1 /* 2 ** 2018 May 08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 */ 13 #include "sqliteInt.h" 14 15 #ifndef SQLITE_OMIT_WINDOWFUNC 16 17 /* 18 ** SELECT REWRITING 19 ** 20 ** Any SELECT statement that contains one or more window functions in 21 ** either the select list or ORDER BY clause (the only two places window 22 ** functions may be used) is transformed by function sqlite3WindowRewrite() 23 ** in order to support window function processing. For example, with the 24 ** schema: 25 ** 26 ** CREATE TABLE t1(a, b, c, d, e, f, g); 27 ** 28 ** the statement: 29 ** 30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; 31 ** 32 ** is transformed to: 33 ** 34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d 36 ** ) ORDER BY e; 37 ** 38 ** The flattening optimization is disabled when processing this transformed 39 ** SELECT statement. This allows the implementation of the window function 40 ** (in this case max()) to process rows sorted in order of (c, d), which 41 ** makes things easier for obvious reasons. More generally: 42 ** 43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to 44 ** the sub-query. 45 ** 46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. 47 ** 48 ** * Terminals from each of the expression trees that make up the 49 ** select-list and ORDER BY expressions in the parent query are 50 ** selected by the sub-query. For the purposes of the transformation, 51 ** terminals are column references and aggregate functions. 52 ** 53 ** If there is more than one window function in the SELECT that uses 54 ** the same window declaration (the OVER bit), then a single scan may 55 ** be used to process more than one window function. For example: 56 ** 57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 58 ** min(e) OVER (PARTITION BY c ORDER BY d) 59 ** FROM t1; 60 ** 61 ** is transformed in the same way as the example above. However: 62 ** 63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), 64 ** min(e) OVER (PARTITION BY a ORDER BY b) 65 ** FROM t1; 66 ** 67 ** Must be transformed to: 68 ** 69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( 70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM 71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b 72 ** ) ORDER BY c, d 73 ** ) ORDER BY e; 74 ** 75 ** so that both min() and max() may process rows in the order defined by 76 ** their respective window declarations. 77 ** 78 ** INTERFACE WITH SELECT.C 79 ** 80 ** When processing the rewritten SELECT statement, code in select.c calls 81 ** sqlite3WhereBegin() to begin iterating through the results of the 82 ** sub-query, which is always implemented as a co-routine. It then calls 83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling 84 ** sqlite3WhereEnd(). 85 ** 86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned 87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. 88 ** When the sub-routine is invoked: 89 ** 90 ** * The results of all window-functions for the row are stored 91 ** in the associated Window.regResult registers. 92 ** 93 ** * The required terminal values are stored in the current row of 94 ** temp table Window.iEphCsr. 95 ** 96 ** In some cases, depending on the window frame and the specific window 97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition 98 ** in a temp table before returning any rows. In other cases it does not. 99 ** This detail is encapsulated within this file, the code generated by 100 ** select.c is the same in either case. 101 ** 102 ** BUILT-IN WINDOW FUNCTIONS 103 ** 104 ** This implementation features the following built-in window functions: 105 ** 106 ** row_number() 107 ** rank() 108 ** dense_rank() 109 ** percent_rank() 110 ** cume_dist() 111 ** ntile(N) 112 ** lead(expr [, offset [, default]]) 113 ** lag(expr [, offset [, default]]) 114 ** first_value(expr) 115 ** last_value(expr) 116 ** nth_value(expr, N) 117 ** 118 ** These are the same built-in window functions supported by Postgres. 119 ** Although the behaviour of aggregate window functions (functions that 120 ** can be used as either aggregates or window funtions) allows them to 121 ** be implemented using an API, built-in window functions are much more 122 ** esoteric. Additionally, some window functions (e.g. nth_value()) 123 ** may only be implemented by caching the entire partition in memory. 124 ** As such, some built-in window functions use the same API as aggregate 125 ** window functions and some are implemented directly using VDBE 126 ** instructions. Additionally, for those functions that use the API, the 127 ** window frame is sometimes modified before the SELECT statement is 128 ** rewritten. For example, regardless of the specified window frame, the 129 ** row_number() function always uses: 130 ** 131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 132 ** 133 ** See sqlite3WindowUpdate() for details. 134 ** 135 ** As well as some of the built-in window functions, aggregate window 136 ** functions min() and max() are implemented using VDBE instructions if 137 ** the start of the window frame is declared as anything other than 138 ** UNBOUNDED PRECEDING. 139 */ 140 141 /* 142 ** Implementation of built-in window function row_number(). Assumes that the 143 ** window frame has been coerced to: 144 ** 145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 146 */ 147 static void row_numberStepFunc( 148 sqlite3_context *pCtx, 149 int nArg, 150 sqlite3_value **apArg 151 ){ 152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 153 if( p ) (*p)++; 154 UNUSED_PARAMETER(nArg); 155 UNUSED_PARAMETER(apArg); 156 } 157 static void row_numberValueFunc(sqlite3_context *pCtx){ 158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 159 sqlite3_result_int64(pCtx, (p ? *p : 0)); 160 } 161 162 /* 163 ** Context object type used by rank(), dense_rank(), percent_rank() and 164 ** cume_dist(). 165 */ 166 struct CallCount { 167 i64 nValue; 168 i64 nStep; 169 i64 nTotal; 170 }; 171 172 /* 173 ** Implementation of built-in window function dense_rank(). Assumes that 174 ** the window frame has been set to: 175 ** 176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 177 */ 178 static void dense_rankStepFunc( 179 sqlite3_context *pCtx, 180 int nArg, 181 sqlite3_value **apArg 182 ){ 183 struct CallCount *p; 184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 185 if( p ) p->nStep = 1; 186 UNUSED_PARAMETER(nArg); 187 UNUSED_PARAMETER(apArg); 188 } 189 static void dense_rankValueFunc(sqlite3_context *pCtx){ 190 struct CallCount *p; 191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 192 if( p ){ 193 if( p->nStep ){ 194 p->nValue++; 195 p->nStep = 0; 196 } 197 sqlite3_result_int64(pCtx, p->nValue); 198 } 199 } 200 201 /* 202 ** Implementation of built-in window function nth_value(). This 203 ** implementation is used in "slow mode" only - when the EXCLUDE clause 204 ** is not set to the default value "NO OTHERS". 205 */ 206 struct NthValueCtx { 207 i64 nStep; 208 sqlite3_value *pValue; 209 }; 210 static void nth_valueStepFunc( 211 sqlite3_context *pCtx, 212 int nArg, 213 sqlite3_value **apArg 214 ){ 215 struct NthValueCtx *p; 216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 217 if( p ){ 218 i64 iVal; 219 switch( sqlite3_value_numeric_type(apArg[1]) ){ 220 case SQLITE_INTEGER: 221 iVal = sqlite3_value_int64(apArg[1]); 222 break; 223 case SQLITE_FLOAT: { 224 double fVal = sqlite3_value_double(apArg[1]); 225 if( ((i64)fVal)!=fVal ) goto error_out; 226 iVal = (i64)fVal; 227 break; 228 } 229 default: 230 goto error_out; 231 } 232 if( iVal<=0 ) goto error_out; 233 234 p->nStep++; 235 if( iVal==p->nStep ){ 236 p->pValue = sqlite3_value_dup(apArg[0]); 237 if( !p->pValue ){ 238 sqlite3_result_error_nomem(pCtx); 239 } 240 } 241 } 242 UNUSED_PARAMETER(nArg); 243 UNUSED_PARAMETER(apArg); 244 return; 245 246 error_out: 247 sqlite3_result_error( 248 pCtx, "second argument to nth_value must be a positive integer", -1 249 ); 250 } 251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){ 252 struct NthValueCtx *p; 253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0); 254 if( p && p->pValue ){ 255 sqlite3_result_value(pCtx, p->pValue); 256 sqlite3_value_free(p->pValue); 257 p->pValue = 0; 258 } 259 } 260 #define nth_valueInvFunc noopStepFunc 261 #define nth_valueValueFunc noopValueFunc 262 263 static void first_valueStepFunc( 264 sqlite3_context *pCtx, 265 int nArg, 266 sqlite3_value **apArg 267 ){ 268 struct NthValueCtx *p; 269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 270 if( p && p->pValue==0 ){ 271 p->pValue = sqlite3_value_dup(apArg[0]); 272 if( !p->pValue ){ 273 sqlite3_result_error_nomem(pCtx); 274 } 275 } 276 UNUSED_PARAMETER(nArg); 277 UNUSED_PARAMETER(apArg); 278 } 279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){ 280 struct NthValueCtx *p; 281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 282 if( p && p->pValue ){ 283 sqlite3_result_value(pCtx, p->pValue); 284 sqlite3_value_free(p->pValue); 285 p->pValue = 0; 286 } 287 } 288 #define first_valueInvFunc noopStepFunc 289 #define first_valueValueFunc noopValueFunc 290 291 /* 292 ** Implementation of built-in window function rank(). Assumes that 293 ** the window frame has been set to: 294 ** 295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 296 */ 297 static void rankStepFunc( 298 sqlite3_context *pCtx, 299 int nArg, 300 sqlite3_value **apArg 301 ){ 302 struct CallCount *p; 303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 304 if( p ){ 305 p->nStep++; 306 if( p->nValue==0 ){ 307 p->nValue = p->nStep; 308 } 309 } 310 UNUSED_PARAMETER(nArg); 311 UNUSED_PARAMETER(apArg); 312 } 313 static void rankValueFunc(sqlite3_context *pCtx){ 314 struct CallCount *p; 315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 316 if( p ){ 317 sqlite3_result_int64(pCtx, p->nValue); 318 p->nValue = 0; 319 } 320 } 321 322 /* 323 ** Implementation of built-in window function percent_rank(). Assumes that 324 ** the window frame has been set to: 325 ** 326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 327 */ 328 static void percent_rankStepFunc( 329 sqlite3_context *pCtx, 330 int nArg, 331 sqlite3_value **apArg 332 ){ 333 struct CallCount *p; 334 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 335 UNUSED_PARAMETER(apArg); 336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 337 if( p ){ 338 p->nTotal++; 339 } 340 } 341 static void percent_rankInvFunc( 342 sqlite3_context *pCtx, 343 int nArg, 344 sqlite3_value **apArg 345 ){ 346 struct CallCount *p; 347 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 348 UNUSED_PARAMETER(apArg); 349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 350 p->nStep++; 351 } 352 static void percent_rankValueFunc(sqlite3_context *pCtx){ 353 struct CallCount *p; 354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 355 if( p ){ 356 p->nValue = p->nStep; 357 if( p->nTotal>1 ){ 358 double r = (double)p->nValue / (double)(p->nTotal-1); 359 sqlite3_result_double(pCtx, r); 360 }else{ 361 sqlite3_result_double(pCtx, 0.0); 362 } 363 } 364 } 365 #define percent_rankFinalizeFunc percent_rankValueFunc 366 367 /* 368 ** Implementation of built-in window function cume_dist(). Assumes that 369 ** the window frame has been set to: 370 ** 371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING 372 */ 373 static void cume_distStepFunc( 374 sqlite3_context *pCtx, 375 int nArg, 376 sqlite3_value **apArg 377 ){ 378 struct CallCount *p; 379 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 380 UNUSED_PARAMETER(apArg); 381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 382 if( p ){ 383 p->nTotal++; 384 } 385 } 386 static void cume_distInvFunc( 387 sqlite3_context *pCtx, 388 int nArg, 389 sqlite3_value **apArg 390 ){ 391 struct CallCount *p; 392 UNUSED_PARAMETER(nArg); assert( nArg==0 ); 393 UNUSED_PARAMETER(apArg); 394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 395 p->nStep++; 396 } 397 static void cume_distValueFunc(sqlite3_context *pCtx){ 398 struct CallCount *p; 399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0); 400 if( p ){ 401 double r = (double)(p->nStep) / (double)(p->nTotal); 402 sqlite3_result_double(pCtx, r); 403 } 404 } 405 #define cume_distFinalizeFunc cume_distValueFunc 406 407 /* 408 ** Context object for ntile() window function. 409 */ 410 struct NtileCtx { 411 i64 nTotal; /* Total rows in partition */ 412 i64 nParam; /* Parameter passed to ntile(N) */ 413 i64 iRow; /* Current row */ 414 }; 415 416 /* 417 ** Implementation of ntile(). This assumes that the window frame has 418 ** been coerced to: 419 ** 420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING 421 */ 422 static void ntileStepFunc( 423 sqlite3_context *pCtx, 424 int nArg, 425 sqlite3_value **apArg 426 ){ 427 struct NtileCtx *p; 428 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 430 if( p ){ 431 if( p->nTotal==0 ){ 432 p->nParam = sqlite3_value_int64(apArg[0]); 433 if( p->nParam<=0 ){ 434 sqlite3_result_error( 435 pCtx, "argument of ntile must be a positive integer", -1 436 ); 437 } 438 } 439 p->nTotal++; 440 } 441 } 442 static void ntileInvFunc( 443 sqlite3_context *pCtx, 444 int nArg, 445 sqlite3_value **apArg 446 ){ 447 struct NtileCtx *p; 448 assert( nArg==1 ); UNUSED_PARAMETER(nArg); 449 UNUSED_PARAMETER(apArg); 450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 451 p->iRow++; 452 } 453 static void ntileValueFunc(sqlite3_context *pCtx){ 454 struct NtileCtx *p; 455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 456 if( p && p->nParam>0 ){ 457 int nSize = (p->nTotal / p->nParam); 458 if( nSize==0 ){ 459 sqlite3_result_int64(pCtx, p->iRow+1); 460 }else{ 461 i64 nLarge = p->nTotal - p->nParam*nSize; 462 i64 iSmall = nLarge*(nSize+1); 463 i64 iRow = p->iRow; 464 465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); 466 467 if( iRow<iSmall ){ 468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); 469 }else{ 470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); 471 } 472 } 473 } 474 } 475 #define ntileFinalizeFunc ntileValueFunc 476 477 /* 478 ** Context object for last_value() window function. 479 */ 480 struct LastValueCtx { 481 sqlite3_value *pVal; 482 int nVal; 483 }; 484 485 /* 486 ** Implementation of last_value(). 487 */ 488 static void last_valueStepFunc( 489 sqlite3_context *pCtx, 490 int nArg, 491 sqlite3_value **apArg 492 ){ 493 struct LastValueCtx *p; 494 UNUSED_PARAMETER(nArg); 495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 496 if( p ){ 497 sqlite3_value_free(p->pVal); 498 p->pVal = sqlite3_value_dup(apArg[0]); 499 if( p->pVal==0 ){ 500 sqlite3_result_error_nomem(pCtx); 501 }else{ 502 p->nVal++; 503 } 504 } 505 } 506 static void last_valueInvFunc( 507 sqlite3_context *pCtx, 508 int nArg, 509 sqlite3_value **apArg 510 ){ 511 struct LastValueCtx *p; 512 UNUSED_PARAMETER(nArg); 513 UNUSED_PARAMETER(apArg); 514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 515 if( ALWAYS(p) ){ 516 p->nVal--; 517 if( p->nVal==0 ){ 518 sqlite3_value_free(p->pVal); 519 p->pVal = 0; 520 } 521 } 522 } 523 static void last_valueValueFunc(sqlite3_context *pCtx){ 524 struct LastValueCtx *p; 525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0); 526 if( p && p->pVal ){ 527 sqlite3_result_value(pCtx, p->pVal); 528 } 529 } 530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){ 531 struct LastValueCtx *p; 532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); 533 if( p && p->pVal ){ 534 sqlite3_result_value(pCtx, p->pVal); 535 sqlite3_value_free(p->pVal); 536 p->pVal = 0; 537 } 538 } 539 540 /* 541 ** Static names for the built-in window function names. These static 542 ** names are used, rather than string literals, so that FuncDef objects 543 ** can be associated with a particular window function by direct 544 ** comparison of the zName pointer. Example: 545 ** 546 ** if( pFuncDef->zName==row_valueName ){ ... } 547 */ 548 static const char row_numberName[] = "row_number"; 549 static const char dense_rankName[] = "dense_rank"; 550 static const char rankName[] = "rank"; 551 static const char percent_rankName[] = "percent_rank"; 552 static const char cume_distName[] = "cume_dist"; 553 static const char ntileName[] = "ntile"; 554 static const char last_valueName[] = "last_value"; 555 static const char nth_valueName[] = "nth_value"; 556 static const char first_valueName[] = "first_value"; 557 static const char leadName[] = "lead"; 558 static const char lagName[] = "lag"; 559 560 /* 561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders 562 ** for built-in window functions that never call those interfaces. 563 ** 564 ** The noopValueFunc() is called but is expected to do nothing. The 565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to 566 ** let the test coverage routine know not to expect this function to be 567 ** invoked. 568 */ 569 static void noopStepFunc( /*NO_TEST*/ 570 sqlite3_context *p, /*NO_TEST*/ 571 int n, /*NO_TEST*/ 572 sqlite3_value **a /*NO_TEST*/ 573 ){ /*NO_TEST*/ 574 UNUSED_PARAMETER(p); /*NO_TEST*/ 575 UNUSED_PARAMETER(n); /*NO_TEST*/ 576 UNUSED_PARAMETER(a); /*NO_TEST*/ 577 assert(0); /*NO_TEST*/ 578 } /*NO_TEST*/ 579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } 580 581 /* Window functions that use all window interfaces: xStep, xFinal, 582 ** xValue, and xInverse */ 583 #define WINDOWFUNCALL(name,nArg,extra) { \ 584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ 586 name ## InvFunc, name ## Name, {0} \ 587 } 588 589 /* Window functions that are implemented using bytecode and thus have 590 ** no-op routines for their methods */ 591 #define WINDOWFUNCNOOP(name,nArg,extra) { \ 592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 593 noopStepFunc, noopValueFunc, noopValueFunc, \ 594 noopStepFunc, name ## Name, {0} \ 595 } 596 597 /* Window functions that use all window interfaces: xStep, the 598 ** same routine for xFinalize and xValue and which never call 599 ** xInverse. */ 600 #define WINDOWFUNCX(name,nArg,extra) { \ 601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ 602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ 603 noopStepFunc, name ## Name, {0} \ 604 } 605 606 607 /* 608 ** Register those built-in window functions that are not also aggregates. 609 */ 610 void sqlite3WindowFunctions(void){ 611 static FuncDef aWindowFuncs[] = { 612 WINDOWFUNCX(row_number, 0, 0), 613 WINDOWFUNCX(dense_rank, 0, 0), 614 WINDOWFUNCX(rank, 0, 0), 615 WINDOWFUNCALL(percent_rank, 0, 0), 616 WINDOWFUNCALL(cume_dist, 0, 0), 617 WINDOWFUNCALL(ntile, 1, 0), 618 WINDOWFUNCALL(last_value, 1, 0), 619 WINDOWFUNCALL(nth_value, 2, 0), 620 WINDOWFUNCALL(first_value, 1, 0), 621 WINDOWFUNCNOOP(lead, 1, 0), 622 WINDOWFUNCNOOP(lead, 2, 0), 623 WINDOWFUNCNOOP(lead, 3, 0), 624 WINDOWFUNCNOOP(lag, 1, 0), 625 WINDOWFUNCNOOP(lag, 2, 0), 626 WINDOWFUNCNOOP(lag, 3, 0), 627 }; 628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); 629 } 630 631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){ 632 Window *p; 633 for(p=pList; p; p=p->pNextWin){ 634 if( sqlite3StrICmp(p->zName, zName)==0 ) break; 635 } 636 if( p==0 ){ 637 sqlite3ErrorMsg(pParse, "no such window: %s", zName); 638 } 639 return p; 640 } 641 642 /* 643 ** This function is called immediately after resolving the function name 644 ** for a window function within a SELECT statement. Argument pList is a 645 ** linked list of WINDOW definitions for the current SELECT statement. 646 ** Argument pFunc is the function definition just resolved and pWin 647 ** is the Window object representing the associated OVER clause. This 648 ** function updates the contents of pWin as follows: 649 ** 650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), 651 ** search list pList for a matching WINDOW definition, and update pWin 652 ** accordingly. If no such WINDOW clause can be found, leave an error 653 ** in pParse. 654 ** 655 ** * If the function is a built-in window function that requires the 656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top 657 ** of this file), pWin is updated here. 658 */ 659 void sqlite3WindowUpdate( 660 Parse *pParse, 661 Window *pList, /* List of named windows for this SELECT */ 662 Window *pWin, /* Window frame to update */ 663 FuncDef *pFunc /* Window function definition */ 664 ){ 665 if( pWin->zName && pWin->eFrmType==0 ){ 666 Window *p = windowFind(pParse, pList, pWin->zName); 667 if( p==0 ) return; 668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); 669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); 670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); 671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); 672 pWin->eStart = p->eStart; 673 pWin->eEnd = p->eEnd; 674 pWin->eFrmType = p->eFrmType; 675 pWin->eExclude = p->eExclude; 676 }else{ 677 sqlite3WindowChain(pParse, pWin, pList); 678 } 679 if( (pWin->eFrmType==TK_RANGE) 680 && (pWin->pStart || pWin->pEnd) 681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1) 682 ){ 683 sqlite3ErrorMsg(pParse, 684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression" 685 ); 686 }else 687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ 688 sqlite3 *db = pParse->db; 689 if( pWin->pFilter ){ 690 sqlite3ErrorMsg(pParse, 691 "FILTER clause may only be used with aggregate window functions" 692 ); 693 }else{ 694 struct WindowUpdate { 695 const char *zFunc; 696 int eFrmType; 697 int eStart; 698 int eEnd; 699 } aUp[] = { 700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT }, 703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED }, 704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED }, 705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED }, 706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED }, 707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT }, 708 }; 709 int i; 710 for(i=0; i<ArraySize(aUp); i++){ 711 if( pFunc->zName==aUp[i].zFunc ){ 712 sqlite3ExprDelete(db, pWin->pStart); 713 sqlite3ExprDelete(db, pWin->pEnd); 714 pWin->pEnd = pWin->pStart = 0; 715 pWin->eFrmType = aUp[i].eFrmType; 716 pWin->eStart = aUp[i].eStart; 717 pWin->eEnd = aUp[i].eEnd; 718 pWin->eExclude = 0; 719 if( pWin->eStart==TK_FOLLOWING ){ 720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1"); 721 } 722 break; 723 } 724 } 725 } 726 } 727 pWin->pFunc = pFunc; 728 } 729 730 /* 731 ** Context object passed through sqlite3WalkExprList() to 732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). 733 */ 734 typedef struct WindowRewrite WindowRewrite; 735 struct WindowRewrite { 736 Window *pWin; 737 SrcList *pSrc; 738 ExprList *pSub; 739 Table *pTab; 740 Select *pSubSelect; /* Current sub-select, if any */ 741 }; 742 743 /* 744 ** Callback function used by selectWindowRewriteEList(). If necessary, 745 ** this function appends to the output expression-list and updates 746 ** expression (*ppExpr) in place. 747 */ 748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ 749 struct WindowRewrite *p = pWalker->u.pRewrite; 750 Parse *pParse = pWalker->pParse; 751 assert( p!=0 ); 752 assert( p->pWin!=0 ); 753 754 /* If this function is being called from within a scalar sub-select 755 ** that used by the SELECT statement being processed, only process 756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do 757 ** not process aggregates or window functions at all, as they belong 758 ** to the scalar sub-select. */ 759 if( p->pSubSelect ){ 760 if( pExpr->op!=TK_COLUMN ){ 761 return WRC_Continue; 762 }else{ 763 int nSrc = p->pSrc->nSrc; 764 int i; 765 for(i=0; i<nSrc; i++){ 766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; 767 } 768 if( i==nSrc ) return WRC_Continue; 769 } 770 } 771 772 switch( pExpr->op ){ 773 774 case TK_FUNCTION: 775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){ 776 break; 777 }else{ 778 Window *pWin; 779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ 780 if( pExpr->y.pWin==pWin ){ 781 assert( pWin->pOwner==pExpr ); 782 return WRC_Prune; 783 } 784 } 785 } 786 /* no break */ deliberate_fall_through 787 788 case TK_AGG_FUNCTION: 789 case TK_COLUMN: { 790 int iCol = -1; 791 if( pParse->db->mallocFailed ) return WRC_Abort; 792 if( p->pSub ){ 793 int i; 794 for(i=0; i<p->pSub->nExpr; i++){ 795 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){ 796 iCol = i; 797 break; 798 } 799 } 800 } 801 if( iCol<0 ){ 802 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); 803 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION; 804 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); 805 } 806 if( p->pSub ){ 807 int f = pExpr->flags & EP_Collate; 808 assert( ExprHasProperty(pExpr, EP_Static)==0 ); 809 ExprSetProperty(pExpr, EP_Static); 810 sqlite3ExprDelete(pParse->db, pExpr); 811 ExprClearProperty(pExpr, EP_Static); 812 memset(pExpr, 0, sizeof(Expr)); 813 814 pExpr->op = TK_COLUMN; 815 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol); 816 pExpr->iTable = p->pWin->iEphCsr; 817 pExpr->y.pTab = p->pTab; 818 pExpr->flags = f; 819 } 820 if( pParse->db->mallocFailed ) return WRC_Abort; 821 break; 822 } 823 824 default: /* no-op */ 825 break; 826 } 827 828 return WRC_Continue; 829 } 830 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ 831 struct WindowRewrite *p = pWalker->u.pRewrite; 832 Select *pSave = p->pSubSelect; 833 if( pSave==pSelect ){ 834 return WRC_Continue; 835 }else{ 836 p->pSubSelect = pSelect; 837 sqlite3WalkSelect(pWalker, pSelect); 838 p->pSubSelect = pSave; 839 } 840 return WRC_Prune; 841 } 842 843 844 /* 845 ** Iterate through each expression in expression-list pEList. For each: 846 ** 847 ** * TK_COLUMN, 848 ** * aggregate function, or 849 ** * window function with a Window object that is not a member of the 850 ** Window list passed as the second argument (pWin). 851 ** 852 ** Append the node to output expression-list (*ppSub). And replace it 853 ** with a TK_COLUMN that reads the (N-1)th element of table 854 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after 855 ** appending the new one. 856 */ 857 static void selectWindowRewriteEList( 858 Parse *pParse, 859 Window *pWin, 860 SrcList *pSrc, 861 ExprList *pEList, /* Rewrite expressions in this list */ 862 Table *pTab, 863 ExprList **ppSub /* IN/OUT: Sub-select expression-list */ 864 ){ 865 Walker sWalker; 866 WindowRewrite sRewrite; 867 868 assert( pWin!=0 ); 869 memset(&sWalker, 0, sizeof(Walker)); 870 memset(&sRewrite, 0, sizeof(WindowRewrite)); 871 872 sRewrite.pSub = *ppSub; 873 sRewrite.pWin = pWin; 874 sRewrite.pSrc = pSrc; 875 sRewrite.pTab = pTab; 876 877 sWalker.pParse = pParse; 878 sWalker.xExprCallback = selectWindowRewriteExprCb; 879 sWalker.xSelectCallback = selectWindowRewriteSelectCb; 880 sWalker.u.pRewrite = &sRewrite; 881 882 (void)sqlite3WalkExprList(&sWalker, pEList); 883 884 *ppSub = sRewrite.pSub; 885 } 886 887 /* 888 ** Append a copy of each expression in expression-list pAppend to 889 ** expression list pList. Return a pointer to the result list. 890 */ 891 static ExprList *exprListAppendList( 892 Parse *pParse, /* Parsing context */ 893 ExprList *pList, /* List to which to append. Might be NULL */ 894 ExprList *pAppend, /* List of values to append. Might be NULL */ 895 int bIntToNull 896 ){ 897 if( pAppend ){ 898 int i; 899 int nInit = pList ? pList->nExpr : 0; 900 for(i=0; i<pAppend->nExpr; i++){ 901 sqlite3 *db = pParse->db; 902 Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0); 903 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) ); 904 if( db->mallocFailed ){ 905 sqlite3ExprDelete(db, pDup); 906 break; 907 } 908 if( bIntToNull ){ 909 int iDummy; 910 Expr *pSub; 911 for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){ 912 assert( pSub ); 913 } 914 if( sqlite3ExprIsInteger(pSub, &iDummy) ){ 915 pSub->op = TK_NULL; 916 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse); 917 pSub->u.zToken = 0; 918 } 919 } 920 pList = sqlite3ExprListAppend(pParse, pList, pDup); 921 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags; 922 } 923 } 924 return pList; 925 } 926 927 /* 928 ** When rewriting a query, if the new subquery in the FROM clause 929 ** contains TK_AGG_FUNCTION nodes that refer to an outer query, 930 ** then we have to increase the Expr->op2 values of those nodes 931 ** due to the extra subquery layer that was added. 932 ** 933 ** See also the incrAggDepth() routine in resolve.c 934 */ 935 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){ 936 if( pExpr->op==TK_AGG_FUNCTION 937 && pExpr->op2>=pWalker->walkerDepth 938 ){ 939 pExpr->op2++; 940 } 941 return WRC_Continue; 942 } 943 944 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){ 945 if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){ 946 sqlite3ErrorMsg(pWalker->pParse, 947 "misuse of aggregate: %s()", pExpr->u.zToken); 948 } 949 return WRC_Continue; 950 } 951 952 /* 953 ** If the SELECT statement passed as the second argument does not invoke 954 ** any SQL window functions, this function is a no-op. Otherwise, it 955 ** rewrites the SELECT statement so that window function xStep functions 956 ** are invoked in the correct order as described under "SELECT REWRITING" 957 ** at the top of this file. 958 */ 959 int sqlite3WindowRewrite(Parse *pParse, Select *p){ 960 int rc = SQLITE_OK; 961 if( p->pWin && p->pPrior==0 && ALWAYS((p->selFlags & SF_WinRewrite)==0) ){ 962 Vdbe *v = sqlite3GetVdbe(pParse); 963 sqlite3 *db = pParse->db; 964 Select *pSub = 0; /* The subquery */ 965 SrcList *pSrc = p->pSrc; 966 Expr *pWhere = p->pWhere; 967 ExprList *pGroupBy = p->pGroupBy; 968 Expr *pHaving = p->pHaving; 969 ExprList *pSort = 0; 970 971 ExprList *pSublist = 0; /* Expression list for sub-query */ 972 Window *pMWin = p->pWin; /* Main window object */ 973 Window *pWin; /* Window object iterator */ 974 Table *pTab; 975 Walker w; 976 977 u32 selFlags = p->selFlags; 978 979 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 980 if( pTab==0 ){ 981 return sqlite3ErrorToParser(db, SQLITE_NOMEM); 982 } 983 sqlite3AggInfoPersistWalkerInit(&w, pParse); 984 sqlite3WalkSelect(&w, p); 985 if( (p->selFlags & SF_Aggregate)==0 ){ 986 w.xExprCallback = disallowAggregatesInOrderByCb; 987 w.xSelectCallback = 0; 988 sqlite3WalkExprList(&w, p->pOrderBy); 989 } 990 991 p->pSrc = 0; 992 p->pWhere = 0; 993 p->pGroupBy = 0; 994 p->pHaving = 0; 995 p->selFlags &= ~SF_Aggregate; 996 p->selFlags |= SF_WinRewrite; 997 998 /* Create the ORDER BY clause for the sub-select. This is the concatenation 999 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it 1000 ** redundant, remove the ORDER BY from the parent SELECT. */ 1001 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1); 1002 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1); 1003 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){ 1004 int nSave = pSort->nExpr; 1005 pSort->nExpr = p->pOrderBy->nExpr; 1006 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ 1007 sqlite3ExprListDelete(db, p->pOrderBy); 1008 p->pOrderBy = 0; 1009 } 1010 pSort->nExpr = nSave; 1011 } 1012 1013 /* Assign a cursor number for the ephemeral table used to buffer rows. 1014 ** The OpenEphemeral instruction is coded later, after it is known how 1015 ** many columns the table will have. */ 1016 pMWin->iEphCsr = pParse->nTab++; 1017 pParse->nTab += 3; 1018 1019 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist); 1020 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist); 1021 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); 1022 1023 /* Append the PARTITION BY and ORDER BY expressions to the to the 1024 ** sub-select expression list. They are required to figure out where 1025 ** boundaries for partitions and sets of peer rows lie. */ 1026 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0); 1027 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0); 1028 1029 /* Append the arguments passed to each window function to the 1030 ** sub-select expression list. Also allocate two registers for each 1031 ** window function - one for the accumulator, another for interim 1032 ** results. */ 1033 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1034 ExprList *pArgs = pWin->pOwner->x.pList; 1035 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){ 1036 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist); 1037 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1038 pWin->bExprArgs = 1; 1039 }else{ 1040 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); 1041 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0); 1042 } 1043 if( pWin->pFilter ){ 1044 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); 1045 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); 1046 } 1047 pWin->regAccum = ++pParse->nMem; 1048 pWin->regResult = ++pParse->nMem; 1049 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1050 } 1051 1052 /* If there is no ORDER BY or PARTITION BY clause, and the window 1053 ** function accepts zero arguments, and there are no other columns 1054 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible 1055 ** that pSublist is still NULL here. Add a constant expression here to 1056 ** keep everything legal in this case. 1057 */ 1058 if( pSublist==0 ){ 1059 pSublist = sqlite3ExprListAppend(pParse, 0, 1060 sqlite3Expr(db, TK_INTEGER, "0") 1061 ); 1062 } 1063 1064 pSub = sqlite3SelectNew( 1065 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 1066 ); 1067 SELECTTRACE(1,pParse,pSub, 1068 ("New window-function subquery in FROM clause of (%u/%p)\n", 1069 p->selId, p)); 1070 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 1071 if( p->pSrc ){ 1072 Table *pTab2; 1073 p->pSrc->a[0].pSelect = pSub; 1074 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1075 pSub->selFlags |= SF_Expanded; 1076 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE); 1077 pSub->selFlags |= (selFlags & SF_Aggregate); 1078 if( pTab2==0 ){ 1079 /* Might actually be some other kind of error, but in that case 1080 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get 1081 ** the correct error message regardless. */ 1082 rc = SQLITE_NOMEM; 1083 }else{ 1084 memcpy(pTab, pTab2, sizeof(Table)); 1085 pTab->tabFlags |= TF_Ephemeral; 1086 p->pSrc->a[0].pTab = pTab; 1087 pTab = pTab2; 1088 memset(&w, 0, sizeof(w)); 1089 w.xExprCallback = sqlite3WindowExtraAggFuncDepth; 1090 w.xSelectCallback = sqlite3WalkerDepthIncrease; 1091 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 1092 sqlite3WalkSelect(&w, pSub); 1093 } 1094 }else{ 1095 sqlite3SelectDelete(db, pSub); 1096 } 1097 if( db->mallocFailed ) rc = SQLITE_NOMEM; 1098 sqlite3DbFree(db, pTab); 1099 } 1100 1101 if( rc ){ 1102 if( pParse->nErr==0 ){ 1103 assert( pParse->db->mallocFailed ); 1104 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM); 1105 } 1106 } 1107 return rc; 1108 } 1109 1110 /* 1111 ** Unlink the Window object from the Select to which it is attached, 1112 ** if it is attached. 1113 */ 1114 void sqlite3WindowUnlinkFromSelect(Window *p){ 1115 if( p->ppThis ){ 1116 *p->ppThis = p->pNextWin; 1117 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis; 1118 p->ppThis = 0; 1119 } 1120 } 1121 1122 /* 1123 ** Free the Window object passed as the second argument. 1124 */ 1125 void sqlite3WindowDelete(sqlite3 *db, Window *p){ 1126 if( p ){ 1127 sqlite3WindowUnlinkFromSelect(p); 1128 sqlite3ExprDelete(db, p->pFilter); 1129 sqlite3ExprListDelete(db, p->pPartition); 1130 sqlite3ExprListDelete(db, p->pOrderBy); 1131 sqlite3ExprDelete(db, p->pEnd); 1132 sqlite3ExprDelete(db, p->pStart); 1133 sqlite3DbFree(db, p->zName); 1134 sqlite3DbFree(db, p->zBase); 1135 sqlite3DbFree(db, p); 1136 } 1137 } 1138 1139 /* 1140 ** Free the linked list of Window objects starting at the second argument. 1141 */ 1142 void sqlite3WindowListDelete(sqlite3 *db, Window *p){ 1143 while( p ){ 1144 Window *pNext = p->pNextWin; 1145 sqlite3WindowDelete(db, p); 1146 p = pNext; 1147 } 1148 } 1149 1150 /* 1151 ** The argument expression is an PRECEDING or FOLLOWING offset. The 1152 ** value should be a non-negative integer. If the value is not a 1153 ** constant, change it to NULL. The fact that it is then a non-negative 1154 ** integer will be caught later. But it is important not to leave 1155 ** variable values in the expression tree. 1156 */ 1157 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ 1158 if( 0==sqlite3ExprIsConstant(pExpr) ){ 1159 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); 1160 sqlite3ExprDelete(pParse->db, pExpr); 1161 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); 1162 } 1163 return pExpr; 1164 } 1165 1166 /* 1167 ** Allocate and return a new Window object describing a Window Definition. 1168 */ 1169 Window *sqlite3WindowAlloc( 1170 Parse *pParse, /* Parsing context */ 1171 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */ 1172 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ 1173 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ 1174 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ 1175 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */ 1176 u8 eExclude /* EXCLUDE clause */ 1177 ){ 1178 Window *pWin = 0; 1179 int bImplicitFrame = 0; 1180 1181 /* Parser assures the following: */ 1182 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS ); 1183 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING 1184 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); 1185 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING 1186 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); 1187 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); 1188 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); 1189 1190 if( eType==0 ){ 1191 bImplicitFrame = 1; 1192 eType = TK_RANGE; 1193 } 1194 1195 /* Additionally, the 1196 ** starting boundary type may not occur earlier in the following list than 1197 ** the ending boundary type: 1198 ** 1199 ** UNBOUNDED PRECEDING 1200 ** <expr> PRECEDING 1201 ** CURRENT ROW 1202 ** <expr> FOLLOWING 1203 ** UNBOUNDED FOLLOWING 1204 ** 1205 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending 1206 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting 1207 ** frame boundary. 1208 */ 1209 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) 1210 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) 1211 ){ 1212 sqlite3ErrorMsg(pParse, "unsupported frame specification"); 1213 goto windowAllocErr; 1214 } 1215 1216 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1217 if( pWin==0 ) goto windowAllocErr; 1218 pWin->eFrmType = eType; 1219 pWin->eStart = eStart; 1220 pWin->eEnd = eEnd; 1221 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){ 1222 eExclude = TK_NO; 1223 } 1224 pWin->eExclude = eExclude; 1225 pWin->bImplicitFrame = bImplicitFrame; 1226 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); 1227 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); 1228 return pWin; 1229 1230 windowAllocErr: 1231 sqlite3ExprDelete(pParse->db, pEnd); 1232 sqlite3ExprDelete(pParse->db, pStart); 1233 return 0; 1234 } 1235 1236 /* 1237 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window 1238 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the 1239 ** equivalent nul-terminated string. 1240 */ 1241 Window *sqlite3WindowAssemble( 1242 Parse *pParse, 1243 Window *pWin, 1244 ExprList *pPartition, 1245 ExprList *pOrderBy, 1246 Token *pBase 1247 ){ 1248 if( pWin ){ 1249 pWin->pPartition = pPartition; 1250 pWin->pOrderBy = pOrderBy; 1251 if( pBase ){ 1252 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n); 1253 } 1254 }else{ 1255 sqlite3ExprListDelete(pParse->db, pPartition); 1256 sqlite3ExprListDelete(pParse->db, pOrderBy); 1257 } 1258 return pWin; 1259 } 1260 1261 /* 1262 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase 1263 ** is the base window. Earlier windows from the same WINDOW clause are 1264 ** stored in the linked list starting at pWin->pNextWin. This function 1265 ** either updates *pWin according to the base specification, or else 1266 ** leaves an error in pParse. 1267 */ 1268 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){ 1269 if( pWin->zBase ){ 1270 sqlite3 *db = pParse->db; 1271 Window *pExist = windowFind(pParse, pList, pWin->zBase); 1272 if( pExist ){ 1273 const char *zErr = 0; 1274 /* Check for errors */ 1275 if( pWin->pPartition ){ 1276 zErr = "PARTITION clause"; 1277 }else if( pExist->pOrderBy && pWin->pOrderBy ){ 1278 zErr = "ORDER BY clause"; 1279 }else if( pExist->bImplicitFrame==0 ){ 1280 zErr = "frame specification"; 1281 } 1282 if( zErr ){ 1283 sqlite3ErrorMsg(pParse, 1284 "cannot override %s of window: %s", zErr, pWin->zBase 1285 ); 1286 }else{ 1287 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0); 1288 if( pExist->pOrderBy ){ 1289 assert( pWin->pOrderBy==0 ); 1290 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0); 1291 } 1292 sqlite3DbFree(db, pWin->zBase); 1293 pWin->zBase = 0; 1294 } 1295 } 1296 } 1297 } 1298 1299 /* 1300 ** Attach window object pWin to expression p. 1301 */ 1302 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ 1303 if( p ){ 1304 assert( p->op==TK_FUNCTION ); 1305 assert( pWin ); 1306 p->y.pWin = pWin; 1307 ExprSetProperty(p, EP_WinFunc); 1308 pWin->pOwner = p; 1309 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){ 1310 sqlite3ErrorMsg(pParse, 1311 "DISTINCT is not supported for window functions" 1312 ); 1313 } 1314 }else{ 1315 sqlite3WindowDelete(pParse->db, pWin); 1316 } 1317 } 1318 1319 /* 1320 ** Possibly link window pWin into the list at pSel->pWin (window functions 1321 ** to be processed as part of SELECT statement pSel). The window is linked 1322 ** in if either (a) there are no other windows already linked to this 1323 ** SELECT, or (b) the windows already linked use a compatible window frame. 1324 */ 1325 void sqlite3WindowLink(Select *pSel, Window *pWin){ 1326 if( pSel ){ 1327 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){ 1328 pWin->pNextWin = pSel->pWin; 1329 if( pSel->pWin ){ 1330 pSel->pWin->ppThis = &pWin->pNextWin; 1331 } 1332 pSel->pWin = pWin; 1333 pWin->ppThis = &pSel->pWin; 1334 }else{ 1335 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){ 1336 pSel->selFlags |= SF_MultiPart; 1337 } 1338 } 1339 } 1340 } 1341 1342 /* 1343 ** Return 0 if the two window objects are identical, 1 if they are 1344 ** different, or 2 if it cannot be determined if the objects are identical 1345 ** or not. Identical window objects can be processed in a single scan. 1346 */ 1347 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){ 1348 int res; 1349 if( NEVER(p1==0) || NEVER(p2==0) ) return 1; 1350 if( p1->eFrmType!=p2->eFrmType ) return 1; 1351 if( p1->eStart!=p2->eStart ) return 1; 1352 if( p1->eEnd!=p2->eEnd ) return 1; 1353 if( p1->eExclude!=p2->eExclude ) return 1; 1354 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; 1355 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; 1356 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){ 1357 return res; 1358 } 1359 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){ 1360 return res; 1361 } 1362 if( bFilter ){ 1363 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){ 1364 return res; 1365 } 1366 } 1367 return 0; 1368 } 1369 1370 1371 /* 1372 ** This is called by code in select.c before it calls sqlite3WhereBegin() 1373 ** to begin iterating through the sub-query results. It is used to allocate 1374 ** and initialize registers and cursors used by sqlite3WindowCodeStep(). 1375 */ 1376 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){ 1377 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr; 1378 Window *pMWin = pSelect->pWin; 1379 Window *pWin; 1380 Vdbe *v = sqlite3GetVdbe(pParse); 1381 1382 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr); 1383 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr); 1384 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr); 1385 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr); 1386 1387 /* Allocate registers to use for PARTITION BY values, if any. Initialize 1388 ** said registers to NULL. */ 1389 if( pMWin->pPartition ){ 1390 int nExpr = pMWin->pPartition->nExpr; 1391 pMWin->regPart = pParse->nMem+1; 1392 pParse->nMem += nExpr; 1393 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1); 1394 } 1395 1396 pMWin->regOne = ++pParse->nMem; 1397 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne); 1398 1399 if( pMWin->eExclude ){ 1400 pMWin->regStartRowid = ++pParse->nMem; 1401 pMWin->regEndRowid = ++pParse->nMem; 1402 pMWin->csrApp = pParse->nTab++; 1403 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 1404 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 1405 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr); 1406 return; 1407 } 1408 1409 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1410 FuncDef *p = pWin->pFunc; 1411 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ 1412 /* The inline versions of min() and max() require a single ephemeral 1413 ** table and 3 registers. The registers are used as follows: 1414 ** 1415 ** regApp+0: slot to copy min()/max() argument to for MakeRecord 1416 ** regApp+1: integer value used to ensure keys are unique 1417 ** regApp+2: output of MakeRecord 1418 */ 1419 ExprList *pList = pWin->pOwner->x.pList; 1420 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); 1421 pWin->csrApp = pParse->nTab++; 1422 pWin->regApp = pParse->nMem+1; 1423 pParse->nMem += 3; 1424 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ 1425 assert( pKeyInfo->aSortFlags[0]==0 ); 1426 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC; 1427 } 1428 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); 1429 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1430 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1431 } 1432 else if( p->zName==nth_valueName || p->zName==first_valueName ){ 1433 /* Allocate two registers at pWin->regApp. These will be used to 1434 ** store the start and end index of the current frame. */ 1435 pWin->regApp = pParse->nMem+1; 1436 pWin->csrApp = pParse->nTab++; 1437 pParse->nMem += 2; 1438 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1439 } 1440 else if( p->zName==leadName || p->zName==lagName ){ 1441 pWin->csrApp = pParse->nTab++; 1442 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); 1443 } 1444 } 1445 } 1446 1447 #define WINDOW_STARTING_INT 0 1448 #define WINDOW_ENDING_INT 1 1449 #define WINDOW_NTH_VALUE_INT 2 1450 #define WINDOW_STARTING_NUM 3 1451 #define WINDOW_ENDING_NUM 4 1452 1453 /* 1454 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the 1455 ** value of the second argument to nth_value() (eCond==2) has just been 1456 ** evaluated and the result left in register reg. This function generates VM 1457 ** code to check that the value is a non-negative integer and throws an 1458 ** exception if it is not. 1459 */ 1460 static void windowCheckValue(Parse *pParse, int reg, int eCond){ 1461 static const char *azErr[] = { 1462 "frame starting offset must be a non-negative integer", 1463 "frame ending offset must be a non-negative integer", 1464 "second argument to nth_value must be a positive integer", 1465 "frame starting offset must be a non-negative number", 1466 "frame ending offset must be a non-negative number", 1467 }; 1468 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge }; 1469 Vdbe *v = sqlite3GetVdbe(pParse); 1470 int regZero = sqlite3GetTempReg(pParse); 1471 assert( eCond>=0 && eCond<ArraySize(azErr) ); 1472 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); 1473 if( eCond>=WINDOW_STARTING_NUM ){ 1474 int regString = sqlite3GetTempReg(pParse); 1475 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 1476 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg); 1477 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL); 1478 VdbeCoverage(v); 1479 assert( eCond==3 || eCond==4 ); 1480 VdbeCoverageIf(v, eCond==3); 1481 VdbeCoverageIf(v, eCond==4); 1482 }else{ 1483 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); 1484 VdbeCoverage(v); 1485 assert( eCond==0 || eCond==1 || eCond==2 ); 1486 VdbeCoverageIf(v, eCond==0); 1487 VdbeCoverageIf(v, eCond==1); 1488 VdbeCoverageIf(v, eCond==2); 1489 } 1490 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); 1491 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC); 1492 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */ 1493 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */ 1494 VdbeCoverageNeverNullIf(v, eCond==2); 1495 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */ 1496 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */ 1497 sqlite3MayAbort(pParse); 1498 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); 1499 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); 1500 sqlite3ReleaseTempReg(pParse, regZero); 1501 } 1502 1503 /* 1504 ** Return the number of arguments passed to the window-function associated 1505 ** with the object passed as the only argument to this function. 1506 */ 1507 static int windowArgCount(Window *pWin){ 1508 ExprList *pList = pWin->pOwner->x.pList; 1509 return (pList ? pList->nExpr : 0); 1510 } 1511 1512 typedef struct WindowCodeArg WindowCodeArg; 1513 typedef struct WindowCsrAndReg WindowCsrAndReg; 1514 1515 /* 1516 ** See comments above struct WindowCodeArg. 1517 */ 1518 struct WindowCsrAndReg { 1519 int csr; /* Cursor number */ 1520 int reg; /* First in array of peer values */ 1521 }; 1522 1523 /* 1524 ** A single instance of this structure is allocated on the stack by 1525 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper 1526 ** routines. This is to reduce the number of arguments required by each 1527 ** helper function. 1528 ** 1529 ** regArg: 1530 ** Each window function requires an accumulator register (just as an 1531 ** ordinary aggregate function does). This variable is set to the first 1532 ** in an array of accumulator registers - one for each window function 1533 ** in the WindowCodeArg.pMWin list. 1534 ** 1535 ** eDelete: 1536 ** The window functions implementation sometimes caches the input rows 1537 ** that it processes in a temporary table. If it is not zero, this 1538 ** variable indicates when rows may be removed from the temp table (in 1539 ** order to reduce memory requirements - it would always be safe just 1540 ** to leave them there). Possible values for eDelete are: 1541 ** 1542 ** WINDOW_RETURN_ROW: 1543 ** An input row can be discarded after it is returned to the caller. 1544 ** 1545 ** WINDOW_AGGINVERSE: 1546 ** An input row can be discarded after the window functions xInverse() 1547 ** callbacks have been invoked in it. 1548 ** 1549 ** WINDOW_AGGSTEP: 1550 ** An input row can be discarded after the window functions xStep() 1551 ** callbacks have been invoked in it. 1552 ** 1553 ** start,current,end 1554 ** Consider a window-frame similar to the following: 1555 ** 1556 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING) 1557 ** 1558 ** The windows functions implmentation caches the input rows in a temp 1559 ** table, sorted by "a, b" (it actually populates the cache lazily, and 1560 ** aggressively removes rows once they are no longer required, but that's 1561 ** a mere detail). It keeps three cursors open on the temp table. One 1562 ** (current) that points to the next row to return to the query engine 1563 ** once its window function values have been calculated. Another (end) 1564 ** points to the next row to call the xStep() method of each window function 1565 ** on (so that it is 2 groups ahead of current). And a third (start) that 1566 ** points to the next row to call the xInverse() method of each window 1567 ** function on. 1568 ** 1569 ** Each cursor (start, current and end) consists of a VDBE cursor 1570 ** (WindowCsrAndReg.csr) and an array of registers (starting at 1571 ** WindowCodeArg.reg) that always contains a copy of the peer values 1572 ** read from the corresponding cursor. 1573 ** 1574 ** Depending on the window-frame in question, all three cursors may not 1575 ** be required. In this case both WindowCodeArg.csr and reg are set to 1576 ** 0. 1577 */ 1578 struct WindowCodeArg { 1579 Parse *pParse; /* Parse context */ 1580 Window *pMWin; /* First in list of functions being processed */ 1581 Vdbe *pVdbe; /* VDBE object */ 1582 int addrGosub; /* OP_Gosub to this address to return one row */ 1583 int regGosub; /* Register used with OP_Gosub(addrGosub) */ 1584 int regArg; /* First in array of accumulator registers */ 1585 int eDelete; /* See above */ 1586 int regRowid; 1587 1588 WindowCsrAndReg start; 1589 WindowCsrAndReg current; 1590 WindowCsrAndReg end; 1591 }; 1592 1593 /* 1594 ** Generate VM code to read the window frames peer values from cursor csr into 1595 ** an array of registers starting at reg. 1596 */ 1597 static void windowReadPeerValues( 1598 WindowCodeArg *p, 1599 int csr, 1600 int reg 1601 ){ 1602 Window *pMWin = p->pMWin; 1603 ExprList *pOrderBy = pMWin->pOrderBy; 1604 if( pOrderBy ){ 1605 Vdbe *v = sqlite3GetVdbe(p->pParse); 1606 ExprList *pPart = pMWin->pPartition; 1607 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); 1608 int i; 1609 for(i=0; i<pOrderBy->nExpr; i++){ 1610 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i); 1611 } 1612 } 1613 } 1614 1615 /* 1616 ** Generate VM code to invoke either xStep() (if bInverse is 0) or 1617 ** xInverse (if bInverse is non-zero) for each window function in the 1618 ** linked list starting at pMWin. Or, for built-in window functions 1619 ** that do not use the standard function API, generate the required 1620 ** inline VM code. 1621 ** 1622 ** If argument csr is greater than or equal to 0, then argument reg is 1623 ** the first register in an array of registers guaranteed to be large 1624 ** enough to hold the array of arguments for each function. In this case 1625 ** the arguments are extracted from the current row of csr into the 1626 ** array of registers before invoking OP_AggStep or OP_AggInverse 1627 ** 1628 ** Or, if csr is less than zero, then the array of registers at reg is 1629 ** already populated with all columns from the current row of the sub-query. 1630 ** 1631 ** If argument regPartSize is non-zero, then it is a register containing the 1632 ** number of rows in the current partition. 1633 */ 1634 static void windowAggStep( 1635 WindowCodeArg *p, 1636 Window *pMWin, /* Linked list of window functions */ 1637 int csr, /* Read arguments from this cursor */ 1638 int bInverse, /* True to invoke xInverse instead of xStep */ 1639 int reg /* Array of registers */ 1640 ){ 1641 Parse *pParse = p->pParse; 1642 Vdbe *v = sqlite3GetVdbe(pParse); 1643 Window *pWin; 1644 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1645 FuncDef *pFunc = pWin->pFunc; 1646 int regArg; 1647 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin); 1648 int i; 1649 1650 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED ); 1651 1652 /* All OVER clauses in the same window function aggregate step must 1653 ** be the same. */ 1654 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 ); 1655 1656 for(i=0; i<nArg; i++){ 1657 if( i!=1 || pFunc->zName!=nth_valueName ){ 1658 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); 1659 }else{ 1660 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i); 1661 } 1662 } 1663 regArg = reg; 1664 1665 if( pMWin->regStartRowid==0 1666 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1667 && (pWin->eStart!=TK_UNBOUNDED) 1668 ){ 1669 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); 1670 VdbeCoverage(v); 1671 if( bInverse==0 ){ 1672 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); 1673 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); 1674 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); 1675 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); 1676 }else{ 1677 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); 1678 VdbeCoverageNeverTaken(v); 1679 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); 1680 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1681 } 1682 sqlite3VdbeJumpHere(v, addrIsNull); 1683 }else if( pWin->regApp ){ 1684 assert( pFunc->zName==nth_valueName 1685 || pFunc->zName==first_valueName 1686 ); 1687 assert( bInverse==0 || bInverse==1 ); 1688 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); 1689 }else if( pFunc->xSFunc!=noopStepFunc ){ 1690 int addrIf = 0; 1691 if( pWin->pFilter ){ 1692 int regTmp; 1693 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr ); 1694 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 ); 1695 regTmp = sqlite3GetTempReg(pParse); 1696 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); 1697 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); 1698 VdbeCoverage(v); 1699 sqlite3ReleaseTempReg(pParse, regTmp); 1700 } 1701 1702 if( pWin->bExprArgs ){ 1703 int iOp = sqlite3VdbeCurrentAddr(v); 1704 int iEnd; 1705 1706 nArg = pWin->pOwner->x.pList->nExpr; 1707 regArg = sqlite3GetTempRange(pParse, nArg); 1708 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0); 1709 1710 for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){ 1711 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp); 1712 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){ 1713 pOp->p1 = csr; 1714 } 1715 } 1716 } 1717 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1718 CollSeq *pColl; 1719 assert( nArg>0 ); 1720 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); 1721 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); 1722 } 1723 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, 1724 bInverse, regArg, pWin->regAccum); 1725 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF); 1726 sqlite3VdbeChangeP5(v, (u8)nArg); 1727 if( pWin->bExprArgs ){ 1728 sqlite3ReleaseTempRange(pParse, regArg, nArg); 1729 } 1730 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); 1731 } 1732 } 1733 } 1734 1735 /* 1736 ** Values that may be passed as the second argument to windowCodeOp(). 1737 */ 1738 #define WINDOW_RETURN_ROW 1 1739 #define WINDOW_AGGINVERSE 2 1740 #define WINDOW_AGGSTEP 3 1741 1742 /* 1743 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize() 1744 ** (bFin==1) for each window function in the linked list starting at 1745 ** pMWin. Or, for built-in window-functions that do not use the standard 1746 ** API, generate the equivalent VM code. 1747 */ 1748 static void windowAggFinal(WindowCodeArg *p, int bFin){ 1749 Parse *pParse = p->pParse; 1750 Window *pMWin = p->pMWin; 1751 Vdbe *v = sqlite3GetVdbe(pParse); 1752 Window *pWin; 1753 1754 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1755 if( pMWin->regStartRowid==0 1756 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) 1757 && (pWin->eStart!=TK_UNBOUNDED) 1758 ){ 1759 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1760 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); 1761 VdbeCoverage(v); 1762 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); 1763 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 1764 }else if( pWin->regApp ){ 1765 assert( pMWin->regStartRowid==0 ); 1766 }else{ 1767 int nArg = windowArgCount(pWin); 1768 if( bFin ){ 1769 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg); 1770 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1771 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); 1772 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1773 }else{ 1774 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult); 1775 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); 1776 } 1777 } 1778 } 1779 } 1780 1781 /* 1782 ** Generate code to calculate the current values of all window functions in the 1783 ** p->pMWin list by doing a full scan of the current window frame. Store the 1784 ** results in the Window.regResult registers, ready to return the upper 1785 ** layer. 1786 */ 1787 static void windowFullScan(WindowCodeArg *p){ 1788 Window *pWin; 1789 Parse *pParse = p->pParse; 1790 Window *pMWin = p->pMWin; 1791 Vdbe *v = p->pVdbe; 1792 1793 int regCRowid = 0; /* Current rowid value */ 1794 int regCPeer = 0; /* Current peer values */ 1795 int regRowid = 0; /* AggStep rowid value */ 1796 int regPeer = 0; /* AggStep peer values */ 1797 1798 int nPeer; 1799 int lblNext; 1800 int lblBrk; 1801 int addrNext; 1802 int csr; 1803 1804 VdbeModuleComment((v, "windowFullScan begin")); 1805 1806 assert( pMWin!=0 ); 1807 csr = pMWin->csrApp; 1808 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 1809 1810 lblNext = sqlite3VdbeMakeLabel(pParse); 1811 lblBrk = sqlite3VdbeMakeLabel(pParse); 1812 1813 regCRowid = sqlite3GetTempReg(pParse); 1814 regRowid = sqlite3GetTempReg(pParse); 1815 if( nPeer ){ 1816 regCPeer = sqlite3GetTempRange(pParse, nPeer); 1817 regPeer = sqlite3GetTempRange(pParse, nPeer); 1818 } 1819 1820 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid); 1821 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer); 1822 1823 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1824 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1825 } 1826 1827 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid); 1828 VdbeCoverage(v); 1829 addrNext = sqlite3VdbeCurrentAddr(v); 1830 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid); 1831 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid); 1832 VdbeCoverageNeverNull(v); 1833 1834 if( pMWin->eExclude==TK_CURRENT ){ 1835 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid); 1836 VdbeCoverageNeverNull(v); 1837 }else if( pMWin->eExclude!=TK_NO ){ 1838 int addr; 1839 int addrEq = 0; 1840 KeyInfo *pKeyInfo = 0; 1841 1842 if( pMWin->pOrderBy ){ 1843 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0); 1844 } 1845 if( pMWin->eExclude==TK_TIES ){ 1846 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid); 1847 VdbeCoverageNeverNull(v); 1848 } 1849 if( pKeyInfo ){ 1850 windowReadPeerValues(p, csr, regPeer); 1851 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer); 1852 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 1853 addr = sqlite3VdbeCurrentAddr(v)+1; 1854 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr); 1855 VdbeCoverageEqNe(v); 1856 }else{ 1857 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext); 1858 } 1859 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq); 1860 } 1861 1862 windowAggStep(p, pMWin, csr, 0, p->regArg); 1863 1864 sqlite3VdbeResolveLabel(v, lblNext); 1865 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext); 1866 VdbeCoverage(v); 1867 sqlite3VdbeJumpHere(v, addrNext-1); 1868 sqlite3VdbeJumpHere(v, addrNext+1); 1869 sqlite3ReleaseTempReg(pParse, regRowid); 1870 sqlite3ReleaseTempReg(pParse, regCRowid); 1871 if( nPeer ){ 1872 sqlite3ReleaseTempRange(pParse, regPeer, nPeer); 1873 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer); 1874 } 1875 1876 windowAggFinal(p, 1); 1877 VdbeModuleComment((v, "windowFullScan end")); 1878 } 1879 1880 /* 1881 ** Invoke the sub-routine at regGosub (generated by code in select.c) to 1882 ** return the current row of Window.iEphCsr. If all window functions are 1883 ** aggregate window functions that use the standard API, a single 1884 ** OP_Gosub instruction is all that this routine generates. Extra VM code 1885 ** for per-row processing is only generated for the following built-in window 1886 ** functions: 1887 ** 1888 ** nth_value() 1889 ** first_value() 1890 ** lag() 1891 ** lead() 1892 */ 1893 static void windowReturnOneRow(WindowCodeArg *p){ 1894 Window *pMWin = p->pMWin; 1895 Vdbe *v = p->pVdbe; 1896 1897 if( pMWin->regStartRowid ){ 1898 windowFullScan(p); 1899 }else{ 1900 Parse *pParse = p->pParse; 1901 Window *pWin; 1902 1903 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1904 FuncDef *pFunc = pWin->pFunc; 1905 if( pFunc->zName==nth_valueName 1906 || pFunc->zName==first_valueName 1907 ){ 1908 int csr = pWin->csrApp; 1909 int lbl = sqlite3VdbeMakeLabel(pParse); 1910 int tmpReg = sqlite3GetTempReg(pParse); 1911 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1912 1913 if( pFunc->zName==nth_valueName ){ 1914 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg); 1915 windowCheckValue(pParse, tmpReg, 2); 1916 }else{ 1917 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); 1918 } 1919 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); 1920 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); 1921 VdbeCoverageNeverNull(v); 1922 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); 1923 VdbeCoverageNeverTaken(v); 1924 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1925 sqlite3VdbeResolveLabel(v, lbl); 1926 sqlite3ReleaseTempReg(pParse, tmpReg); 1927 } 1928 else if( pFunc->zName==leadName || pFunc->zName==lagName ){ 1929 int nArg = pWin->pOwner->x.pList->nExpr; 1930 int csr = pWin->csrApp; 1931 int lbl = sqlite3VdbeMakeLabel(pParse); 1932 int tmpReg = sqlite3GetTempReg(pParse); 1933 int iEph = pMWin->iEphCsr; 1934 1935 if( nArg<3 ){ 1936 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); 1937 }else{ 1938 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult); 1939 } 1940 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); 1941 if( nArg<2 ){ 1942 int val = (pFunc->zName==leadName ? 1 : -1); 1943 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); 1944 }else{ 1945 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); 1946 int tmpReg2 = sqlite3GetTempReg(pParse); 1947 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); 1948 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); 1949 sqlite3ReleaseTempReg(pParse, tmpReg2); 1950 } 1951 1952 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); 1953 VdbeCoverage(v); 1954 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); 1955 sqlite3VdbeResolveLabel(v, lbl); 1956 sqlite3ReleaseTempReg(pParse, tmpReg); 1957 } 1958 } 1959 } 1960 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub); 1961 } 1962 1963 /* 1964 ** Generate code to set the accumulator register for each window function 1965 ** in the linked list passed as the second argument to NULL. And perform 1966 ** any equivalent initialization required by any built-in window functions 1967 ** in the list. 1968 */ 1969 static int windowInitAccum(Parse *pParse, Window *pMWin){ 1970 Vdbe *v = sqlite3GetVdbe(pParse); 1971 int regArg; 1972 int nArg = 0; 1973 Window *pWin; 1974 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 1975 FuncDef *pFunc = pWin->pFunc; 1976 assert( pWin->regAccum ); 1977 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); 1978 nArg = MAX(nArg, windowArgCount(pWin)); 1979 if( pMWin->regStartRowid==0 ){ 1980 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){ 1981 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); 1982 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1983 } 1984 1985 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ 1986 assert( pWin->eStart!=TK_UNBOUNDED ); 1987 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); 1988 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); 1989 } 1990 } 1991 } 1992 regArg = pParse->nMem+1; 1993 pParse->nMem += nArg; 1994 return regArg; 1995 } 1996 1997 /* 1998 ** Return true if the current frame should be cached in the ephemeral table, 1999 ** even if there are no xInverse() calls required. 2000 */ 2001 static int windowCacheFrame(Window *pMWin){ 2002 Window *pWin; 2003 if( pMWin->regStartRowid ) return 1; 2004 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ 2005 FuncDef *pFunc = pWin->pFunc; 2006 if( (pFunc->zName==nth_valueName) 2007 || (pFunc->zName==first_valueName) 2008 || (pFunc->zName==leadName) 2009 || (pFunc->zName==lagName) 2010 ){ 2011 return 1; 2012 } 2013 } 2014 return 0; 2015 } 2016 2017 /* 2018 ** regOld and regNew are each the first register in an array of size 2019 ** pOrderBy->nExpr. This function generates code to compare the two 2020 ** arrays of registers using the collation sequences and other comparison 2021 ** parameters specified by pOrderBy. 2022 ** 2023 ** If the two arrays are not equal, the contents of regNew is copied to 2024 ** regOld and control falls through. Otherwise, if the contents of the arrays 2025 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned. 2026 */ 2027 static void windowIfNewPeer( 2028 Parse *pParse, 2029 ExprList *pOrderBy, 2030 int regNew, /* First in array of new values */ 2031 int regOld, /* First in array of old values */ 2032 int addr /* Jump here */ 2033 ){ 2034 Vdbe *v = sqlite3GetVdbe(pParse); 2035 if( pOrderBy ){ 2036 int nVal = pOrderBy->nExpr; 2037 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); 2038 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal); 2039 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2040 sqlite3VdbeAddOp3(v, OP_Jump, 2041 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1 2042 ); 2043 VdbeCoverageEqNe(v); 2044 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1); 2045 }else{ 2046 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 2047 } 2048 } 2049 2050 /* 2051 ** This function is called as part of generating VM programs for RANGE 2052 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for 2053 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates 2054 ** code equivalent to: 2055 ** 2056 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl; 2057 ** 2058 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the 2059 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively. 2060 ** 2061 ** If the sort-order for the ORDER BY term in the window is DESC, then the 2062 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is 2063 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=", 2064 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op 2065 ** is OP_Ge, the generated code is equivalent to: 2066 ** 2067 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl; 2068 ** 2069 ** A special type of arithmetic is used such that if csr1.peerVal is not 2070 ** a numeric type (real or integer), then the result of the addition 2071 ** or subtraction is a a copy of csr1.peerVal. 2072 */ 2073 static void windowCodeRangeTest( 2074 WindowCodeArg *p, 2075 int op, /* OP_Ge, OP_Gt, or OP_Le */ 2076 int csr1, /* Cursor number for cursor 1 */ 2077 int regVal, /* Register containing non-negative number */ 2078 int csr2, /* Cursor number for cursor 2 */ 2079 int lbl /* Jump destination if condition is true */ 2080 ){ 2081 Parse *pParse = p->pParse; 2082 Vdbe *v = sqlite3GetVdbe(pParse); 2083 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */ 2084 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */ 2085 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */ 2086 int regString = ++pParse->nMem; /* Reg. for constant value '' */ 2087 int arith = OP_Add; /* OP_Add or OP_Subtract */ 2088 int addrGe; /* Jump destination */ 2089 int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */ 2090 CollSeq *pColl; 2091 2092 /* Read the peer-value from each cursor into a register */ 2093 windowReadPeerValues(p, csr1, reg1); 2094 windowReadPeerValues(p, csr2, reg2); 2095 2096 assert( op==OP_Ge || op==OP_Gt || op==OP_Le ); 2097 assert( pOrderBy && pOrderBy->nExpr==1 ); 2098 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){ 2099 switch( op ){ 2100 case OP_Ge: op = OP_Le; break; 2101 case OP_Gt: op = OP_Lt; break; 2102 default: assert( op==OP_Le ); op = OP_Ge; break; 2103 } 2104 arith = OP_Subtract; 2105 } 2106 2107 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl", 2108 reg1, (arith==OP_Add ? "+" : "-"), regVal, 2109 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2 2110 )); 2111 2112 /* If the BIGNULL flag is set for the ORDER BY, then it is required to 2113 ** consider NULL values to be larger than all other values, instead of 2114 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this 2115 ** (and adding that capability causes a performance regression), so 2116 ** instead if the BIGNULL flag is set then cases where either reg1 or 2117 ** reg2 are NULL are handled separately in the following block. The code 2118 ** generated is equivalent to: 2119 ** 2120 ** if( reg1 IS NULL ){ 2121 ** if( op==OP_Ge ) goto lbl; 2122 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl; 2123 ** if( op==OP_Le && reg2 IS NULL ) goto lbl; 2124 ** }else if( reg2 IS NULL ){ 2125 ** if( op==OP_Le ) goto lbl; 2126 ** } 2127 ** 2128 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is 2129 ** not taken, control jumps over the comparison operator coded below this 2130 ** block. */ 2131 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){ 2132 /* This block runs if reg1 contains a NULL. */ 2133 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v); 2134 switch( op ){ 2135 case OP_Ge: 2136 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl); 2137 break; 2138 case OP_Gt: 2139 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl); 2140 VdbeCoverage(v); 2141 break; 2142 case OP_Le: 2143 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); 2144 VdbeCoverage(v); 2145 break; 2146 default: assert( op==OP_Lt ); /* no-op */ break; 2147 } 2148 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 2149 2150 /* This block runs if reg1 is not NULL, but reg2 is. */ 2151 sqlite3VdbeJumpHere(v, addr); 2152 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v); 2153 if( op==OP_Gt || op==OP_Ge ){ 2154 sqlite3VdbeChangeP2(v, -1, addrDone); 2155 } 2156 } 2157 2158 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1). 2159 ** This block adds (or subtracts for DESC) the numeric value in regVal 2160 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob), 2161 ** then leave reg1 as it is. In pseudo-code, this is implemented as: 2162 ** 2163 ** if( reg1>='' ) goto addrGe; 2164 ** reg1 = reg1 +/- regVal 2165 ** addrGe: 2166 ** 2167 ** Since all strings and blobs are greater-than-or-equal-to an empty string, 2168 ** the add/subtract is skipped for these, as required. If reg1 is a NULL, 2169 ** then the arithmetic is performed, but since adding or subtracting from 2170 ** NULL is always NULL anyway, this case is handled as required too. */ 2171 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC); 2172 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1); 2173 VdbeCoverage(v); 2174 if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){ 2175 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2176 } 2177 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1); 2178 sqlite3VdbeJumpHere(v, addrGe); 2179 2180 /* Compare registers reg2 and reg1, taking the jump if required. Note that 2181 ** control skips over this test if the BIGNULL flag is set and either 2182 ** reg1 or reg2 contain a NULL value. */ 2183 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v); 2184 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr); 2185 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ); 2186 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 2187 sqlite3VdbeResolveLabel(v, addrDone); 2188 2189 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le ); 2190 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge); 2191 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt); 2192 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le); 2193 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt); 2194 sqlite3ReleaseTempReg(pParse, reg1); 2195 sqlite3ReleaseTempReg(pParse, reg2); 2196 2197 VdbeModuleComment((v, "CodeRangeTest: end")); 2198 } 2199 2200 /* 2201 ** Helper function for sqlite3WindowCodeStep(). Each call to this function 2202 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE 2203 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for 2204 ** details. 2205 */ 2206 static int windowCodeOp( 2207 WindowCodeArg *p, /* Context object */ 2208 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */ 2209 int regCountdown, /* Register for OP_IfPos countdown */ 2210 int jumpOnEof /* Jump here if stepped cursor reaches EOF */ 2211 ){ 2212 int csr, reg; 2213 Parse *pParse = p->pParse; 2214 Window *pMWin = p->pMWin; 2215 int ret = 0; 2216 Vdbe *v = p->pVdbe; 2217 int addrContinue = 0; 2218 int bPeer = (pMWin->eFrmType!=TK_ROWS); 2219 2220 int lblDone = sqlite3VdbeMakeLabel(pParse); 2221 int addrNextRange = 0; 2222 2223 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame 2224 ** starts with UNBOUNDED PRECEDING. */ 2225 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){ 2226 assert( regCountdown==0 && jumpOnEof==0 ); 2227 return 0; 2228 } 2229 2230 if( regCountdown>0 ){ 2231 if( pMWin->eFrmType==TK_RANGE ){ 2232 addrNextRange = sqlite3VdbeCurrentAddr(v); 2233 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP ); 2234 if( op==WINDOW_AGGINVERSE ){ 2235 if( pMWin->eStart==TK_FOLLOWING ){ 2236 windowCodeRangeTest( 2237 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone 2238 ); 2239 }else{ 2240 windowCodeRangeTest( 2241 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone 2242 ); 2243 } 2244 }else{ 2245 windowCodeRangeTest( 2246 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone 2247 ); 2248 } 2249 }else{ 2250 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1); 2251 VdbeCoverage(v); 2252 } 2253 } 2254 2255 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){ 2256 windowAggFinal(p, 0); 2257 } 2258 addrContinue = sqlite3VdbeCurrentAddr(v); 2259 2260 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or 2261 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the 2262 ** start cursor does not advance past the end cursor within the 2263 ** temporary table. It otherwise might, if (a>b). Also ensure that, 2264 ** if the input cursor is still finding new rows, that the end 2265 ** cursor does not go past it to EOF. */ 2266 if( pMWin->eStart==pMWin->eEnd && regCountdown 2267 && pMWin->eFrmType==TK_RANGE 2268 ){ 2269 int regRowid1 = sqlite3GetTempReg(pParse); 2270 int regRowid2 = sqlite3GetTempReg(pParse); 2271 if( op==WINDOW_AGGINVERSE ){ 2272 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1); 2273 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2); 2274 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1); 2275 VdbeCoverage(v); 2276 }else if( p->regRowid ){ 2277 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1); 2278 sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1); 2279 VdbeCoverageNeverNull(v); 2280 } 2281 sqlite3ReleaseTempReg(pParse, regRowid1); 2282 sqlite3ReleaseTempReg(pParse, regRowid2); 2283 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ); 2284 } 2285 2286 switch( op ){ 2287 case WINDOW_RETURN_ROW: 2288 csr = p->current.csr; 2289 reg = p->current.reg; 2290 windowReturnOneRow(p); 2291 break; 2292 2293 case WINDOW_AGGINVERSE: 2294 csr = p->start.csr; 2295 reg = p->start.reg; 2296 if( pMWin->regStartRowid ){ 2297 assert( pMWin->regEndRowid ); 2298 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1); 2299 }else{ 2300 windowAggStep(p, pMWin, csr, 1, p->regArg); 2301 } 2302 break; 2303 2304 default: 2305 assert( op==WINDOW_AGGSTEP ); 2306 csr = p->end.csr; 2307 reg = p->end.reg; 2308 if( pMWin->regStartRowid ){ 2309 assert( pMWin->regEndRowid ); 2310 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1); 2311 }else{ 2312 windowAggStep(p, pMWin, csr, 0, p->regArg); 2313 } 2314 break; 2315 } 2316 2317 if( op==p->eDelete ){ 2318 sqlite3VdbeAddOp1(v, OP_Delete, csr); 2319 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION); 2320 } 2321 2322 if( jumpOnEof ){ 2323 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2); 2324 VdbeCoverage(v); 2325 ret = sqlite3VdbeAddOp0(v, OP_Goto); 2326 }else{ 2327 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer); 2328 VdbeCoverage(v); 2329 if( bPeer ){ 2330 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone); 2331 } 2332 } 2333 2334 if( bPeer ){ 2335 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); 2336 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0); 2337 windowReadPeerValues(p, csr, regTmp); 2338 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue); 2339 sqlite3ReleaseTempRange(pParse, regTmp, nReg); 2340 } 2341 2342 if( addrNextRange ){ 2343 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange); 2344 } 2345 sqlite3VdbeResolveLabel(v, lblDone); 2346 return ret; 2347 } 2348 2349 2350 /* 2351 ** Allocate and return a duplicate of the Window object indicated by the 2352 ** third argument. Set the Window.pOwner field of the new object to 2353 ** pOwner. 2354 */ 2355 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ 2356 Window *pNew = 0; 2357 if( ALWAYS(p) ){ 2358 pNew = sqlite3DbMallocZero(db, sizeof(Window)); 2359 if( pNew ){ 2360 pNew->zName = sqlite3DbStrDup(db, p->zName); 2361 pNew->zBase = sqlite3DbStrDup(db, p->zBase); 2362 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); 2363 pNew->pFunc = p->pFunc; 2364 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); 2365 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); 2366 pNew->eFrmType = p->eFrmType; 2367 pNew->eEnd = p->eEnd; 2368 pNew->eStart = p->eStart; 2369 pNew->eExclude = p->eExclude; 2370 pNew->regResult = p->regResult; 2371 pNew->regAccum = p->regAccum; 2372 pNew->iArgCol = p->iArgCol; 2373 pNew->iEphCsr = p->iEphCsr; 2374 pNew->bExprArgs = p->bExprArgs; 2375 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); 2376 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); 2377 pNew->pOwner = pOwner; 2378 pNew->bImplicitFrame = p->bImplicitFrame; 2379 } 2380 } 2381 return pNew; 2382 } 2383 2384 /* 2385 ** Return a copy of the linked list of Window objects passed as the 2386 ** second argument. 2387 */ 2388 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ 2389 Window *pWin; 2390 Window *pRet = 0; 2391 Window **pp = &pRet; 2392 2393 for(pWin=p; pWin; pWin=pWin->pNextWin){ 2394 *pp = sqlite3WindowDup(db, 0, pWin); 2395 if( *pp==0 ) break; 2396 pp = &((*pp)->pNextWin); 2397 } 2398 2399 return pRet; 2400 } 2401 2402 /* 2403 ** Return true if it can be determined at compile time that expression 2404 ** pExpr evaluates to a value that, when cast to an integer, is greater 2405 ** than zero. False otherwise. 2406 ** 2407 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed 2408 ** flag and returns zero. 2409 */ 2410 static int windowExprGtZero(Parse *pParse, Expr *pExpr){ 2411 int ret = 0; 2412 sqlite3 *db = pParse->db; 2413 sqlite3_value *pVal = 0; 2414 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal); 2415 if( pVal && sqlite3_value_int(pVal)>0 ){ 2416 ret = 1; 2417 } 2418 sqlite3ValueFree(pVal); 2419 return ret; 2420 } 2421 2422 /* 2423 ** sqlite3WhereBegin() has already been called for the SELECT statement 2424 ** passed as the second argument when this function is invoked. It generates 2425 ** code to populate the Window.regResult register for each window function 2426 ** and invoke the sub-routine at instruction addrGosub once for each row. 2427 ** sqlite3WhereEnd() is always called before returning. 2428 ** 2429 ** This function handles several different types of window frames, which 2430 ** require slightly different processing. The following pseudo code is 2431 ** used to implement window frames of the form: 2432 ** 2433 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2434 ** 2435 ** Other window frame types use variants of the following: 2436 ** 2437 ** ... loop started by sqlite3WhereBegin() ... 2438 ** if( new partition ){ 2439 ** Gosub flush 2440 ** } 2441 ** Insert new row into eph table. 2442 ** 2443 ** if( first row of partition ){ 2444 ** // Rewind three cursors, all open on the eph table. 2445 ** Rewind(csrEnd); 2446 ** Rewind(csrStart); 2447 ** Rewind(csrCurrent); 2448 ** 2449 ** regEnd = <expr2> // FOLLOWING expression 2450 ** regStart = <expr1> // PRECEDING expression 2451 ** }else{ 2452 ** // First time this branch is taken, the eph table contains two 2453 ** // rows. The first row in the partition, which all three cursors 2454 ** // currently point to, and the following row. 2455 ** AGGSTEP 2456 ** if( (regEnd--)<=0 ){ 2457 ** RETURN_ROW 2458 ** if( (regStart--)<=0 ){ 2459 ** AGGINVERSE 2460 ** } 2461 ** } 2462 ** } 2463 ** } 2464 ** flush: 2465 ** AGGSTEP 2466 ** while( 1 ){ 2467 ** RETURN ROW 2468 ** if( csrCurrent is EOF ) break; 2469 ** if( (regStart--)<=0 ){ 2470 ** AggInverse(csrStart) 2471 ** Next(csrStart) 2472 ** } 2473 ** } 2474 ** 2475 ** The pseudo-code above uses the following shorthand: 2476 ** 2477 ** AGGSTEP: invoke the aggregate xStep() function for each window function 2478 ** with arguments read from the current row of cursor csrEnd, then 2479 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()). 2480 ** 2481 ** RETURN_ROW: return a row to the caller based on the contents of the 2482 ** current row of csrCurrent and the current state of all 2483 ** aggregates. Then step cursor csrCurrent forward one row. 2484 ** 2485 ** AGGINVERSE: invoke the aggregate xInverse() function for each window 2486 ** functions with arguments read from the current row of cursor 2487 ** csrStart. Then step csrStart forward one row. 2488 ** 2489 ** There are two other ROWS window frames that are handled significantly 2490 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING" 2491 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special 2492 ** cases because they change the order in which the three cursors (csrStart, 2493 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that 2494 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these 2495 ** three. 2496 ** 2497 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2498 ** 2499 ** ... loop started by sqlite3WhereBegin() ... 2500 ** if( new partition ){ 2501 ** Gosub flush 2502 ** } 2503 ** Insert new row into eph table. 2504 ** if( first row of partition ){ 2505 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2506 ** regEnd = <expr2> 2507 ** regStart = <expr1> 2508 ** }else{ 2509 ** if( (regEnd--)<=0 ){ 2510 ** AGGSTEP 2511 ** } 2512 ** RETURN_ROW 2513 ** if( (regStart--)<=0 ){ 2514 ** AGGINVERSE 2515 ** } 2516 ** } 2517 ** } 2518 ** flush: 2519 ** if( (regEnd--)<=0 ){ 2520 ** AGGSTEP 2521 ** } 2522 ** RETURN_ROW 2523 ** 2524 ** 2525 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2526 ** 2527 ** ... loop started by sqlite3WhereBegin() ... 2528 ** if( new partition ){ 2529 ** Gosub flush 2530 ** } 2531 ** Insert new row into eph table. 2532 ** if( first row of partition ){ 2533 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2534 ** regEnd = <expr2> 2535 ** regStart = regEnd - <expr1> 2536 ** }else{ 2537 ** AGGSTEP 2538 ** if( (regEnd--)<=0 ){ 2539 ** RETURN_ROW 2540 ** } 2541 ** if( (regStart--)<=0 ){ 2542 ** AGGINVERSE 2543 ** } 2544 ** } 2545 ** } 2546 ** flush: 2547 ** AGGSTEP 2548 ** while( 1 ){ 2549 ** if( (regEnd--)<=0 ){ 2550 ** RETURN_ROW 2551 ** if( eof ) break; 2552 ** } 2553 ** if( (regStart--)<=0 ){ 2554 ** AGGINVERSE 2555 ** if( eof ) break 2556 ** } 2557 ** } 2558 ** while( !eof csrCurrent ){ 2559 ** RETURN_ROW 2560 ** } 2561 ** 2562 ** For the most part, the patterns above are adapted to support UNBOUNDED by 2563 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and 2564 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING". 2565 ** This is optimized of course - branches that will never be taken and 2566 ** conditions that are always true are omitted from the VM code. The only 2567 ** exceptional case is: 2568 ** 2569 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING 2570 ** 2571 ** ... loop started by sqlite3WhereBegin() ... 2572 ** if( new partition ){ 2573 ** Gosub flush 2574 ** } 2575 ** Insert new row into eph table. 2576 ** if( first row of partition ){ 2577 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2578 ** regStart = <expr1> 2579 ** }else{ 2580 ** AGGSTEP 2581 ** } 2582 ** } 2583 ** flush: 2584 ** AGGSTEP 2585 ** while( 1 ){ 2586 ** if( (regStart--)<=0 ){ 2587 ** AGGINVERSE 2588 ** if( eof ) break 2589 ** } 2590 ** RETURN_ROW 2591 ** } 2592 ** while( !eof csrCurrent ){ 2593 ** RETURN_ROW 2594 ** } 2595 ** 2596 ** Also requiring special handling are the cases: 2597 ** 2598 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2599 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2600 ** 2601 ** when (expr1 < expr2). This is detected at runtime, not by this function. 2602 ** To handle this case, the pseudo-code programs depicted above are modified 2603 ** slightly to be: 2604 ** 2605 ** ... loop started by sqlite3WhereBegin() ... 2606 ** if( new partition ){ 2607 ** Gosub flush 2608 ** } 2609 ** Insert new row into eph table. 2610 ** if( first row of partition ){ 2611 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2612 ** regEnd = <expr2> 2613 ** regStart = <expr1> 2614 ** if( regEnd < regStart ){ 2615 ** RETURN_ROW 2616 ** delete eph table contents 2617 ** continue 2618 ** } 2619 ** ... 2620 ** 2621 ** The new "continue" statement in the above jumps to the next iteration 2622 ** of the outer loop - the one started by sqlite3WhereBegin(). 2623 ** 2624 ** The various GROUPS cases are implemented using the same patterns as 2625 ** ROWS. The VM code is modified slightly so that: 2626 ** 2627 ** 1. The else branch in the main loop is only taken if the row just 2628 ** added to the ephemeral table is the start of a new group. In 2629 ** other words, it becomes: 2630 ** 2631 ** ... loop started by sqlite3WhereBegin() ... 2632 ** if( new partition ){ 2633 ** Gosub flush 2634 ** } 2635 ** Insert new row into eph table. 2636 ** if( first row of partition ){ 2637 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2638 ** regEnd = <expr2> 2639 ** regStart = <expr1> 2640 ** }else if( new group ){ 2641 ** ... 2642 ** } 2643 ** } 2644 ** 2645 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or 2646 ** AGGINVERSE step processes the current row of the relevant cursor and 2647 ** all subsequent rows belonging to the same group. 2648 ** 2649 ** RANGE window frames are a little different again. As for GROUPS, the 2650 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE 2651 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three 2652 ** basic cases: 2653 ** 2654 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING 2655 ** 2656 ** ... loop started by sqlite3WhereBegin() ... 2657 ** if( new partition ){ 2658 ** Gosub flush 2659 ** } 2660 ** Insert new row into eph table. 2661 ** if( first row of partition ){ 2662 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2663 ** regEnd = <expr2> 2664 ** regStart = <expr1> 2665 ** }else{ 2666 ** AGGSTEP 2667 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2668 ** RETURN_ROW 2669 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2670 ** AGGINVERSE 2671 ** } 2672 ** } 2673 ** } 2674 ** } 2675 ** flush: 2676 ** AGGSTEP 2677 ** while( 1 ){ 2678 ** RETURN ROW 2679 ** if( csrCurrent is EOF ) break; 2680 ** while( csrStart.key + regStart) < csrCurrent.key ){ 2681 ** AGGINVERSE 2682 ** } 2683 ** } 2684 ** } 2685 ** 2686 ** In the above notation, "csr.key" means the current value of the ORDER BY 2687 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING 2688 ** or <expr PRECEDING) read from cursor csr. 2689 ** 2690 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING 2691 ** 2692 ** ... loop started by sqlite3WhereBegin() ... 2693 ** if( new partition ){ 2694 ** Gosub flush 2695 ** } 2696 ** Insert new row into eph table. 2697 ** if( first row of partition ){ 2698 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2699 ** regEnd = <expr2> 2700 ** regStart = <expr1> 2701 ** }else{ 2702 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2703 ** AGGSTEP 2704 ** } 2705 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2706 ** AGGINVERSE 2707 ** } 2708 ** RETURN_ROW 2709 ** } 2710 ** } 2711 ** flush: 2712 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){ 2713 ** AGGSTEP 2714 ** } 2715 ** while( (csrStart.key + regStart) < csrCurrent.key ){ 2716 ** AGGINVERSE 2717 ** } 2718 ** RETURN_ROW 2719 ** 2720 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING 2721 ** 2722 ** ... loop started by sqlite3WhereBegin() ... 2723 ** if( new partition ){ 2724 ** Gosub flush 2725 ** } 2726 ** Insert new row into eph table. 2727 ** if( first row of partition ){ 2728 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent) 2729 ** regEnd = <expr2> 2730 ** regStart = <expr1> 2731 ** }else{ 2732 ** AGGSTEP 2733 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){ 2734 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2735 ** AGGINVERSE 2736 ** } 2737 ** RETURN_ROW 2738 ** } 2739 ** } 2740 ** } 2741 ** flush: 2742 ** AGGSTEP 2743 ** while( 1 ){ 2744 ** while( (csrCurrent.key + regStart) > csrStart.key ){ 2745 ** AGGINVERSE 2746 ** if( eof ) break "while( 1 )" loop. 2747 ** } 2748 ** RETURN_ROW 2749 ** } 2750 ** while( !eof csrCurrent ){ 2751 ** RETURN_ROW 2752 ** } 2753 ** 2754 ** The text above leaves out many details. Refer to the code and comments 2755 ** below for a more complete picture. 2756 */ 2757 void sqlite3WindowCodeStep( 2758 Parse *pParse, /* Parse context */ 2759 Select *p, /* Rewritten SELECT statement */ 2760 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ 2761 int regGosub, /* Register for OP_Gosub */ 2762 int addrGosub /* OP_Gosub here to return each row */ 2763 ){ 2764 Window *pMWin = p->pWin; 2765 ExprList *pOrderBy = pMWin->pOrderBy; 2766 Vdbe *v = sqlite3GetVdbe(pParse); 2767 int csrWrite; /* Cursor used to write to eph. table */ 2768 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */ 2769 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */ 2770 int iInput; /* To iterate through sub cols */ 2771 int addrNe; /* Address of OP_Ne */ 2772 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */ 2773 int addrInteger = 0; /* Address of OP_Integer */ 2774 int addrEmpty; /* Address of OP_Rewind in flush: */ 2775 int regNew; /* Array of registers holding new input row */ 2776 int regRecord; /* regNew array in record form */ 2777 int regNewPeer = 0; /* Peer values for new row (part of regNew) */ 2778 int regPeer = 0; /* Peer values for current row */ 2779 int regFlushPart = 0; /* Register for "Gosub flush_partition" */ 2780 WindowCodeArg s; /* Context object for sub-routines */ 2781 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */ 2782 int regStart = 0; /* Value of <expr> PRECEDING */ 2783 int regEnd = 0; /* Value of <expr> FOLLOWING */ 2784 2785 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT 2786 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED 2787 ); 2788 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT 2789 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING 2790 ); 2791 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT 2792 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES 2793 || pMWin->eExclude==TK_NO 2794 ); 2795 2796 lblWhereEnd = sqlite3VdbeMakeLabel(pParse); 2797 2798 /* Fill in the context object */ 2799 memset(&s, 0, sizeof(WindowCodeArg)); 2800 s.pParse = pParse; 2801 s.pMWin = pMWin; 2802 s.pVdbe = v; 2803 s.regGosub = regGosub; 2804 s.addrGosub = addrGosub; 2805 s.current.csr = pMWin->iEphCsr; 2806 csrWrite = s.current.csr+1; 2807 s.start.csr = s.current.csr+2; 2808 s.end.csr = s.current.csr+3; 2809 2810 /* Figure out when rows may be deleted from the ephemeral table. There 2811 ** are four options - they may never be deleted (eDelete==0), they may 2812 ** be deleted as soon as they are no longer part of the window frame 2813 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row 2814 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may 2815 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */ 2816 switch( pMWin->eStart ){ 2817 case TK_FOLLOWING: 2818 if( pMWin->eFrmType!=TK_RANGE 2819 && windowExprGtZero(pParse, pMWin->pStart) 2820 ){ 2821 s.eDelete = WINDOW_RETURN_ROW; 2822 } 2823 break; 2824 case TK_UNBOUNDED: 2825 if( windowCacheFrame(pMWin)==0 ){ 2826 if( pMWin->eEnd==TK_PRECEDING ){ 2827 if( pMWin->eFrmType!=TK_RANGE 2828 && windowExprGtZero(pParse, pMWin->pEnd) 2829 ){ 2830 s.eDelete = WINDOW_AGGSTEP; 2831 } 2832 }else{ 2833 s.eDelete = WINDOW_RETURN_ROW; 2834 } 2835 } 2836 break; 2837 default: 2838 s.eDelete = WINDOW_AGGINVERSE; 2839 break; 2840 } 2841 2842 /* Allocate registers for the array of values from the sub-query, the 2843 ** samve values in record form, and the rowid used to insert said record 2844 ** into the ephemeral table. */ 2845 regNew = pParse->nMem+1; 2846 pParse->nMem += nInput; 2847 regRecord = ++pParse->nMem; 2848 s.regRowid = ++pParse->nMem; 2849 2850 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING" 2851 ** clause, allocate registers to store the results of evaluating each 2852 ** <expr>. */ 2853 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){ 2854 regStart = ++pParse->nMem; 2855 } 2856 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){ 2857 regEnd = ++pParse->nMem; 2858 } 2859 2860 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of 2861 ** registers to store copies of the ORDER BY expressions (peer values) 2862 ** for the main loop, and for each cursor (start, current and end). */ 2863 if( pMWin->eFrmType!=TK_ROWS ){ 2864 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); 2865 regNewPeer = regNew + pMWin->nBufferCol; 2866 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr; 2867 regPeer = pParse->nMem+1; pParse->nMem += nPeer; 2868 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer; 2869 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer; 2870 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer; 2871 } 2872 2873 /* Load the column values for the row returned by the sub-select 2874 ** into an array of registers starting at regNew. Assemble them into 2875 ** a record in register regRecord. */ 2876 for(iInput=0; iInput<nInput; iInput++){ 2877 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput); 2878 } 2879 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord); 2880 2881 /* An input row has just been read into an array of registers starting 2882 ** at regNew. If the window has a PARTITION clause, this block generates 2883 ** VM code to check if the input row is the start of a new partition. 2884 ** If so, it does an OP_Gosub to an address to be filled in later. The 2885 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */ 2886 if( pMWin->pPartition ){ 2887 int addr; 2888 ExprList *pPart = pMWin->pPartition; 2889 int nPart = pPart->nExpr; 2890 int regNewPart = regNew + pMWin->nBufferCol; 2891 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); 2892 2893 regFlushPart = ++pParse->nMem; 2894 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart); 2895 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); 2896 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); 2897 VdbeCoverageEqNe(v); 2898 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart); 2899 VdbeComment((v, "call flush_partition")); 2900 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); 2901 } 2902 2903 /* Insert the new row into the ephemeral table */ 2904 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid); 2905 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid); 2906 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid); 2907 VdbeCoverageNeverNull(v); 2908 2909 /* This block is run for the first row of each partition */ 2910 s.regArg = windowInitAccum(pParse, pMWin); 2911 2912 if( regStart ){ 2913 sqlite3ExprCode(pParse, pMWin->pStart, regStart); 2914 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0)); 2915 } 2916 if( regEnd ){ 2917 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); 2918 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0)); 2919 } 2920 2921 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){ 2922 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le); 2923 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd); 2924 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */ 2925 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */ 2926 windowAggFinal(&s, 0); 2927 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2928 VdbeCoverageNeverTaken(v); 2929 windowReturnOneRow(&s); 2930 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 2931 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2932 sqlite3VdbeJumpHere(v, addrGe); 2933 } 2934 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){ 2935 assert( pMWin->eEnd==TK_FOLLOWING ); 2936 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart); 2937 } 2938 2939 if( pMWin->eStart!=TK_UNBOUNDED ){ 2940 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1); 2941 VdbeCoverageNeverTaken(v); 2942 } 2943 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1); 2944 VdbeCoverageNeverTaken(v); 2945 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1); 2946 VdbeCoverageNeverTaken(v); 2947 if( regPeer && pOrderBy ){ 2948 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1); 2949 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1); 2950 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1); 2951 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1); 2952 } 2953 2954 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd); 2955 2956 sqlite3VdbeJumpHere(v, addrNe); 2957 2958 /* Beginning of the block executed for the second and subsequent rows. */ 2959 if( regPeer ){ 2960 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd); 2961 } 2962 if( pMWin->eStart==TK_FOLLOWING ){ 2963 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2964 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2965 if( pMWin->eFrmType==TK_RANGE ){ 2966 int lbl = sqlite3VdbeMakeLabel(pParse); 2967 int addrNext = sqlite3VdbeCurrentAddr(v); 2968 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2969 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2970 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2971 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 2972 sqlite3VdbeResolveLabel(v, lbl); 2973 }else{ 2974 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0); 2975 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2976 } 2977 } 2978 }else 2979 if( pMWin->eEnd==TK_PRECEDING ){ 2980 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 2981 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 2982 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2983 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2984 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2985 }else{ 2986 int addr = 0; 2987 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 2988 if( pMWin->eEnd!=TK_UNBOUNDED ){ 2989 if( pMWin->eFrmType==TK_RANGE ){ 2990 int lbl = 0; 2991 addr = sqlite3VdbeCurrentAddr(v); 2992 if( regEnd ){ 2993 lbl = sqlite3VdbeMakeLabel(pParse); 2994 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl); 2995 } 2996 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 2997 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 2998 if( regEnd ){ 2999 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); 3000 sqlite3VdbeResolveLabel(v, lbl); 3001 } 3002 }else{ 3003 if( regEnd ){ 3004 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1); 3005 VdbeCoverage(v); 3006 } 3007 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3008 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3009 if( regEnd ) sqlite3VdbeJumpHere(v, addr); 3010 } 3011 } 3012 } 3013 3014 /* End of the main input loop */ 3015 sqlite3VdbeResolveLabel(v, lblWhereEnd); 3016 sqlite3WhereEnd(pWInfo); 3017 3018 /* Fall through */ 3019 if( pMWin->pPartition ){ 3020 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart); 3021 sqlite3VdbeJumpHere(v, addrGosubFlush); 3022 } 3023 3024 s.regRowid = 0; 3025 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite); 3026 VdbeCoverage(v); 3027 if( pMWin->eEnd==TK_PRECEDING ){ 3028 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE); 3029 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0); 3030 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3031 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0); 3032 }else if( pMWin->eStart==TK_FOLLOWING ){ 3033 int addrStart; 3034 int addrBreak1; 3035 int addrBreak2; 3036 int addrBreak3; 3037 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3038 if( pMWin->eFrmType==TK_RANGE ){ 3039 addrStart = sqlite3VdbeCurrentAddr(v); 3040 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3041 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3042 }else 3043 if( pMWin->eEnd==TK_UNBOUNDED ){ 3044 addrStart = sqlite3VdbeCurrentAddr(v); 3045 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1); 3046 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1); 3047 }else{ 3048 assert( pMWin->eEnd==TK_FOLLOWING ); 3049 addrStart = sqlite3VdbeCurrentAddr(v); 3050 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1); 3051 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1); 3052 } 3053 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3054 sqlite3VdbeJumpHere(v, addrBreak2); 3055 addrStart = sqlite3VdbeCurrentAddr(v); 3056 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3057 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3058 sqlite3VdbeJumpHere(v, addrBreak1); 3059 sqlite3VdbeJumpHere(v, addrBreak3); 3060 }else{ 3061 int addrBreak; 3062 int addrStart; 3063 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0); 3064 addrStart = sqlite3VdbeCurrentAddr(v); 3065 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1); 3066 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0); 3067 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart); 3068 sqlite3VdbeJumpHere(v, addrBreak); 3069 } 3070 sqlite3VdbeJumpHere(v, addrEmpty); 3071 3072 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr); 3073 if( pMWin->pPartition ){ 3074 if( pMWin->regStartRowid ){ 3075 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid); 3076 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid); 3077 } 3078 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v)); 3079 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); 3080 } 3081 } 3082 3083 #endif /* SQLITE_OMIT_WINDOWFUNC */ 3084