xref: /sqlite-3.40.0/src/whereexpr.c (revision e99cb2da)
1 /*
2 ** 2015-06-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity.  This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declarations */
23 static void exprAnalyze(SrcList*, WhereClause*, int);
24 
25 /*
26 ** Deallocate all memory associated with a WhereOrInfo object.
27 */
28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
29   sqlite3WhereClauseClear(&p->wc);
30   sqlite3DbFree(db, p);
31 }
32 
33 /*
34 ** Deallocate all memory associated with a WhereAndInfo object.
35 */
36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
37   sqlite3WhereClauseClear(&p->wc);
38   sqlite3DbFree(db, p);
39 }
40 
41 /*
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error.  The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
48 **
49 ** This routine will increase the size of the pWC->a[] array as necessary.
50 **
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
54 **
55 ** WARNING:  This routine might reallocate the space used to store
56 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
57 ** calling this routine.  Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
59 */
60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
61   WhereTerm *pTerm;
62   int idx;
63   testcase( wtFlags & TERM_VIRTUAL );
64   if( pWC->nTerm>=pWC->nSlot ){
65     WhereTerm *pOld = pWC->a;
66     sqlite3 *db = pWC->pWInfo->pParse->db;
67     pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
68     if( pWC->a==0 ){
69       if( wtFlags & TERM_DYNAMIC ){
70         sqlite3ExprDelete(db, p);
71       }
72       pWC->a = pOld;
73       return 0;
74     }
75     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
76     if( pOld!=pWC->aStatic ){
77       sqlite3DbFree(db, pOld);
78     }
79     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
80   }
81   pTerm = &pWC->a[idx = pWC->nTerm++];
82   if( p && ExprHasProperty(p, EP_Unlikely) ){
83     pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
84   }else{
85     pTerm->truthProb = 1;
86   }
87   pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p);
88   pTerm->wtFlags = wtFlags;
89   pTerm->pWC = pWC;
90   pTerm->iParent = -1;
91   memset(&pTerm->eOperator, 0,
92          sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
93   return idx;
94 }
95 
96 /*
97 ** Return TRUE if the given operator is one of the operators that is
98 ** allowed for an indexable WHERE clause term.  The allowed operators are
99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
100 */
101 static int allowedOp(int op){
102   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
103   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
104   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
105   assert( TK_GE==TK_EQ+4 );
106   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
107 }
108 
109 /*
110 ** Commute a comparison operator.  Expressions of the form "X op Y"
111 ** are converted into "Y op X".
112 */
113 static u16 exprCommute(Parse *pParse, Expr *pExpr){
114   if( pExpr->pLeft->op==TK_VECTOR
115    || pExpr->pRight->op==TK_VECTOR
116    || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) !=
117       sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft)
118   ){
119     pExpr->flags ^= EP_Commuted;
120   }
121   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
122   if( pExpr->op>=TK_GT ){
123     assert( TK_LT==TK_GT+2 );
124     assert( TK_GE==TK_LE+2 );
125     assert( TK_GT>TK_EQ );
126     assert( TK_GT<TK_LE );
127     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
128     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
129   }
130   return 0;
131 }
132 
133 /*
134 ** Translate from TK_xx operator to WO_xx bitmask.
135 */
136 static u16 operatorMask(int op){
137   u16 c;
138   assert( allowedOp(op) );
139   if( op==TK_IN ){
140     c = WO_IN;
141   }else if( op==TK_ISNULL ){
142     c = WO_ISNULL;
143   }else if( op==TK_IS ){
144     c = WO_IS;
145   }else{
146     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
147     c = (u16)(WO_EQ<<(op-TK_EQ));
148   }
149   assert( op!=TK_ISNULL || c==WO_ISNULL );
150   assert( op!=TK_IN || c==WO_IN );
151   assert( op!=TK_EQ || c==WO_EQ );
152   assert( op!=TK_LT || c==WO_LT );
153   assert( op!=TK_LE || c==WO_LE );
154   assert( op!=TK_GT || c==WO_GT );
155   assert( op!=TK_GE || c==WO_GE );
156   assert( op!=TK_IS || c==WO_IS );
157   return c;
158 }
159 
160 
161 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
162 /*
163 ** Check to see if the given expression is a LIKE or GLOB operator that
164 ** can be optimized using inequality constraints.  Return TRUE if it is
165 ** so and false if not.
166 **
167 ** In order for the operator to be optimizible, the RHS must be a string
168 ** literal that does not begin with a wildcard.  The LHS must be a column
169 ** that may only be NULL, a string, or a BLOB, never a number. (This means
170 ** that virtual tables cannot participate in the LIKE optimization.)  The
171 ** collating sequence for the column on the LHS must be appropriate for
172 ** the operator.
173 */
174 static int isLikeOrGlob(
175   Parse *pParse,    /* Parsing and code generating context */
176   Expr *pExpr,      /* Test this expression */
177   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
178   int *pisComplete, /* True if the only wildcard is % in the last character */
179   int *pnoCase      /* True if uppercase is equivalent to lowercase */
180 ){
181   const u8 *z = 0;           /* String on RHS of LIKE operator */
182   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
183   ExprList *pList;           /* List of operands to the LIKE operator */
184   u8 c;                      /* One character in z[] */
185   int cnt;                   /* Number of non-wildcard prefix characters */
186   u8 wc[4];                  /* Wildcard characters */
187   sqlite3 *db = pParse->db;  /* Database connection */
188   sqlite3_value *pVal = 0;
189   int op;                    /* Opcode of pRight */
190   int rc;                    /* Result code to return */
191 
192   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
193     return 0;
194   }
195 #ifdef SQLITE_EBCDIC
196   if( *pnoCase ) return 0;
197 #endif
198   pList = pExpr->x.pList;
199   pLeft = pList->a[1].pExpr;
200 
201   pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
202   op = pRight->op;
203   if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
204     Vdbe *pReprepare = pParse->pReprepare;
205     int iCol = pRight->iColumn;
206     pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
207     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
208       z = sqlite3_value_text(pVal);
209     }
210     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
211     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
212   }else if( op==TK_STRING ){
213     z = (u8*)pRight->u.zToken;
214   }
215   if( z ){
216 
217     /* Count the number of prefix characters prior to the first wildcard */
218     cnt = 0;
219     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
220       cnt++;
221       if( c==wc[3] && z[cnt]!=0 ) cnt++;
222     }
223 
224     /* The optimization is possible only if (1) the pattern does not begin
225     ** with a wildcard and if (2) the non-wildcard prefix does not end with
226     ** an (illegal 0xff) character, or (3) the pattern does not consist of
227     ** a single escape character. The second condition is necessary so
228     ** that we can increment the prefix key to find an upper bound for the
229     ** range search. The third is because the caller assumes that the pattern
230     ** consists of at least one character after all escapes have been
231     ** removed.  */
232     if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){
233       Expr *pPrefix;
234 
235       /* A "complete" match if the pattern ends with "*" or "%" */
236       *pisComplete = c==wc[0] && z[cnt+1]==0;
237 
238       /* Get the pattern prefix.  Remove all escapes from the prefix. */
239       pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
240       if( pPrefix ){
241         int iFrom, iTo;
242         char *zNew = pPrefix->u.zToken;
243         zNew[cnt] = 0;
244         for(iFrom=iTo=0; iFrom<cnt; iFrom++){
245           if( zNew[iFrom]==wc[3] ) iFrom++;
246           zNew[iTo++] = zNew[iFrom];
247         }
248         zNew[iTo] = 0;
249         assert( iTo>0 );
250 
251         /* If the LHS is not an ordinary column with TEXT affinity, then the
252         ** pattern prefix boundaries (both the start and end boundaries) must
253         ** not look like a number.  Otherwise the pattern might be treated as
254         ** a number, which will invalidate the LIKE optimization.
255         **
256         ** Getting this right has been a persistent source of bugs in the
257         ** LIKE optimization.  See, for example:
258         **    2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
259         **    2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
260         **    2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
261         **    2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
262         **    2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
263         */
264         if( pLeft->op!=TK_COLUMN
265          || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
266          || IsVirtual(pLeft->y.pTab)  /* Value might be numeric */
267         ){
268           int isNum;
269           double rDummy;
270           isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
271           if( isNum<=0 ){
272             if( iTo==1 && zNew[0]=='-' ){
273               isNum = +1;
274             }else{
275               zNew[iTo-1]++;
276               isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
277               zNew[iTo-1]--;
278             }
279           }
280           if( isNum>0 ){
281             sqlite3ExprDelete(db, pPrefix);
282             sqlite3ValueFree(pVal);
283             return 0;
284           }
285         }
286       }
287       *ppPrefix = pPrefix;
288 
289       /* If the RHS pattern is a bound parameter, make arrangements to
290       ** reprepare the statement when that parameter is rebound */
291       if( op==TK_VARIABLE ){
292         Vdbe *v = pParse->pVdbe;
293         sqlite3VdbeSetVarmask(v, pRight->iColumn);
294         if( *pisComplete && pRight->u.zToken[1] ){
295           /* If the rhs of the LIKE expression is a variable, and the current
296           ** value of the variable means there is no need to invoke the LIKE
297           ** function, then no OP_Variable will be added to the program.
298           ** This causes problems for the sqlite3_bind_parameter_name()
299           ** API. To work around them, add a dummy OP_Variable here.
300           */
301           int r1 = sqlite3GetTempReg(pParse);
302           sqlite3ExprCodeTarget(pParse, pRight, r1);
303           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
304           sqlite3ReleaseTempReg(pParse, r1);
305         }
306       }
307     }else{
308       z = 0;
309     }
310   }
311 
312   rc = (z!=0);
313   sqlite3ValueFree(pVal);
314   return rc;
315 }
316 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
317 
318 
319 #ifndef SQLITE_OMIT_VIRTUALTABLE
320 /*
321 ** Check to see if the pExpr expression is a form that needs to be passed
322 ** to the xBestIndex method of virtual tables.  Forms of interest include:
323 **
324 **          Expression                   Virtual Table Operator
325 **          -----------------------      ---------------------------------
326 **      1.  column MATCH expr            SQLITE_INDEX_CONSTRAINT_MATCH
327 **      2.  column GLOB expr             SQLITE_INDEX_CONSTRAINT_GLOB
328 **      3.  column LIKE expr             SQLITE_INDEX_CONSTRAINT_LIKE
329 **      4.  column REGEXP expr           SQLITE_INDEX_CONSTRAINT_REGEXP
330 **      5.  column != expr               SQLITE_INDEX_CONSTRAINT_NE
331 **      6.  expr != column               SQLITE_INDEX_CONSTRAINT_NE
332 **      7.  column IS NOT expr           SQLITE_INDEX_CONSTRAINT_ISNOT
333 **      8.  expr IS NOT column           SQLITE_INDEX_CONSTRAINT_ISNOT
334 **      9.  column IS NOT NULL           SQLITE_INDEX_CONSTRAINT_ISNOTNULL
335 **
336 ** In every case, "column" must be a column of a virtual table.  If there
337 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
338 ** "expr" expression (even though in forms (6) and (8) the column is on the
339 ** right and the expression is on the left).  Also set *peOp2 to the
340 ** appropriate virtual table operator.  The return value is 1 or 2 if there
341 ** is a match.  The usual return is 1, but if the RHS is also a column
342 ** of virtual table in forms (5) or (7) then return 2.
343 **
344 ** If the expression matches none of the patterns above, return 0.
345 */
346 static int isAuxiliaryVtabOperator(
347   sqlite3 *db,                    /* Parsing context */
348   Expr *pExpr,                    /* Test this expression */
349   unsigned char *peOp2,           /* OUT: 0 for MATCH, or else an op2 value */
350   Expr **ppLeft,                  /* Column expression to left of MATCH/op2 */
351   Expr **ppRight                  /* Expression to left of MATCH/op2 */
352 ){
353   if( pExpr->op==TK_FUNCTION ){
354     static const struct Op2 {
355       const char *zOp;
356       unsigned char eOp2;
357     } aOp[] = {
358       { "match",  SQLITE_INDEX_CONSTRAINT_MATCH },
359       { "glob",   SQLITE_INDEX_CONSTRAINT_GLOB },
360       { "like",   SQLITE_INDEX_CONSTRAINT_LIKE },
361       { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
362     };
363     ExprList *pList;
364     Expr *pCol;                     /* Column reference */
365     int i;
366 
367     pList = pExpr->x.pList;
368     if( pList==0 || pList->nExpr!=2 ){
369       return 0;
370     }
371 
372     /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
373     ** virtual table on their second argument, which is the same as
374     ** the left-hand side operand in their in-fix form.
375     **
376     **       vtab_column MATCH expression
377     **       MATCH(expression,vtab_column)
378     */
379     pCol = pList->a[1].pExpr;
380     if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){
381       for(i=0; i<ArraySize(aOp); i++){
382         if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
383           *peOp2 = aOp[i].eOp2;
384           *ppRight = pList->a[0].pExpr;
385           *ppLeft = pCol;
386           return 1;
387         }
388       }
389     }
390 
391     /* We can also match against the first column of overloaded
392     ** functions where xFindFunction returns a value of at least
393     ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
394     **
395     **      OVERLOADED(vtab_column,expression)
396     **
397     ** Historically, xFindFunction expected to see lower-case function
398     ** names.  But for this use case, xFindFunction is expected to deal
399     ** with function names in an arbitrary case.
400     */
401     pCol = pList->a[0].pExpr;
402     if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){
403       sqlite3_vtab *pVtab;
404       sqlite3_module *pMod;
405       void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
406       void *pNotUsed;
407       pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
408       assert( pVtab!=0 );
409       assert( pVtab->pModule!=0 );
410       pMod = (sqlite3_module *)pVtab->pModule;
411       if( pMod->xFindFunction!=0 ){
412         i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
413         if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
414           *peOp2 = i;
415           *ppRight = pList->a[1].pExpr;
416           *ppLeft = pCol;
417           return 1;
418         }
419       }
420     }
421   }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
422     int res = 0;
423     Expr *pLeft = pExpr->pLeft;
424     Expr *pRight = pExpr->pRight;
425     if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->y.pTab) ){
426       res++;
427     }
428     if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->y.pTab) ){
429       res++;
430       SWAP(Expr*, pLeft, pRight);
431     }
432     *ppLeft = pLeft;
433     *ppRight = pRight;
434     if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
435     if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
436     if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
437     return res;
438   }
439   return 0;
440 }
441 #endif /* SQLITE_OMIT_VIRTUALTABLE */
442 
443 /*
444 ** If the pBase expression originated in the ON or USING clause of
445 ** a join, then transfer the appropriate markings over to derived.
446 */
447 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
448   if( pDerived ){
449     pDerived->flags |= pBase->flags & EP_FromJoin;
450     pDerived->iRightJoinTable = pBase->iRightJoinTable;
451   }
452 }
453 
454 /*
455 ** Mark term iChild as being a child of term iParent
456 */
457 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
458   pWC->a[iChild].iParent = iParent;
459   pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
460   pWC->a[iParent].nChild++;
461 }
462 
463 /*
464 ** Return the N-th AND-connected subterm of pTerm.  Or if pTerm is not
465 ** a conjunction, then return just pTerm when N==0.  If N is exceeds
466 ** the number of available subterms, return NULL.
467 */
468 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
469   if( pTerm->eOperator!=WO_AND ){
470     return N==0 ? pTerm : 0;
471   }
472   if( N<pTerm->u.pAndInfo->wc.nTerm ){
473     return &pTerm->u.pAndInfo->wc.a[N];
474   }
475   return 0;
476 }
477 
478 /*
479 ** Subterms pOne and pTwo are contained within WHERE clause pWC.  The
480 ** two subterms are in disjunction - they are OR-ed together.
481 **
482 ** If these two terms are both of the form:  "A op B" with the same
483 ** A and B values but different operators and if the operators are
484 ** compatible (if one is = and the other is <, for example) then
485 ** add a new virtual AND term to pWC that is the combination of the
486 ** two.
487 **
488 ** Some examples:
489 **
490 **    x<y OR x=y    -->     x<=y
491 **    x=y OR x=y    -->     x=y
492 **    x<=y OR x<y   -->     x<=y
493 **
494 ** The following is NOT generated:
495 **
496 **    x<y OR x>y    -->     x!=y
497 */
498 static void whereCombineDisjuncts(
499   SrcList *pSrc,         /* the FROM clause */
500   WhereClause *pWC,      /* The complete WHERE clause */
501   WhereTerm *pOne,       /* First disjunct */
502   WhereTerm *pTwo        /* Second disjunct */
503 ){
504   u16 eOp = pOne->eOperator | pTwo->eOperator;
505   sqlite3 *db;           /* Database connection (for malloc) */
506   Expr *pNew;            /* New virtual expression */
507   int op;                /* Operator for the combined expression */
508   int idxNew;            /* Index in pWC of the next virtual term */
509 
510   if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
511   if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
512   if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
513    && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
514   assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
515   assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
516   if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
517   if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
518   /* If we reach this point, it means the two subterms can be combined */
519   if( (eOp & (eOp-1))!=0 ){
520     if( eOp & (WO_LT|WO_LE) ){
521       eOp = WO_LE;
522     }else{
523       assert( eOp & (WO_GT|WO_GE) );
524       eOp = WO_GE;
525     }
526   }
527   db = pWC->pWInfo->pParse->db;
528   pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
529   if( pNew==0 ) return;
530   for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
531   pNew->op = op;
532   idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
533   exprAnalyze(pSrc, pWC, idxNew);
534 }
535 
536 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
537 /*
538 ** Analyze a term that consists of two or more OR-connected
539 ** subterms.  So in:
540 **
541 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
542 **                          ^^^^^^^^^^^^^^^^^^^^
543 **
544 ** This routine analyzes terms such as the middle term in the above example.
545 ** A WhereOrTerm object is computed and attached to the term under
546 ** analysis, regardless of the outcome of the analysis.  Hence:
547 **
548 **     WhereTerm.wtFlags   |=  TERM_ORINFO
549 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
550 **
551 ** The term being analyzed must have two or more of OR-connected subterms.
552 ** A single subterm might be a set of AND-connected sub-subterms.
553 ** Examples of terms under analysis:
554 **
555 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
556 **     (B)     x=expr1 OR expr2=x OR x=expr3
557 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
558 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
559 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
560 **     (F)     x>A OR (x=A AND y>=B)
561 **
562 ** CASE 1:
563 **
564 ** If all subterms are of the form T.C=expr for some single column of C and
565 ** a single table T (as shown in example B above) then create a new virtual
566 ** term that is an equivalent IN expression.  In other words, if the term
567 ** being analyzed is:
568 **
569 **      x = expr1  OR  expr2 = x  OR  x = expr3
570 **
571 ** then create a new virtual term like this:
572 **
573 **      x IN (expr1,expr2,expr3)
574 **
575 ** CASE 2:
576 **
577 ** If there are exactly two disjuncts and one side has x>A and the other side
578 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
579 ** WHERE clause of the form "x>=A".  Example:
580 **
581 **      x>A OR (x=A AND y>B)    adds:    x>=A
582 **
583 ** The added conjunct can sometimes be helpful in query planning.
584 **
585 ** CASE 3:
586 **
587 ** If all subterms are indexable by a single table T, then set
588 **
589 **     WhereTerm.eOperator              =  WO_OR
590 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
591 **
592 ** A subterm is "indexable" if it is of the form
593 ** "T.C <op> <expr>" where C is any column of table T and
594 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
595 ** A subterm is also indexable if it is an AND of two or more
596 ** subsubterms at least one of which is indexable.  Indexable AND
597 ** subterms have their eOperator set to WO_AND and they have
598 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
599 **
600 ** From another point of view, "indexable" means that the subterm could
601 ** potentially be used with an index if an appropriate index exists.
602 ** This analysis does not consider whether or not the index exists; that
603 ** is decided elsewhere.  This analysis only looks at whether subterms
604 ** appropriate for indexing exist.
605 **
606 ** All examples A through E above satisfy case 3.  But if a term
607 ** also satisfies case 1 (such as B) we know that the optimizer will
608 ** always prefer case 1, so in that case we pretend that case 3 is not
609 ** satisfied.
610 **
611 ** It might be the case that multiple tables are indexable.  For example,
612 ** (E) above is indexable on tables P, Q, and R.
613 **
614 ** Terms that satisfy case 3 are candidates for lookup by using
615 ** separate indices to find rowids for each subterm and composing
616 ** the union of all rowids using a RowSet object.  This is similar
617 ** to "bitmap indices" in other database engines.
618 **
619 ** OTHERWISE:
620 **
621 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
622 ** zero.  This term is not useful for search.
623 */
624 static void exprAnalyzeOrTerm(
625   SrcList *pSrc,            /* the FROM clause */
626   WhereClause *pWC,         /* the complete WHERE clause */
627   int idxTerm               /* Index of the OR-term to be analyzed */
628 ){
629   WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
630   Parse *pParse = pWInfo->pParse;         /* Parser context */
631   sqlite3 *db = pParse->db;               /* Database connection */
632   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
633   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
634   int i;                                  /* Loop counters */
635   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
636   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
637   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
638   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
639   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
640 
641   /*
642   ** Break the OR clause into its separate subterms.  The subterms are
643   ** stored in a WhereClause structure containing within the WhereOrInfo
644   ** object that is attached to the original OR clause term.
645   */
646   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
647   assert( pExpr->op==TK_OR );
648   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
649   if( pOrInfo==0 ) return;
650   pTerm->wtFlags |= TERM_ORINFO;
651   pOrWc = &pOrInfo->wc;
652   memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
653   sqlite3WhereClauseInit(pOrWc, pWInfo);
654   sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
655   sqlite3WhereExprAnalyze(pSrc, pOrWc);
656   if( db->mallocFailed ) return;
657   assert( pOrWc->nTerm>=2 );
658 
659   /*
660   ** Compute the set of tables that might satisfy cases 1 or 3.
661   */
662   indexable = ~(Bitmask)0;
663   chngToIN = ~(Bitmask)0;
664   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
665     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
666       WhereAndInfo *pAndInfo;
667       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
668       chngToIN = 0;
669       pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
670       if( pAndInfo ){
671         WhereClause *pAndWC;
672         WhereTerm *pAndTerm;
673         int j;
674         Bitmask b = 0;
675         pOrTerm->u.pAndInfo = pAndInfo;
676         pOrTerm->wtFlags |= TERM_ANDINFO;
677         pOrTerm->eOperator = WO_AND;
678         pAndWC = &pAndInfo->wc;
679         memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
680         sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
681         sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
682         sqlite3WhereExprAnalyze(pSrc, pAndWC);
683         pAndWC->pOuter = pWC;
684         if( !db->mallocFailed ){
685           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
686             assert( pAndTerm->pExpr );
687             if( allowedOp(pAndTerm->pExpr->op)
688              || pAndTerm->eOperator==WO_AUX
689             ){
690               b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
691             }
692           }
693         }
694         indexable &= b;
695       }
696     }else if( pOrTerm->wtFlags & TERM_COPIED ){
697       /* Skip this term for now.  We revisit it when we process the
698       ** corresponding TERM_VIRTUAL term */
699     }else{
700       Bitmask b;
701       b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
702       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
703         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
704         b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
705       }
706       indexable &= b;
707       if( (pOrTerm->eOperator & WO_EQ)==0 ){
708         chngToIN = 0;
709       }else{
710         chngToIN &= b;
711       }
712     }
713   }
714 
715   /*
716   ** Record the set of tables that satisfy case 3.  The set might be
717   ** empty.
718   */
719   pOrInfo->indexable = indexable;
720   if( indexable ){
721     pTerm->eOperator = WO_OR;
722     pWC->hasOr = 1;
723   }else{
724     pTerm->eOperator = WO_OR;
725   }
726 
727   /* For a two-way OR, attempt to implementation case 2.
728   */
729   if( indexable && pOrWc->nTerm==2 ){
730     int iOne = 0;
731     WhereTerm *pOne;
732     while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
733       int iTwo = 0;
734       WhereTerm *pTwo;
735       while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
736         whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
737       }
738     }
739   }
740 
741   /*
742   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
743   ** we have to do some additional checking to see if case 1 really
744   ** is satisfied.
745   **
746   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
747   ** that there is no possibility of transforming the OR clause into an
748   ** IN operator because one or more terms in the OR clause contain
749   ** something other than == on a column in the single table.  The 1-bit
750   ** case means that every term of the OR clause is of the form
751   ** "table.column=expr" for some single table.  The one bit that is set
752   ** will correspond to the common table.  We still need to check to make
753   ** sure the same column is used on all terms.  The 2-bit case is when
754   ** the all terms are of the form "table1.column=table2.column".  It
755   ** might be possible to form an IN operator with either table1.column
756   ** or table2.column as the LHS if either is common to every term of
757   ** the OR clause.
758   **
759   ** Note that terms of the form "table.column1=table.column2" (the
760   ** same table on both sizes of the ==) cannot be optimized.
761   */
762   if( chngToIN ){
763     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
764     int iColumn = -1;         /* Column index on lhs of IN operator */
765     int iCursor = -1;         /* Table cursor common to all terms */
766     int j = 0;                /* Loop counter */
767 
768     /* Search for a table and column that appears on one side or the
769     ** other of the == operator in every subterm.  That table and column
770     ** will be recorded in iCursor and iColumn.  There might not be any
771     ** such table and column.  Set okToChngToIN if an appropriate table
772     ** and column is found but leave okToChngToIN false if not found.
773     */
774     for(j=0; j<2 && !okToChngToIN; j++){
775       Expr *pLeft = 0;
776       pOrTerm = pOrWc->a;
777       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
778         assert( pOrTerm->eOperator & WO_EQ );
779         pOrTerm->wtFlags &= ~TERM_OR_OK;
780         if( pOrTerm->leftCursor==iCursor ){
781           /* This is the 2-bit case and we are on the second iteration and
782           ** current term is from the first iteration.  So skip this term. */
783           assert( j==1 );
784           continue;
785         }
786         if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
787                                             pOrTerm->leftCursor))==0 ){
788           /* This term must be of the form t1.a==t2.b where t2 is in the
789           ** chngToIN set but t1 is not.  This term will be either preceded
790           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
791           ** and use its inversion. */
792           testcase( pOrTerm->wtFlags & TERM_COPIED );
793           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
794           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
795           continue;
796         }
797         iColumn = pOrTerm->u.leftColumn;
798         iCursor = pOrTerm->leftCursor;
799         pLeft = pOrTerm->pExpr->pLeft;
800         break;
801       }
802       if( i<0 ){
803         /* No candidate table+column was found.  This can only occur
804         ** on the second iteration */
805         assert( j==1 );
806         assert( IsPowerOfTwo(chngToIN) );
807         assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
808         break;
809       }
810       testcase( j==1 );
811 
812       /* We have found a candidate table and column.  Check to see if that
813       ** table and column is common to every term in the OR clause */
814       okToChngToIN = 1;
815       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
816         assert( pOrTerm->eOperator & WO_EQ );
817         if( pOrTerm->leftCursor!=iCursor ){
818           pOrTerm->wtFlags &= ~TERM_OR_OK;
819         }else if( pOrTerm->u.leftColumn!=iColumn || (iColumn==XN_EXPR
820                && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1)
821         )){
822           okToChngToIN = 0;
823         }else{
824           int affLeft, affRight;
825           /* If the right-hand side is also a column, then the affinities
826           ** of both right and left sides must be such that no type
827           ** conversions are required on the right.  (Ticket #2249)
828           */
829           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
830           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
831           if( affRight!=0 && affRight!=affLeft ){
832             okToChngToIN = 0;
833           }else{
834             pOrTerm->wtFlags |= TERM_OR_OK;
835           }
836         }
837       }
838     }
839 
840     /* At this point, okToChngToIN is true if original pTerm satisfies
841     ** case 1.  In that case, construct a new virtual term that is
842     ** pTerm converted into an IN operator.
843     */
844     if( okToChngToIN ){
845       Expr *pDup;            /* A transient duplicate expression */
846       ExprList *pList = 0;   /* The RHS of the IN operator */
847       Expr *pLeft = 0;       /* The LHS of the IN operator */
848       Expr *pNew;            /* The complete IN operator */
849 
850       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
851         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
852         assert( pOrTerm->eOperator & WO_EQ );
853         assert( pOrTerm->leftCursor==iCursor );
854         assert( pOrTerm->u.leftColumn==iColumn );
855         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
856         pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
857         pLeft = pOrTerm->pExpr->pLeft;
858       }
859       assert( pLeft!=0 );
860       pDup = sqlite3ExprDup(db, pLeft, 0);
861       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
862       if( pNew ){
863         int idxNew;
864         transferJoinMarkings(pNew, pExpr);
865         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
866         pNew->x.pList = pList;
867         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
868         testcase( idxNew==0 );
869         exprAnalyze(pSrc, pWC, idxNew);
870         /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where used again */
871         markTermAsChild(pWC, idxNew, idxTerm);
872       }else{
873         sqlite3ExprListDelete(db, pList);
874       }
875     }
876   }
877 }
878 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
879 
880 /*
881 ** We already know that pExpr is a binary operator where both operands are
882 ** column references.  This routine checks to see if pExpr is an equivalence
883 ** relation:
884 **   1.  The SQLITE_Transitive optimization must be enabled
885 **   2.  Must be either an == or an IS operator
886 **   3.  Not originating in the ON clause of an OUTER JOIN
887 **   4.  The affinities of A and B must be compatible
888 **   5a. Both operands use the same collating sequence OR
889 **   5b. The overall collating sequence is BINARY
890 ** If this routine returns TRUE, that means that the RHS can be substituted
891 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
892 ** This is an optimization.  No harm comes from returning 0.  But if 1 is
893 ** returned when it should not be, then incorrect answers might result.
894 */
895 static int termIsEquivalence(Parse *pParse, Expr *pExpr){
896   char aff1, aff2;
897   CollSeq *pColl;
898   if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
899   if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
900   if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
901   aff1 = sqlite3ExprAffinity(pExpr->pLeft);
902   aff2 = sqlite3ExprAffinity(pExpr->pRight);
903   if( aff1!=aff2
904    && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
905   ){
906     return 0;
907   }
908   pColl = sqlite3ExprCompareCollSeq(pParse, pExpr);
909   if( sqlite3IsBinary(pColl) ) return 1;
910   return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
911 }
912 
913 /*
914 ** Recursively walk the expressions of a SELECT statement and generate
915 ** a bitmask indicating which tables are used in that expression
916 ** tree.
917 */
918 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
919   Bitmask mask = 0;
920   while( pS ){
921     SrcList *pSrc = pS->pSrc;
922     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
923     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
924     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
925     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
926     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
927     if( ALWAYS(pSrc!=0) ){
928       int i;
929       for(i=0; i<pSrc->nSrc; i++){
930         mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
931         mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
932         if( pSrc->a[i].fg.isTabFunc ){
933           mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
934         }
935       }
936     }
937     pS = pS->pPrior;
938   }
939   return mask;
940 }
941 
942 /*
943 ** Expression pExpr is one operand of a comparison operator that might
944 ** be useful for indexing.  This routine checks to see if pExpr appears
945 ** in any index.  Return TRUE (1) if pExpr is an indexed term and return
946 ** FALSE (0) if not.  If TRUE is returned, also set aiCurCol[0] to the cursor
947 ** number of the table that is indexed and aiCurCol[1] to the column number
948 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
949 ** indexed.
950 **
951 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
952 ** true even if that particular column is not indexed, because the column
953 ** might be added to an automatic index later.
954 */
955 static SQLITE_NOINLINE int exprMightBeIndexed2(
956   SrcList *pFrom,        /* The FROM clause */
957   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
958   int *aiCurCol,         /* Write the referenced table cursor and column here */
959   Expr *pExpr            /* An operand of a comparison operator */
960 ){
961   Index *pIdx;
962   int i;
963   int iCur;
964   for(i=0; mPrereq>1; i++, mPrereq>>=1){}
965   iCur = pFrom->a[i].iCursor;
966   for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
967     if( pIdx->aColExpr==0 ) continue;
968     for(i=0; i<pIdx->nKeyCol; i++){
969       if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
970       if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
971         aiCurCol[0] = iCur;
972         aiCurCol[1] = XN_EXPR;
973         return 1;
974       }
975     }
976   }
977   return 0;
978 }
979 static int exprMightBeIndexed(
980   SrcList *pFrom,        /* The FROM clause */
981   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
982   int *aiCurCol,         /* Write the referenced table cursor & column here */
983   Expr *pExpr,           /* An operand of a comparison operator */
984   int op                 /* The specific comparison operator */
985 ){
986   /* If this expression is a vector to the left or right of a
987   ** inequality constraint (>, <, >= or <=), perform the processing
988   ** on the first element of the vector.  */
989   assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
990   assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
991   assert( op<=TK_GE );
992   if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
993     pExpr = pExpr->x.pList->a[0].pExpr;
994   }
995 
996   if( pExpr->op==TK_COLUMN ){
997     aiCurCol[0] = pExpr->iTable;
998     aiCurCol[1] = pExpr->iColumn;
999     return 1;
1000   }
1001   if( mPrereq==0 ) return 0;                 /* No table references */
1002   if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
1003   return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
1004 }
1005 
1006 /*
1007 ** The input to this routine is an WhereTerm structure with only the
1008 ** "pExpr" field filled in.  The job of this routine is to analyze the
1009 ** subexpression and populate all the other fields of the WhereTerm
1010 ** structure.
1011 **
1012 ** If the expression is of the form "<expr> <op> X" it gets commuted
1013 ** to the standard form of "X <op> <expr>".
1014 **
1015 ** If the expression is of the form "X <op> Y" where both X and Y are
1016 ** columns, then the original expression is unchanged and a new virtual
1017 ** term of the form "Y <op> X" is added to the WHERE clause and
1018 ** analyzed separately.  The original term is marked with TERM_COPIED
1019 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1020 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1021 ** is a commuted copy of a prior term.)  The original term has nChild=1
1022 ** and the copy has idxParent set to the index of the original term.
1023 */
1024 static void exprAnalyze(
1025   SrcList *pSrc,            /* the FROM clause */
1026   WhereClause *pWC,         /* the WHERE clause */
1027   int idxTerm               /* Index of the term to be analyzed */
1028 ){
1029   WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
1030   WhereTerm *pTerm;                /* The term to be analyzed */
1031   WhereMaskSet *pMaskSet;          /* Set of table index masks */
1032   Expr *pExpr;                     /* The expression to be analyzed */
1033   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
1034   Bitmask prereqAll;               /* Prerequesites of pExpr */
1035   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
1036   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
1037   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
1038   int noCase = 0;                  /* uppercase equivalent to lowercase */
1039   int op;                          /* Top-level operator.  pExpr->op */
1040   Parse *pParse = pWInfo->pParse;  /* Parsing context */
1041   sqlite3 *db = pParse->db;        /* Database connection */
1042   unsigned char eOp2 = 0;          /* op2 value for LIKE/REGEXP/GLOB */
1043   int nLeft;                       /* Number of elements on left side vector */
1044 
1045   if( db->mallocFailed ){
1046     return;
1047   }
1048   pTerm = &pWC->a[idxTerm];
1049   pMaskSet = &pWInfo->sMaskSet;
1050   pExpr = pTerm->pExpr;
1051   assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
1052   prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
1053   op = pExpr->op;
1054   if( op==TK_IN ){
1055     assert( pExpr->pRight==0 );
1056     if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
1057     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1058       pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
1059     }else{
1060       pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
1061     }
1062   }else if( op==TK_ISNULL ){
1063     pTerm->prereqRight = 0;
1064   }else{
1065     pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
1066   }
1067   pMaskSet->bVarSelect = 0;
1068   prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
1069   if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
1070   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1071     Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
1072     prereqAll |= x;
1073     extraRight = x-1;  /* ON clause terms may not be used with an index
1074                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1075     if( (prereqAll>>1)>=x ){
1076       sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
1077       return;
1078     }
1079   }
1080   pTerm->prereqAll = prereqAll;
1081   pTerm->leftCursor = -1;
1082   pTerm->iParent = -1;
1083   pTerm->eOperator = 0;
1084   if( allowedOp(op) ){
1085     int aiCurCol[2];
1086     Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1087     Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1088     u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1089 
1090     if( pTerm->iField>0 ){
1091       assert( op==TK_IN );
1092       assert( pLeft->op==TK_VECTOR );
1093       pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
1094     }
1095 
1096     if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
1097       pTerm->leftCursor = aiCurCol[0];
1098       pTerm->u.leftColumn = aiCurCol[1];
1099       pTerm->eOperator = operatorMask(op) & opMask;
1100     }
1101     if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
1102     if( pRight
1103      && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
1104     ){
1105       WhereTerm *pNew;
1106       Expr *pDup;
1107       u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
1108       assert( pTerm->iField==0 );
1109       if( pTerm->leftCursor>=0 ){
1110         int idxNew;
1111         pDup = sqlite3ExprDup(db, pExpr, 0);
1112         if( db->mallocFailed ){
1113           sqlite3ExprDelete(db, pDup);
1114           return;
1115         }
1116         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1117         if( idxNew==0 ) return;
1118         pNew = &pWC->a[idxNew];
1119         markTermAsChild(pWC, idxNew, idxTerm);
1120         if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
1121         pTerm = &pWC->a[idxTerm];
1122         pTerm->wtFlags |= TERM_COPIED;
1123 
1124         if( termIsEquivalence(pParse, pDup) ){
1125           pTerm->eOperator |= WO_EQUIV;
1126           eExtraOp = WO_EQUIV;
1127         }
1128       }else{
1129         pDup = pExpr;
1130         pNew = pTerm;
1131       }
1132       pNew->wtFlags |= exprCommute(pParse, pDup);
1133       pNew->leftCursor = aiCurCol[0];
1134       pNew->u.leftColumn = aiCurCol[1];
1135       testcase( (prereqLeft | extraRight) != prereqLeft );
1136       pNew->prereqRight = prereqLeft | extraRight;
1137       pNew->prereqAll = prereqAll;
1138       pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1139     }
1140   }
1141 
1142 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1143   /* If a term is the BETWEEN operator, create two new virtual terms
1144   ** that define the range that the BETWEEN implements.  For example:
1145   **
1146   **      a BETWEEN b AND c
1147   **
1148   ** is converted into:
1149   **
1150   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1151   **
1152   ** The two new terms are added onto the end of the WhereClause object.
1153   ** The new terms are "dynamic" and are children of the original BETWEEN
1154   ** term.  That means that if the BETWEEN term is coded, the children are
1155   ** skipped.  Or, if the children are satisfied by an index, the original
1156   ** BETWEEN term is skipped.
1157   */
1158   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1159     ExprList *pList = pExpr->x.pList;
1160     int i;
1161     static const u8 ops[] = {TK_GE, TK_LE};
1162     assert( pList!=0 );
1163     assert( pList->nExpr==2 );
1164     for(i=0; i<2; i++){
1165       Expr *pNewExpr;
1166       int idxNew;
1167       pNewExpr = sqlite3PExpr(pParse, ops[i],
1168                              sqlite3ExprDup(db, pExpr->pLeft, 0),
1169                              sqlite3ExprDup(db, pList->a[i].pExpr, 0));
1170       transferJoinMarkings(pNewExpr, pExpr);
1171       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1172       testcase( idxNew==0 );
1173       exprAnalyze(pSrc, pWC, idxNew);
1174       pTerm = &pWC->a[idxTerm];
1175       markTermAsChild(pWC, idxNew, idxTerm);
1176     }
1177   }
1178 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1179 
1180 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1181   /* Analyze a term that is composed of two or more subterms connected by
1182   ** an OR operator.
1183   */
1184   else if( pExpr->op==TK_OR ){
1185     assert( pWC->op==TK_AND );
1186     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1187     pTerm = &pWC->a[idxTerm];
1188   }
1189 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1190 
1191 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1192   /* Add constraints to reduce the search space on a LIKE or GLOB
1193   ** operator.
1194   **
1195   ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1196   **
1197   **          x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1198   **
1199   ** The last character of the prefix "abc" is incremented to form the
1200   ** termination condition "abd".  If case is not significant (the default
1201   ** for LIKE) then the lower-bound is made all uppercase and the upper-
1202   ** bound is made all lowercase so that the bounds also work when comparing
1203   ** BLOBs.
1204   */
1205   if( pWC->op==TK_AND
1206    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1207   ){
1208     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
1209     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1210     Expr *pNewExpr1;
1211     Expr *pNewExpr2;
1212     int idxNew1;
1213     int idxNew2;
1214     const char *zCollSeqName;     /* Name of collating sequence */
1215     const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
1216 
1217     pLeft = pExpr->x.pList->a[1].pExpr;
1218     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1219 
1220     /* Convert the lower bound to upper-case and the upper bound to
1221     ** lower-case (upper-case is less than lower-case in ASCII) so that
1222     ** the range constraints also work for BLOBs
1223     */
1224     if( noCase && !pParse->db->mallocFailed ){
1225       int i;
1226       char c;
1227       pTerm->wtFlags |= TERM_LIKE;
1228       for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
1229         pStr1->u.zToken[i] = sqlite3Toupper(c);
1230         pStr2->u.zToken[i] = sqlite3Tolower(c);
1231       }
1232     }
1233 
1234     if( !db->mallocFailed ){
1235       u8 c, *pC;       /* Last character before the first wildcard */
1236       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1237       c = *pC;
1238       if( noCase ){
1239         /* The point is to increment the last character before the first
1240         ** wildcard.  But if we increment '@', that will push it into the
1241         ** alphabetic range where case conversions will mess up the
1242         ** inequality.  To avoid this, make sure to also run the full
1243         ** LIKE on all candidate expressions by clearing the isComplete flag
1244         */
1245         if( c=='A'-1 ) isComplete = 0;
1246         c = sqlite3UpperToLower[c];
1247       }
1248       *pC = c + 1;
1249     }
1250     zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
1251     pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1252     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1253            sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
1254            pStr1);
1255     transferJoinMarkings(pNewExpr1, pExpr);
1256     idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
1257     testcase( idxNew1==0 );
1258     exprAnalyze(pSrc, pWC, idxNew1);
1259     pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1260     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1261            sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
1262            pStr2);
1263     transferJoinMarkings(pNewExpr2, pExpr);
1264     idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
1265     testcase( idxNew2==0 );
1266     exprAnalyze(pSrc, pWC, idxNew2);
1267     pTerm = &pWC->a[idxTerm];
1268     if( isComplete ){
1269       markTermAsChild(pWC, idxNew1, idxTerm);
1270       markTermAsChild(pWC, idxNew2, idxTerm);
1271     }
1272   }
1273 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1274 
1275 #ifndef SQLITE_OMIT_VIRTUALTABLE
1276   /* Add a WO_AUX auxiliary term to the constraint set if the
1277   ** current expression is of the form "column OP expr" where OP
1278   ** is an operator that gets passed into virtual tables but which is
1279   ** not normally optimized for ordinary tables.  In other words, OP
1280   ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1281   ** This information is used by the xBestIndex methods of
1282   ** virtual tables.  The native query optimizer does not attempt
1283   ** to do anything with MATCH functions.
1284   */
1285   if( pWC->op==TK_AND ){
1286     Expr *pRight = 0, *pLeft = 0;
1287     int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
1288     while( res-- > 0 ){
1289       int idxNew;
1290       WhereTerm *pNewTerm;
1291       Bitmask prereqColumn, prereqExpr;
1292 
1293       prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
1294       prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
1295       if( (prereqExpr & prereqColumn)==0 ){
1296         Expr *pNewExpr;
1297         pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1298             0, sqlite3ExprDup(db, pRight, 0));
1299         if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){
1300           ExprSetProperty(pNewExpr, EP_FromJoin);
1301         }
1302         idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1303         testcase( idxNew==0 );
1304         pNewTerm = &pWC->a[idxNew];
1305         pNewTerm->prereqRight = prereqExpr;
1306         pNewTerm->leftCursor = pLeft->iTable;
1307         pNewTerm->u.leftColumn = pLeft->iColumn;
1308         pNewTerm->eOperator = WO_AUX;
1309         pNewTerm->eMatchOp = eOp2;
1310         markTermAsChild(pWC, idxNew, idxTerm);
1311         pTerm = &pWC->a[idxTerm];
1312         pTerm->wtFlags |= TERM_COPIED;
1313         pNewTerm->prereqAll = pTerm->prereqAll;
1314       }
1315       SWAP(Expr*, pLeft, pRight);
1316     }
1317   }
1318 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1319 
1320   /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1321   ** new terms for each component comparison - "a = ?" and "b = ?".  The
1322   ** new terms completely replace the original vector comparison, which is
1323   ** no longer used.
1324   **
1325   ** This is only required if at least one side of the comparison operation
1326   ** is not a sub-select.  */
1327   if( pWC->op==TK_AND
1328   && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
1329   && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
1330   && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
1331   && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
1332     || (pExpr->pRight->flags & EP_xIsSelect)==0)
1333   ){
1334     int i;
1335     for(i=0; i<nLeft; i++){
1336       int idxNew;
1337       Expr *pNew;
1338       Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
1339       Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);
1340 
1341       pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
1342       transferJoinMarkings(pNew, pExpr);
1343       idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
1344       exprAnalyze(pSrc, pWC, idxNew);
1345     }
1346     pTerm = &pWC->a[idxTerm];
1347     pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL;  /* Disable the original */
1348     pTerm->eOperator = 0;
1349   }
1350 
1351   /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1352   ** a virtual term for each vector component. The expression object
1353   ** used by each such virtual term is pExpr (the full vector IN(...)
1354   ** expression). The WhereTerm.iField variable identifies the index within
1355   ** the vector on the LHS that the virtual term represents.
1356   **
1357   ** This only works if the RHS is a simple SELECT, not a compound
1358   */
1359   if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0
1360    && pExpr->pLeft->op==TK_VECTOR
1361    && pExpr->x.pSelect->pPrior==0
1362   ){
1363     int i;
1364     for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
1365       int idxNew;
1366       idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
1367       pWC->a[idxNew].iField = i+1;
1368       exprAnalyze(pSrc, pWC, idxNew);
1369       markTermAsChild(pWC, idxNew, idxTerm);
1370     }
1371   }
1372 
1373 #ifdef SQLITE_ENABLE_STAT4
1374   /* When sqlite_stat4 histogram data is available an operator of the
1375   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1376   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
1377   ** virtual term of that form.
1378   **
1379   ** Note that the virtual term must be tagged with TERM_VNULL.
1380   */
1381   if( pExpr->op==TK_NOTNULL
1382    && pExpr->pLeft->op==TK_COLUMN
1383    && pExpr->pLeft->iColumn>=0
1384    && !ExprHasProperty(pExpr, EP_FromJoin)
1385    && OptimizationEnabled(db, SQLITE_Stat4)
1386   ){
1387     Expr *pNewExpr;
1388     Expr *pLeft = pExpr->pLeft;
1389     int idxNew;
1390     WhereTerm *pNewTerm;
1391 
1392     pNewExpr = sqlite3PExpr(pParse, TK_GT,
1393                             sqlite3ExprDup(db, pLeft, 0),
1394                             sqlite3ExprAlloc(db, TK_NULL, 0, 0));
1395 
1396     idxNew = whereClauseInsert(pWC, pNewExpr,
1397                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1398     if( idxNew ){
1399       pNewTerm = &pWC->a[idxNew];
1400       pNewTerm->prereqRight = 0;
1401       pNewTerm->leftCursor = pLeft->iTable;
1402       pNewTerm->u.leftColumn = pLeft->iColumn;
1403       pNewTerm->eOperator = WO_GT;
1404       markTermAsChild(pWC, idxNew, idxTerm);
1405       pTerm = &pWC->a[idxTerm];
1406       pTerm->wtFlags |= TERM_COPIED;
1407       pNewTerm->prereqAll = pTerm->prereqAll;
1408     }
1409   }
1410 #endif /* SQLITE_ENABLE_STAT4 */
1411 
1412   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1413   ** an index for tables to the left of the join.
1414   */
1415   testcase( pTerm!=&pWC->a[idxTerm] );
1416   pTerm = &pWC->a[idxTerm];
1417   pTerm->prereqRight |= extraRight;
1418 }
1419 
1420 /***************************************************************************
1421 ** Routines with file scope above.  Interface to the rest of the where.c
1422 ** subsystem follows.
1423 ***************************************************************************/
1424 
1425 /*
1426 ** This routine identifies subexpressions in the WHERE clause where
1427 ** each subexpression is separated by the AND operator or some other
1428 ** operator specified in the op parameter.  The WhereClause structure
1429 ** is filled with pointers to subexpressions.  For example:
1430 **
1431 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1432 **           \________/     \_______________/     \________________/
1433 **            slot[0]            slot[1]               slot[2]
1434 **
1435 ** The original WHERE clause in pExpr is unaltered.  All this routine
1436 ** does is make slot[] entries point to substructure within pExpr.
1437 **
1438 ** In the previous sentence and in the diagram, "slot[]" refers to
1439 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
1440 ** all terms of the WHERE clause.
1441 */
1442 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
1443   Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr);
1444   pWC->op = op;
1445   if( pE2==0 ) return;
1446   if( pE2->op!=op ){
1447     whereClauseInsert(pWC, pExpr, 0);
1448   }else{
1449     sqlite3WhereSplit(pWC, pE2->pLeft, op);
1450     sqlite3WhereSplit(pWC, pE2->pRight, op);
1451   }
1452 }
1453 
1454 /*
1455 ** Initialize a preallocated WhereClause structure.
1456 */
1457 void sqlite3WhereClauseInit(
1458   WhereClause *pWC,        /* The WhereClause to be initialized */
1459   WhereInfo *pWInfo        /* The WHERE processing context */
1460 ){
1461   pWC->pWInfo = pWInfo;
1462   pWC->hasOr = 0;
1463   pWC->pOuter = 0;
1464   pWC->nTerm = 0;
1465   pWC->nSlot = ArraySize(pWC->aStatic);
1466   pWC->a = pWC->aStatic;
1467 }
1468 
1469 /*
1470 ** Deallocate a WhereClause structure.  The WhereClause structure
1471 ** itself is not freed.  This routine is the inverse of
1472 ** sqlite3WhereClauseInit().
1473 */
1474 void sqlite3WhereClauseClear(WhereClause *pWC){
1475   int i;
1476   WhereTerm *a;
1477   sqlite3 *db = pWC->pWInfo->pParse->db;
1478   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
1479     if( a->wtFlags & TERM_DYNAMIC ){
1480       sqlite3ExprDelete(db, a->pExpr);
1481     }
1482     if( a->wtFlags & TERM_ORINFO ){
1483       whereOrInfoDelete(db, a->u.pOrInfo);
1484     }else if( a->wtFlags & TERM_ANDINFO ){
1485       whereAndInfoDelete(db, a->u.pAndInfo);
1486     }
1487   }
1488   if( pWC->a!=pWC->aStatic ){
1489     sqlite3DbFree(db, pWC->a);
1490   }
1491 }
1492 
1493 
1494 /*
1495 ** These routines walk (recursively) an expression tree and generate
1496 ** a bitmask indicating which tables are used in that expression
1497 ** tree.
1498 */
1499 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
1500   Bitmask mask;
1501   if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
1502     return sqlite3WhereGetMask(pMaskSet, p->iTable);
1503   }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1504     assert( p->op!=TK_IF_NULL_ROW );
1505     return 0;
1506   }
1507   mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
1508   if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
1509   if( p->pRight ){
1510     mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
1511     assert( p->x.pList==0 );
1512   }else if( ExprHasProperty(p, EP_xIsSelect) ){
1513     if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
1514     mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
1515   }else if( p->x.pList ){
1516     mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
1517   }
1518 #ifndef SQLITE_OMIT_WINDOWFUNC
1519   if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && p->y.pWin ){
1520     mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition);
1521     mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy);
1522     mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter);
1523   }
1524 #endif
1525   return mask;
1526 }
1527 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
1528   return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
1529 }
1530 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
1531   int i;
1532   Bitmask mask = 0;
1533   if( pList ){
1534     for(i=0; i<pList->nExpr; i++){
1535       mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
1536     }
1537   }
1538   return mask;
1539 }
1540 
1541 
1542 /*
1543 ** Call exprAnalyze on all terms in a WHERE clause.
1544 **
1545 ** Note that exprAnalyze() might add new virtual terms onto the
1546 ** end of the WHERE clause.  We do not want to analyze these new
1547 ** virtual terms, so start analyzing at the end and work forward
1548 ** so that the added virtual terms are never processed.
1549 */
1550 void sqlite3WhereExprAnalyze(
1551   SrcList *pTabList,       /* the FROM clause */
1552   WhereClause *pWC         /* the WHERE clause to be analyzed */
1553 ){
1554   int i;
1555   for(i=pWC->nTerm-1; i>=0; i--){
1556     exprAnalyze(pTabList, pWC, i);
1557   }
1558 }
1559 
1560 /*
1561 ** For table-valued-functions, transform the function arguments into
1562 ** new WHERE clause terms.
1563 **
1564 ** Each function argument translates into an equality constraint against
1565 ** a HIDDEN column in the table.
1566 */
1567 void sqlite3WhereTabFuncArgs(
1568   Parse *pParse,                    /* Parsing context */
1569   struct SrcList_item *pItem,       /* The FROM clause term to process */
1570   WhereClause *pWC                  /* Xfer function arguments to here */
1571 ){
1572   Table *pTab;
1573   int j, k;
1574   ExprList *pArgs;
1575   Expr *pColRef;
1576   Expr *pTerm;
1577   if( pItem->fg.isTabFunc==0 ) return;
1578   pTab = pItem->pTab;
1579   assert( pTab!=0 );
1580   pArgs = pItem->u1.pFuncArg;
1581   if( pArgs==0 ) return;
1582   for(j=k=0; j<pArgs->nExpr; j++){
1583     Expr *pRhs;
1584     while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
1585     if( k>=pTab->nCol ){
1586       sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
1587                       pTab->zName, j);
1588       return;
1589     }
1590     pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
1591     if( pColRef==0 ) return;
1592     pColRef->iTable = pItem->iCursor;
1593     pColRef->iColumn = k++;
1594     pColRef->y.pTab = pTab;
1595     pRhs = sqlite3PExpr(pParse, TK_UPLUS,
1596         sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
1597     pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
1598     if( pItem->fg.jointype & JT_LEFT ){
1599       sqlite3SetJoinExpr(pTerm, pItem->iCursor);
1600     }
1601     whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
1602   }
1603 }
1604