
1224   pWin->eExclude = eExclude;
1225   pWin->bImplicitFrame = bImplicitFrame;
1226   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1227   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1228   return pWin;
1229 
1230 windowAllocErr:
1231   sqlite3ExprDelete(pParse->db, pEnd);
1232   sqlite3ExprDelete(pParse->db, pStart);
1233   return 0;
1234 }
1235 
1236 /*
1237 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1238 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1239 ** equivalent nul-terminated string.
1240 */
1241 Window *sqlite3WindowAssemble(
1242   Parse *pParse,
1243   Window *pWin,
1244   ExprList *pPartition,
1245   ExprList *pOrderBy,
1246   Token *pBase
1247 ){
1248   if( pWin ){
1249     pWin->pPartition = pPartition;
1250     pWin->pOrderBy = pOrderBy;
1251     if( pBase ){
1252       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1253     }
1254   }else{
1255     sqlite3ExprListDelete(pParse->db, pPartition);
1256     sqlite3ExprListDelete(pParse->db, pOrderBy);
1257   }
1258   return pWin;
1259 }
1260 
1261 /*
1262 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1263 ** is the base window. Earlier windows from the same WINDOW clause are
1264 ** stored in the linked list starting at pWin->pNextWin. This function
1265 ** either updates *pWin according to the base specification, or else
1266 ** leaves an error in pParse.
1267 */
1268 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1269   if( pWin->zBase ){
1270     sqlite3 *db = pParse->db;
1271     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1272     if( pExist ){
1273       const char *zErr = 0;
1274       /* Check for errors */
1275       if( pWin->pPartition ){
1276         zErr = "PARTITION clause";
1277       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1278         zErr = "ORDER BY clause";
1279       }else if( pExist->bImplicitFrame==0 ){
1280         zErr = "frame specification";
1281       }
1282       if( zErr ){
1283         sqlite3ErrorMsg(pParse,
1284             "cannot override %s of window: %s", zErr, pWin->zBase
1285         );
1286       }else{
1287         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1288         if( pExist->pOrderBy ){
1289           assert( pWin->pOrderBy==0 );
1290           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1291         }
1292         sqlite3DbFree(db, pWin->zBase);
1293         pWin->zBase = 0;
1294       }
1295     }
1296   }
1297 }
1298 
1299 /*
1300 ** Attach window object pWin to expression p.
1301 */
1302 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1303   if( p ){
1304     assert( p->op==TK_FUNCTION );
1305     assert( pWin );
1306     p->y.pWin = pWin;
1307     ExprSetProperty(p, EP_WinFunc);
1308     pWin->pOwner = p;
1309     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1310       sqlite3ErrorMsg(pParse,
1311           "DISTINCT is not supported for window functions"
1312       );
1313     }
1314   }else{
1315     sqlite3WindowDelete(pParse->db, pWin);
1316   }
1317 }
1318 
1319 /*
1320 ** Possibly link window pWin into the list at pSel->pWin (window functions
1321 ** to be processed as part of SELECT statement pSel). The window is linked
1322 ** in if either (a) there are no other windows already linked to this
1323 ** SELECT, or (b) the windows already linked use a compatible window frame.
1324 */
1325 void sqlite3WindowLink(Select *pSel, Window *pWin){
1326   if( pSel ){
1327     if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
1328       pWin->pNextWin = pSel->pWin;
1329       if( pSel->pWin ){
1330         pSel->pWin->ppThis = &pWin->pNextWin;
1331       }
1332       pSel->pWin = pWin;
1333       pWin->ppThis = &pSel->pWin;
1334     }else{
1335       if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
1336         pSel->selFlags |= SF_MultiPart;
1337       }
1338     }
1339   }
1340 }
1341 
1342 /*
1343 ** Return 0 if the two window objects are identical, 1 if they are
1344 ** different, or 2 if it cannot be determined if the objects are identical
1345 ** or not. Identical window objects can be processed in a single scan.
1346 */
1347 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1348   int res;
1349   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1350   if( p1->eFrmType!=p2->eFrmType ) return 1;
1351   if( p1->eStart!=p2->eStart ) return 1;
1352   if( p1->eEnd!=p2->eEnd ) return 1;
1353   if( p1->eExclude!=p2->eExclude ) return 1;
1354   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1355   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1356   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1357     return res;
1358   }
1359   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1360     return res;
1361   }
1362   if( bFilter ){
1363     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1364       return res;
1365     }
1366   }
1367   return 0;
1368 }
1369 
1370 
1371 /*
1372 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1373 ** to begin iterating through the sub-query results. It is used to allocate
1374 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1375 */
1376 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1377   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1378   Window *pMWin = pSelect->pWin;
1379   Window *pWin;
1380   Vdbe *v = sqlite3GetVdbe(pParse);
1381 
1382   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1383   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1384   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1385   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1386 
1387   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1388   ** said registers to NULL.  */
1389   if( pMWin->pPartition ){
1390     int nExpr = pMWin->pPartition->nExpr;
1391     pMWin->regPart = pParse->nMem+1;
1392     pParse->nMem += nExpr;
1393     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1394   }
1395 
1396   pMWin->regOne = ++pParse->nMem;
1397   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1398 
1399   if( pMWin->eExclude ){
1400     pMWin->regStartRowid = ++pParse->nMem;
1401     pMWin->regEndRowid = ++pParse->nMem;
1402     pMWin->csrApp = pParse->nTab++;
1403     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1404     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1405     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1406     return;
1407   }
1408 
1409   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1410     FuncDef *p = pWin->pFunc;
1411     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1412       /* The inline versions of min() and max() require a single ephemeral
1413       ** table and 3 registers. The registers are used as follows:
1414       **
1415       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1416       **   regApp+1: integer value used to ensure keys are unique
1417       **   regApp+2: output of MakeRecord
1418       */
1419       ExprList *pList = pWin->pOwner->x.pList;
1420       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1421       pWin->csrApp = pParse->nTab++;
1422       pWin->regApp = pParse->nMem+1;
1423       pParse->nMem += 3;
1424       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1425         assert( pKeyInfo->aSortFlags[0]==0 );
1426         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1427       }
1428       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1429       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1430       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1431     }
1432     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1433       /* Allocate two registers at pWin->regApp. These will be used to
1434       ** store the start and end index of the current frame.  */
1435       pWin->regApp = pParse->nMem+1;
1436       pWin->csrApp = pParse->nTab++;
1437       pParse->nMem += 2;
1438       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1439     }
1440     else if( p->zName==leadName || p->zName==lagName ){
1441       pWin->csrApp = pParse->nTab++;
1442       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1443     }
1444   }
1445 }
1446 
1447 #define WINDOW_STARTING_INT  0
1448 #define WINDOW_ENDING_INT    1
1449 #define WINDOW_NTH_VALUE_INT 2
1450 #define WINDOW_STARTING_NUM  3
1451 #define WINDOW_ENDING_NUM    4
1452 
1453 /*
1454 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1455 ** value of the second argument to nth_value() (eCond==2) has just been
1456 ** evaluated and the result left in register reg. This function generates VM
1457 ** code to check that the value is a non-negative integer and throws an
1458 ** exception if it is not.
1459 */
1460 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1461   static const char *azErr[] = {
1462     "frame starting offset must be a non-negative integer",
1463     "frame ending offset must be a non-negative integer",
1464     "second argument to nth_value must be a positive integer",
1465     "frame starting offset must be a non-negative number",
1466     "frame ending offset must be a non-negative number",
1467   };
1468   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1469   Vdbe *v = sqlite3GetVdbe(pParse);
1470   int regZero = sqlite3GetTempReg(pParse);
1471   assert( eCond>=0 && eCond<ArraySize(azErr) );
1472   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1473   if( eCond>=WINDOW_STARTING_NUM ){
1474     int regString = sqlite3GetTempReg(pParse);
1475     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1476     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1477     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1478     VdbeCoverage(v);
1479     assert( eCond==3 || eCond==4 );
1480     VdbeCoverageIf(v, eCond==3);
1481     VdbeCoverageIf(v, eCond==4);
1482   }else{
1483     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1484     VdbeCoverage(v);
1485     assert( eCond==0 || eCond==1 || eCond==2 );
1486     VdbeCoverageIf(v, eCond==0);
1487     VdbeCoverageIf(v, eCond==1);
1488     VdbeCoverageIf(v, eCond==2);
1489   }
1490   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1491   sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
1492   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1493   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1494   VdbeCoverageNeverNullIf(v, eCond==2);
1495   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1496   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1497   sqlite3MayAbort(pParse);
1498   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1499   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1500   sqlite3ReleaseTempReg(pParse, regZero);
1501 }
1502 
1503 /*
1504 ** Return the number of arguments passed to the window-function associated
1505 ** with the object passed as the only argument to this function.
1506 */
1507 static int windowArgCount(Window *pWin){
1508   ExprList *pList = pWin->pOwner->x.pList;
1509   return (pList ? pList->nExpr : 0);
1510 }
1511 
1512 typedef struct WindowCodeArg WindowCodeArg;
1513 typedef struct WindowCsrAndReg WindowCsrAndReg;
1514 
1515 /*
1516 ** See comments above struct WindowCodeArg.
1517 */
1518 struct WindowCsrAndReg {
1519   int csr;                        /* Cursor number */
1520   int reg;                        /* First in array of peer values */
1521 };
1522 
1523 /*
1524 ** A single instance of this structure is allocated on the stack by
1525 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1526 ** routines. This is to reduce the number of arguments required by each
1527 ** helper function.
1528 **
1529 ** regArg:
1530 **   Each window function requires an accumulator register (just as an
1531 **   ordinary aggregate function does). This variable is set to the first
1532 **   in an array of accumulator registers - one for each window function
1533 **   in the WindowCodeArg.pMWin list.
1534 **
1535 ** eDelete:
1536 **   The window functions implementation sometimes caches the input rows
1537 **   that it processes in a temporary table. If it is not zero, this
1538 **   variable indicates when rows may be removed from the temp table (in
1539 **   order to reduce memory requirements - it would always be safe just
1540 **   to leave them there). Possible values for eDelete are:
1541 **
1542 **      WINDOW_RETURN_ROW:
1543 **        An input row can be discarded after it is returned to the caller.
1544 **
1545 **      WINDOW_AGGINVERSE:
1546 **        An input row can be discarded after the window functions xInverse()
1547 **        callbacks have been invoked in it.
1548 **
1549 **      WINDOW_AGGSTEP:
1550 **        An input row can be discarded after the window functions xStep()
1551 **        callbacks have been invoked in it.
1552 **
1553 ** start,current,end
1554 **   Consider a window-frame similar to the following:
1555 **
1556 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1557 **
1558 **   The windows functions implmentation caches the input rows in a temp
1559 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1560 **   aggressively removes rows once they are no longer required, but that's
1561 **   a mere detail). It keeps three cursors open on the temp table. One
1562 **   (current) that points to the next row to return to the query engine
1563 **   once its window function values have been calculated. Another (end)
1564 **   points to the next row to call the xStep() method of each window function
1565 **   on (so that it is 2 groups ahead of current). And a third (start) that
1566 **   points to the next row to call the xInverse() method of each window
1567 **   function on.
1568 **
1569 **   Each cursor (start, current and end) consists of a VDBE cursor
1570 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1571 **   WindowCodeArg.reg) that always contains a copy of the peer values
1572 **   read from the corresponding cursor.
1573 **
1574 **   Depending on the window-frame in question, all three cursors may not
1575 **   be required. In this case both WindowCodeArg.csr and reg are set to
1576 **   0.
1577 */
1578 struct WindowCodeArg {
1579   Parse *pParse;             /* Parse context */
1580   Window *pMWin;             /* First in list of functions being processed */
1581   Vdbe *pVdbe;               /* VDBE object */
1582   int addrGosub;             /* OP_Gosub to this address to return one row */
1583   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1584   int regArg;                /* First in array of accumulator registers */
1585   int eDelete;               /* See above */
1586   int regRowid;
1587 
1588   WindowCsrAndReg start;
1589   WindowCsrAndReg current;
1590   WindowCsrAndReg end;
1591 };
1592 
1593 /*
1594 ** Generate VM code to read the window frames peer values from cursor csr into
1595 ** an array of registers starting at reg.
1596 */
1597 static void windowReadPeerValues(
1598   WindowCodeArg *p,
1599   int csr,
1600   int reg
1601 ){
1602   Window *pMWin = p->pMWin;
1603   ExprList *pOrderBy = pMWin->pOrderBy;
1604   if( pOrderBy ){
1605     Vdbe *v = sqlite3GetVdbe(p->pParse);
1606     ExprList *pPart = pMWin->pPartition;
1607     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1608     int i;
1609     for(i=0; i<pOrderBy->nExpr; i++){
1610       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1611     }
1612   }
1613 }
1614 
1615 /*
1616 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1617 ** xInverse (if bInverse is non-zero) for each window function in the
1618 ** linked list starting at pMWin. Or, for built-in window functions
1619 ** that do not use the standard function API, generate the required
1620 ** inline VM code.
1621 **
1622 ** If argument csr is greater than or equal to 0, then argument reg is
1623 ** the first register in an array of registers guaranteed to be large
1624 ** enough to hold the array of arguments for each function. In this case
1625 ** the arguments are extracted from the current row of csr into the
1626 ** array of registers before invoking OP_AggStep or OP_AggInverse
1627 **
1628 ** Or, if csr is less than zero, then the array of registers at reg is
1629 ** already populated with all columns from the current row of the sub-query.
1630 **
1631 ** If argument regPartSize is non-zero, then it is a register containing the
1632 ** number of rows in the current partition.
1633 */
1634 static void windowAggStep(
1635   WindowCodeArg *p,
1636   Window *pMWin,                  /* Linked list of window functions */
1637   int csr,                        /* Read arguments from this cursor */
1638   int bInverse,                   /* True to invoke xInverse instead of xStep */
1639   int reg                         /* Array of registers */
1640 ){
1641   Parse *pParse = p->pParse;
1642   Vdbe *v = sqlite3GetVdbe(pParse);
1643   Window *pWin;
1644   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1645     FuncDef *pFunc = pWin->pFunc;
1646     int regArg;
1647     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1648     int i;
1649 
1650     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1651 
1652     /* All OVER clauses in the same window function aggregate step must
1653     ** be the same. */
1654     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1655 
1656     for(i=0; i<nArg; i++){
1657       if( i!=1 || pFunc->zName!=nth_valueName ){
1658         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1659       }else{
1660         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1661       }
1662     }
1663     regArg = reg;
1664 
1665     if( pMWin->regStartRowid==0
1666      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1667      && (pWin->eStart!=TK_UNBOUNDED)
1668     ){
1669       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1670       VdbeCoverage(v);
1671       if( bInverse==0 ){
1672         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1673         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1674         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1675         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1676       }else{
1677         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1678         VdbeCoverageNeverTaken(v);
1679         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1680         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1681       }
1682       sqlite3VdbeJumpHere(v, addrIsNull);
1683     }else if( pWin->regApp ){
1684       assert( pFunc->zName==nth_valueName
1685            || pFunc->zName==first_valueName
1686       );
1687       assert( bInverse==0 || bInverse==1 );
1688       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1689     }else if( pFunc->xSFunc!=noopStepFunc ){
1690       int addrIf = 0;
1691       if( pWin->pFilter ){
1692         int regTmp;
1693         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1694         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1695         regTmp = sqlite3GetTempReg(pParse);
1696         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1697         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1698         VdbeCoverage(v);
1699         sqlite3ReleaseTempReg(pParse, regTmp);
1700       }
1701 
1702       if( pWin->bExprArgs ){
1703         int iOp = sqlite3VdbeCurrentAddr(v);
1704         int iEnd;
1705 
1706         nArg = pWin->pOwner->x.pList->nExpr;
1707         regArg = sqlite3GetTempRange(pParse, nArg);
1708         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1709 
1710         for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){
1711           VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp);
1712           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1713             pOp->p1 = csr;
1714           }
1715         }
1716       }
1717       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1718         CollSeq *pColl;
1719         assert( nArg>0 );
1720         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1721         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1722       }
1723       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1724                         bInverse, regArg, pWin->regAccum);
1725       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1726       sqlite3VdbeChangeP5(v, (u8)nArg);
1727       if( pWin->bExprArgs ){
1728         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1729       }
1730       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1731     }
1732   }
1733 }
1734 
1735 /*
1736 ** Values that may be passed as the second argument to windowCodeOp().
1737 */
1738 #define WINDOW_RETURN_ROW 1
1739 #define WINDOW_AGGINVERSE 2
1740 #define WINDOW_AGGSTEP    3
1741 
1742 /*
1743 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1744 ** (bFin==1) for each window function in the linked list starting at
1745 ** pMWin. Or, for built-in window-functions that do not use the standard
1746 ** API, generate the equivalent VM code.
1747 */
1748 static void windowAggFinal(WindowCodeArg *p, int bFin){
1749   Parse *pParse = p->pParse;
1750   Window *pMWin = p->pMWin;
1751   Vdbe *v = sqlite3GetVdbe(pParse);
1752   Window *pWin;
1753 
1754   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1755     if( pMWin->regStartRowid==0
1756      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1757      && (pWin->eStart!=TK_UNBOUNDED)
1758     ){
1759       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1760       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1761       VdbeCoverage(v);
1762       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1763       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1764     }else if( pWin->regApp ){
1765       assert( pMWin->regStartRowid==0 );
1766     }else{
1767       int nArg = windowArgCount(pWin);
1768       if( bFin ){
1769         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1770         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1771         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1772         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1773       }else{
1774         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1775         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1776       }
1777     }
1778   }
1779 }
1780 
1781 /*
1782 ** Generate code to calculate the current values of all window functions in the
1783 ** p->pMWin list by doing a full scan of the current window frame. Store the
1784 ** results in the Window.regResult registers, ready to return the upper
1785 ** layer.
1786 */
1787 static void windowFullScan(WindowCodeArg *p){
1788   Window *pWin;
1789   Parse *pParse = p->pParse;
1790   Window *pMWin = p->pMWin;
1791   Vdbe *v = p->pVdbe;
1792 
1793   int regCRowid = 0;              /* Current rowid value */
1794   int regCPeer = 0;               /* Current peer values */
1795   int regRowid = 0;               /* AggStep rowid value */
1796   int regPeer = 0;                /* AggStep peer values */
1797 
1798   int nPeer;
1799   int lblNext;
1800   int lblBrk;
1801   int addrNext;
1802   int csr;
1803 
1804   VdbeModuleComment((v, "windowFullScan begin"));
1805 
1806   assert( pMWin!=0 );
1807   csr = pMWin->csrApp;
1808   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1809 
1810   lblNext = sqlite3VdbeMakeLabel(pParse);
1811   lblBrk = sqlite3VdbeMakeLabel(pParse);
1812 
1813   regCRowid = sqlite3GetTempReg(pParse);
1814   regRowid = sqlite3GetTempReg(pParse);
1815   if( nPeer ){
1816     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1817     regPeer = sqlite3GetTempRange(pParse, nPeer);
1818   }
1819 
1820   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1821   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1822 
1823   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1824     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1825   }
1826 
1827   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1828   VdbeCoverage(v);
1829   addrNext = sqlite3VdbeCurrentAddr(v);
1830   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1831   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1832   VdbeCoverageNeverNull(v);
1833 
1834   if( pMWin->eExclude==TK_CURRENT ){
1835     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1836     VdbeCoverageNeverNull(v);
1837   }else if( pMWin->eExclude!=TK_NO ){
1838     int addr;
1839     int addrEq = 0;
1840     KeyInfo *pKeyInfo = 0;
1841 
1842     if( pMWin->pOrderBy ){
1843       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1844     }
1845     if( pMWin->eExclude==TK_TIES ){
1846       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1847       VdbeCoverageNeverNull(v);
1848     }
1849     if( pKeyInfo ){
1850       windowReadPeerValues(p, csr, regPeer);
1851       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1852       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1853       addr = sqlite3VdbeCurrentAddr(v)+1;
1854       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1855       VdbeCoverageEqNe(v);
1856     }else{
1857       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1858     }
1859     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1860   }
1861 
1862   windowAggStep(p, pMWin, csr, 0, p->regArg);
1863 
1864   sqlite3VdbeResolveLabel(v, lblNext);
1865   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1866   VdbeCoverage(v);
1867   sqlite3VdbeJumpHere(v, addrNext-1);
1868   sqlite3VdbeJumpHere(v, addrNext+1);
1869   sqlite3ReleaseTempReg(pParse, regRowid);
1870   sqlite3ReleaseTempReg(pParse, regCRowid);
1871   if( nPeer ){
1872     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1873     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1874   }
1875 
1876   windowAggFinal(p, 1);
1877   VdbeModuleComment((v, "windowFullScan end"));
1878 }
1879 
1880 /*
1881 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1882 ** return the current row of Window.iEphCsr. If all window functions are
1883 ** aggregate window functions that use the standard API, a single
1884 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1885 ** for per-row processing is only generated for the following built-in window
1886 ** functions:
1887 **
1888 **   nth_value()
1889 **   first_value()
1890 **   lag()
1891 **   lead()
1892 */
1893 static void windowReturnOneRow(WindowCodeArg *p){
1894   Window *pMWin = p->pMWin;
1895   Vdbe *v = p->pVdbe;
1896 
1897   if( pMWin->regStartRowid ){
1898     windowFullScan(p);
1899   }else{
1900     Parse *pParse = p->pParse;
1901     Window *pWin;
1902 
1903     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1904       FuncDef *pFunc = pWin->pFunc;
1905       if( pFunc->zName==nth_valueName
1906        || pFunc->zName==first_valueName
1907       ){
1908         int csr = pWin->csrApp;
1909         int lbl = sqlite3VdbeMakeLabel(pParse);
1910         int tmpReg = sqlite3GetTempReg(pParse);
1911         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1912 
1913         if( pFunc->zName==nth_valueName ){
1914           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1915           windowCheckValue(pParse, tmpReg, 2);
1916         }else{
1917           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1918         }
1919         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1920         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1921         VdbeCoverageNeverNull(v);
1922         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1923         VdbeCoverageNeverTaken(v);
1924         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1925         sqlite3VdbeResolveLabel(v, lbl);
1926         sqlite3ReleaseTempReg(pParse, tmpReg);
1927       }
1928       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1929         int nArg = pWin->pOwner->x.pList->nExpr;
1930         int csr = pWin->csrApp;
1931         int lbl = sqlite3VdbeMakeLabel(pParse);
1932         int tmpReg = sqlite3GetTempReg(pParse);
1933         int iEph = pMWin->iEphCsr;
1934 
1935         if( nArg<3 ){
1936           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1937         }else{
1938           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1939         }
1940         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1941         if( nArg<2 ){
1942           int val = (pFunc->zName==leadName ? 1 : -1);
1943           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1944         }else{
1945           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1946           int tmpReg2 = sqlite3GetTempReg(pParse);
1947           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1948           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1949           sqlite3ReleaseTempReg(pParse, tmpReg2);
1950         }
1951 
1952         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1953         VdbeCoverage(v);
1954         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1955         sqlite3VdbeResolveLabel(v, lbl);
1956         sqlite3ReleaseTempReg(pParse, tmpReg);
1957       }
1958     }
1959   }
1960   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1961 }
1962 
1963 /*
1964 ** Generate code to set the accumulator register for each window function
1965 ** in the linked list passed as the second argument to NULL. And perform
1966 ** any equivalent initialization required by any built-in window functions
1967 ** in the list.
1968 */
1969 static int windowInitAccum(Parse *pParse, Window *pMWin){
1970   Vdbe *v = sqlite3GetVdbe(pParse);
1971   int regArg;
1972   int nArg = 0;
1973   Window *pWin;
1974   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1975     FuncDef *pFunc = pWin->pFunc;
1976     assert( pWin->regAccum );
1977     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1978     nArg = MAX(nArg, windowArgCount(pWin));
1979     if( pMWin->regStartRowid==0 ){
1980       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1981         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1982         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1983       }
1984 
1985       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1986         assert( pWin->eStart!=TK_UNBOUNDED );
1987         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1988         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1989       }
1990     }
1991   }
1992   regArg = pParse->nMem+1;
1993   pParse->nMem += nArg;
1994   return regArg;
1995 }
1996 
1997 /*
1998 ** Return true if the current frame should be cached in the ephemeral table,
1999 ** even if there are no xInverse() calls required.
2000 */
2001 static int windowCacheFrame(Window *pMWin){
2002   Window *pWin;
2003   if( pMWin->regStartRowid ) return 1;
2004   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
2005     FuncDef *pFunc = pWin->pFunc;
2006     if( (pFunc->zName==nth_valueName)
2007      || (pFunc->zName==first_valueName)
2008      || (pFunc->zName==leadName)
2009      || (pFunc->zName==lagName)
2010     ){
2011       return 1;
2012     }
2013   }
2014   return 0;
2015 }
2016 
2017 /*
2018 ** regOld and regNew are each the first register in an array of size
2019 ** pOrderBy->nExpr. This function generates code to compare the two
2020 ** arrays of registers using the collation sequences and other comparison
2021 ** parameters specified by pOrderBy.
2022 **
2023 ** If the two arrays are not equal, the contents of regNew is copied to
2024 ** regOld and control falls through. Otherwise, if the contents of the arrays
2025 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2026 */
2027 static void windowIfNewPeer(
2028   Parse *pParse,
2029   ExprList *pOrderBy,
2030   int regNew,                     /* First in array of new values */
2031   int regOld,                     /* First in array of old values */
2032   int addr                        /* Jump here */
2033 ){
2034   Vdbe *v = sqlite3GetVdbe(pParse);
2035   if( pOrderBy ){
2036     int nVal = pOrderBy->nExpr;
2037     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2038     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2039     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2040     sqlite3VdbeAddOp3(v, OP_Jump,
2041       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2042     );
2043     VdbeCoverageEqNe(v);
2044     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2045   }else{
2046     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2047   }
2048 }
2049 
2050 /*
2051 ** This function is called as part of generating VM programs for RANGE
2052 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2053 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2054 ** code equivalent to:
2055 **
2056 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2057 **
2058 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2059 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2060 **
2061 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2062 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2063 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2064 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2065 ** is OP_Ge, the generated code is equivalent to:
2066 **
2067 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2068 **
2069 ** A special type of arithmetic is used such that if csr1.peerVal is not
2070 ** a numeric type (real or integer), then the result of the addition
2071 ** or subtraction is a a copy of csr1.peerVal.
2072 */
2073 static void windowCodeRangeTest(
2074   WindowCodeArg *p,
2075   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2076   int csr1,                       /* Cursor number for cursor 1 */
2077   int regVal,                     /* Register containing non-negative number */
2078   int csr2,                       /* Cursor number for cursor 2 */
2079   int lbl                         /* Jump destination if condition is true */
2080 ){
2081   Parse *pParse = p->pParse;
2082   Vdbe *v = sqlite3GetVdbe(pParse);
2083   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2084   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2085   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2086   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2087   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2088   int addrGe;                               /* Jump destination */
2089   int addrDone = sqlite3VdbeMakeLabel(pParse);   /* Address past OP_Ge */
2090   CollSeq *pColl;
2091 
2092   /* Read the peer-value from each cursor into a register */
2093   windowReadPeerValues(p, csr1, reg1);
2094   windowReadPeerValues(p, csr2, reg2);
2095 
2096   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2097   assert( pOrderBy && pOrderBy->nExpr==1 );
2098   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2099     switch( op ){
2100       case OP_Ge: op = OP_Le; break;
2101       case OP_Gt: op = OP_Lt; break;
2102       default: assert( op==OP_Le ); op = OP_Ge; break;
2103     }
2104     arith = OP_Subtract;
2105   }
2106 
2107   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2108       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2109       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2110   ));
2111 
2112   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2113   ** consider NULL values to be larger than all other values, instead of
2114   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2115   ** (and adding that capability causes a performance regression), so
2116   ** instead if the BIGNULL flag is set then cases where either reg1 or
2117   ** reg2 are NULL are handled separately in the following block. The code
2118   ** generated is equivalent to:
2119   **
2120   **   if( reg1 IS NULL ){
2121   **     if( op==OP_Ge ) goto lbl;
2122   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2123   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2124   **   }else if( reg2 IS NULL ){
2125   **     if( op==OP_Le ) goto lbl;
2126   **   }
2127   **
2128   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2129   ** not taken, control jumps over the comparison operator coded below this
2130   ** block.  */
2131   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2132     /* This block runs if reg1 contains a NULL. */
2133     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2134     switch( op ){
2135       case OP_Ge:
2136         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2137         break;
2138       case OP_Gt:
2139         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2140         VdbeCoverage(v);
2141         break;
2142       case OP_Le:
2143         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2144         VdbeCoverage(v);
2145         break;
2146       default: assert( op==OP_Lt ); /* no-op */ break;
2147     }
2148     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
2149 
2150     /* This block runs if reg1 is not NULL, but reg2 is. */
2151     sqlite3VdbeJumpHere(v, addr);
2152     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2153     if( op==OP_Gt || op==OP_Ge ){
2154       sqlite3VdbeChangeP2(v, -1, addrDone);
2155     }
2156   }
2157 
2158   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2159   ** This block adds (or subtracts for DESC) the numeric value in regVal
2160   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2161   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2162   **
2163   **   if( reg1>='' ) goto addrGe;
2164   **   reg1 = reg1 +/- regVal
2165   **   addrGe:
2166   **
2167   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2168   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2169   ** then the arithmetic is performed, but since adding or subtracting from
2170   ** NULL is always NULL anyway, this case is handled as required too.  */
2171   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2172   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2173   VdbeCoverage(v);
2174   if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
2175     sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2176   }
2177   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2178   sqlite3VdbeJumpHere(v, addrGe);
2179 
2180   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2181   ** control skips over this test if the BIGNULL flag is set and either
2182   ** reg1 or reg2 contain a NULL value.  */
2183   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2184   pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
2185   sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
2186   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2187   sqlite3VdbeResolveLabel(v, addrDone);
2188 
2189   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2190   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2191   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2192   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2193   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2194   sqlite3ReleaseTempReg(pParse, reg1);
2195   sqlite3ReleaseTempReg(pParse, reg2);
2196 
2197   VdbeModuleComment((v, "CodeRangeTest: end"));
2198 }
2199 
2200 /*
2201 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2202 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2203 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2204 ** details.
2205 */
2206 static int windowCodeOp(
2207  WindowCodeArg *p,                /* Context object */
2208  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2209  int regCountdown,                /* Register for OP_IfPos countdown */
2210  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2211 ){
2212   int csr, reg;
2213   Parse *pParse = p->pParse;
2214   Window *pMWin = p->pMWin;
2215   int ret = 0;
2216   Vdbe *v = p->pVdbe;
2217   int addrContinue = 0;
2218   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2219 
2220   int lblDone = sqlite3VdbeMakeLabel(pParse);
2221   int addrNextRange = 0;
2222 
2223   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2224   ** starts with UNBOUNDED PRECEDING. */
2225   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2226     assert( regCountdown==0 && jumpOnEof==0 );
2227     return 0;
2228   }
2229 
2230   if( regCountdown>0 ){
2231     if( pMWin->eFrmType==TK_RANGE ){
2232       addrNextRange = sqlite3VdbeCurrentAddr(v);
2233       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2234       if( op==WINDOW_AGGINVERSE ){
2235         if( pMWin->eStart==TK_FOLLOWING ){
2236           windowCodeRangeTest(
2237               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2238           );
2239         }else{
2240           windowCodeRangeTest(
2241               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2242           );
2243         }
2244       }else{
2245         windowCodeRangeTest(
2246             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2247         );
2248       }
2249     }else{
2250       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2251       VdbeCoverage(v);
2252     }
2253   }
2254 
2255   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2256     windowAggFinal(p, 0);
2257   }
2258   addrContinue = sqlite3VdbeCurrentAddr(v);
2259 
2260   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2261   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2262   ** start cursor does not advance past the end cursor within the
2263   ** temporary table. It otherwise might, if (a>b). Also ensure that,
2264   ** if the input cursor is still finding new rows, that the end
2265   ** cursor does not go past it to EOF. */
2266   if( pMWin->eStart==pMWin->eEnd && regCountdown
2267    && pMWin->eFrmType==TK_RANGE
2268   ){
2269     int regRowid1 = sqlite3GetTempReg(pParse);
2270     int regRowid2 = sqlite3GetTempReg(pParse);
2271     if( op==WINDOW_AGGINVERSE ){
2272       sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2273       sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2274       sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2275       VdbeCoverage(v);
2276     }else if( p->regRowid ){
2277       sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1);
2278       sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1);
2279       VdbeCoverageNeverNull(v);
2280     }
2281     sqlite3ReleaseTempReg(pParse, regRowid1);
2282     sqlite3ReleaseTempReg(pParse, regRowid2);
2283     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2284   }
2285 
2286   switch( op ){
2287     case WINDOW_RETURN_ROW:
2288       csr = p->current.csr;
2289       reg = p->current.reg;
2290       windowReturnOneRow(p);
2291       break;
2292 
2293     case WINDOW_AGGINVERSE:
2294       csr = p->start.csr;
2295       reg = p->start.reg;
2296       if( pMWin->regStartRowid ){
2297         assert( pMWin->regEndRowid );
2298         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2299       }else{
2300         windowAggStep(p, pMWin, csr, 1, p->regArg);
2301       }
2302       break;
2303 
2304     default:
2305       assert( op==WINDOW_AGGSTEP );
2306       csr = p->end.csr;
2307       reg = p->end.reg;
2308       if( pMWin->regStartRowid ){
2309         assert( pMWin->regEndRowid );
2310         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2311       }else{
2312         windowAggStep(p, pMWin, csr, 0, p->regArg);
2313       }
2314       break;
2315   }
2316 
2317   if( op==p->eDelete ){
2318     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2319     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2320   }
2321 
2322   if( jumpOnEof ){
2323     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2324     VdbeCoverage(v);
2325     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2326   }else{
2327     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2328     VdbeCoverage(v);
2329     if( bPeer ){
2330       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2331     }
2332   }
2333 
2334   if( bPeer ){
2335     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2336     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2337     windowReadPeerValues(p, csr, regTmp);
2338     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2339     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2340   }
2341 
2342   if( addrNextRange ){
2343     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2344   }
2345   sqlite3VdbeResolveLabel(v, lblDone);
2346   return ret;
2347 }
2348 
2349 
2350 /*
2351 ** Allocate and return a duplicate of the Window object indicated by the
2352 ** third argument. Set the Window.pOwner field of the new object to
2353 ** pOwner.
2354 */
2355 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2356   Window *pNew = 0;
2357   if( ALWAYS(p) ){
2358     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2359     if( pNew ){
2360       pNew->zName = sqlite3DbStrDup(db, p->zName);
2361       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2362       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2363       pNew->pFunc = p->pFunc;
2364       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2365       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2366       pNew->eFrmType = p->eFrmType;
2367       pNew->eEnd = p->eEnd;
2368       pNew->eStart = p->eStart;
2369       pNew->eExclude = p->eExclude;
2370       pNew->regResult = p->regResult;
2371       pNew->regAccum = p->regAccum;
2372       pNew->iArgCol = p->iArgCol;
2373       pNew->iEphCsr = p->iEphCsr;
2374       pNew->bExprArgs = p->bExprArgs;
2375       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2376       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2377       pNew->pOwner = pOwner;
2378       pNew->bImplicitFrame = p->bImplicitFrame;
2379     }
2380   }
2381   return pNew;
2382 }
2383 
2384 /*
2385 ** Return a copy of the linked list of Window objects passed as the
2386 ** second argument.
2387 */
2388 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2389   Window *pWin;
2390   Window *pRet = 0;
2391   Window **pp = &pRet;
2392 
2393   for(pWin=p; pWin; pWin=pWin->pNextWin){
2394     *pp = sqlite3WindowDup(db, 0, pWin);
2395     if( *pp==0 ) break;
2396     pp = &((*pp)->pNextWin);
2397   }
2398 
2399   return pRet;
2400 }
2401 
2402 /*
2403 ** Return true if it can be determined at compile time that expression
2404 ** pExpr evaluates to a value that, when cast to an integer, is greater
2405 ** than zero. False otherwise.
2406 **
2407 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2408 ** flag and returns zero.
2409 */
2410 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2411   int ret = 0;
2412   sqlite3 *db = pParse->db;
2413   sqlite3_value *pVal = 0;
2414   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2415   if( pVal && sqlite3_value_int(pVal)>0 ){
2416     ret = 1;
2417   }
2418   sqlite3ValueFree(pVal);
2419   return ret;
2420 }
2421 
2422 /*
2423 ** sqlite3WhereBegin() has already been called for the SELECT statement
2424 ** passed as the second argument when this function is invoked. It generates
2425 ** code to populate the Window.regResult register for each window function
2426 ** and invoke the sub-routine at instruction addrGosub once for each row.
2427 ** sqlite3WhereEnd() is always called before returning.
2428 **
2429 ** This function handles several different types of window frames, which
2430 ** require slightly different processing. The following pseudo code is
2431 ** used to implement window frames of the form:
2432 **
2433 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2434 **
2435 ** Other window frame types use variants of the following:
2436 **
2437 **     ... loop started by sqlite3WhereBegin() ...
2438 **       if( new partition ){
2439 **         Gosub flush
2440 **       }
2441 **       Insert new row into eph table.
2442 **
2443 **       if( first row of partition ){
2444 **         // Rewind three cursors, all open on the eph table.
2445 **         Rewind(csrEnd);
2446 **         Rewind(csrStart);
2447 **         Rewind(csrCurrent);
2448 **
2449 **         regEnd = <expr2>          // FOLLOWING expression
2450 **         regStart = <expr1>        // PRECEDING expression
2451 **       }else{
2452 **         // First time this branch is taken, the eph table contains two
2453 **         // rows. The first row in the partition, which all three cursors
2454 **         // currently point to, and the following row.
2455 **         AGGSTEP
2456 **         if( (regEnd--)<=0 ){
2457 **           RETURN_ROW
2458 **           if( (regStart--)<=0 ){
2459 **             AGGINVERSE
2460 **           }
2461 **         }
2462 **       }
2463 **     }
2464 **     flush:
2465 **       AGGSTEP
2466 **       while( 1 ){
2467 **         RETURN ROW
2468 **         if( csrCurrent is EOF ) break;
2469 **         if( (regStart--)<=0 ){
2470 **           AggInverse(csrStart)
2471 **           Next(csrStart)
2472 **         }
2473 **       }
2474 **
2475 ** The pseudo-code above uses the following shorthand:
2476 **
2477 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2478 **               with arguments read from the current row of cursor csrEnd, then
2479 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2480 **
2481 **   RETURN_ROW: return a row to the caller based on the contents of the
2482 **               current row of csrCurrent and the current state of all
2483 **               aggregates. Then step cursor csrCurrent forward one row.
2484 **
2485 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2486 **               functions with arguments read from the current row of cursor
2487 **               csrStart. Then step csrStart forward one row.
2488 **
2489 ** There are two other ROWS window frames that are handled significantly
2490 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2491 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2492 ** cases because they change the order in which the three cursors (csrStart,
2493 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2494 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2495 ** three.
2496 **
2497 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2498 **
2499 **     ... loop started by sqlite3WhereBegin() ...
2500 **       if( new partition ){
2501 **         Gosub flush
2502 **       }
2503 **       Insert new row into eph table.
2504 **       if( first row of partition ){
2505 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2506 **         regEnd = <expr2>
2507 **         regStart = <expr1>
2508 **       }else{
2509 **         if( (regEnd--)<=0 ){
2510 **           AGGSTEP
2511 **         }
2512 **         RETURN_ROW
2513 **         if( (regStart--)<=0 ){
2514 **           AGGINVERSE
2515 **         }
2516 **       }
2517 **     }
2518 **     flush:
2519 **       if( (regEnd--)<=0 ){
2520 **         AGGSTEP
2521 **       }
2522 **       RETURN_ROW
2523 **
2524 **
2525 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2526 **
2527 **     ... loop started by sqlite3WhereBegin() ...
2528 **     if( new partition ){
2529 **       Gosub flush
2530 **     }
2531 **     Insert new row into eph table.
2532 **     if( first row of partition ){
2533 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2534 **       regEnd = <expr2>
2535 **       regStart = regEnd - <expr1>
2536 **     }else{
2537 **       AGGSTEP
2538 **       if( (regEnd--)<=0 ){
2539 **         RETURN_ROW
2540 **       }
2541 **       if( (regStart--)<=0 ){
2542 **         AGGINVERSE
2543 **       }
2544 **     }
2545 **   }
2546 **   flush:
2547 **     AGGSTEP
2548 **     while( 1 ){
2549 **       if( (regEnd--)<=0 ){
2550 **         RETURN_ROW
2551 **         if( eof ) break;
2552 **       }
2553 **       if( (regStart--)<=0 ){
2554 **         AGGINVERSE
2555 **         if( eof ) break
2556 **       }
2557 **     }
2558 **     while( !eof csrCurrent ){
2559 **       RETURN_ROW
2560 **     }
2561 **
2562 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2563 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2564 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2565 ** This is optimized of course - branches that will never be taken and
2566 ** conditions that are always true are omitted from the VM code. The only
2567 ** exceptional case is:
2568 **
2569 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2570 **
2571 **     ... loop started by sqlite3WhereBegin() ...
2572 **     if( new partition ){
2573 **       Gosub flush
2574 **     }
2575 **     Insert new row into eph table.
2576 **     if( first row of partition ){
2577 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2578 **       regStart = <expr1>
2579 **     }else{
2580 **       AGGSTEP
2581 **     }
2582 **   }
2583 **   flush:
2584 **     AGGSTEP
2585 **     while( 1 ){
2586 **       if( (regStart--)<=0 ){
2587 **         AGGINVERSE
2588 **         if( eof ) break
2589 **       }
2590 **       RETURN_ROW
2591 **     }
2592 **     while( !eof csrCurrent ){
2593 **       RETURN_ROW
2594 **     }
2595 **
2596 ** Also requiring special handling are the cases:
2597 **
2598 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2599 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2600 **
2601 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2602 ** To handle this case, the pseudo-code programs depicted above are modified
2603 ** slightly to be:
2604 **
2605 **     ... loop started by sqlite3WhereBegin() ...
2606 **     if( new partition ){
2607 **       Gosub flush
2608 **     }
2609 **     Insert new row into eph table.
2610 **     if( first row of partition ){
2611 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2612 **       regEnd = <expr2>
2613 **       regStart = <expr1>
2614 **       if( regEnd < regStart ){
2615 **         RETURN_ROW
2616 **         delete eph table contents
2617 **         continue
2618 **       }
2619 **     ...
2620 **
2621 ** The new "continue" statement in the above jumps to the next iteration
2622 ** of the outer loop - the one started by sqlite3WhereBegin().
2623 **
2624 ** The various GROUPS cases are implemented using the same patterns as
2625 ** ROWS. The VM code is modified slightly so that:
2626 **
2627 **   1. The else branch in the main loop is only taken if the row just
2628 **      added to the ephemeral table is the start of a new group. In
2629 **      other words, it becomes:
2630 **
2631 **         ... loop started by sqlite3WhereBegin() ...
2632 **         if( new partition ){
2633 **           Gosub flush
2634 **         }
2635 **         Insert new row into eph table.
2636 **         if( first row of partition ){
2637 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2638 **           regEnd = <expr2>
2639 **           regStart = <expr1>
2640 **         }else if( new group ){
2641 **           ...
2642 **         }
2643 **       }
2644 **
2645 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2646 **      AGGINVERSE step processes the current row of the relevant cursor and
2647 **      all subsequent rows belonging to the same group.
2648 **
2649 ** RANGE window frames are a little different again. As for GROUPS, the
2650 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2651 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2652 ** basic cases:
2653 **
2654 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2655 **
2656 **     ... loop started by sqlite3WhereBegin() ...
2657 **       if( new partition ){
2658 **         Gosub flush
2659 **       }
2660 **       Insert new row into eph table.
2661 **       if( first row of partition ){
2662 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2663 **         regEnd = <expr2>
2664 **         regStart = <expr1>
2665 **       }else{
2666 **         AGGSTEP
2667 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2668 **           RETURN_ROW
2669 **           while( csrStart.key + regStart) < csrCurrent.key ){
2670 **             AGGINVERSE
2671 **           }
2672 **         }
2673 **       }
2674 **     }
2675 **     flush:
2676 **       AGGSTEP
2677 **       while( 1 ){
2678 **         RETURN ROW
2679 **         if( csrCurrent is EOF ) break;
2680 **           while( csrStart.key + regStart) < csrCurrent.key ){
2681 **             AGGINVERSE
2682 **           }
2683 **         }
2684 **       }
2685 **
2686 ** In the above notation, "csr.key" means the current value of the ORDER BY
2687 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2688 ** or <expr PRECEDING) read from cursor csr.
2689 **
2690 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2691 **
2692 **     ... loop started by sqlite3WhereBegin() ...
2693 **       if( new partition ){
2694 **         Gosub flush
2695 **       }
2696 **       Insert new row into eph table.
2697 **       if( first row of partition ){
2698 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2699 **         regEnd = <expr2>
2700 **         regStart = <expr1>
2701 **       }else{
2702 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2703 **           AGGSTEP
2704 **         }
2705 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2706 **           AGGINVERSE
2707 **         }
2708 **         RETURN_ROW
2709 **       }
2710 **     }
2711 **     flush:
2712 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2713 **         AGGSTEP
2714 **       }
2715 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2716 **         AGGINVERSE
2717 **       }
2718 **       RETURN_ROW
2719 **
2720 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2721 **
2722 **     ... loop started by sqlite3WhereBegin() ...
2723 **       if( new partition ){
2724 **         Gosub flush
2725 **       }
2726 **       Insert new row into eph table.
2727 **       if( first row of partition ){
2728 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2729 **         regEnd = <expr2>
2730 **         regStart = <expr1>
2731 **       }else{
2732 **         AGGSTEP
2733 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2734 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2735 **             AGGINVERSE
2736 **           }
2737 **           RETURN_ROW
2738 **         }
2739 **       }
2740 **     }
2741 **     flush:
2742 **       AGGSTEP
2743 **       while( 1 ){
2744 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2745 **           AGGINVERSE
2746 **           if( eof ) break "while( 1 )" loop.
2747 **         }
2748 **         RETURN_ROW
2749 **       }
2750 **       while( !eof csrCurrent ){
2751 **         RETURN_ROW
2752 **       }
2753 **
2754 ** The text above leaves out many details. Refer to the code and comments
2755 ** below for a more complete picture.
2756 */
2757 void sqlite3WindowCodeStep(
2758   Parse *pParse,                  /* Parse context */
2759   Select *p,                      /* Rewritten SELECT statement */
2760   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2761   int regGosub,                   /* Register for OP_Gosub */
2762   int addrGosub                   /* OP_Gosub here to return each row */
2763 ){
2764   Window *pMWin = p->pWin;
2765   ExprList *pOrderBy = pMWin->pOrderBy;
2766   Vdbe *v = sqlite3GetVdbe(pParse);
2767   int csrWrite;                   /* Cursor used to write to eph. table */
2768   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2769   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2770   int iInput;                               /* To iterate through sub cols */
2771   int addrNe;                     /* Address of OP_Ne */
2772   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2773   int addrInteger = 0;            /* Address of OP_Integer */
2774   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2775   int regNew;                     /* Array of registers holding new input row */
2776   int regRecord;                  /* regNew array in record form */
2777   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2778   int regPeer = 0;                /* Peer values for current row */
2779   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2780   WindowCodeArg s;                /* Context object for sub-routines */
2781   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2782   int regStart = 0;               /* Value of <expr> PRECEDING */
2783   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2784 
2785   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2786        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2787   );
2788   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2789        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2790   );
2791   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2792        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2793        || pMWin->eExclude==TK_NO
2794   );
2795 
2796   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2797 
2798   /* Fill in the context object */
2799   memset(&s, 0, sizeof(WindowCodeArg));
2800   s.pParse = pParse;
2801   s.pMWin = pMWin;
2802   s.pVdbe = v;
2803   s.regGosub = regGosub;
2804   s.addrGosub = addrGosub;
2805   s.current.csr = pMWin->iEphCsr;
2806   csrWrite = s.current.csr+1;
2807   s.start.csr = s.current.csr+2;
2808   s.end.csr = s.current.csr+3;
2809 
2810   /* Figure out when rows may be deleted from the ephemeral table. There
2811   ** are four options - they may never be deleted (eDelete==0), they may
2812   ** be deleted as soon as they are no longer part of the window frame
2813   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2814   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2815   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2816   switch( pMWin->eStart ){
2817     case TK_FOLLOWING:
2818       if( pMWin->eFrmType!=TK_RANGE
2819        && windowExprGtZero(pParse, pMWin->pStart)
2820       ){
2821         s.eDelete = WINDOW_RETURN_ROW;
2822       }
2823       break;
2824     case TK_UNBOUNDED:
2825       if( windowCacheFrame(pMWin)==0 ){
2826         if( pMWin->eEnd==TK_PRECEDING ){
2827           if( pMWin->eFrmType!=TK_RANGE
2828            && windowExprGtZero(pParse, pMWin->pEnd)
2829           ){
2830             s.eDelete = WINDOW_AGGSTEP;
2831           }
2832         }else{
2833           s.eDelete = WINDOW_RETURN_ROW;
2834         }
2835       }
2836       break;
2837     default:
2838       s.eDelete = WINDOW_AGGINVERSE;
2839       break;
2840   }
2841 
2842   /* Allocate registers for the array of values from the sub-query, the
2843   ** samve values in record form, and the rowid used to insert said record
2844   ** into the ephemeral table.  */
2845   regNew = pParse->nMem+1;
2846   pParse->nMem += nInput;
2847   regRecord = ++pParse->nMem;
2848   s.regRowid = ++pParse->nMem;
2849 
2850   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2851   ** clause, allocate registers to store the results of evaluating each
2852   ** <expr>.  */
2853   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2854     regStart = ++pParse->nMem;
2855   }
2856   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2857     regEnd = ++pParse->nMem;
2858   }
2859 
2860   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2861   ** registers to store copies of the ORDER BY expressions (peer values)
2862   ** for the main loop, and for each cursor (start, current and end). */
2863   if( pMWin->eFrmType!=TK_ROWS ){
2864     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2865     regNewPeer = regNew + pMWin->nBufferCol;
2866     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2867     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2868     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2869     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2870     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2871   }
2872 
2873   /* Load the column values for the row returned by the sub-select
2874   ** into an array of registers starting at regNew. Assemble them into
2875   ** a record in register regRecord. */
2876   for(iInput=0; iInput<nInput; iInput++){
2877     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2878   }
2879   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2880 
2881   /* An input row has just been read into an array of registers starting
2882   ** at regNew. If the window has a PARTITION clause, this block generates
2883   ** VM code to check if the input row is the start of a new partition.
2884   ** If so, it does an OP_Gosub to an address to be filled in later. The
2885   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2886   if( pMWin->pPartition ){
2887     int addr;
2888     ExprList *pPart = pMWin->pPartition;
2889     int nPart = pPart->nExpr;
2890     int regNewPart = regNew + pMWin->nBufferCol;
2891     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2892 
2893     regFlushPart = ++pParse->nMem;
2894     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2895     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2896     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2897     VdbeCoverageEqNe(v);
2898     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2899     VdbeComment((v, "call flush_partition"));
2900     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2901   }
2902 
2903   /* Insert the new row into the ephemeral table */
2904   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid);
2905   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid);
2906   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid);
2907   VdbeCoverageNeverNull(v);
2908 
2909   /* This block is run for the first row of each partition */
2910   s.regArg = windowInitAccum(pParse, pMWin);
2911 
2912   if( regStart ){
2913     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2914     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2915   }
2916   if( regEnd ){
2917     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2918     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2919   }
2920 
2921   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2922     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2923     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2924     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2925     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2926     windowAggFinal(&s, 0);
2927     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2928     VdbeCoverageNeverTaken(v);
2929     windowReturnOneRow(&s);
2930     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2931     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2932     sqlite3VdbeJumpHere(v, addrGe);
2933   }
2934   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2935     assert( pMWin->eEnd==TK_FOLLOWING );
2936     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2937   }
2938 
2939   if( pMWin->eStart!=TK_UNBOUNDED ){
2940     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2941     VdbeCoverageNeverTaken(v);
2942   }
2943   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2944   VdbeCoverageNeverTaken(v);
2945   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2946   VdbeCoverageNeverTaken(v);
2947   if( regPeer && pOrderBy ){
2948     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2949     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2950     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2951     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2952   }
2953 
2954   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2955 
2956   sqlite3VdbeJumpHere(v, addrNe);
2957 
2958   /* Beginning of the block executed for the second and subsequent rows. */
2959   if( regPeer ){
2960     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2961   }
2962   if( pMWin->eStart==TK_FOLLOWING ){
2963     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2964     if( pMWin->eEnd!=TK_UNBOUNDED ){
2965       if( pMWin->eFrmType==TK_RANGE ){
2966         int lbl = sqlite3VdbeMakeLabel(pParse);
2967         int addrNext = sqlite3VdbeCurrentAddr(v);
2968         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2969         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2970         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2971         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2972         sqlite3VdbeResolveLabel(v, lbl);
2973       }else{
2974         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2975         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2976       }
2977     }
2978   }else
2979   if( pMWin->eEnd==TK_PRECEDING ){
2980     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2981     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2982     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2983     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2984     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2985   }else{
2986     int addr = 0;
2987     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2988     if( pMWin->eEnd!=TK_UNBOUNDED ){
2989       if( pMWin->eFrmType==TK_RANGE ){
2990         int lbl = 0;
2991         addr = sqlite3VdbeCurrentAddr(v);
2992         if( regEnd ){
2993           lbl = sqlite3VdbeMakeLabel(pParse);
2994           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2995         }
2996         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2997         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2998         if( regEnd ){
2999           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
3000           sqlite3VdbeResolveLabel(v, lbl);
3001         }
3002       }else{
3003         if( regEnd ){
3004           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
3005           VdbeCoverage(v);
3006         }
3007         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3008         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3009         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
3010       }
3011     }
3012   }
3013 
3014   /* End of the main input loop */
3015   sqlite3VdbeResolveLabel(v, lblWhereEnd);
3016   sqlite3WhereEnd(pWInfo);
3017 
3018   /* Fall through */
3019   if( pMWin->pPartition ){
3020     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
3021     sqlite3VdbeJumpHere(v, addrGosubFlush);
3022   }
3023 
3024   s.regRowid = 0;
3025   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
3026   VdbeCoverage(v);
3027   if( pMWin->eEnd==TK_PRECEDING ){
3028     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
3029     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
3030     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3031     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3032   }else if( pMWin->eStart==TK_FOLLOWING ){
3033     int addrStart;
3034     int addrBreak1;
3035     int addrBreak2;
3036     int addrBreak3;
3037     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3038     if( pMWin->eFrmType==TK_RANGE ){
3039       addrStart = sqlite3VdbeCurrentAddr(v);
3040       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3041       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3042     }else
3043     if( pMWin->eEnd==TK_UNBOUNDED ){
3044       addrStart = sqlite3VdbeCurrentAddr(v);
3045       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3046       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3047     }else{
3048       assert( pMWin->eEnd==TK_FOLLOWING );
3049       addrStart = sqlite3VdbeCurrentAddr(v);
3050       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3051       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3052     }
3053     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3054     sqlite3VdbeJumpHere(v, addrBreak2);
3055     addrStart = sqlite3VdbeCurrentAddr(v);
3056     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3057     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3058     sqlite3VdbeJumpHere(v, addrBreak1);
3059     sqlite3VdbeJumpHere(v, addrBreak3);
3060   }else{
3061     int addrBreak;
3062     int addrStart;
3063     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3064     addrStart = sqlite3VdbeCurrentAddr(v);
3065     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3066     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3067     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3068     sqlite3VdbeJumpHere(v, addrBreak);
3069   }
3070   sqlite3VdbeJumpHere(v, addrEmpty);
3071 
3072   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3073   if( pMWin->pPartition ){
3074     if( pMWin->regStartRowid ){
3075       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3076       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3077     }
3078     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3079     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3080   }
3081 }
3082 
3083 #endif /* SQLITE_OMIT_WINDOWFUNC */
3084