1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 84 }else{ 85 pTerm->truthProb = 1; 86 } 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); 88 pTerm->wtFlags = wtFlags; 89 pTerm->pWC = pWC; 90 pTerm->iParent = -1; 91 memset(&pTerm->eOperator, 0, 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 93 return idx; 94 } 95 96 /* 97 ** Return TRUE if the given operator is one of the operators that is 98 ** allowed for an indexable WHERE clause term. The allowed operators are 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 100 */ 101 static int allowedOp(int op){ 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 105 assert( TK_GE==TK_EQ+4 ); 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 107 } 108 109 /* 110 ** Commute a comparison operator. Expressions of the form "X op Y" 111 ** are converted into "Y op X". 112 ** 113 ** If left/right precedence rules come into play when determining the 114 ** collating sequence, then COLLATE operators are adjusted to ensure 115 ** that the collating sequence does not change. For example: 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 117 ** the left hand side of a comparison overrides any collation sequence 118 ** attached to the right. For the same reason the EP_Collate flag 119 ** is not commuted. 120 */ 121 static void exprCommute(Parse *pParse, Expr *pExpr){ 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 125 if( expRight==expLeft ){ 126 /* Either X and Y both have COLLATE operator or neither do */ 127 if( expRight ){ 128 /* Both X and Y have COLLATE operators. Make sure X is always 129 ** used by clearing the EP_Collate flag from Y. */ 130 pExpr->pRight->flags &= ~EP_Collate; 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 132 /* Neither X nor Y have COLLATE operators, but X has a non-default 133 ** collating sequence. So add the EP_Collate marker on X to cause 134 ** it to be searched first. */ 135 pExpr->pLeft->flags |= EP_Collate; 136 } 137 } 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 139 if( pExpr->op>=TK_GT ){ 140 assert( TK_LT==TK_GT+2 ); 141 assert( TK_GE==TK_LE+2 ); 142 assert( TK_GT>TK_EQ ); 143 assert( TK_GT<TK_LE ); 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 146 } 147 } 148 149 /* 150 ** Translate from TK_xx operator to WO_xx bitmask. 151 */ 152 static u16 operatorMask(int op){ 153 u16 c; 154 assert( allowedOp(op) ); 155 if( op==TK_IN ){ 156 c = WO_IN; 157 }else if( op==TK_ISNULL ){ 158 c = WO_ISNULL; 159 }else if( op==TK_IS ){ 160 c = WO_IS; 161 }else{ 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 163 c = (u16)(WO_EQ<<(op-TK_EQ)); 164 } 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 166 assert( op!=TK_IN || c==WO_IN ); 167 assert( op!=TK_EQ || c==WO_EQ ); 168 assert( op!=TK_LT || c==WO_LT ); 169 assert( op!=TK_LE || c==WO_LE ); 170 assert( op!=TK_GT || c==WO_GT ); 171 assert( op!=TK_GE || c==WO_GE ); 172 assert( op!=TK_IS || c==WO_IS ); 173 return c; 174 } 175 176 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 178 /* 179 ** Check to see if the given expression is a LIKE or GLOB operator that 180 ** can be optimized using inequality constraints. Return TRUE if it is 181 ** so and false if not. 182 ** 183 ** In order for the operator to be optimizible, the RHS must be a string 184 ** literal that does not begin with a wildcard. The LHS must be a column 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 186 ** that virtual tables cannot participate in the LIKE optimization.) The 187 ** collating sequence for the column on the LHS must be appropriate for 188 ** the operator. 189 */ 190 static int isLikeOrGlob( 191 Parse *pParse, /* Parsing and code generating context */ 192 Expr *pExpr, /* Test this expression */ 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 194 int *pisComplete, /* True if the only wildcard is % in the last character */ 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 196 ){ 197 const char *z = 0; /* String on RHS of LIKE operator */ 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 199 ExprList *pList; /* List of operands to the LIKE operator */ 200 int c; /* One character in z[] */ 201 int cnt; /* Number of non-wildcard prefix characters */ 202 char wc[3]; /* Wildcard characters */ 203 sqlite3 *db = pParse->db; /* Database connection */ 204 sqlite3_value *pVal = 0; 205 int op; /* Opcode of pRight */ 206 int rc; /* Result code to return */ 207 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 209 return 0; 210 } 211 #ifdef SQLITE_EBCDIC 212 if( *pnoCase ) return 0; 213 #endif 214 pList = pExpr->x.pList; 215 pLeft = pList->a[1].pExpr; 216 if( pLeft->op!=TK_COLUMN 217 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 218 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 219 ){ 220 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 221 ** be the name of an indexed column with TEXT affinity. */ 222 return 0; 223 } 224 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 225 226 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 227 op = pRight->op; 228 if( op==TK_VARIABLE ){ 229 Vdbe *pReprepare = pParse->pReprepare; 230 int iCol = pRight->iColumn; 231 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 232 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 233 z = (char *)sqlite3_value_text(pVal); 234 } 235 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 236 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 237 }else if( op==TK_STRING ){ 238 z = pRight->u.zToken; 239 } 240 if( z ){ 241 cnt = 0; 242 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 243 cnt++; 244 } 245 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 246 Expr *pPrefix; 247 *pisComplete = c==wc[0] && z[cnt+1]==0; 248 pPrefix = sqlite3Expr(db, TK_STRING, z); 249 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 250 *ppPrefix = pPrefix; 251 if( op==TK_VARIABLE ){ 252 Vdbe *v = pParse->pVdbe; 253 sqlite3VdbeSetVarmask(v, pRight->iColumn); 254 if( *pisComplete && pRight->u.zToken[1] ){ 255 /* If the rhs of the LIKE expression is a variable, and the current 256 ** value of the variable means there is no need to invoke the LIKE 257 ** function, then no OP_Variable will be added to the program. 258 ** This causes problems for the sqlite3_bind_parameter_name() 259 ** API. To work around them, add a dummy OP_Variable here. 260 */ 261 int r1 = sqlite3GetTempReg(pParse); 262 sqlite3ExprCodeTarget(pParse, pRight, r1); 263 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 264 sqlite3ReleaseTempReg(pParse, r1); 265 } 266 } 267 }else{ 268 z = 0; 269 } 270 } 271 272 rc = (z!=0); 273 sqlite3ValueFree(pVal); 274 return rc; 275 } 276 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 277 278 279 #ifndef SQLITE_OMIT_VIRTUALTABLE 280 /* 281 ** Check to see if the given expression is of the form 282 ** 283 ** column OP expr 284 ** 285 ** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a 286 ** column of a virtual table. 287 ** 288 ** If it is then return TRUE. If not, return FALSE. 289 */ 290 static int isMatchOfColumn( 291 Expr *pExpr, /* Test this expression */ 292 unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ 293 ){ 294 static const struct Op2 { 295 const char *zOp; 296 unsigned char eOp2; 297 } aOp[] = { 298 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 299 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 300 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 301 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 302 }; 303 ExprList *pList; 304 Expr *pCol; /* Column reference */ 305 int i; 306 307 if( pExpr->op!=TK_FUNCTION ){ 308 return 0; 309 } 310 pList = pExpr->x.pList; 311 if( pList==0 || pList->nExpr!=2 ){ 312 return 0; 313 } 314 pCol = pList->a[1].pExpr; 315 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 316 return 0; 317 } 318 for(i=0; i<ArraySize(aOp); i++){ 319 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 320 *peOp2 = aOp[i].eOp2; 321 return 1; 322 } 323 } 324 return 0; 325 } 326 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 327 328 /* 329 ** If the pBase expression originated in the ON or USING clause of 330 ** a join, then transfer the appropriate markings over to derived. 331 */ 332 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 333 if( pDerived ){ 334 pDerived->flags |= pBase->flags & EP_FromJoin; 335 pDerived->iRightJoinTable = pBase->iRightJoinTable; 336 } 337 } 338 339 /* 340 ** Mark term iChild as being a child of term iParent 341 */ 342 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 343 pWC->a[iChild].iParent = iParent; 344 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 345 pWC->a[iParent].nChild++; 346 } 347 348 /* 349 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 350 ** a conjunction, then return just pTerm when N==0. If N is exceeds 351 ** the number of available subterms, return NULL. 352 */ 353 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 354 if( pTerm->eOperator!=WO_AND ){ 355 return N==0 ? pTerm : 0; 356 } 357 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 358 return &pTerm->u.pAndInfo->wc.a[N]; 359 } 360 return 0; 361 } 362 363 /* 364 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 365 ** two subterms are in disjunction - they are OR-ed together. 366 ** 367 ** If these two terms are both of the form: "A op B" with the same 368 ** A and B values but different operators and if the operators are 369 ** compatible (if one is = and the other is <, for example) then 370 ** add a new virtual AND term to pWC that is the combination of the 371 ** two. 372 ** 373 ** Some examples: 374 ** 375 ** x<y OR x=y --> x<=y 376 ** x=y OR x=y --> x=y 377 ** x<=y OR x<y --> x<=y 378 ** 379 ** The following is NOT generated: 380 ** 381 ** x<y OR x>y --> x!=y 382 */ 383 static void whereCombineDisjuncts( 384 SrcList *pSrc, /* the FROM clause */ 385 WhereClause *pWC, /* The complete WHERE clause */ 386 WhereTerm *pOne, /* First disjunct */ 387 WhereTerm *pTwo /* Second disjunct */ 388 ){ 389 u16 eOp = pOne->eOperator | pTwo->eOperator; 390 sqlite3 *db; /* Database connection (for malloc) */ 391 Expr *pNew; /* New virtual expression */ 392 int op; /* Operator for the combined expression */ 393 int idxNew; /* Index in pWC of the next virtual term */ 394 395 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 396 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 397 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 398 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 399 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 400 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 401 if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 402 if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; 403 /* If we reach this point, it means the two subterms can be combined */ 404 if( (eOp & (eOp-1))!=0 ){ 405 if( eOp & (WO_LT|WO_LE) ){ 406 eOp = WO_LE; 407 }else{ 408 assert( eOp & (WO_GT|WO_GE) ); 409 eOp = WO_GE; 410 } 411 } 412 db = pWC->pWInfo->pParse->db; 413 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 414 if( pNew==0 ) return; 415 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 416 pNew->op = op; 417 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 418 exprAnalyze(pSrc, pWC, idxNew); 419 } 420 421 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 422 /* 423 ** Analyze a term that consists of two or more OR-connected 424 ** subterms. So in: 425 ** 426 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 427 ** ^^^^^^^^^^^^^^^^^^^^ 428 ** 429 ** This routine analyzes terms such as the middle term in the above example. 430 ** A WhereOrTerm object is computed and attached to the term under 431 ** analysis, regardless of the outcome of the analysis. Hence: 432 ** 433 ** WhereTerm.wtFlags |= TERM_ORINFO 434 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 435 ** 436 ** The term being analyzed must have two or more of OR-connected subterms. 437 ** A single subterm might be a set of AND-connected sub-subterms. 438 ** Examples of terms under analysis: 439 ** 440 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 441 ** (B) x=expr1 OR expr2=x OR x=expr3 442 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 443 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 444 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 445 ** (F) x>A OR (x=A AND y>=B) 446 ** 447 ** CASE 1: 448 ** 449 ** If all subterms are of the form T.C=expr for some single column of C and 450 ** a single table T (as shown in example B above) then create a new virtual 451 ** term that is an equivalent IN expression. In other words, if the term 452 ** being analyzed is: 453 ** 454 ** x = expr1 OR expr2 = x OR x = expr3 455 ** 456 ** then create a new virtual term like this: 457 ** 458 ** x IN (expr1,expr2,expr3) 459 ** 460 ** CASE 2: 461 ** 462 ** If there are exactly two disjuncts and one side has x>A and the other side 463 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 464 ** WHERE clause of the form "x>=A". Example: 465 ** 466 ** x>A OR (x=A AND y>B) adds: x>=A 467 ** 468 ** The added conjunct can sometimes be helpful in query planning. 469 ** 470 ** CASE 3: 471 ** 472 ** If all subterms are indexable by a single table T, then set 473 ** 474 ** WhereTerm.eOperator = WO_OR 475 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 476 ** 477 ** A subterm is "indexable" if it is of the form 478 ** "T.C <op> <expr>" where C is any column of table T and 479 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 480 ** A subterm is also indexable if it is an AND of two or more 481 ** subsubterms at least one of which is indexable. Indexable AND 482 ** subterms have their eOperator set to WO_AND and they have 483 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 484 ** 485 ** From another point of view, "indexable" means that the subterm could 486 ** potentially be used with an index if an appropriate index exists. 487 ** This analysis does not consider whether or not the index exists; that 488 ** is decided elsewhere. This analysis only looks at whether subterms 489 ** appropriate for indexing exist. 490 ** 491 ** All examples A through E above satisfy case 3. But if a term 492 ** also satisfies case 1 (such as B) we know that the optimizer will 493 ** always prefer case 1, so in that case we pretend that case 3 is not 494 ** satisfied. 495 ** 496 ** It might be the case that multiple tables are indexable. For example, 497 ** (E) above is indexable on tables P, Q, and R. 498 ** 499 ** Terms that satisfy case 3 are candidates for lookup by using 500 ** separate indices to find rowids for each subterm and composing 501 ** the union of all rowids using a RowSet object. This is similar 502 ** to "bitmap indices" in other database engines. 503 ** 504 ** OTHERWISE: 505 ** 506 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 507 ** zero. This term is not useful for search. 508 */ 509 static void exprAnalyzeOrTerm( 510 SrcList *pSrc, /* the FROM clause */ 511 WhereClause *pWC, /* the complete WHERE clause */ 512 int idxTerm /* Index of the OR-term to be analyzed */ 513 ){ 514 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 515 Parse *pParse = pWInfo->pParse; /* Parser context */ 516 sqlite3 *db = pParse->db; /* Database connection */ 517 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 518 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 519 int i; /* Loop counters */ 520 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 521 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 522 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 523 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 524 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 525 526 /* 527 ** Break the OR clause into its separate subterms. The subterms are 528 ** stored in a WhereClause structure containing within the WhereOrInfo 529 ** object that is attached to the original OR clause term. 530 */ 531 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 532 assert( pExpr->op==TK_OR ); 533 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 534 if( pOrInfo==0 ) return; 535 pTerm->wtFlags |= TERM_ORINFO; 536 pOrWc = &pOrInfo->wc; 537 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 538 sqlite3WhereClauseInit(pOrWc, pWInfo); 539 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 540 sqlite3WhereExprAnalyze(pSrc, pOrWc); 541 if( db->mallocFailed ) return; 542 assert( pOrWc->nTerm>=2 ); 543 544 /* 545 ** Compute the set of tables that might satisfy cases 1 or 3. 546 */ 547 indexable = ~(Bitmask)0; 548 chngToIN = ~(Bitmask)0; 549 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 550 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 551 WhereAndInfo *pAndInfo; 552 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 553 chngToIN = 0; 554 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 555 if( pAndInfo ){ 556 WhereClause *pAndWC; 557 WhereTerm *pAndTerm; 558 int j; 559 Bitmask b = 0; 560 pOrTerm->u.pAndInfo = pAndInfo; 561 pOrTerm->wtFlags |= TERM_ANDINFO; 562 pOrTerm->eOperator = WO_AND; 563 pAndWC = &pAndInfo->wc; 564 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 565 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 566 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 567 sqlite3WhereExprAnalyze(pSrc, pAndWC); 568 pAndWC->pOuter = pWC; 569 if( !db->mallocFailed ){ 570 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 571 assert( pAndTerm->pExpr ); 572 if( allowedOp(pAndTerm->pExpr->op) 573 || pAndTerm->eOperator==WO_MATCH 574 ){ 575 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 576 } 577 } 578 } 579 indexable &= b; 580 } 581 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 582 /* Skip this term for now. We revisit it when we process the 583 ** corresponding TERM_VIRTUAL term */ 584 }else{ 585 Bitmask b; 586 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 587 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 588 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 589 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 590 } 591 indexable &= b; 592 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 593 chngToIN = 0; 594 }else{ 595 chngToIN &= b; 596 } 597 } 598 } 599 600 /* 601 ** Record the set of tables that satisfy case 3. The set might be 602 ** empty. 603 */ 604 pOrInfo->indexable = indexable; 605 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 606 607 /* For a two-way OR, attempt to implementation case 2. 608 */ 609 if( indexable && pOrWc->nTerm==2 ){ 610 int iOne = 0; 611 WhereTerm *pOne; 612 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 613 int iTwo = 0; 614 WhereTerm *pTwo; 615 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 616 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 617 } 618 } 619 } 620 621 /* 622 ** chngToIN holds a set of tables that *might* satisfy case 1. But 623 ** we have to do some additional checking to see if case 1 really 624 ** is satisfied. 625 ** 626 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 627 ** that there is no possibility of transforming the OR clause into an 628 ** IN operator because one or more terms in the OR clause contain 629 ** something other than == on a column in the single table. The 1-bit 630 ** case means that every term of the OR clause is of the form 631 ** "table.column=expr" for some single table. The one bit that is set 632 ** will correspond to the common table. We still need to check to make 633 ** sure the same column is used on all terms. The 2-bit case is when 634 ** the all terms are of the form "table1.column=table2.column". It 635 ** might be possible to form an IN operator with either table1.column 636 ** or table2.column as the LHS if either is common to every term of 637 ** the OR clause. 638 ** 639 ** Note that terms of the form "table.column1=table.column2" (the 640 ** same table on both sizes of the ==) cannot be optimized. 641 */ 642 if( chngToIN ){ 643 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 644 int iColumn = -1; /* Column index on lhs of IN operator */ 645 int iCursor = -1; /* Table cursor common to all terms */ 646 int j = 0; /* Loop counter */ 647 648 /* Search for a table and column that appears on one side or the 649 ** other of the == operator in every subterm. That table and column 650 ** will be recorded in iCursor and iColumn. There might not be any 651 ** such table and column. Set okToChngToIN if an appropriate table 652 ** and column is found but leave okToChngToIN false if not found. 653 */ 654 for(j=0; j<2 && !okToChngToIN; j++){ 655 pOrTerm = pOrWc->a; 656 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 657 assert( pOrTerm->eOperator & WO_EQ ); 658 pOrTerm->wtFlags &= ~TERM_OR_OK; 659 if( pOrTerm->leftCursor==iCursor ){ 660 /* This is the 2-bit case and we are on the second iteration and 661 ** current term is from the first iteration. So skip this term. */ 662 assert( j==1 ); 663 continue; 664 } 665 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 666 pOrTerm->leftCursor))==0 ){ 667 /* This term must be of the form t1.a==t2.b where t2 is in the 668 ** chngToIN set but t1 is not. This term will be either preceded 669 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 670 ** and use its inversion. */ 671 testcase( pOrTerm->wtFlags & TERM_COPIED ); 672 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 673 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 674 continue; 675 } 676 iColumn = pOrTerm->u.leftColumn; 677 iCursor = pOrTerm->leftCursor; 678 break; 679 } 680 if( i<0 ){ 681 /* No candidate table+column was found. This can only occur 682 ** on the second iteration */ 683 assert( j==1 ); 684 assert( IsPowerOfTwo(chngToIN) ); 685 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 686 break; 687 } 688 testcase( j==1 ); 689 690 /* We have found a candidate table and column. Check to see if that 691 ** table and column is common to every term in the OR clause */ 692 okToChngToIN = 1; 693 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 694 assert( pOrTerm->eOperator & WO_EQ ); 695 if( pOrTerm->leftCursor!=iCursor ){ 696 pOrTerm->wtFlags &= ~TERM_OR_OK; 697 }else if( pOrTerm->u.leftColumn!=iColumn ){ 698 okToChngToIN = 0; 699 }else{ 700 int affLeft, affRight; 701 /* If the right-hand side is also a column, then the affinities 702 ** of both right and left sides must be such that no type 703 ** conversions are required on the right. (Ticket #2249) 704 */ 705 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 706 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 707 if( affRight!=0 && affRight!=affLeft ){ 708 okToChngToIN = 0; 709 }else{ 710 pOrTerm->wtFlags |= TERM_OR_OK; 711 } 712 } 713 } 714 } 715 716 /* At this point, okToChngToIN is true if original pTerm satisfies 717 ** case 1. In that case, construct a new virtual term that is 718 ** pTerm converted into an IN operator. 719 */ 720 if( okToChngToIN ){ 721 Expr *pDup; /* A transient duplicate expression */ 722 ExprList *pList = 0; /* The RHS of the IN operator */ 723 Expr *pLeft = 0; /* The LHS of the IN operator */ 724 Expr *pNew; /* The complete IN operator */ 725 726 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 727 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 728 assert( pOrTerm->eOperator & WO_EQ ); 729 assert( pOrTerm->leftCursor==iCursor ); 730 assert( pOrTerm->u.leftColumn==iColumn ); 731 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 732 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 733 pLeft = pOrTerm->pExpr->pLeft; 734 } 735 assert( pLeft!=0 ); 736 pDup = sqlite3ExprDup(db, pLeft, 0); 737 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 738 if( pNew ){ 739 int idxNew; 740 transferJoinMarkings(pNew, pExpr); 741 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 742 pNew->x.pList = pList; 743 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 744 testcase( idxNew==0 ); 745 exprAnalyze(pSrc, pWC, idxNew); 746 pTerm = &pWC->a[idxTerm]; 747 markTermAsChild(pWC, idxNew, idxTerm); 748 }else{ 749 sqlite3ExprListDelete(db, pList); 750 } 751 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 752 } 753 } 754 } 755 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 756 757 /* 758 ** We already know that pExpr is a binary operator where both operands are 759 ** column references. This routine checks to see if pExpr is an equivalence 760 ** relation: 761 ** 1. The SQLITE_Transitive optimization must be enabled 762 ** 2. Must be either an == or an IS operator 763 ** 3. Not originating in the ON clause of an OUTER JOIN 764 ** 4. The affinities of A and B must be compatible 765 ** 5a. Both operands use the same collating sequence OR 766 ** 5b. The overall collating sequence is BINARY 767 ** If this routine returns TRUE, that means that the RHS can be substituted 768 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 769 ** This is an optimization. No harm comes from returning 0. But if 1 is 770 ** returned when it should not be, then incorrect answers might result. 771 */ 772 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 773 char aff1, aff2; 774 CollSeq *pColl; 775 const char *zColl1, *zColl2; 776 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 777 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 778 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 779 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 780 aff2 = sqlite3ExprAffinity(pExpr->pRight); 781 if( aff1!=aff2 782 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 783 ){ 784 return 0; 785 } 786 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 787 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 788 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 789 zColl1 = pColl ? pColl->zName : 0; 790 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 791 zColl2 = pColl ? pColl->zName : 0; 792 return sqlite3_stricmp(zColl1, zColl2)==0; 793 } 794 795 /* 796 ** Recursively walk the expressions of a SELECT statement and generate 797 ** a bitmask indicating which tables are used in that expression 798 ** tree. 799 */ 800 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 801 Bitmask mask = 0; 802 while( pS ){ 803 SrcList *pSrc = pS->pSrc; 804 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 805 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 806 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 807 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 808 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 809 if( ALWAYS(pSrc!=0) ){ 810 int i; 811 for(i=0; i<pSrc->nSrc; i++){ 812 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 813 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 814 } 815 } 816 pS = pS->pPrior; 817 } 818 return mask; 819 } 820 821 /* 822 ** Expression pExpr is one operand of a comparison operator that might 823 ** be useful for indexing. This routine checks to see if pExpr appears 824 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 825 ** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor 826 ** number of the table that is indexed and *piColumn to the column number 827 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 828 ** indexed. 829 ** 830 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 831 ** true even if that particular column is not indexed, because the column 832 ** might be added to an automatic index later. 833 */ 834 static int exprMightBeIndexed( 835 SrcList *pFrom, /* The FROM clause */ 836 int op, /* The specific comparison operator */ 837 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 838 Expr *pExpr, /* An operand of a comparison operator */ 839 int *piCur, /* Write the referenced table cursor number here */ 840 int *piColumn /* Write the referenced table column number here */ 841 ){ 842 Index *pIdx; 843 int i; 844 int iCur; 845 846 /* If this expression is a vector to the left or right of a 847 ** inequality constraint (>, <, >= or <=), perform the processing 848 ** on the first element of the vector. */ 849 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 850 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 851 assert( op<=TK_GE ); 852 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 853 pExpr = pExpr->x.pList->a[0].pExpr; 854 } 855 856 if( pExpr->op==TK_COLUMN ){ 857 *piCur = pExpr->iTable; 858 *piColumn = pExpr->iColumn; 859 return 1; 860 } 861 if( mPrereq==0 ) return 0; /* No table references */ 862 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 863 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 864 iCur = pFrom->a[i].iCursor; 865 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 866 if( pIdx->aColExpr==0 ) continue; 867 for(i=0; i<pIdx->nKeyCol; i++){ 868 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 869 if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 870 *piCur = iCur; 871 *piColumn = XN_EXPR; 872 return 1; 873 } 874 } 875 } 876 return 0; 877 } 878 879 /* 880 ** The input to this routine is an WhereTerm structure with only the 881 ** "pExpr" field filled in. The job of this routine is to analyze the 882 ** subexpression and populate all the other fields of the WhereTerm 883 ** structure. 884 ** 885 ** If the expression is of the form "<expr> <op> X" it gets commuted 886 ** to the standard form of "X <op> <expr>". 887 ** 888 ** If the expression is of the form "X <op> Y" where both X and Y are 889 ** columns, then the original expression is unchanged and a new virtual 890 ** term of the form "Y <op> X" is added to the WHERE clause and 891 ** analyzed separately. The original term is marked with TERM_COPIED 892 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 893 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 894 ** is a commuted copy of a prior term.) The original term has nChild=1 895 ** and the copy has idxParent set to the index of the original term. 896 */ 897 static void exprAnalyze( 898 SrcList *pSrc, /* the FROM clause */ 899 WhereClause *pWC, /* the WHERE clause */ 900 int idxTerm /* Index of the term to be analyzed */ 901 ){ 902 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 903 WhereTerm *pTerm; /* The term to be analyzed */ 904 WhereMaskSet *pMaskSet; /* Set of table index masks */ 905 Expr *pExpr; /* The expression to be analyzed */ 906 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 907 Bitmask prereqAll; /* Prerequesites of pExpr */ 908 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 909 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 910 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 911 int noCase = 0; /* uppercase equivalent to lowercase */ 912 int op; /* Top-level operator. pExpr->op */ 913 Parse *pParse = pWInfo->pParse; /* Parsing context */ 914 sqlite3 *db = pParse->db; /* Database connection */ 915 unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ 916 917 if( db->mallocFailed ){ 918 return; 919 } 920 pTerm = &pWC->a[idxTerm]; 921 pMaskSet = &pWInfo->sMaskSet; 922 pExpr = pTerm->pExpr; 923 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 924 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 925 op = pExpr->op; 926 if( op==TK_IN ){ 927 assert( pExpr->pRight==0 ); 928 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 929 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 930 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 931 }else{ 932 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 933 } 934 }else if( op==TK_ISNULL ){ 935 pTerm->prereqRight = 0; 936 }else{ 937 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 938 } 939 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 940 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 941 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 942 prereqAll |= x; 943 extraRight = x-1; /* ON clause terms may not be used with an index 944 ** on left table of a LEFT JOIN. Ticket #3015 */ 945 } 946 pTerm->prereqAll = prereqAll; 947 pTerm->leftCursor = -1; 948 pTerm->iParent = -1; 949 pTerm->eOperator = 0; 950 if( allowedOp(op) ){ 951 int iCur, iColumn; 952 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 953 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 954 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 955 956 if( pTerm->iField>0 ){ 957 assert( op==TK_IN ); 958 assert( pLeft->op==TK_VECTOR ); 959 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 960 } 961 962 if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){ 963 pTerm->leftCursor = iCur; 964 pTerm->u.leftColumn = iColumn; 965 pTerm->eOperator = operatorMask(op) & opMask; 966 } 967 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 968 if( pRight 969 && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn) 970 ){ 971 WhereTerm *pNew; 972 Expr *pDup; 973 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 974 assert( pTerm->iField==0 ); 975 if( pTerm->leftCursor>=0 ){ 976 int idxNew; 977 pDup = sqlite3ExprDup(db, pExpr, 0); 978 if( db->mallocFailed ){ 979 sqlite3ExprDelete(db, pDup); 980 return; 981 } 982 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 983 if( idxNew==0 ) return; 984 pNew = &pWC->a[idxNew]; 985 markTermAsChild(pWC, idxNew, idxTerm); 986 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 987 pTerm = &pWC->a[idxTerm]; 988 pTerm->wtFlags |= TERM_COPIED; 989 990 if( termIsEquivalence(pParse, pDup) ){ 991 pTerm->eOperator |= WO_EQUIV; 992 eExtraOp = WO_EQUIV; 993 } 994 }else{ 995 pDup = pExpr; 996 pNew = pTerm; 997 } 998 exprCommute(pParse, pDup); 999 pNew->leftCursor = iCur; 1000 pNew->u.leftColumn = iColumn; 1001 testcase( (prereqLeft | extraRight) != prereqLeft ); 1002 pNew->prereqRight = prereqLeft | extraRight; 1003 pNew->prereqAll = prereqAll; 1004 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1005 } 1006 } 1007 1008 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1009 /* If a term is the BETWEEN operator, create two new virtual terms 1010 ** that define the range that the BETWEEN implements. For example: 1011 ** 1012 ** a BETWEEN b AND c 1013 ** 1014 ** is converted into: 1015 ** 1016 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1017 ** 1018 ** The two new terms are added onto the end of the WhereClause object. 1019 ** The new terms are "dynamic" and are children of the original BETWEEN 1020 ** term. That means that if the BETWEEN term is coded, the children are 1021 ** skipped. Or, if the children are satisfied by an index, the original 1022 ** BETWEEN term is skipped. 1023 */ 1024 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1025 ExprList *pList = pExpr->x.pList; 1026 int i; 1027 static const u8 ops[] = {TK_GE, TK_LE}; 1028 assert( pList!=0 ); 1029 assert( pList->nExpr==2 ); 1030 for(i=0; i<2; i++){ 1031 Expr *pNewExpr; 1032 int idxNew; 1033 pNewExpr = sqlite3PExpr(pParse, ops[i], 1034 sqlite3ExprDup(db, pExpr->pLeft, 0), 1035 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1036 transferJoinMarkings(pNewExpr, pExpr); 1037 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1038 testcase( idxNew==0 ); 1039 exprAnalyze(pSrc, pWC, idxNew); 1040 pTerm = &pWC->a[idxTerm]; 1041 markTermAsChild(pWC, idxNew, idxTerm); 1042 } 1043 } 1044 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1045 1046 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1047 /* Analyze a term that is composed of two or more subterms connected by 1048 ** an OR operator. 1049 */ 1050 else if( pExpr->op==TK_OR ){ 1051 assert( pWC->op==TK_AND ); 1052 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1053 pTerm = &pWC->a[idxTerm]; 1054 } 1055 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1056 1057 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1058 /* Add constraints to reduce the search space on a LIKE or GLOB 1059 ** operator. 1060 ** 1061 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1062 ** 1063 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1064 ** 1065 ** The last character of the prefix "abc" is incremented to form the 1066 ** termination condition "abd". If case is not significant (the default 1067 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1068 ** bound is made all lowercase so that the bounds also work when comparing 1069 ** BLOBs. 1070 */ 1071 if( pWC->op==TK_AND 1072 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1073 ){ 1074 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1075 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1076 Expr *pNewExpr1; 1077 Expr *pNewExpr2; 1078 int idxNew1; 1079 int idxNew2; 1080 const char *zCollSeqName; /* Name of collating sequence */ 1081 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1082 1083 pLeft = pExpr->x.pList->a[1].pExpr; 1084 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1085 1086 /* Convert the lower bound to upper-case and the upper bound to 1087 ** lower-case (upper-case is less than lower-case in ASCII) so that 1088 ** the range constraints also work for BLOBs 1089 */ 1090 if( noCase && !pParse->db->mallocFailed ){ 1091 int i; 1092 char c; 1093 pTerm->wtFlags |= TERM_LIKE; 1094 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1095 pStr1->u.zToken[i] = sqlite3Toupper(c); 1096 pStr2->u.zToken[i] = sqlite3Tolower(c); 1097 } 1098 } 1099 1100 if( !db->mallocFailed ){ 1101 u8 c, *pC; /* Last character before the first wildcard */ 1102 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1103 c = *pC; 1104 if( noCase ){ 1105 /* The point is to increment the last character before the first 1106 ** wildcard. But if we increment '@', that will push it into the 1107 ** alphabetic range where case conversions will mess up the 1108 ** inequality. To avoid this, make sure to also run the full 1109 ** LIKE on all candidate expressions by clearing the isComplete flag 1110 */ 1111 if( c=='A'-1 ) isComplete = 0; 1112 c = sqlite3UpperToLower[c]; 1113 } 1114 *pC = c + 1; 1115 } 1116 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1117 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1118 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1119 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1120 pStr1, 0); 1121 transferJoinMarkings(pNewExpr1, pExpr); 1122 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1123 testcase( idxNew1==0 ); 1124 exprAnalyze(pSrc, pWC, idxNew1); 1125 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1126 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1127 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1128 pStr2, 0); 1129 transferJoinMarkings(pNewExpr2, pExpr); 1130 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1131 testcase( idxNew2==0 ); 1132 exprAnalyze(pSrc, pWC, idxNew2); 1133 pTerm = &pWC->a[idxTerm]; 1134 if( isComplete ){ 1135 markTermAsChild(pWC, idxNew1, idxTerm); 1136 markTermAsChild(pWC, idxNew2, idxTerm); 1137 } 1138 } 1139 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1140 1141 #ifndef SQLITE_OMIT_VIRTUALTABLE 1142 /* Add a WO_MATCH auxiliary term to the constraint set if the 1143 ** current expression is of the form: column MATCH expr. 1144 ** This information is used by the xBestIndex methods of 1145 ** virtual tables. The native query optimizer does not attempt 1146 ** to do anything with MATCH functions. 1147 */ 1148 if( pWC->op==TK_AND && isMatchOfColumn(pExpr, &eOp2) ){ 1149 int idxNew; 1150 Expr *pRight, *pLeft; 1151 WhereTerm *pNewTerm; 1152 Bitmask prereqColumn, prereqExpr; 1153 1154 pRight = pExpr->x.pList->a[0].pExpr; 1155 pLeft = pExpr->x.pList->a[1].pExpr; 1156 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1157 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1158 if( (prereqExpr & prereqColumn)==0 ){ 1159 Expr *pNewExpr; 1160 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1161 0, sqlite3ExprDup(db, pRight, 0), 0); 1162 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1163 testcase( idxNew==0 ); 1164 pNewTerm = &pWC->a[idxNew]; 1165 pNewTerm->prereqRight = prereqExpr; 1166 pNewTerm->leftCursor = pLeft->iTable; 1167 pNewTerm->u.leftColumn = pLeft->iColumn; 1168 pNewTerm->eOperator = WO_MATCH; 1169 pNewTerm->eMatchOp = eOp2; 1170 markTermAsChild(pWC, idxNew, idxTerm); 1171 pTerm = &pWC->a[idxTerm]; 1172 pTerm->wtFlags |= TERM_COPIED; 1173 pNewTerm->prereqAll = pTerm->prereqAll; 1174 } 1175 } 1176 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1177 1178 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1179 ** new terms for each component comparison - "a = ?" and "b = ?". The 1180 ** new terms completely replace the original vector comparison, which is 1181 ** no longer used. 1182 ** 1183 ** This is only required if at least one side of the comparison operation 1184 ** is not a sub-select. */ 1185 if( pWC->op==TK_AND 1186 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1187 && sqlite3ExprIsVector(pExpr->pLeft) 1188 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1189 || (pExpr->pRight->flags & EP_xIsSelect)==0 1190 )){ 1191 int nLeft = sqlite3ExprVectorSize(pExpr->pLeft); 1192 int i; 1193 assert( nLeft==sqlite3ExprVectorSize(pExpr->pRight) ); 1194 for(i=0; i<nLeft; i++){ 1195 int idxNew; 1196 Expr *pNew; 1197 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 1198 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 1199 1200 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight, 0); 1201 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1202 exprAnalyze(pSrc, pWC, idxNew); 1203 } 1204 pTerm = &pWC->a[idxTerm]; 1205 pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1206 pTerm->eOperator = 0; 1207 } 1208 1209 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1210 ** a virtual term for each vector component. The expression object 1211 ** used by each such virtual term is pExpr (the full vector IN(...) 1212 ** expression). The WhereTerm.iField variable identifies the index within 1213 ** the vector on the LHS that the virtual term represents. 1214 ** 1215 ** This only works if the RHS is a simple SELECT, not a compound 1216 */ 1217 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 1218 && pExpr->pLeft->op==TK_VECTOR 1219 && pExpr->x.pSelect->pPrior==0 1220 ){ 1221 int i; 1222 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1223 int idxNew; 1224 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1225 pWC->a[idxNew].iField = i+1; 1226 exprAnalyze(pSrc, pWC, idxNew); 1227 markTermAsChild(pWC, idxNew, idxTerm); 1228 } 1229 } 1230 1231 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1232 /* When sqlite_stat3 histogram data is available an operator of the 1233 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1234 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1235 ** virtual term of that form. 1236 ** 1237 ** Note that the virtual term must be tagged with TERM_VNULL. 1238 */ 1239 if( pExpr->op==TK_NOTNULL 1240 && pExpr->pLeft->op==TK_COLUMN 1241 && pExpr->pLeft->iColumn>=0 1242 && OptimizationEnabled(db, SQLITE_Stat34) 1243 ){ 1244 Expr *pNewExpr; 1245 Expr *pLeft = pExpr->pLeft; 1246 int idxNew; 1247 WhereTerm *pNewTerm; 1248 1249 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1250 sqlite3ExprDup(db, pLeft, 0), 1251 sqlite3ExprAlloc(db, TK_NULL, 0, 0), 0); 1252 1253 idxNew = whereClauseInsert(pWC, pNewExpr, 1254 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1255 if( idxNew ){ 1256 pNewTerm = &pWC->a[idxNew]; 1257 pNewTerm->prereqRight = 0; 1258 pNewTerm->leftCursor = pLeft->iTable; 1259 pNewTerm->u.leftColumn = pLeft->iColumn; 1260 pNewTerm->eOperator = WO_GT; 1261 markTermAsChild(pWC, idxNew, idxTerm); 1262 pTerm = &pWC->a[idxTerm]; 1263 pTerm->wtFlags |= TERM_COPIED; 1264 pNewTerm->prereqAll = pTerm->prereqAll; 1265 } 1266 } 1267 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1268 1269 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1270 ** an index for tables to the left of the join. 1271 */ 1272 pTerm->prereqRight |= extraRight; 1273 } 1274 1275 /*************************************************************************** 1276 ** Routines with file scope above. Interface to the rest of the where.c 1277 ** subsystem follows. 1278 ***************************************************************************/ 1279 1280 /* 1281 ** This routine identifies subexpressions in the WHERE clause where 1282 ** each subexpression is separated by the AND operator or some other 1283 ** operator specified in the op parameter. The WhereClause structure 1284 ** is filled with pointers to subexpressions. For example: 1285 ** 1286 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1287 ** \________/ \_______________/ \________________/ 1288 ** slot[0] slot[1] slot[2] 1289 ** 1290 ** The original WHERE clause in pExpr is unaltered. All this routine 1291 ** does is make slot[] entries point to substructure within pExpr. 1292 ** 1293 ** In the previous sentence and in the diagram, "slot[]" refers to 1294 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1295 ** all terms of the WHERE clause. 1296 */ 1297 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1298 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1299 pWC->op = op; 1300 if( pE2==0 ) return; 1301 if( pE2->op!=op ){ 1302 whereClauseInsert(pWC, pExpr, 0); 1303 }else{ 1304 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1305 sqlite3WhereSplit(pWC, pE2->pRight, op); 1306 } 1307 } 1308 1309 /* 1310 ** Initialize a preallocated WhereClause structure. 1311 */ 1312 void sqlite3WhereClauseInit( 1313 WhereClause *pWC, /* The WhereClause to be initialized */ 1314 WhereInfo *pWInfo /* The WHERE processing context */ 1315 ){ 1316 pWC->pWInfo = pWInfo; 1317 pWC->pOuter = 0; 1318 pWC->nTerm = 0; 1319 pWC->nSlot = ArraySize(pWC->aStatic); 1320 pWC->a = pWC->aStatic; 1321 } 1322 1323 /* 1324 ** Deallocate a WhereClause structure. The WhereClause structure 1325 ** itself is not freed. This routine is the inverse of 1326 ** sqlite3WhereClauseInit(). 1327 */ 1328 void sqlite3WhereClauseClear(WhereClause *pWC){ 1329 int i; 1330 WhereTerm *a; 1331 sqlite3 *db = pWC->pWInfo->pParse->db; 1332 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1333 if( a->wtFlags & TERM_DYNAMIC ){ 1334 sqlite3ExprDelete(db, a->pExpr); 1335 } 1336 if( a->wtFlags & TERM_ORINFO ){ 1337 whereOrInfoDelete(db, a->u.pOrInfo); 1338 }else if( a->wtFlags & TERM_ANDINFO ){ 1339 whereAndInfoDelete(db, a->u.pAndInfo); 1340 } 1341 } 1342 if( pWC->a!=pWC->aStatic ){ 1343 sqlite3DbFree(db, pWC->a); 1344 } 1345 } 1346 1347 1348 /* 1349 ** These routines walk (recursively) an expression tree and generate 1350 ** a bitmask indicating which tables are used in that expression 1351 ** tree. 1352 */ 1353 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1354 Bitmask mask; 1355 if( p==0 ) return 0; 1356 if( p->op==TK_COLUMN ){ 1357 mask = sqlite3WhereGetMask(pMaskSet, p->iTable); 1358 return mask; 1359 } 1360 assert( !ExprHasProperty(p, EP_TokenOnly) ); 1361 mask = p->pRight ? sqlite3WhereExprUsage(pMaskSet, p->pRight) : 0; 1362 if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 1363 if( ExprHasProperty(p, EP_xIsSelect) ){ 1364 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1365 }else if( p->x.pList ){ 1366 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1367 } 1368 return mask; 1369 } 1370 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1371 int i; 1372 Bitmask mask = 0; 1373 if( pList ){ 1374 for(i=0; i<pList->nExpr; i++){ 1375 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1376 } 1377 } 1378 return mask; 1379 } 1380 1381 1382 /* 1383 ** Call exprAnalyze on all terms in a WHERE clause. 1384 ** 1385 ** Note that exprAnalyze() might add new virtual terms onto the 1386 ** end of the WHERE clause. We do not want to analyze these new 1387 ** virtual terms, so start analyzing at the end and work forward 1388 ** so that the added virtual terms are never processed. 1389 */ 1390 void sqlite3WhereExprAnalyze( 1391 SrcList *pTabList, /* the FROM clause */ 1392 WhereClause *pWC /* the WHERE clause to be analyzed */ 1393 ){ 1394 int i; 1395 for(i=pWC->nTerm-1; i>=0; i--){ 1396 exprAnalyze(pTabList, pWC, i); 1397 } 1398 } 1399 1400 /* 1401 ** For table-valued-functions, transform the function arguments into 1402 ** new WHERE clause terms. 1403 ** 1404 ** Each function argument translates into an equality constraint against 1405 ** a HIDDEN column in the table. 1406 */ 1407 void sqlite3WhereTabFuncArgs( 1408 Parse *pParse, /* Parsing context */ 1409 struct SrcList_item *pItem, /* The FROM clause term to process */ 1410 WhereClause *pWC /* Xfer function arguments to here */ 1411 ){ 1412 Table *pTab; 1413 int j, k; 1414 ExprList *pArgs; 1415 Expr *pColRef; 1416 Expr *pTerm; 1417 if( pItem->fg.isTabFunc==0 ) return; 1418 pTab = pItem->pTab; 1419 assert( pTab!=0 ); 1420 pArgs = pItem->u1.pFuncArg; 1421 if( pArgs==0 ) return; 1422 for(j=k=0; j<pArgs->nExpr; j++){ 1423 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1424 if( k>=pTab->nCol ){ 1425 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1426 pTab->zName, j); 1427 return; 1428 } 1429 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1430 if( pColRef==0 ) return; 1431 pColRef->iTable = pItem->iCursor; 1432 pColRef->iColumn = k++; 1433 pColRef->pTab = pTab; 1434 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1435 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); 1436 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1437 } 1438 } 1439