1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 84 }else{ 85 pTerm->truthProb = 1; 86 } 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); 88 pTerm->wtFlags = wtFlags; 89 pTerm->pWC = pWC; 90 pTerm->iParent = -1; 91 memset(&pTerm->eOperator, 0, 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 93 return idx; 94 } 95 96 /* 97 ** Return TRUE if the given operator is one of the operators that is 98 ** allowed for an indexable WHERE clause term. The allowed operators are 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 100 */ 101 static int allowedOp(int op){ 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 105 assert( TK_GE==TK_EQ+4 ); 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 107 } 108 109 /* 110 ** Commute a comparison operator. Expressions of the form "X op Y" 111 ** are converted into "Y op X". 112 ** 113 ** If left/right precedence rules come into play when determining the 114 ** collating sequence, then COLLATE operators are adjusted to ensure 115 ** that the collating sequence does not change. For example: 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 117 ** the left hand side of a comparison overrides any collation sequence 118 ** attached to the right. For the same reason the EP_Collate flag 119 ** is not commuted. 120 */ 121 static void exprCommute(Parse *pParse, Expr *pExpr){ 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 125 if( expRight==expLeft ){ 126 /* Either X and Y both have COLLATE operator or neither do */ 127 if( expRight ){ 128 /* Both X and Y have COLLATE operators. Make sure X is always 129 ** used by clearing the EP_Collate flag from Y. */ 130 pExpr->pRight->flags &= ~EP_Collate; 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 132 /* Neither X nor Y have COLLATE operators, but X has a non-default 133 ** collating sequence. So add the EP_Collate marker on X to cause 134 ** it to be searched first. */ 135 pExpr->pLeft->flags |= EP_Collate; 136 } 137 } 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 139 if( pExpr->op>=TK_GT ){ 140 assert( TK_LT==TK_GT+2 ); 141 assert( TK_GE==TK_LE+2 ); 142 assert( TK_GT>TK_EQ ); 143 assert( TK_GT<TK_LE ); 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 146 } 147 } 148 149 /* 150 ** Translate from TK_xx operator to WO_xx bitmask. 151 */ 152 static u16 operatorMask(int op){ 153 u16 c; 154 assert( allowedOp(op) ); 155 if( op==TK_IN ){ 156 c = WO_IN; 157 }else if( op==TK_ISNULL ){ 158 c = WO_ISNULL; 159 }else if( op==TK_IS ){ 160 c = WO_IS; 161 }else{ 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 163 c = (u16)(WO_EQ<<(op-TK_EQ)); 164 } 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 166 assert( op!=TK_IN || c==WO_IN ); 167 assert( op!=TK_EQ || c==WO_EQ ); 168 assert( op!=TK_LT || c==WO_LT ); 169 assert( op!=TK_LE || c==WO_LE ); 170 assert( op!=TK_GT || c==WO_GT ); 171 assert( op!=TK_GE || c==WO_GE ); 172 assert( op!=TK_IS || c==WO_IS ); 173 return c; 174 } 175 176 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 178 /* 179 ** Check to see if the given expression is a LIKE or GLOB operator that 180 ** can be optimized using inequality constraints. Return TRUE if it is 181 ** so and false if not. 182 ** 183 ** In order for the operator to be optimizible, the RHS must be a string 184 ** literal that does not begin with a wildcard. The LHS must be a column 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 186 ** that virtual tables cannot participate in the LIKE optimization.) The 187 ** collating sequence for the column on the LHS must be appropriate for 188 ** the operator. 189 */ 190 static int isLikeOrGlob( 191 Parse *pParse, /* Parsing and code generating context */ 192 Expr *pExpr, /* Test this expression */ 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 194 int *pisComplete, /* True if the only wildcard is % in the last character */ 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 196 ){ 197 const u8 *z = 0; /* String on RHS of LIKE operator */ 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 199 ExprList *pList; /* List of operands to the LIKE operator */ 200 int c; /* One character in z[] */ 201 int cnt; /* Number of non-wildcard prefix characters */ 202 char wc[4]; /* Wildcard characters */ 203 sqlite3 *db = pParse->db; /* Database connection */ 204 sqlite3_value *pVal = 0; 205 int op; /* Opcode of pRight */ 206 int rc; /* Result code to return */ 207 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 209 return 0; 210 } 211 #ifdef SQLITE_EBCDIC 212 if( *pnoCase ) return 0; 213 #endif 214 pList = pExpr->x.pList; 215 pLeft = pList->a[1].pExpr; 216 217 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 218 op = pRight->op; 219 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 220 Vdbe *pReprepare = pParse->pReprepare; 221 int iCol = pRight->iColumn; 222 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 223 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 224 z = sqlite3_value_text(pVal); 225 } 226 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 227 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 228 }else if( op==TK_STRING ){ 229 z = (u8*)pRight->u.zToken; 230 } 231 if( z ){ 232 233 /* If the RHS begins with a digit or a minus sign, then the LHS must 234 ** be an ordinary column (not a virtual table column) with TEXT affinity. 235 ** Otherwise the LHS might be numeric and "lhs >= rhs" would be false 236 ** even though "lhs LIKE rhs" is true. But if the RHS does not start 237 ** with a digit or '-', then "lhs LIKE rhs" will always be false if 238 ** the LHS is numeric and so the optimization still works. 239 */ 240 if( sqlite3Isdigit(z[0]) || z[0]=='-' ){ 241 if( pLeft->op!=TK_COLUMN 242 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 243 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 244 ){ 245 sqlite3ValueFree(pVal); 246 return 0; 247 } 248 } 249 250 /* Count the number of prefix characters prior to the first wildcard */ 251 cnt = 0; 252 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 253 cnt++; 254 if( c==wc[3] && z[cnt]!=0 ) cnt++; 255 } 256 257 /* The optimization is possible only if (1) the pattern does not begin 258 ** with a wildcard and if (2) the non-wildcard prefix does not end with 259 ** an (illegal 0xff) character. The second condition is necessary so 260 ** that we can increment the prefix key to find an upper bound for the 261 ** range search. 262 */ 263 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 264 Expr *pPrefix; 265 266 /* A "complete" match if the pattern ends with "*" or "%" */ 267 *pisComplete = c==wc[0] && z[cnt+1]==0; 268 269 /* Get the pattern prefix. Remove all escapes from the prefix. */ 270 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); 271 if( pPrefix ){ 272 int iFrom, iTo; 273 char *zNew = pPrefix->u.zToken; 274 zNew[cnt] = 0; 275 for(iFrom=iTo=0; iFrom<cnt; iFrom++){ 276 if( zNew[iFrom]==wc[3] ) iFrom++; 277 zNew[iTo++] = zNew[iFrom]; 278 } 279 zNew[iTo] = 0; 280 } 281 *ppPrefix = pPrefix; 282 283 /* If the RHS pattern is a bound parameter, make arrangements to 284 ** reprepare the statement when that parameter is rebound */ 285 if( op==TK_VARIABLE ){ 286 Vdbe *v = pParse->pVdbe; 287 sqlite3VdbeSetVarmask(v, pRight->iColumn); 288 if( *pisComplete && pRight->u.zToken[1] ){ 289 /* If the rhs of the LIKE expression is a variable, and the current 290 ** value of the variable means there is no need to invoke the LIKE 291 ** function, then no OP_Variable will be added to the program. 292 ** This causes problems for the sqlite3_bind_parameter_name() 293 ** API. To work around them, add a dummy OP_Variable here. 294 */ 295 int r1 = sqlite3GetTempReg(pParse); 296 sqlite3ExprCodeTarget(pParse, pRight, r1); 297 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 298 sqlite3ReleaseTempReg(pParse, r1); 299 } 300 } 301 }else{ 302 z = 0; 303 } 304 } 305 306 rc = (z!=0); 307 sqlite3ValueFree(pVal); 308 return rc; 309 } 310 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 311 312 313 #ifndef SQLITE_OMIT_VIRTUALTABLE 314 /* 315 ** Check to see if the pExpr expression is a form that needs to be passed 316 ** to the xBestIndex method of virtual tables. Forms of interest include: 317 ** 318 ** Expression Virtual Table Operator 319 ** ----------------------- --------------------------------- 320 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH 321 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB 322 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE 323 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP 324 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE 325 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE 326 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT 327 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT 328 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL 329 ** 330 ** In every case, "column" must be a column of a virtual table. If there 331 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the 332 ** "expr" expression (even though in forms (6) and (8) the column is on the 333 ** right and the expression is on the left). Also set *peOp2 to the 334 ** appropriate virtual table operator. The return value is 1 or 2 if there 335 ** is a match. The usual return is 1, but if the RHS is also a column 336 ** of virtual table in forms (5) or (7) then return 2. 337 ** 338 ** If the expression matches none of the patterns above, return 0. 339 */ 340 static int isAuxiliaryVtabOperator( 341 Expr *pExpr, /* Test this expression */ 342 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */ 343 Expr **ppLeft, /* Column expression to left of MATCH/op2 */ 344 Expr **ppRight /* Expression to left of MATCH/op2 */ 345 ){ 346 if( pExpr->op==TK_FUNCTION ){ 347 static const struct Op2 { 348 const char *zOp; 349 unsigned char eOp2; 350 } aOp[] = { 351 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 352 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 353 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 354 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 355 }; 356 ExprList *pList; 357 Expr *pCol; /* Column reference */ 358 int i; 359 360 pList = pExpr->x.pList; 361 if( pList==0 || pList->nExpr!=2 ){ 362 return 0; 363 } 364 pCol = pList->a[1].pExpr; 365 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 366 return 0; 367 } 368 for(i=0; i<ArraySize(aOp); i++){ 369 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 370 *peOp2 = aOp[i].eOp2; 371 *ppRight = pList->a[0].pExpr; 372 *ppLeft = pCol; 373 return 1; 374 } 375 } 376 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ 377 int res = 0; 378 Expr *pLeft = pExpr->pLeft; 379 Expr *pRight = pExpr->pRight; 380 if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->pTab) ){ 381 res++; 382 } 383 if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->pTab) ){ 384 res++; 385 SWAP(Expr*, pLeft, pRight); 386 } 387 *ppLeft = pLeft; 388 *ppRight = pRight; 389 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; 390 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; 391 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL; 392 return res; 393 } 394 return 0; 395 } 396 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 397 398 /* 399 ** If the pBase expression originated in the ON or USING clause of 400 ** a join, then transfer the appropriate markings over to derived. 401 */ 402 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 403 if( pDerived ){ 404 pDerived->flags |= pBase->flags & EP_FromJoin; 405 pDerived->iRightJoinTable = pBase->iRightJoinTable; 406 } 407 } 408 409 /* 410 ** Mark term iChild as being a child of term iParent 411 */ 412 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 413 pWC->a[iChild].iParent = iParent; 414 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 415 pWC->a[iParent].nChild++; 416 } 417 418 /* 419 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 420 ** a conjunction, then return just pTerm when N==0. If N is exceeds 421 ** the number of available subterms, return NULL. 422 */ 423 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 424 if( pTerm->eOperator!=WO_AND ){ 425 return N==0 ? pTerm : 0; 426 } 427 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 428 return &pTerm->u.pAndInfo->wc.a[N]; 429 } 430 return 0; 431 } 432 433 /* 434 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 435 ** two subterms are in disjunction - they are OR-ed together. 436 ** 437 ** If these two terms are both of the form: "A op B" with the same 438 ** A and B values but different operators and if the operators are 439 ** compatible (if one is = and the other is <, for example) then 440 ** add a new virtual AND term to pWC that is the combination of the 441 ** two. 442 ** 443 ** Some examples: 444 ** 445 ** x<y OR x=y --> x<=y 446 ** x=y OR x=y --> x=y 447 ** x<=y OR x<y --> x<=y 448 ** 449 ** The following is NOT generated: 450 ** 451 ** x<y OR x>y --> x!=y 452 */ 453 static void whereCombineDisjuncts( 454 SrcList *pSrc, /* the FROM clause */ 455 WhereClause *pWC, /* The complete WHERE clause */ 456 WhereTerm *pOne, /* First disjunct */ 457 WhereTerm *pTwo /* Second disjunct */ 458 ){ 459 u16 eOp = pOne->eOperator | pTwo->eOperator; 460 sqlite3 *db; /* Database connection (for malloc) */ 461 Expr *pNew; /* New virtual expression */ 462 int op; /* Operator for the combined expression */ 463 int idxNew; /* Index in pWC of the next virtual term */ 464 465 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 466 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 467 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 468 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 469 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 470 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 471 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 472 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; 473 /* If we reach this point, it means the two subterms can be combined */ 474 if( (eOp & (eOp-1))!=0 ){ 475 if( eOp & (WO_LT|WO_LE) ){ 476 eOp = WO_LE; 477 }else{ 478 assert( eOp & (WO_GT|WO_GE) ); 479 eOp = WO_GE; 480 } 481 } 482 db = pWC->pWInfo->pParse->db; 483 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 484 if( pNew==0 ) return; 485 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 486 pNew->op = op; 487 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 488 exprAnalyze(pSrc, pWC, idxNew); 489 } 490 491 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 492 /* 493 ** Analyze a term that consists of two or more OR-connected 494 ** subterms. So in: 495 ** 496 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 497 ** ^^^^^^^^^^^^^^^^^^^^ 498 ** 499 ** This routine analyzes terms such as the middle term in the above example. 500 ** A WhereOrTerm object is computed and attached to the term under 501 ** analysis, regardless of the outcome of the analysis. Hence: 502 ** 503 ** WhereTerm.wtFlags |= TERM_ORINFO 504 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 505 ** 506 ** The term being analyzed must have two or more of OR-connected subterms. 507 ** A single subterm might be a set of AND-connected sub-subterms. 508 ** Examples of terms under analysis: 509 ** 510 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 511 ** (B) x=expr1 OR expr2=x OR x=expr3 512 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 513 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 514 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 515 ** (F) x>A OR (x=A AND y>=B) 516 ** 517 ** CASE 1: 518 ** 519 ** If all subterms are of the form T.C=expr for some single column of C and 520 ** a single table T (as shown in example B above) then create a new virtual 521 ** term that is an equivalent IN expression. In other words, if the term 522 ** being analyzed is: 523 ** 524 ** x = expr1 OR expr2 = x OR x = expr3 525 ** 526 ** then create a new virtual term like this: 527 ** 528 ** x IN (expr1,expr2,expr3) 529 ** 530 ** CASE 2: 531 ** 532 ** If there are exactly two disjuncts and one side has x>A and the other side 533 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 534 ** WHERE clause of the form "x>=A". Example: 535 ** 536 ** x>A OR (x=A AND y>B) adds: x>=A 537 ** 538 ** The added conjunct can sometimes be helpful in query planning. 539 ** 540 ** CASE 3: 541 ** 542 ** If all subterms are indexable by a single table T, then set 543 ** 544 ** WhereTerm.eOperator = WO_OR 545 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 546 ** 547 ** A subterm is "indexable" if it is of the form 548 ** "T.C <op> <expr>" where C is any column of table T and 549 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 550 ** A subterm is also indexable if it is an AND of two or more 551 ** subsubterms at least one of which is indexable. Indexable AND 552 ** subterms have their eOperator set to WO_AND and they have 553 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 554 ** 555 ** From another point of view, "indexable" means that the subterm could 556 ** potentially be used with an index if an appropriate index exists. 557 ** This analysis does not consider whether or not the index exists; that 558 ** is decided elsewhere. This analysis only looks at whether subterms 559 ** appropriate for indexing exist. 560 ** 561 ** All examples A through E above satisfy case 3. But if a term 562 ** also satisfies case 1 (such as B) we know that the optimizer will 563 ** always prefer case 1, so in that case we pretend that case 3 is not 564 ** satisfied. 565 ** 566 ** It might be the case that multiple tables are indexable. For example, 567 ** (E) above is indexable on tables P, Q, and R. 568 ** 569 ** Terms that satisfy case 3 are candidates for lookup by using 570 ** separate indices to find rowids for each subterm and composing 571 ** the union of all rowids using a RowSet object. This is similar 572 ** to "bitmap indices" in other database engines. 573 ** 574 ** OTHERWISE: 575 ** 576 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 577 ** zero. This term is not useful for search. 578 */ 579 static void exprAnalyzeOrTerm( 580 SrcList *pSrc, /* the FROM clause */ 581 WhereClause *pWC, /* the complete WHERE clause */ 582 int idxTerm /* Index of the OR-term to be analyzed */ 583 ){ 584 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 585 Parse *pParse = pWInfo->pParse; /* Parser context */ 586 sqlite3 *db = pParse->db; /* Database connection */ 587 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 588 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 589 int i; /* Loop counters */ 590 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 591 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 592 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 593 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 594 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 595 596 /* 597 ** Break the OR clause into its separate subterms. The subterms are 598 ** stored in a WhereClause structure containing within the WhereOrInfo 599 ** object that is attached to the original OR clause term. 600 */ 601 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 602 assert( pExpr->op==TK_OR ); 603 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 604 if( pOrInfo==0 ) return; 605 pTerm->wtFlags |= TERM_ORINFO; 606 pOrWc = &pOrInfo->wc; 607 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 608 sqlite3WhereClauseInit(pOrWc, pWInfo); 609 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 610 sqlite3WhereExprAnalyze(pSrc, pOrWc); 611 if( db->mallocFailed ) return; 612 assert( pOrWc->nTerm>=2 ); 613 614 /* 615 ** Compute the set of tables that might satisfy cases 1 or 3. 616 */ 617 indexable = ~(Bitmask)0; 618 chngToIN = ~(Bitmask)0; 619 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 620 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 621 WhereAndInfo *pAndInfo; 622 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 623 chngToIN = 0; 624 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 625 if( pAndInfo ){ 626 WhereClause *pAndWC; 627 WhereTerm *pAndTerm; 628 int j; 629 Bitmask b = 0; 630 pOrTerm->u.pAndInfo = pAndInfo; 631 pOrTerm->wtFlags |= TERM_ANDINFO; 632 pOrTerm->eOperator = WO_AND; 633 pAndWC = &pAndInfo->wc; 634 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 635 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 636 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 637 sqlite3WhereExprAnalyze(pSrc, pAndWC); 638 pAndWC->pOuter = pWC; 639 if( !db->mallocFailed ){ 640 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 641 assert( pAndTerm->pExpr ); 642 if( allowedOp(pAndTerm->pExpr->op) 643 || pAndTerm->eOperator==WO_AUX 644 ){ 645 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 646 } 647 } 648 } 649 indexable &= b; 650 } 651 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 652 /* Skip this term for now. We revisit it when we process the 653 ** corresponding TERM_VIRTUAL term */ 654 }else{ 655 Bitmask b; 656 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 657 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 658 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 659 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 660 } 661 indexable &= b; 662 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 663 chngToIN = 0; 664 }else{ 665 chngToIN &= b; 666 } 667 } 668 } 669 670 /* 671 ** Record the set of tables that satisfy case 3. The set might be 672 ** empty. 673 */ 674 pOrInfo->indexable = indexable; 675 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 676 677 /* For a two-way OR, attempt to implementation case 2. 678 */ 679 if( indexable && pOrWc->nTerm==2 ){ 680 int iOne = 0; 681 WhereTerm *pOne; 682 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 683 int iTwo = 0; 684 WhereTerm *pTwo; 685 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 686 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 687 } 688 } 689 } 690 691 /* 692 ** chngToIN holds a set of tables that *might* satisfy case 1. But 693 ** we have to do some additional checking to see if case 1 really 694 ** is satisfied. 695 ** 696 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 697 ** that there is no possibility of transforming the OR clause into an 698 ** IN operator because one or more terms in the OR clause contain 699 ** something other than == on a column in the single table. The 1-bit 700 ** case means that every term of the OR clause is of the form 701 ** "table.column=expr" for some single table. The one bit that is set 702 ** will correspond to the common table. We still need to check to make 703 ** sure the same column is used on all terms. The 2-bit case is when 704 ** the all terms are of the form "table1.column=table2.column". It 705 ** might be possible to form an IN operator with either table1.column 706 ** or table2.column as the LHS if either is common to every term of 707 ** the OR clause. 708 ** 709 ** Note that terms of the form "table.column1=table.column2" (the 710 ** same table on both sizes of the ==) cannot be optimized. 711 */ 712 if( chngToIN ){ 713 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 714 int iColumn = -1; /* Column index on lhs of IN operator */ 715 int iCursor = -1; /* Table cursor common to all terms */ 716 int j = 0; /* Loop counter */ 717 718 /* Search for a table and column that appears on one side or the 719 ** other of the == operator in every subterm. That table and column 720 ** will be recorded in iCursor and iColumn. There might not be any 721 ** such table and column. Set okToChngToIN if an appropriate table 722 ** and column is found but leave okToChngToIN false if not found. 723 */ 724 for(j=0; j<2 && !okToChngToIN; j++){ 725 pOrTerm = pOrWc->a; 726 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 727 assert( pOrTerm->eOperator & WO_EQ ); 728 pOrTerm->wtFlags &= ~TERM_OR_OK; 729 if( pOrTerm->leftCursor==iCursor ){ 730 /* This is the 2-bit case and we are on the second iteration and 731 ** current term is from the first iteration. So skip this term. */ 732 assert( j==1 ); 733 continue; 734 } 735 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 736 pOrTerm->leftCursor))==0 ){ 737 /* This term must be of the form t1.a==t2.b where t2 is in the 738 ** chngToIN set but t1 is not. This term will be either preceded 739 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 740 ** and use its inversion. */ 741 testcase( pOrTerm->wtFlags & TERM_COPIED ); 742 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 743 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 744 continue; 745 } 746 iColumn = pOrTerm->u.leftColumn; 747 iCursor = pOrTerm->leftCursor; 748 break; 749 } 750 if( i<0 ){ 751 /* No candidate table+column was found. This can only occur 752 ** on the second iteration */ 753 assert( j==1 ); 754 assert( IsPowerOfTwo(chngToIN) ); 755 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 756 break; 757 } 758 testcase( j==1 ); 759 760 /* We have found a candidate table and column. Check to see if that 761 ** table and column is common to every term in the OR clause */ 762 okToChngToIN = 1; 763 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 764 assert( pOrTerm->eOperator & WO_EQ ); 765 if( pOrTerm->leftCursor!=iCursor ){ 766 pOrTerm->wtFlags &= ~TERM_OR_OK; 767 }else if( pOrTerm->u.leftColumn!=iColumn ){ 768 okToChngToIN = 0; 769 }else{ 770 int affLeft, affRight; 771 /* If the right-hand side is also a column, then the affinities 772 ** of both right and left sides must be such that no type 773 ** conversions are required on the right. (Ticket #2249) 774 */ 775 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 776 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 777 if( affRight!=0 && affRight!=affLeft ){ 778 okToChngToIN = 0; 779 }else{ 780 pOrTerm->wtFlags |= TERM_OR_OK; 781 } 782 } 783 } 784 } 785 786 /* At this point, okToChngToIN is true if original pTerm satisfies 787 ** case 1. In that case, construct a new virtual term that is 788 ** pTerm converted into an IN operator. 789 */ 790 if( okToChngToIN ){ 791 Expr *pDup; /* A transient duplicate expression */ 792 ExprList *pList = 0; /* The RHS of the IN operator */ 793 Expr *pLeft = 0; /* The LHS of the IN operator */ 794 Expr *pNew; /* The complete IN operator */ 795 796 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 797 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 798 assert( pOrTerm->eOperator & WO_EQ ); 799 assert( pOrTerm->leftCursor==iCursor ); 800 assert( pOrTerm->u.leftColumn==iColumn ); 801 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 802 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 803 pLeft = pOrTerm->pExpr->pLeft; 804 } 805 assert( pLeft!=0 ); 806 pDup = sqlite3ExprDup(db, pLeft, 0); 807 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 808 if( pNew ){ 809 int idxNew; 810 transferJoinMarkings(pNew, pExpr); 811 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 812 pNew->x.pList = pList; 813 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 814 testcase( idxNew==0 ); 815 exprAnalyze(pSrc, pWC, idxNew); 816 pTerm = &pWC->a[idxTerm]; 817 markTermAsChild(pWC, idxNew, idxTerm); 818 }else{ 819 sqlite3ExprListDelete(db, pList); 820 } 821 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 822 } 823 } 824 } 825 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 826 827 /* 828 ** We already know that pExpr is a binary operator where both operands are 829 ** column references. This routine checks to see if pExpr is an equivalence 830 ** relation: 831 ** 1. The SQLITE_Transitive optimization must be enabled 832 ** 2. Must be either an == or an IS operator 833 ** 3. Not originating in the ON clause of an OUTER JOIN 834 ** 4. The affinities of A and B must be compatible 835 ** 5a. Both operands use the same collating sequence OR 836 ** 5b. The overall collating sequence is BINARY 837 ** If this routine returns TRUE, that means that the RHS can be substituted 838 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 839 ** This is an optimization. No harm comes from returning 0. But if 1 is 840 ** returned when it should not be, then incorrect answers might result. 841 */ 842 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 843 char aff1, aff2; 844 CollSeq *pColl; 845 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 846 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 847 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 848 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 849 aff2 = sqlite3ExprAffinity(pExpr->pRight); 850 if( aff1!=aff2 851 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 852 ){ 853 return 0; 854 } 855 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 856 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 857 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight); 858 } 859 860 /* 861 ** Recursively walk the expressions of a SELECT statement and generate 862 ** a bitmask indicating which tables are used in that expression 863 ** tree. 864 */ 865 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 866 Bitmask mask = 0; 867 while( pS ){ 868 SrcList *pSrc = pS->pSrc; 869 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 870 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 871 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 872 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 873 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 874 if( ALWAYS(pSrc!=0) ){ 875 int i; 876 for(i=0; i<pSrc->nSrc; i++){ 877 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 878 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 879 if( pSrc->a[i].fg.isTabFunc ){ 880 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg); 881 } 882 } 883 } 884 pS = pS->pPrior; 885 } 886 return mask; 887 } 888 889 /* 890 ** Expression pExpr is one operand of a comparison operator that might 891 ** be useful for indexing. This routine checks to see if pExpr appears 892 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 893 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor 894 ** number of the table that is indexed and aiCurCol[1] to the column number 895 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 896 ** indexed. 897 ** 898 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 899 ** true even if that particular column is not indexed, because the column 900 ** might be added to an automatic index later. 901 */ 902 static SQLITE_NOINLINE int exprMightBeIndexed2( 903 SrcList *pFrom, /* The FROM clause */ 904 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 905 int *aiCurCol, /* Write the referenced table cursor and column here */ 906 Expr *pExpr /* An operand of a comparison operator */ 907 ){ 908 Index *pIdx; 909 int i; 910 int iCur; 911 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 912 iCur = pFrom->a[i].iCursor; 913 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 914 if( pIdx->aColExpr==0 ) continue; 915 for(i=0; i<pIdx->nKeyCol; i++){ 916 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 917 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 918 aiCurCol[0] = iCur; 919 aiCurCol[1] = XN_EXPR; 920 return 1; 921 } 922 } 923 } 924 return 0; 925 } 926 static int exprMightBeIndexed( 927 SrcList *pFrom, /* The FROM clause */ 928 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 929 int *aiCurCol, /* Write the referenced table cursor & column here */ 930 Expr *pExpr, /* An operand of a comparison operator */ 931 int op /* The specific comparison operator */ 932 ){ 933 /* If this expression is a vector to the left or right of a 934 ** inequality constraint (>, <, >= or <=), perform the processing 935 ** on the first element of the vector. */ 936 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 937 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 938 assert( op<=TK_GE ); 939 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 940 pExpr = pExpr->x.pList->a[0].pExpr; 941 } 942 943 if( pExpr->op==TK_COLUMN ){ 944 aiCurCol[0] = pExpr->iTable; 945 aiCurCol[1] = pExpr->iColumn; 946 return 1; 947 } 948 if( mPrereq==0 ) return 0; /* No table references */ 949 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 950 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr); 951 } 952 953 /* 954 ** The input to this routine is an WhereTerm structure with only the 955 ** "pExpr" field filled in. The job of this routine is to analyze the 956 ** subexpression and populate all the other fields of the WhereTerm 957 ** structure. 958 ** 959 ** If the expression is of the form "<expr> <op> X" it gets commuted 960 ** to the standard form of "X <op> <expr>". 961 ** 962 ** If the expression is of the form "X <op> Y" where both X and Y are 963 ** columns, then the original expression is unchanged and a new virtual 964 ** term of the form "Y <op> X" is added to the WHERE clause and 965 ** analyzed separately. The original term is marked with TERM_COPIED 966 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 967 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 968 ** is a commuted copy of a prior term.) The original term has nChild=1 969 ** and the copy has idxParent set to the index of the original term. 970 */ 971 static void exprAnalyze( 972 SrcList *pSrc, /* the FROM clause */ 973 WhereClause *pWC, /* the WHERE clause */ 974 int idxTerm /* Index of the term to be analyzed */ 975 ){ 976 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 977 WhereTerm *pTerm; /* The term to be analyzed */ 978 WhereMaskSet *pMaskSet; /* Set of table index masks */ 979 Expr *pExpr; /* The expression to be analyzed */ 980 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 981 Bitmask prereqAll; /* Prerequesites of pExpr */ 982 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 983 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 984 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 985 int noCase = 0; /* uppercase equivalent to lowercase */ 986 int op; /* Top-level operator. pExpr->op */ 987 Parse *pParse = pWInfo->pParse; /* Parsing context */ 988 sqlite3 *db = pParse->db; /* Database connection */ 989 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */ 990 int nLeft; /* Number of elements on left side vector */ 991 992 if( db->mallocFailed ){ 993 return; 994 } 995 pTerm = &pWC->a[idxTerm]; 996 pMaskSet = &pWInfo->sMaskSet; 997 pExpr = pTerm->pExpr; 998 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 999 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 1000 op = pExpr->op; 1001 if( op==TK_IN ){ 1002 assert( pExpr->pRight==0 ); 1003 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 1004 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1005 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 1006 }else{ 1007 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 1008 } 1009 }else if( op==TK_ISNULL ){ 1010 pTerm->prereqRight = 0; 1011 }else{ 1012 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 1013 } 1014 pMaskSet->bVarSelect = 0; 1015 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 1016 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; 1017 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1018 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 1019 prereqAll |= x; 1020 extraRight = x-1; /* ON clause terms may not be used with an index 1021 ** on left table of a LEFT JOIN. Ticket #3015 */ 1022 if( (prereqAll>>1)>=x ){ 1023 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); 1024 return; 1025 } 1026 } 1027 pTerm->prereqAll = prereqAll; 1028 pTerm->leftCursor = -1; 1029 pTerm->iParent = -1; 1030 pTerm->eOperator = 0; 1031 if( allowedOp(op) ){ 1032 int aiCurCol[2]; 1033 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 1034 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 1035 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 1036 1037 if( pTerm->iField>0 ){ 1038 assert( op==TK_IN ); 1039 assert( pLeft->op==TK_VECTOR ); 1040 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 1041 } 1042 1043 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){ 1044 pTerm->leftCursor = aiCurCol[0]; 1045 pTerm->u.leftColumn = aiCurCol[1]; 1046 pTerm->eOperator = operatorMask(op) & opMask; 1047 } 1048 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 1049 if( pRight 1050 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op) 1051 ){ 1052 WhereTerm *pNew; 1053 Expr *pDup; 1054 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 1055 assert( pTerm->iField==0 ); 1056 if( pTerm->leftCursor>=0 ){ 1057 int idxNew; 1058 pDup = sqlite3ExprDup(db, pExpr, 0); 1059 if( db->mallocFailed ){ 1060 sqlite3ExprDelete(db, pDup); 1061 return; 1062 } 1063 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1064 if( idxNew==0 ) return; 1065 pNew = &pWC->a[idxNew]; 1066 markTermAsChild(pWC, idxNew, idxTerm); 1067 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 1068 pTerm = &pWC->a[idxTerm]; 1069 pTerm->wtFlags |= TERM_COPIED; 1070 1071 if( termIsEquivalence(pParse, pDup) ){ 1072 pTerm->eOperator |= WO_EQUIV; 1073 eExtraOp = WO_EQUIV; 1074 } 1075 }else{ 1076 pDup = pExpr; 1077 pNew = pTerm; 1078 } 1079 exprCommute(pParse, pDup); 1080 pNew->leftCursor = aiCurCol[0]; 1081 pNew->u.leftColumn = aiCurCol[1]; 1082 testcase( (prereqLeft | extraRight) != prereqLeft ); 1083 pNew->prereqRight = prereqLeft | extraRight; 1084 pNew->prereqAll = prereqAll; 1085 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1086 } 1087 } 1088 1089 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1090 /* If a term is the BETWEEN operator, create two new virtual terms 1091 ** that define the range that the BETWEEN implements. For example: 1092 ** 1093 ** a BETWEEN b AND c 1094 ** 1095 ** is converted into: 1096 ** 1097 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1098 ** 1099 ** The two new terms are added onto the end of the WhereClause object. 1100 ** The new terms are "dynamic" and are children of the original BETWEEN 1101 ** term. That means that if the BETWEEN term is coded, the children are 1102 ** skipped. Or, if the children are satisfied by an index, the original 1103 ** BETWEEN term is skipped. 1104 */ 1105 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1106 ExprList *pList = pExpr->x.pList; 1107 int i; 1108 static const u8 ops[] = {TK_GE, TK_LE}; 1109 assert( pList!=0 ); 1110 assert( pList->nExpr==2 ); 1111 for(i=0; i<2; i++){ 1112 Expr *pNewExpr; 1113 int idxNew; 1114 pNewExpr = sqlite3PExpr(pParse, ops[i], 1115 sqlite3ExprDup(db, pExpr->pLeft, 0), 1116 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 1117 transferJoinMarkings(pNewExpr, pExpr); 1118 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1119 testcase( idxNew==0 ); 1120 exprAnalyze(pSrc, pWC, idxNew); 1121 pTerm = &pWC->a[idxTerm]; 1122 markTermAsChild(pWC, idxNew, idxTerm); 1123 } 1124 } 1125 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1126 1127 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1128 /* Analyze a term that is composed of two or more subterms connected by 1129 ** an OR operator. 1130 */ 1131 else if( pExpr->op==TK_OR ){ 1132 assert( pWC->op==TK_AND ); 1133 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1134 pTerm = &pWC->a[idxTerm]; 1135 } 1136 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1137 1138 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1139 /* Add constraints to reduce the search space on a LIKE or GLOB 1140 ** operator. 1141 ** 1142 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1143 ** 1144 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1145 ** 1146 ** The last character of the prefix "abc" is incremented to form the 1147 ** termination condition "abd". If case is not significant (the default 1148 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1149 ** bound is made all lowercase so that the bounds also work when comparing 1150 ** BLOBs. 1151 */ 1152 if( pWC->op==TK_AND 1153 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1154 ){ 1155 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1156 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1157 Expr *pNewExpr1; 1158 Expr *pNewExpr2; 1159 int idxNew1; 1160 int idxNew2; 1161 const char *zCollSeqName; /* Name of collating sequence */ 1162 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1163 1164 pLeft = pExpr->x.pList->a[1].pExpr; 1165 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1166 1167 /* Convert the lower bound to upper-case and the upper bound to 1168 ** lower-case (upper-case is less than lower-case in ASCII) so that 1169 ** the range constraints also work for BLOBs 1170 */ 1171 if( noCase && !pParse->db->mallocFailed ){ 1172 int i; 1173 char c; 1174 pTerm->wtFlags |= TERM_LIKE; 1175 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1176 pStr1->u.zToken[i] = sqlite3Toupper(c); 1177 pStr2->u.zToken[i] = sqlite3Tolower(c); 1178 } 1179 } 1180 1181 if( !db->mallocFailed ){ 1182 u8 c, *pC; /* Last character before the first wildcard */ 1183 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1184 c = *pC; 1185 if( noCase ){ 1186 /* The point is to increment the last character before the first 1187 ** wildcard. But if we increment '@', that will push it into the 1188 ** alphabetic range where case conversions will mess up the 1189 ** inequality. To avoid this, make sure to also run the full 1190 ** LIKE on all candidate expressions by clearing the isComplete flag 1191 */ 1192 if( c=='A'-1 ) isComplete = 0; 1193 c = sqlite3UpperToLower[c]; 1194 } 1195 *pC = c + 1; 1196 } 1197 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1198 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1199 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1200 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1201 pStr1); 1202 transferJoinMarkings(pNewExpr1, pExpr); 1203 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1204 testcase( idxNew1==0 ); 1205 exprAnalyze(pSrc, pWC, idxNew1); 1206 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1207 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1208 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1209 pStr2); 1210 transferJoinMarkings(pNewExpr2, pExpr); 1211 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1212 testcase( idxNew2==0 ); 1213 exprAnalyze(pSrc, pWC, idxNew2); 1214 pTerm = &pWC->a[idxTerm]; 1215 if( isComplete ){ 1216 markTermAsChild(pWC, idxNew1, idxTerm); 1217 markTermAsChild(pWC, idxNew2, idxTerm); 1218 } 1219 } 1220 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1221 1222 #ifndef SQLITE_OMIT_VIRTUALTABLE 1223 /* Add a WO_AUX auxiliary term to the constraint set if the 1224 ** current expression is of the form "column OP expr" where OP 1225 ** is an operator that gets passed into virtual tables but which is 1226 ** not normally optimized for ordinary tables. In other words, OP 1227 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL. 1228 ** This information is used by the xBestIndex methods of 1229 ** virtual tables. The native query optimizer does not attempt 1230 ** to do anything with MATCH functions. 1231 */ 1232 if( pWC->op==TK_AND ){ 1233 Expr *pRight = 0, *pLeft = 0; 1234 int res = isAuxiliaryVtabOperator(pExpr, &eOp2, &pLeft, &pRight); 1235 while( res-- > 0 ){ 1236 int idxNew; 1237 WhereTerm *pNewTerm; 1238 Bitmask prereqColumn, prereqExpr; 1239 1240 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1241 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1242 if( (prereqExpr & prereqColumn)==0 ){ 1243 Expr *pNewExpr; 1244 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1245 0, sqlite3ExprDup(db, pRight, 0)); 1246 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){ 1247 ExprSetProperty(pNewExpr, EP_FromJoin); 1248 } 1249 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1250 testcase( idxNew==0 ); 1251 pNewTerm = &pWC->a[idxNew]; 1252 pNewTerm->prereqRight = prereqExpr; 1253 pNewTerm->leftCursor = pLeft->iTable; 1254 pNewTerm->u.leftColumn = pLeft->iColumn; 1255 pNewTerm->eOperator = WO_AUX; 1256 pNewTerm->eMatchOp = eOp2; 1257 markTermAsChild(pWC, idxNew, idxTerm); 1258 pTerm = &pWC->a[idxTerm]; 1259 pTerm->wtFlags |= TERM_COPIED; 1260 pNewTerm->prereqAll = pTerm->prereqAll; 1261 } 1262 SWAP(Expr*, pLeft, pRight); 1263 } 1264 } 1265 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1266 1267 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1268 ** new terms for each component comparison - "a = ?" and "b = ?". The 1269 ** new terms completely replace the original vector comparison, which is 1270 ** no longer used. 1271 ** 1272 ** This is only required if at least one side of the comparison operation 1273 ** is not a sub-select. */ 1274 if( pWC->op==TK_AND 1275 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1276 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 1277 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft 1278 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1279 || (pExpr->pRight->flags & EP_xIsSelect)==0) 1280 ){ 1281 int i; 1282 for(i=0; i<nLeft; i++){ 1283 int idxNew; 1284 Expr *pNew; 1285 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 1286 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 1287 1288 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 1289 transferJoinMarkings(pNew, pExpr); 1290 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1291 exprAnalyze(pSrc, pWC, idxNew); 1292 } 1293 pTerm = &pWC->a[idxTerm]; 1294 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1295 pTerm->eOperator = 0; 1296 } 1297 1298 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1299 ** a virtual term for each vector component. The expression object 1300 ** used by each such virtual term is pExpr (the full vector IN(...) 1301 ** expression). The WhereTerm.iField variable identifies the index within 1302 ** the vector on the LHS that the virtual term represents. 1303 ** 1304 ** This only works if the RHS is a simple SELECT, not a compound 1305 */ 1306 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 1307 && pExpr->pLeft->op==TK_VECTOR 1308 && pExpr->x.pSelect->pPrior==0 1309 ){ 1310 int i; 1311 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1312 int idxNew; 1313 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1314 pWC->a[idxNew].iField = i+1; 1315 exprAnalyze(pSrc, pWC, idxNew); 1316 markTermAsChild(pWC, idxNew, idxTerm); 1317 } 1318 } 1319 1320 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1321 /* When sqlite_stat3 histogram data is available an operator of the 1322 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1323 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1324 ** virtual term of that form. 1325 ** 1326 ** Note that the virtual term must be tagged with TERM_VNULL. 1327 */ 1328 if( pExpr->op==TK_NOTNULL 1329 && pExpr->pLeft->op==TK_COLUMN 1330 && pExpr->pLeft->iColumn>=0 1331 && OptimizationEnabled(db, SQLITE_Stat34) 1332 ){ 1333 Expr *pNewExpr; 1334 Expr *pLeft = pExpr->pLeft; 1335 int idxNew; 1336 WhereTerm *pNewTerm; 1337 1338 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1339 sqlite3ExprDup(db, pLeft, 0), 1340 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 1341 1342 idxNew = whereClauseInsert(pWC, pNewExpr, 1343 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1344 if( idxNew ){ 1345 pNewTerm = &pWC->a[idxNew]; 1346 pNewTerm->prereqRight = 0; 1347 pNewTerm->leftCursor = pLeft->iTable; 1348 pNewTerm->u.leftColumn = pLeft->iColumn; 1349 pNewTerm->eOperator = WO_GT; 1350 markTermAsChild(pWC, idxNew, idxTerm); 1351 pTerm = &pWC->a[idxTerm]; 1352 pTerm->wtFlags |= TERM_COPIED; 1353 pNewTerm->prereqAll = pTerm->prereqAll; 1354 } 1355 } 1356 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1357 1358 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1359 ** an index for tables to the left of the join. 1360 */ 1361 testcase( pTerm!=&pWC->a[idxTerm] ); 1362 pTerm = &pWC->a[idxTerm]; 1363 pTerm->prereqRight |= extraRight; 1364 } 1365 1366 /*************************************************************************** 1367 ** Routines with file scope above. Interface to the rest of the where.c 1368 ** subsystem follows. 1369 ***************************************************************************/ 1370 1371 /* 1372 ** This routine identifies subexpressions in the WHERE clause where 1373 ** each subexpression is separated by the AND operator or some other 1374 ** operator specified in the op parameter. The WhereClause structure 1375 ** is filled with pointers to subexpressions. For example: 1376 ** 1377 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1378 ** \________/ \_______________/ \________________/ 1379 ** slot[0] slot[1] slot[2] 1380 ** 1381 ** The original WHERE clause in pExpr is unaltered. All this routine 1382 ** does is make slot[] entries point to substructure within pExpr. 1383 ** 1384 ** In the previous sentence and in the diagram, "slot[]" refers to 1385 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1386 ** all terms of the WHERE clause. 1387 */ 1388 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1389 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1390 pWC->op = op; 1391 if( pE2==0 ) return; 1392 if( pE2->op!=op ){ 1393 whereClauseInsert(pWC, pExpr, 0); 1394 }else{ 1395 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1396 sqlite3WhereSplit(pWC, pE2->pRight, op); 1397 } 1398 } 1399 1400 /* 1401 ** Initialize a preallocated WhereClause structure. 1402 */ 1403 void sqlite3WhereClauseInit( 1404 WhereClause *pWC, /* The WhereClause to be initialized */ 1405 WhereInfo *pWInfo /* The WHERE processing context */ 1406 ){ 1407 pWC->pWInfo = pWInfo; 1408 pWC->pOuter = 0; 1409 pWC->nTerm = 0; 1410 pWC->nSlot = ArraySize(pWC->aStatic); 1411 pWC->a = pWC->aStatic; 1412 } 1413 1414 /* 1415 ** Deallocate a WhereClause structure. The WhereClause structure 1416 ** itself is not freed. This routine is the inverse of 1417 ** sqlite3WhereClauseInit(). 1418 */ 1419 void sqlite3WhereClauseClear(WhereClause *pWC){ 1420 int i; 1421 WhereTerm *a; 1422 sqlite3 *db = pWC->pWInfo->pParse->db; 1423 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1424 if( a->wtFlags & TERM_DYNAMIC ){ 1425 sqlite3ExprDelete(db, a->pExpr); 1426 } 1427 if( a->wtFlags & TERM_ORINFO ){ 1428 whereOrInfoDelete(db, a->u.pOrInfo); 1429 }else if( a->wtFlags & TERM_ANDINFO ){ 1430 whereAndInfoDelete(db, a->u.pAndInfo); 1431 } 1432 } 1433 if( pWC->a!=pWC->aStatic ){ 1434 sqlite3DbFree(db, pWC->a); 1435 } 1436 } 1437 1438 1439 /* 1440 ** These routines walk (recursively) an expression tree and generate 1441 ** a bitmask indicating which tables are used in that expression 1442 ** tree. 1443 */ 1444 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1445 Bitmask mask; 1446 if( p==0 ) return 0; 1447 if( p->op==TK_COLUMN ){ 1448 return sqlite3WhereGetMask(pMaskSet, p->iTable); 1449 } 1450 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; 1451 assert( !ExprHasProperty(p, EP_TokenOnly) ); 1452 if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 1453 if( p->pRight ){ 1454 mask |= sqlite3WhereExprUsage(pMaskSet, p->pRight); 1455 assert( p->x.pList==0 ); 1456 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1457 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; 1458 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1459 }else if( p->x.pList ){ 1460 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1461 } 1462 return mask; 1463 } 1464 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1465 int i; 1466 Bitmask mask = 0; 1467 if( pList ){ 1468 for(i=0; i<pList->nExpr; i++){ 1469 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1470 } 1471 } 1472 return mask; 1473 } 1474 1475 1476 /* 1477 ** Call exprAnalyze on all terms in a WHERE clause. 1478 ** 1479 ** Note that exprAnalyze() might add new virtual terms onto the 1480 ** end of the WHERE clause. We do not want to analyze these new 1481 ** virtual terms, so start analyzing at the end and work forward 1482 ** so that the added virtual terms are never processed. 1483 */ 1484 void sqlite3WhereExprAnalyze( 1485 SrcList *pTabList, /* the FROM clause */ 1486 WhereClause *pWC /* the WHERE clause to be analyzed */ 1487 ){ 1488 int i; 1489 for(i=pWC->nTerm-1; i>=0; i--){ 1490 exprAnalyze(pTabList, pWC, i); 1491 } 1492 } 1493 1494 /* 1495 ** For table-valued-functions, transform the function arguments into 1496 ** new WHERE clause terms. 1497 ** 1498 ** Each function argument translates into an equality constraint against 1499 ** a HIDDEN column in the table. 1500 */ 1501 void sqlite3WhereTabFuncArgs( 1502 Parse *pParse, /* Parsing context */ 1503 struct SrcList_item *pItem, /* The FROM clause term to process */ 1504 WhereClause *pWC /* Xfer function arguments to here */ 1505 ){ 1506 Table *pTab; 1507 int j, k; 1508 ExprList *pArgs; 1509 Expr *pColRef; 1510 Expr *pTerm; 1511 if( pItem->fg.isTabFunc==0 ) return; 1512 pTab = pItem->pTab; 1513 assert( pTab!=0 ); 1514 pArgs = pItem->u1.pFuncArg; 1515 if( pArgs==0 ) return; 1516 for(j=k=0; j<pArgs->nExpr; j++){ 1517 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1518 if( k>=pTab->nCol ){ 1519 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1520 pTab->zName, j); 1521 return; 1522 } 1523 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1524 if( pColRef==0 ) return; 1525 pColRef->iTable = pItem->iCursor; 1526 pColRef->iColumn = k++; 1527 pColRef->pTab = pTab; 1528 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1529 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); 1530 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1531 } 1532 } 1533