xref: /sqlite-3.40.0/src/whereexpr.c (revision e89feee5)
1 /*
2 ** 2015-06-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity.  This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declarations */
23 static void exprAnalyze(SrcList*, WhereClause*, int);
24 
25 /*
26 ** Deallocate all memory associated with a WhereOrInfo object.
27 */
28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
29   sqlite3WhereClauseClear(&p->wc);
30   sqlite3DbFree(db, p);
31 }
32 
33 /*
34 ** Deallocate all memory associated with a WhereAndInfo object.
35 */
36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
37   sqlite3WhereClauseClear(&p->wc);
38   sqlite3DbFree(db, p);
39 }
40 
41 /*
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error.  The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
48 **
49 ** This routine will increase the size of the pWC->a[] array as necessary.
50 **
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
54 **
55 ** WARNING:  This routine might reallocate the space used to store
56 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
57 ** calling this routine.  Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
59 */
60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
61   WhereTerm *pTerm;
62   int idx;
63   testcase( wtFlags & TERM_VIRTUAL );
64   if( pWC->nTerm>=pWC->nSlot ){
65     WhereTerm *pOld = pWC->a;
66     sqlite3 *db = pWC->pWInfo->pParse->db;
67     pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
68     if( pWC->a==0 ){
69       if( wtFlags & TERM_DYNAMIC ){
70         sqlite3ExprDelete(db, p);
71       }
72       pWC->a = pOld;
73       return 0;
74     }
75     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
76     if( pOld!=pWC->aStatic ){
77       sqlite3DbFree(db, pOld);
78     }
79     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
80   }
81   pTerm = &pWC->a[idx = pWC->nTerm++];
82   if( p && ExprHasProperty(p, EP_Unlikely) ){
83     pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
84   }else{
85     pTerm->truthProb = 1;
86   }
87   pTerm->pExpr = sqlite3ExprSkipCollate(p);
88   pTerm->wtFlags = wtFlags;
89   pTerm->pWC = pWC;
90   pTerm->iParent = -1;
91   memset(&pTerm->eOperator, 0,
92          sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
93   return idx;
94 }
95 
96 /*
97 ** Return TRUE if the given operator is one of the operators that is
98 ** allowed for an indexable WHERE clause term.  The allowed operators are
99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
100 */
101 static int allowedOp(int op){
102   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
103   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
104   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
105   assert( TK_GE==TK_EQ+4 );
106   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
107 }
108 
109 /*
110 ** Commute a comparison operator.  Expressions of the form "X op Y"
111 ** are converted into "Y op X".
112 **
113 ** If left/right precedence rules come into play when determining the
114 ** collating sequence, then COLLATE operators are adjusted to ensure
115 ** that the collating sequence does not change.  For example:
116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
117 ** the left hand side of a comparison overrides any collation sequence
118 ** attached to the right. For the same reason the EP_Collate flag
119 ** is not commuted.
120 */
121 static void exprCommute(Parse *pParse, Expr *pExpr){
122   u16 expRight = (pExpr->pRight->flags & EP_Collate);
123   u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
124   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
125   if( expRight==expLeft ){
126     /* Either X and Y both have COLLATE operator or neither do */
127     if( expRight ){
128       /* Both X and Y have COLLATE operators.  Make sure X is always
129       ** used by clearing the EP_Collate flag from Y. */
130       pExpr->pRight->flags &= ~EP_Collate;
131     }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){
132       /* Neither X nor Y have COLLATE operators, but X has a non-default
133       ** collating sequence.  So add the EP_Collate marker on X to cause
134       ** it to be searched first. */
135       pExpr->pLeft->flags |= EP_Collate;
136     }
137   }
138   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
139   if( pExpr->op>=TK_GT ){
140     assert( TK_LT==TK_GT+2 );
141     assert( TK_GE==TK_LE+2 );
142     assert( TK_GT>TK_EQ );
143     assert( TK_GT<TK_LE );
144     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
145     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
146   }
147 }
148 
149 /*
150 ** Translate from TK_xx operator to WO_xx bitmask.
151 */
152 static u16 operatorMask(int op){
153   u16 c;
154   assert( allowedOp(op) );
155   if( op==TK_IN ){
156     c = WO_IN;
157   }else if( op==TK_ISNULL ){
158     c = WO_ISNULL;
159   }else if( op==TK_IS ){
160     c = WO_IS;
161   }else{
162     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
163     c = (u16)(WO_EQ<<(op-TK_EQ));
164   }
165   assert( op!=TK_ISNULL || c==WO_ISNULL );
166   assert( op!=TK_IN || c==WO_IN );
167   assert( op!=TK_EQ || c==WO_EQ );
168   assert( op!=TK_LT || c==WO_LT );
169   assert( op!=TK_LE || c==WO_LE );
170   assert( op!=TK_GT || c==WO_GT );
171   assert( op!=TK_GE || c==WO_GE );
172   assert( op!=TK_IS || c==WO_IS );
173   return c;
174 }
175 
176 
177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
178 /*
179 ** Check to see if the given expression is a LIKE or GLOB operator that
180 ** can be optimized using inequality constraints.  Return TRUE if it is
181 ** so and false if not.
182 **
183 ** In order for the operator to be optimizible, the RHS must be a string
184 ** literal that does not begin with a wildcard.  The LHS must be a column
185 ** that may only be NULL, a string, or a BLOB, never a number. (This means
186 ** that virtual tables cannot participate in the LIKE optimization.)  The
187 ** collating sequence for the column on the LHS must be appropriate for
188 ** the operator.
189 */
190 static int isLikeOrGlob(
191   Parse *pParse,    /* Parsing and code generating context */
192   Expr *pExpr,      /* Test this expression */
193   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
194   int *pisComplete, /* True if the only wildcard is % in the last character */
195   int *pnoCase      /* True if uppercase is equivalent to lowercase */
196 ){
197   const u8 *z = 0;           /* String on RHS of LIKE operator */
198   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
199   ExprList *pList;           /* List of operands to the LIKE operator */
200   u8 c;                      /* One character in z[] */
201   int cnt;                   /* Number of non-wildcard prefix characters */
202   u8 wc[4];                  /* Wildcard characters */
203   sqlite3 *db = pParse->db;  /* Database connection */
204   sqlite3_value *pVal = 0;
205   int op;                    /* Opcode of pRight */
206   int rc;                    /* Result code to return */
207 
208   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
209     return 0;
210   }
211 #ifdef SQLITE_EBCDIC
212   if( *pnoCase ) return 0;
213 #endif
214   pList = pExpr->x.pList;
215   pLeft = pList->a[1].pExpr;
216 
217   pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
218   op = pRight->op;
219   if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
220     Vdbe *pReprepare = pParse->pReprepare;
221     int iCol = pRight->iColumn;
222     pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
223     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
224       z = sqlite3_value_text(pVal);
225     }
226     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
227     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
228   }else if( op==TK_STRING ){
229     z = (u8*)pRight->u.zToken;
230   }
231   if( z ){
232 
233     /* Count the number of prefix characters prior to the first wildcard */
234     cnt = 0;
235     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
236       cnt++;
237       if( c==wc[3] && z[cnt]!=0 ) cnt++;
238     }
239 
240     /* The optimization is possible only if (1) the pattern does not begin
241     ** with a wildcard and if (2) the non-wildcard prefix does not end with
242     ** an (illegal 0xff) character, or (3) the pattern does not consist of
243     ** a single escape character. The second condition is necessary so
244     ** that we can increment the prefix key to find an upper bound for the
245     ** range search. The third is because the caller assumes that the pattern
246     ** consists of at least one character after all escapes have been
247     ** removed.  */
248     if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){
249       Expr *pPrefix;
250 
251       /* A "complete" match if the pattern ends with "*" or "%" */
252       *pisComplete = c==wc[0] && z[cnt+1]==0;
253 
254       /* Get the pattern prefix.  Remove all escapes from the prefix. */
255       pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
256       if( pPrefix ){
257         int iFrom, iTo;
258         char *zNew = pPrefix->u.zToken;
259         zNew[cnt] = 0;
260         for(iFrom=iTo=0; iFrom<cnt; iFrom++){
261           if( zNew[iFrom]==wc[3] ) iFrom++;
262           zNew[iTo++] = zNew[iFrom];
263         }
264         zNew[iTo] = 0;
265 
266         /* If the RHS begins with a digit or a minus sign, then the LHS must be
267         ** an ordinary column (not a virtual table column) with TEXT affinity.
268         ** Otherwise the LHS might be numeric and "lhs >= rhs" would be false
269         ** even though "lhs LIKE rhs" is true.  But if the RHS does not start
270         ** with a digit or '-', then "lhs LIKE rhs" will always be false if
271         ** the LHS is numeric and so the optimization still works.
272         **
273         ** 2018-09-10 ticket c94369cae9b561b1f996d0054bfab11389f9d033
274         ** The RHS pattern must not be '/%' because the termination condition
275         ** will then become "x<'0'" and if the affinity is numeric, will then
276         ** be converted into "x<0", which is incorrect.
277         */
278         if( sqlite3Isdigit(zNew[0])
279          || zNew[0]=='-'
280          || (zNew[0]+1=='0' && iTo==1)
281         ){
282           if( pLeft->op!=TK_COLUMN
283            || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
284            || IsVirtual(pLeft->y.pTab)  /* Value might be numeric */
285           ){
286             sqlite3ExprDelete(db, pPrefix);
287             sqlite3ValueFree(pVal);
288             return 0;
289           }
290         }
291       }
292       *ppPrefix = pPrefix;
293 
294       /* If the RHS pattern is a bound parameter, make arrangements to
295       ** reprepare the statement when that parameter is rebound */
296       if( op==TK_VARIABLE ){
297         Vdbe *v = pParse->pVdbe;
298         sqlite3VdbeSetVarmask(v, pRight->iColumn);
299         if( *pisComplete && pRight->u.zToken[1] ){
300           /* If the rhs of the LIKE expression is a variable, and the current
301           ** value of the variable means there is no need to invoke the LIKE
302           ** function, then no OP_Variable will be added to the program.
303           ** This causes problems for the sqlite3_bind_parameter_name()
304           ** API. To work around them, add a dummy OP_Variable here.
305           */
306           int r1 = sqlite3GetTempReg(pParse);
307           sqlite3ExprCodeTarget(pParse, pRight, r1);
308           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
309           sqlite3ReleaseTempReg(pParse, r1);
310         }
311       }
312     }else{
313       z = 0;
314     }
315   }
316 
317   rc = (z!=0);
318   sqlite3ValueFree(pVal);
319   return rc;
320 }
321 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
322 
323 
324 #ifndef SQLITE_OMIT_VIRTUALTABLE
325 /*
326 ** Check to see if the pExpr expression is a form that needs to be passed
327 ** to the xBestIndex method of virtual tables.  Forms of interest include:
328 **
329 **          Expression                   Virtual Table Operator
330 **          -----------------------      ---------------------------------
331 **      1.  column MATCH expr            SQLITE_INDEX_CONSTRAINT_MATCH
332 **      2.  column GLOB expr             SQLITE_INDEX_CONSTRAINT_GLOB
333 **      3.  column LIKE expr             SQLITE_INDEX_CONSTRAINT_LIKE
334 **      4.  column REGEXP expr           SQLITE_INDEX_CONSTRAINT_REGEXP
335 **      5.  column != expr               SQLITE_INDEX_CONSTRAINT_NE
336 **      6.  expr != column               SQLITE_INDEX_CONSTRAINT_NE
337 **      7.  column IS NOT expr           SQLITE_INDEX_CONSTRAINT_ISNOT
338 **      8.  expr IS NOT column           SQLITE_INDEX_CONSTRAINT_ISNOT
339 **      9.  column IS NOT NULL           SQLITE_INDEX_CONSTRAINT_ISNOTNULL
340 **
341 ** In every case, "column" must be a column of a virtual table.  If there
342 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
343 ** "expr" expression (even though in forms (6) and (8) the column is on the
344 ** right and the expression is on the left).  Also set *peOp2 to the
345 ** appropriate virtual table operator.  The return value is 1 or 2 if there
346 ** is a match.  The usual return is 1, but if the RHS is also a column
347 ** of virtual table in forms (5) or (7) then return 2.
348 **
349 ** If the expression matches none of the patterns above, return 0.
350 */
351 static int isAuxiliaryVtabOperator(
352   sqlite3 *db,                    /* Parsing context */
353   Expr *pExpr,                    /* Test this expression */
354   unsigned char *peOp2,           /* OUT: 0 for MATCH, or else an op2 value */
355   Expr **ppLeft,                  /* Column expression to left of MATCH/op2 */
356   Expr **ppRight                  /* Expression to left of MATCH/op2 */
357 ){
358   if( pExpr->op==TK_FUNCTION ){
359     static const struct Op2 {
360       const char *zOp;
361       unsigned char eOp2;
362     } aOp[] = {
363       { "match",  SQLITE_INDEX_CONSTRAINT_MATCH },
364       { "glob",   SQLITE_INDEX_CONSTRAINT_GLOB },
365       { "like",   SQLITE_INDEX_CONSTRAINT_LIKE },
366       { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
367     };
368     ExprList *pList;
369     Expr *pCol;                     /* Column reference */
370     int i;
371 
372     pList = pExpr->x.pList;
373     if( pList==0 || pList->nExpr!=2 ){
374       return 0;
375     }
376 
377     /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
378     ** virtual table on their second argument, which is the same as
379     ** the left-hand side operand in their in-fix form.
380     **
381     **       vtab_column MATCH expression
382     **       MATCH(expression,vtab_column)
383     */
384     pCol = pList->a[1].pExpr;
385     if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){
386       for(i=0; i<ArraySize(aOp); i++){
387         if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
388           *peOp2 = aOp[i].eOp2;
389           *ppRight = pList->a[0].pExpr;
390           *ppLeft = pCol;
391           return 1;
392         }
393       }
394     }
395 
396     /* We can also match against the first column of overloaded
397     ** functions where xFindFunction returns a value of at least
398     ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
399     **
400     **      OVERLOADED(vtab_column,expression)
401     **
402     ** Historically, xFindFunction expected to see lower-case function
403     ** names.  But for this use case, xFindFunction is expected to deal
404     ** with function names in an arbitrary case.
405     */
406     pCol = pList->a[0].pExpr;
407     if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){
408       sqlite3_vtab *pVtab;
409       sqlite3_module *pMod;
410       void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
411       void *pNotUsed;
412       pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
413       assert( pVtab!=0 );
414       assert( pVtab->pModule!=0 );
415       pMod = (sqlite3_module *)pVtab->pModule;
416       if( pMod->xFindFunction!=0 ){
417         i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
418         if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
419           *peOp2 = i;
420           *ppRight = pList->a[1].pExpr;
421           *ppLeft = pCol;
422           return 1;
423         }
424       }
425     }
426   }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
427     int res = 0;
428     Expr *pLeft = pExpr->pLeft;
429     Expr *pRight = pExpr->pRight;
430     if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->y.pTab) ){
431       res++;
432     }
433     if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->y.pTab) ){
434       res++;
435       SWAP(Expr*, pLeft, pRight);
436     }
437     *ppLeft = pLeft;
438     *ppRight = pRight;
439     if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
440     if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
441     if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
442     return res;
443   }
444   return 0;
445 }
446 #endif /* SQLITE_OMIT_VIRTUALTABLE */
447 
448 /*
449 ** If the pBase expression originated in the ON or USING clause of
450 ** a join, then transfer the appropriate markings over to derived.
451 */
452 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
453   if( pDerived ){
454     pDerived->flags |= pBase->flags & EP_FromJoin;
455     pDerived->iRightJoinTable = pBase->iRightJoinTable;
456   }
457 }
458 
459 /*
460 ** Mark term iChild as being a child of term iParent
461 */
462 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
463   pWC->a[iChild].iParent = iParent;
464   pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
465   pWC->a[iParent].nChild++;
466 }
467 
468 /*
469 ** Return the N-th AND-connected subterm of pTerm.  Or if pTerm is not
470 ** a conjunction, then return just pTerm when N==0.  If N is exceeds
471 ** the number of available subterms, return NULL.
472 */
473 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
474   if( pTerm->eOperator!=WO_AND ){
475     return N==0 ? pTerm : 0;
476   }
477   if( N<pTerm->u.pAndInfo->wc.nTerm ){
478     return &pTerm->u.pAndInfo->wc.a[N];
479   }
480   return 0;
481 }
482 
483 /*
484 ** Subterms pOne and pTwo are contained within WHERE clause pWC.  The
485 ** two subterms are in disjunction - they are OR-ed together.
486 **
487 ** If these two terms are both of the form:  "A op B" with the same
488 ** A and B values but different operators and if the operators are
489 ** compatible (if one is = and the other is <, for example) then
490 ** add a new virtual AND term to pWC that is the combination of the
491 ** two.
492 **
493 ** Some examples:
494 **
495 **    x<y OR x=y    -->     x<=y
496 **    x=y OR x=y    -->     x=y
497 **    x<=y OR x<y   -->     x<=y
498 **
499 ** The following is NOT generated:
500 **
501 **    x<y OR x>y    -->     x!=y
502 */
503 static void whereCombineDisjuncts(
504   SrcList *pSrc,         /* the FROM clause */
505   WhereClause *pWC,      /* The complete WHERE clause */
506   WhereTerm *pOne,       /* First disjunct */
507   WhereTerm *pTwo        /* Second disjunct */
508 ){
509   u16 eOp = pOne->eOperator | pTwo->eOperator;
510   sqlite3 *db;           /* Database connection (for malloc) */
511   Expr *pNew;            /* New virtual expression */
512   int op;                /* Operator for the combined expression */
513   int idxNew;            /* Index in pWC of the next virtual term */
514 
515   if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
516   if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
517   if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
518    && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
519   assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
520   assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
521   if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
522   if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
523   /* If we reach this point, it means the two subterms can be combined */
524   if( (eOp & (eOp-1))!=0 ){
525     if( eOp & (WO_LT|WO_LE) ){
526       eOp = WO_LE;
527     }else{
528       assert( eOp & (WO_GT|WO_GE) );
529       eOp = WO_GE;
530     }
531   }
532   db = pWC->pWInfo->pParse->db;
533   pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
534   if( pNew==0 ) return;
535   for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
536   pNew->op = op;
537   idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
538   exprAnalyze(pSrc, pWC, idxNew);
539 }
540 
541 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
542 /*
543 ** Analyze a term that consists of two or more OR-connected
544 ** subterms.  So in:
545 **
546 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
547 **                          ^^^^^^^^^^^^^^^^^^^^
548 **
549 ** This routine analyzes terms such as the middle term in the above example.
550 ** A WhereOrTerm object is computed and attached to the term under
551 ** analysis, regardless of the outcome of the analysis.  Hence:
552 **
553 **     WhereTerm.wtFlags   |=  TERM_ORINFO
554 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
555 **
556 ** The term being analyzed must have two or more of OR-connected subterms.
557 ** A single subterm might be a set of AND-connected sub-subterms.
558 ** Examples of terms under analysis:
559 **
560 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
561 **     (B)     x=expr1 OR expr2=x OR x=expr3
562 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
563 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
564 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
565 **     (F)     x>A OR (x=A AND y>=B)
566 **
567 ** CASE 1:
568 **
569 ** If all subterms are of the form T.C=expr for some single column of C and
570 ** a single table T (as shown in example B above) then create a new virtual
571 ** term that is an equivalent IN expression.  In other words, if the term
572 ** being analyzed is:
573 **
574 **      x = expr1  OR  expr2 = x  OR  x = expr3
575 **
576 ** then create a new virtual term like this:
577 **
578 **      x IN (expr1,expr2,expr3)
579 **
580 ** CASE 2:
581 **
582 ** If there are exactly two disjuncts and one side has x>A and the other side
583 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
584 ** WHERE clause of the form "x>=A".  Example:
585 **
586 **      x>A OR (x=A AND y>B)    adds:    x>=A
587 **
588 ** The added conjunct can sometimes be helpful in query planning.
589 **
590 ** CASE 3:
591 **
592 ** If all subterms are indexable by a single table T, then set
593 **
594 **     WhereTerm.eOperator              =  WO_OR
595 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
596 **
597 ** A subterm is "indexable" if it is of the form
598 ** "T.C <op> <expr>" where C is any column of table T and
599 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
600 ** A subterm is also indexable if it is an AND of two or more
601 ** subsubterms at least one of which is indexable.  Indexable AND
602 ** subterms have their eOperator set to WO_AND and they have
603 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
604 **
605 ** From another point of view, "indexable" means that the subterm could
606 ** potentially be used with an index if an appropriate index exists.
607 ** This analysis does not consider whether or not the index exists; that
608 ** is decided elsewhere.  This analysis only looks at whether subterms
609 ** appropriate for indexing exist.
610 **
611 ** All examples A through E above satisfy case 3.  But if a term
612 ** also satisfies case 1 (such as B) we know that the optimizer will
613 ** always prefer case 1, so in that case we pretend that case 3 is not
614 ** satisfied.
615 **
616 ** It might be the case that multiple tables are indexable.  For example,
617 ** (E) above is indexable on tables P, Q, and R.
618 **
619 ** Terms that satisfy case 3 are candidates for lookup by using
620 ** separate indices to find rowids for each subterm and composing
621 ** the union of all rowids using a RowSet object.  This is similar
622 ** to "bitmap indices" in other database engines.
623 **
624 ** OTHERWISE:
625 **
626 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
627 ** zero.  This term is not useful for search.
628 */
629 static void exprAnalyzeOrTerm(
630   SrcList *pSrc,            /* the FROM clause */
631   WhereClause *pWC,         /* the complete WHERE clause */
632   int idxTerm               /* Index of the OR-term to be analyzed */
633 ){
634   WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
635   Parse *pParse = pWInfo->pParse;         /* Parser context */
636   sqlite3 *db = pParse->db;               /* Database connection */
637   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
638   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
639   int i;                                  /* Loop counters */
640   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
641   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
642   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
643   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
644   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
645 
646   /*
647   ** Break the OR clause into its separate subterms.  The subterms are
648   ** stored in a WhereClause structure containing within the WhereOrInfo
649   ** object that is attached to the original OR clause term.
650   */
651   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
652   assert( pExpr->op==TK_OR );
653   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
654   if( pOrInfo==0 ) return;
655   pTerm->wtFlags |= TERM_ORINFO;
656   pOrWc = &pOrInfo->wc;
657   memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
658   sqlite3WhereClauseInit(pOrWc, pWInfo);
659   sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
660   sqlite3WhereExprAnalyze(pSrc, pOrWc);
661   if( db->mallocFailed ) return;
662   assert( pOrWc->nTerm>=2 );
663 
664   /*
665   ** Compute the set of tables that might satisfy cases 1 or 3.
666   */
667   indexable = ~(Bitmask)0;
668   chngToIN = ~(Bitmask)0;
669   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
670     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
671       WhereAndInfo *pAndInfo;
672       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
673       chngToIN = 0;
674       pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
675       if( pAndInfo ){
676         WhereClause *pAndWC;
677         WhereTerm *pAndTerm;
678         int j;
679         Bitmask b = 0;
680         pOrTerm->u.pAndInfo = pAndInfo;
681         pOrTerm->wtFlags |= TERM_ANDINFO;
682         pOrTerm->eOperator = WO_AND;
683         pAndWC = &pAndInfo->wc;
684         memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
685         sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
686         sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
687         sqlite3WhereExprAnalyze(pSrc, pAndWC);
688         pAndWC->pOuter = pWC;
689         if( !db->mallocFailed ){
690           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
691             assert( pAndTerm->pExpr );
692             if( allowedOp(pAndTerm->pExpr->op)
693              || pAndTerm->eOperator==WO_AUX
694             ){
695               b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
696             }
697           }
698         }
699         indexable &= b;
700       }
701     }else if( pOrTerm->wtFlags & TERM_COPIED ){
702       /* Skip this term for now.  We revisit it when we process the
703       ** corresponding TERM_VIRTUAL term */
704     }else{
705       Bitmask b;
706       b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
707       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
708         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
709         b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
710       }
711       indexable &= b;
712       if( (pOrTerm->eOperator & WO_EQ)==0 ){
713         chngToIN = 0;
714       }else{
715         chngToIN &= b;
716       }
717     }
718   }
719 
720   /*
721   ** Record the set of tables that satisfy case 3.  The set might be
722   ** empty.
723   */
724   pOrInfo->indexable = indexable;
725   if( indexable ){
726     pTerm->eOperator = WO_OR;
727     pWC->hasOr = 1;
728   }else{
729     pTerm->eOperator = WO_OR;
730   }
731 
732   /* For a two-way OR, attempt to implementation case 2.
733   */
734   if( indexable && pOrWc->nTerm==2 ){
735     int iOne = 0;
736     WhereTerm *pOne;
737     while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
738       int iTwo = 0;
739       WhereTerm *pTwo;
740       while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
741         whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
742       }
743     }
744   }
745 
746   /*
747   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
748   ** we have to do some additional checking to see if case 1 really
749   ** is satisfied.
750   **
751   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
752   ** that there is no possibility of transforming the OR clause into an
753   ** IN operator because one or more terms in the OR clause contain
754   ** something other than == on a column in the single table.  The 1-bit
755   ** case means that every term of the OR clause is of the form
756   ** "table.column=expr" for some single table.  The one bit that is set
757   ** will correspond to the common table.  We still need to check to make
758   ** sure the same column is used on all terms.  The 2-bit case is when
759   ** the all terms are of the form "table1.column=table2.column".  It
760   ** might be possible to form an IN operator with either table1.column
761   ** or table2.column as the LHS if either is common to every term of
762   ** the OR clause.
763   **
764   ** Note that terms of the form "table.column1=table.column2" (the
765   ** same table on both sizes of the ==) cannot be optimized.
766   */
767   if( chngToIN ){
768     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
769     int iColumn = -1;         /* Column index on lhs of IN operator */
770     int iCursor = -1;         /* Table cursor common to all terms */
771     int j = 0;                /* Loop counter */
772 
773     /* Search for a table and column that appears on one side or the
774     ** other of the == operator in every subterm.  That table and column
775     ** will be recorded in iCursor and iColumn.  There might not be any
776     ** such table and column.  Set okToChngToIN if an appropriate table
777     ** and column is found but leave okToChngToIN false if not found.
778     */
779     for(j=0; j<2 && !okToChngToIN; j++){
780       pOrTerm = pOrWc->a;
781       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
782         assert( pOrTerm->eOperator & WO_EQ );
783         pOrTerm->wtFlags &= ~TERM_OR_OK;
784         if( pOrTerm->leftCursor==iCursor ){
785           /* This is the 2-bit case and we are on the second iteration and
786           ** current term is from the first iteration.  So skip this term. */
787           assert( j==1 );
788           continue;
789         }
790         if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
791                                             pOrTerm->leftCursor))==0 ){
792           /* This term must be of the form t1.a==t2.b where t2 is in the
793           ** chngToIN set but t1 is not.  This term will be either preceded
794           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
795           ** and use its inversion. */
796           testcase( pOrTerm->wtFlags & TERM_COPIED );
797           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
798           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
799           continue;
800         }
801         iColumn = pOrTerm->u.leftColumn;
802         iCursor = pOrTerm->leftCursor;
803         break;
804       }
805       if( i<0 ){
806         /* No candidate table+column was found.  This can only occur
807         ** on the second iteration */
808         assert( j==1 );
809         assert( IsPowerOfTwo(chngToIN) );
810         assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
811         break;
812       }
813       testcase( j==1 );
814 
815       /* We have found a candidate table and column.  Check to see if that
816       ** table and column is common to every term in the OR clause */
817       okToChngToIN = 1;
818       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
819         assert( pOrTerm->eOperator & WO_EQ );
820         if( pOrTerm->leftCursor!=iCursor ){
821           pOrTerm->wtFlags &= ~TERM_OR_OK;
822         }else if( pOrTerm->u.leftColumn!=iColumn ){
823           okToChngToIN = 0;
824         }else{
825           int affLeft, affRight;
826           /* If the right-hand side is also a column, then the affinities
827           ** of both right and left sides must be such that no type
828           ** conversions are required on the right.  (Ticket #2249)
829           */
830           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
831           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
832           if( affRight!=0 && affRight!=affLeft ){
833             okToChngToIN = 0;
834           }else{
835             pOrTerm->wtFlags |= TERM_OR_OK;
836           }
837         }
838       }
839     }
840 
841     /* At this point, okToChngToIN is true if original pTerm satisfies
842     ** case 1.  In that case, construct a new virtual term that is
843     ** pTerm converted into an IN operator.
844     */
845     if( okToChngToIN ){
846       Expr *pDup;            /* A transient duplicate expression */
847       ExprList *pList = 0;   /* The RHS of the IN operator */
848       Expr *pLeft = 0;       /* The LHS of the IN operator */
849       Expr *pNew;            /* The complete IN operator */
850 
851       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
852         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
853         assert( pOrTerm->eOperator & WO_EQ );
854         assert( pOrTerm->leftCursor==iCursor );
855         assert( pOrTerm->u.leftColumn==iColumn );
856         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
857         pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
858         pLeft = pOrTerm->pExpr->pLeft;
859       }
860       assert( pLeft!=0 );
861       pDup = sqlite3ExprDup(db, pLeft, 0);
862       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
863       if( pNew ){
864         int idxNew;
865         transferJoinMarkings(pNew, pExpr);
866         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
867         pNew->x.pList = pList;
868         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
869         testcase( idxNew==0 );
870         exprAnalyze(pSrc, pWC, idxNew);
871         /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where used again */
872         markTermAsChild(pWC, idxNew, idxTerm);
873       }else{
874         sqlite3ExprListDelete(db, pList);
875       }
876     }
877   }
878 }
879 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
880 
881 /*
882 ** We already know that pExpr is a binary operator where both operands are
883 ** column references.  This routine checks to see if pExpr is an equivalence
884 ** relation:
885 **   1.  The SQLITE_Transitive optimization must be enabled
886 **   2.  Must be either an == or an IS operator
887 **   3.  Not originating in the ON clause of an OUTER JOIN
888 **   4.  The affinities of A and B must be compatible
889 **   5a. Both operands use the same collating sequence OR
890 **   5b. The overall collating sequence is BINARY
891 ** If this routine returns TRUE, that means that the RHS can be substituted
892 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
893 ** This is an optimization.  No harm comes from returning 0.  But if 1 is
894 ** returned when it should not be, then incorrect answers might result.
895 */
896 static int termIsEquivalence(Parse *pParse, Expr *pExpr){
897   char aff1, aff2;
898   CollSeq *pColl;
899   if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
900   if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
901   if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
902   aff1 = sqlite3ExprAffinity(pExpr->pLeft);
903   aff2 = sqlite3ExprAffinity(pExpr->pRight);
904   if( aff1!=aff2
905    && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
906   ){
907     return 0;
908   }
909   pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight);
910   if( sqlite3IsBinary(pColl) ) return 1;
911   return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
912 }
913 
914 /*
915 ** Recursively walk the expressions of a SELECT statement and generate
916 ** a bitmask indicating which tables are used in that expression
917 ** tree.
918 */
919 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
920   Bitmask mask = 0;
921   while( pS ){
922     SrcList *pSrc = pS->pSrc;
923     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
924     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
925     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
926     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
927     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
928     if( ALWAYS(pSrc!=0) ){
929       int i;
930       for(i=0; i<pSrc->nSrc; i++){
931         mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
932         mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
933         if( pSrc->a[i].fg.isTabFunc ){
934           mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
935         }
936       }
937     }
938     pS = pS->pPrior;
939   }
940   return mask;
941 }
942 
943 /*
944 ** Expression pExpr is one operand of a comparison operator that might
945 ** be useful for indexing.  This routine checks to see if pExpr appears
946 ** in any index.  Return TRUE (1) if pExpr is an indexed term and return
947 ** FALSE (0) if not.  If TRUE is returned, also set aiCurCol[0] to the cursor
948 ** number of the table that is indexed and aiCurCol[1] to the column number
949 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
950 ** indexed.
951 **
952 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
953 ** true even if that particular column is not indexed, because the column
954 ** might be added to an automatic index later.
955 */
956 static SQLITE_NOINLINE int exprMightBeIndexed2(
957   SrcList *pFrom,        /* The FROM clause */
958   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
959   int *aiCurCol,         /* Write the referenced table cursor and column here */
960   Expr *pExpr            /* An operand of a comparison operator */
961 ){
962   Index *pIdx;
963   int i;
964   int iCur;
965   for(i=0; mPrereq>1; i++, mPrereq>>=1){}
966   iCur = pFrom->a[i].iCursor;
967   for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
968     if( pIdx->aColExpr==0 ) continue;
969     for(i=0; i<pIdx->nKeyCol; i++){
970       if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
971       if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
972         aiCurCol[0] = iCur;
973         aiCurCol[1] = XN_EXPR;
974         return 1;
975       }
976     }
977   }
978   return 0;
979 }
980 static int exprMightBeIndexed(
981   SrcList *pFrom,        /* The FROM clause */
982   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
983   int *aiCurCol,         /* Write the referenced table cursor & column here */
984   Expr *pExpr,           /* An operand of a comparison operator */
985   int op                 /* The specific comparison operator */
986 ){
987   /* If this expression is a vector to the left or right of a
988   ** inequality constraint (>, <, >= or <=), perform the processing
989   ** on the first element of the vector.  */
990   assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
991   assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
992   assert( op<=TK_GE );
993   if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
994     pExpr = pExpr->x.pList->a[0].pExpr;
995   }
996 
997   if( pExpr->op==TK_COLUMN ){
998     aiCurCol[0] = pExpr->iTable;
999     aiCurCol[1] = pExpr->iColumn;
1000     return 1;
1001   }
1002   if( mPrereq==0 ) return 0;                 /* No table references */
1003   if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
1004   return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
1005 }
1006 
1007 /*
1008 ** The input to this routine is an WhereTerm structure with only the
1009 ** "pExpr" field filled in.  The job of this routine is to analyze the
1010 ** subexpression and populate all the other fields of the WhereTerm
1011 ** structure.
1012 **
1013 ** If the expression is of the form "<expr> <op> X" it gets commuted
1014 ** to the standard form of "X <op> <expr>".
1015 **
1016 ** If the expression is of the form "X <op> Y" where both X and Y are
1017 ** columns, then the original expression is unchanged and a new virtual
1018 ** term of the form "Y <op> X" is added to the WHERE clause and
1019 ** analyzed separately.  The original term is marked with TERM_COPIED
1020 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1021 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1022 ** is a commuted copy of a prior term.)  The original term has nChild=1
1023 ** and the copy has idxParent set to the index of the original term.
1024 */
1025 static void exprAnalyze(
1026   SrcList *pSrc,            /* the FROM clause */
1027   WhereClause *pWC,         /* the WHERE clause */
1028   int idxTerm               /* Index of the term to be analyzed */
1029 ){
1030   WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
1031   WhereTerm *pTerm;                /* The term to be analyzed */
1032   WhereMaskSet *pMaskSet;          /* Set of table index masks */
1033   Expr *pExpr;                     /* The expression to be analyzed */
1034   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
1035   Bitmask prereqAll;               /* Prerequesites of pExpr */
1036   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
1037   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
1038   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
1039   int noCase = 0;                  /* uppercase equivalent to lowercase */
1040   int op;                          /* Top-level operator.  pExpr->op */
1041   Parse *pParse = pWInfo->pParse;  /* Parsing context */
1042   sqlite3 *db = pParse->db;        /* Database connection */
1043   unsigned char eOp2 = 0;          /* op2 value for LIKE/REGEXP/GLOB */
1044   int nLeft;                       /* Number of elements on left side vector */
1045 
1046   if( db->mallocFailed ){
1047     return;
1048   }
1049   pTerm = &pWC->a[idxTerm];
1050   pMaskSet = &pWInfo->sMaskSet;
1051   pExpr = pTerm->pExpr;
1052   assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
1053   prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
1054   op = pExpr->op;
1055   if( op==TK_IN ){
1056     assert( pExpr->pRight==0 );
1057     if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
1058     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1059       pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
1060     }else{
1061       pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
1062     }
1063   }else if( op==TK_ISNULL ){
1064     pTerm->prereqRight = 0;
1065   }else{
1066     pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
1067   }
1068   pMaskSet->bVarSelect = 0;
1069   prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
1070   if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
1071   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1072     Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
1073     prereqAll |= x;
1074     extraRight = x-1;  /* ON clause terms may not be used with an index
1075                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1076     if( (prereqAll>>1)>=x ){
1077       sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
1078       return;
1079     }
1080   }
1081   pTerm->prereqAll = prereqAll;
1082   pTerm->leftCursor = -1;
1083   pTerm->iParent = -1;
1084   pTerm->eOperator = 0;
1085   if( allowedOp(op) ){
1086     int aiCurCol[2];
1087     Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1088     Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1089     u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1090 
1091     if( pTerm->iField>0 ){
1092       assert( op==TK_IN );
1093       assert( pLeft->op==TK_VECTOR );
1094       pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
1095     }
1096 
1097     if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
1098       pTerm->leftCursor = aiCurCol[0];
1099       pTerm->u.leftColumn = aiCurCol[1];
1100       pTerm->eOperator = operatorMask(op) & opMask;
1101     }
1102     if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
1103     if( pRight
1104      && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
1105     ){
1106       WhereTerm *pNew;
1107       Expr *pDup;
1108       u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
1109       assert( pTerm->iField==0 );
1110       if( pTerm->leftCursor>=0 ){
1111         int idxNew;
1112         pDup = sqlite3ExprDup(db, pExpr, 0);
1113         if( db->mallocFailed ){
1114           sqlite3ExprDelete(db, pDup);
1115           return;
1116         }
1117         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1118         if( idxNew==0 ) return;
1119         pNew = &pWC->a[idxNew];
1120         markTermAsChild(pWC, idxNew, idxTerm);
1121         if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
1122         pTerm = &pWC->a[idxTerm];
1123         pTerm->wtFlags |= TERM_COPIED;
1124 
1125         if( termIsEquivalence(pParse, pDup) ){
1126           pTerm->eOperator |= WO_EQUIV;
1127           eExtraOp = WO_EQUIV;
1128         }
1129       }else{
1130         pDup = pExpr;
1131         pNew = pTerm;
1132       }
1133       exprCommute(pParse, pDup);
1134       pNew->leftCursor = aiCurCol[0];
1135       pNew->u.leftColumn = aiCurCol[1];
1136       testcase( (prereqLeft | extraRight) != prereqLeft );
1137       pNew->prereqRight = prereqLeft | extraRight;
1138       pNew->prereqAll = prereqAll;
1139       pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1140     }
1141   }
1142 
1143 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1144   /* If a term is the BETWEEN operator, create two new virtual terms
1145   ** that define the range that the BETWEEN implements.  For example:
1146   **
1147   **      a BETWEEN b AND c
1148   **
1149   ** is converted into:
1150   **
1151   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1152   **
1153   ** The two new terms are added onto the end of the WhereClause object.
1154   ** The new terms are "dynamic" and are children of the original BETWEEN
1155   ** term.  That means that if the BETWEEN term is coded, the children are
1156   ** skipped.  Or, if the children are satisfied by an index, the original
1157   ** BETWEEN term is skipped.
1158   */
1159   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1160     ExprList *pList = pExpr->x.pList;
1161     int i;
1162     static const u8 ops[] = {TK_GE, TK_LE};
1163     assert( pList!=0 );
1164     assert( pList->nExpr==2 );
1165     for(i=0; i<2; i++){
1166       Expr *pNewExpr;
1167       int idxNew;
1168       pNewExpr = sqlite3PExpr(pParse, ops[i],
1169                              sqlite3ExprDup(db, pExpr->pLeft, 0),
1170                              sqlite3ExprDup(db, pList->a[i].pExpr, 0));
1171       transferJoinMarkings(pNewExpr, pExpr);
1172       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1173       testcase( idxNew==0 );
1174       exprAnalyze(pSrc, pWC, idxNew);
1175       pTerm = &pWC->a[idxTerm];
1176       markTermAsChild(pWC, idxNew, idxTerm);
1177     }
1178   }
1179 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1180 
1181 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1182   /* Analyze a term that is composed of two or more subterms connected by
1183   ** an OR operator.
1184   */
1185   else if( pExpr->op==TK_OR ){
1186     assert( pWC->op==TK_AND );
1187     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1188     pTerm = &pWC->a[idxTerm];
1189   }
1190 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1191 
1192 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1193   /* Add constraints to reduce the search space on a LIKE or GLOB
1194   ** operator.
1195   **
1196   ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1197   **
1198   **          x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1199   **
1200   ** The last character of the prefix "abc" is incremented to form the
1201   ** termination condition "abd".  If case is not significant (the default
1202   ** for LIKE) then the lower-bound is made all uppercase and the upper-
1203   ** bound is made all lowercase so that the bounds also work when comparing
1204   ** BLOBs.
1205   */
1206   if( pWC->op==TK_AND
1207    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1208   ){
1209     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
1210     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1211     Expr *pNewExpr1;
1212     Expr *pNewExpr2;
1213     int idxNew1;
1214     int idxNew2;
1215     const char *zCollSeqName;     /* Name of collating sequence */
1216     const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
1217 
1218     pLeft = pExpr->x.pList->a[1].pExpr;
1219     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1220 
1221     /* Convert the lower bound to upper-case and the upper bound to
1222     ** lower-case (upper-case is less than lower-case in ASCII) so that
1223     ** the range constraints also work for BLOBs
1224     */
1225     if( noCase && !pParse->db->mallocFailed ){
1226       int i;
1227       char c;
1228       pTerm->wtFlags |= TERM_LIKE;
1229       for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
1230         pStr1->u.zToken[i] = sqlite3Toupper(c);
1231         pStr2->u.zToken[i] = sqlite3Tolower(c);
1232       }
1233     }
1234 
1235     if( !db->mallocFailed ){
1236       u8 c, *pC;       /* Last character before the first wildcard */
1237       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1238       c = *pC;
1239       if( noCase ){
1240         /* The point is to increment the last character before the first
1241         ** wildcard.  But if we increment '@', that will push it into the
1242         ** alphabetic range where case conversions will mess up the
1243         ** inequality.  To avoid this, make sure to also run the full
1244         ** LIKE on all candidate expressions by clearing the isComplete flag
1245         */
1246         if( c=='A'-1 ) isComplete = 0;
1247         c = sqlite3UpperToLower[c];
1248       }
1249       *pC = c + 1;
1250     }
1251     zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
1252     pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1253     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1254            sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
1255            pStr1);
1256     transferJoinMarkings(pNewExpr1, pExpr);
1257     idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
1258     testcase( idxNew1==0 );
1259     exprAnalyze(pSrc, pWC, idxNew1);
1260     pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1261     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1262            sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
1263            pStr2);
1264     transferJoinMarkings(pNewExpr2, pExpr);
1265     idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
1266     testcase( idxNew2==0 );
1267     exprAnalyze(pSrc, pWC, idxNew2);
1268     pTerm = &pWC->a[idxTerm];
1269     if( isComplete ){
1270       markTermAsChild(pWC, idxNew1, idxTerm);
1271       markTermAsChild(pWC, idxNew2, idxTerm);
1272     }
1273   }
1274 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1275 
1276 #ifndef SQLITE_OMIT_VIRTUALTABLE
1277   /* Add a WO_AUX auxiliary term to the constraint set if the
1278   ** current expression is of the form "column OP expr" where OP
1279   ** is an operator that gets passed into virtual tables but which is
1280   ** not normally optimized for ordinary tables.  In other words, OP
1281   ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1282   ** This information is used by the xBestIndex methods of
1283   ** virtual tables.  The native query optimizer does not attempt
1284   ** to do anything with MATCH functions.
1285   */
1286   if( pWC->op==TK_AND ){
1287     Expr *pRight = 0, *pLeft = 0;
1288     int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
1289     while( res-- > 0 ){
1290       int idxNew;
1291       WhereTerm *pNewTerm;
1292       Bitmask prereqColumn, prereqExpr;
1293 
1294       prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
1295       prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
1296       if( (prereqExpr & prereqColumn)==0 ){
1297         Expr *pNewExpr;
1298         pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1299             0, sqlite3ExprDup(db, pRight, 0));
1300         if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){
1301           ExprSetProperty(pNewExpr, EP_FromJoin);
1302         }
1303         idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1304         testcase( idxNew==0 );
1305         pNewTerm = &pWC->a[idxNew];
1306         pNewTerm->prereqRight = prereqExpr;
1307         pNewTerm->leftCursor = pLeft->iTable;
1308         pNewTerm->u.leftColumn = pLeft->iColumn;
1309         pNewTerm->eOperator = WO_AUX;
1310         pNewTerm->eMatchOp = eOp2;
1311         markTermAsChild(pWC, idxNew, idxTerm);
1312         pTerm = &pWC->a[idxTerm];
1313         pTerm->wtFlags |= TERM_COPIED;
1314         pNewTerm->prereqAll = pTerm->prereqAll;
1315       }
1316       SWAP(Expr*, pLeft, pRight);
1317     }
1318   }
1319 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1320 
1321   /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1322   ** new terms for each component comparison - "a = ?" and "b = ?".  The
1323   ** new terms completely replace the original vector comparison, which is
1324   ** no longer used.
1325   **
1326   ** This is only required if at least one side of the comparison operation
1327   ** is not a sub-select.  */
1328   if( pWC->op==TK_AND
1329   && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
1330   && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
1331   && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
1332   && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
1333     || (pExpr->pRight->flags & EP_xIsSelect)==0)
1334   ){
1335     int i;
1336     for(i=0; i<nLeft; i++){
1337       int idxNew;
1338       Expr *pNew;
1339       Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
1340       Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);
1341 
1342       pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
1343       transferJoinMarkings(pNew, pExpr);
1344       idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
1345       exprAnalyze(pSrc, pWC, idxNew);
1346     }
1347     pTerm = &pWC->a[idxTerm];
1348     pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL;  /* Disable the original */
1349     pTerm->eOperator = 0;
1350   }
1351 
1352   /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1353   ** a virtual term for each vector component. The expression object
1354   ** used by each such virtual term is pExpr (the full vector IN(...)
1355   ** expression). The WhereTerm.iField variable identifies the index within
1356   ** the vector on the LHS that the virtual term represents.
1357   **
1358   ** This only works if the RHS is a simple SELECT, not a compound
1359   */
1360   if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0
1361    && pExpr->pLeft->op==TK_VECTOR
1362    && pExpr->x.pSelect->pPrior==0
1363   ){
1364     int i;
1365     for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
1366       int idxNew;
1367       idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
1368       pWC->a[idxNew].iField = i+1;
1369       exprAnalyze(pSrc, pWC, idxNew);
1370       markTermAsChild(pWC, idxNew, idxTerm);
1371     }
1372   }
1373 
1374 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1375   /* When sqlite_stat3 histogram data is available an operator of the
1376   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1377   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
1378   ** virtual term of that form.
1379   **
1380   ** Note that the virtual term must be tagged with TERM_VNULL.
1381   */
1382   if( pExpr->op==TK_NOTNULL
1383    && pExpr->pLeft->op==TK_COLUMN
1384    && pExpr->pLeft->iColumn>=0
1385    && !ExprHasProperty(pExpr, EP_FromJoin)
1386    && OptimizationEnabled(db, SQLITE_Stat34)
1387   ){
1388     Expr *pNewExpr;
1389     Expr *pLeft = pExpr->pLeft;
1390     int idxNew;
1391     WhereTerm *pNewTerm;
1392 
1393     pNewExpr = sqlite3PExpr(pParse, TK_GT,
1394                             sqlite3ExprDup(db, pLeft, 0),
1395                             sqlite3ExprAlloc(db, TK_NULL, 0, 0));
1396 
1397     idxNew = whereClauseInsert(pWC, pNewExpr,
1398                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1399     if( idxNew ){
1400       pNewTerm = &pWC->a[idxNew];
1401       pNewTerm->prereqRight = 0;
1402       pNewTerm->leftCursor = pLeft->iTable;
1403       pNewTerm->u.leftColumn = pLeft->iColumn;
1404       pNewTerm->eOperator = WO_GT;
1405       markTermAsChild(pWC, idxNew, idxTerm);
1406       pTerm = &pWC->a[idxTerm];
1407       pTerm->wtFlags |= TERM_COPIED;
1408       pNewTerm->prereqAll = pTerm->prereqAll;
1409     }
1410   }
1411 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1412 
1413   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1414   ** an index for tables to the left of the join.
1415   */
1416   testcase( pTerm!=&pWC->a[idxTerm] );
1417   pTerm = &pWC->a[idxTerm];
1418   pTerm->prereqRight |= extraRight;
1419 }
1420 
1421 /***************************************************************************
1422 ** Routines with file scope above.  Interface to the rest of the where.c
1423 ** subsystem follows.
1424 ***************************************************************************/
1425 
1426 /*
1427 ** This routine identifies subexpressions in the WHERE clause where
1428 ** each subexpression is separated by the AND operator or some other
1429 ** operator specified in the op parameter.  The WhereClause structure
1430 ** is filled with pointers to subexpressions.  For example:
1431 **
1432 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1433 **           \________/     \_______________/     \________________/
1434 **            slot[0]            slot[1]               slot[2]
1435 **
1436 ** The original WHERE clause in pExpr is unaltered.  All this routine
1437 ** does is make slot[] entries point to substructure within pExpr.
1438 **
1439 ** In the previous sentence and in the diagram, "slot[]" refers to
1440 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
1441 ** all terms of the WHERE clause.
1442 */
1443 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
1444   Expr *pE2 = sqlite3ExprSkipCollate(pExpr);
1445   pWC->op = op;
1446   if( pE2==0 ) return;
1447   if( pE2->op!=op ){
1448     whereClauseInsert(pWC, pExpr, 0);
1449   }else{
1450     sqlite3WhereSplit(pWC, pE2->pLeft, op);
1451     sqlite3WhereSplit(pWC, pE2->pRight, op);
1452   }
1453 }
1454 
1455 /*
1456 ** Initialize a preallocated WhereClause structure.
1457 */
1458 void sqlite3WhereClauseInit(
1459   WhereClause *pWC,        /* The WhereClause to be initialized */
1460   WhereInfo *pWInfo        /* The WHERE processing context */
1461 ){
1462   pWC->pWInfo = pWInfo;
1463   pWC->hasOr = 0;
1464   pWC->pOuter = 0;
1465   pWC->nTerm = 0;
1466   pWC->nSlot = ArraySize(pWC->aStatic);
1467   pWC->a = pWC->aStatic;
1468 }
1469 
1470 /*
1471 ** Deallocate a WhereClause structure.  The WhereClause structure
1472 ** itself is not freed.  This routine is the inverse of
1473 ** sqlite3WhereClauseInit().
1474 */
1475 void sqlite3WhereClauseClear(WhereClause *pWC){
1476   int i;
1477   WhereTerm *a;
1478   sqlite3 *db = pWC->pWInfo->pParse->db;
1479   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
1480     if( a->wtFlags & TERM_DYNAMIC ){
1481       sqlite3ExprDelete(db, a->pExpr);
1482     }
1483     if( a->wtFlags & TERM_ORINFO ){
1484       whereOrInfoDelete(db, a->u.pOrInfo);
1485     }else if( a->wtFlags & TERM_ANDINFO ){
1486       whereAndInfoDelete(db, a->u.pAndInfo);
1487     }
1488   }
1489   if( pWC->a!=pWC->aStatic ){
1490     sqlite3DbFree(db, pWC->a);
1491   }
1492 }
1493 
1494 
1495 /*
1496 ** These routines walk (recursively) an expression tree and generate
1497 ** a bitmask indicating which tables are used in that expression
1498 ** tree.
1499 */
1500 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
1501   Bitmask mask;
1502   if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
1503     return sqlite3WhereGetMask(pMaskSet, p->iTable);
1504   }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1505     assert( p->op!=TK_IF_NULL_ROW );
1506     return 0;
1507   }
1508   mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
1509   if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
1510   if( p->pRight ){
1511     mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
1512     assert( p->x.pList==0 );
1513   }else if( ExprHasProperty(p, EP_xIsSelect) ){
1514     if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
1515     mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
1516   }else if( p->x.pList ){
1517     mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
1518   }
1519   return mask;
1520 }
1521 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
1522   return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
1523 }
1524 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
1525   int i;
1526   Bitmask mask = 0;
1527   if( pList ){
1528     for(i=0; i<pList->nExpr; i++){
1529       mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
1530     }
1531   }
1532   return mask;
1533 }
1534 
1535 
1536 /*
1537 ** Call exprAnalyze on all terms in a WHERE clause.
1538 **
1539 ** Note that exprAnalyze() might add new virtual terms onto the
1540 ** end of the WHERE clause.  We do not want to analyze these new
1541 ** virtual terms, so start analyzing at the end and work forward
1542 ** so that the added virtual terms are never processed.
1543 */
1544 void sqlite3WhereExprAnalyze(
1545   SrcList *pTabList,       /* the FROM clause */
1546   WhereClause *pWC         /* the WHERE clause to be analyzed */
1547 ){
1548   int i;
1549   for(i=pWC->nTerm-1; i>=0; i--){
1550     exprAnalyze(pTabList, pWC, i);
1551   }
1552 }
1553 
1554 /*
1555 ** For table-valued-functions, transform the function arguments into
1556 ** new WHERE clause terms.
1557 **
1558 ** Each function argument translates into an equality constraint against
1559 ** a HIDDEN column in the table.
1560 */
1561 void sqlite3WhereTabFuncArgs(
1562   Parse *pParse,                    /* Parsing context */
1563   struct SrcList_item *pItem,       /* The FROM clause term to process */
1564   WhereClause *pWC                  /* Xfer function arguments to here */
1565 ){
1566   Table *pTab;
1567   int j, k;
1568   ExprList *pArgs;
1569   Expr *pColRef;
1570   Expr *pTerm;
1571   if( pItem->fg.isTabFunc==0 ) return;
1572   pTab = pItem->pTab;
1573   assert( pTab!=0 );
1574   pArgs = pItem->u1.pFuncArg;
1575   if( pArgs==0 ) return;
1576   for(j=k=0; j<pArgs->nExpr; j++){
1577     Expr *pRhs;
1578     while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
1579     if( k>=pTab->nCol ){
1580       sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
1581                       pTab->zName, j);
1582       return;
1583     }
1584     pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
1585     if( pColRef==0 ) return;
1586     pColRef->iTable = pItem->iCursor;
1587     pColRef->iColumn = k++;
1588     pColRef->y.pTab = pTab;
1589     pRhs = sqlite3PExpr(pParse, TK_UPLUS,
1590         sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
1591     pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
1592     whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
1593   }
1594 }
1595