1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 84 }else{ 85 pTerm->truthProb = 1; 86 } 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); 88 pTerm->wtFlags = wtFlags; 89 pTerm->pWC = pWC; 90 pTerm->iParent = -1; 91 memset(&pTerm->eOperator, 0, 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 93 return idx; 94 } 95 96 /* 97 ** Return TRUE if the given operator is one of the operators that is 98 ** allowed for an indexable WHERE clause term. The allowed operators are 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 100 */ 101 static int allowedOp(int op){ 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 105 assert( TK_GE==TK_EQ+4 ); 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 107 } 108 109 /* 110 ** Commute a comparison operator. Expressions of the form "X op Y" 111 ** are converted into "Y op X". 112 ** 113 ** If left/right precedence rules come into play when determining the 114 ** collating sequence, then COLLATE operators are adjusted to ensure 115 ** that the collating sequence does not change. For example: 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 117 ** the left hand side of a comparison overrides any collation sequence 118 ** attached to the right. For the same reason the EP_Collate flag 119 ** is not commuted. 120 */ 121 static void exprCommute(Parse *pParse, Expr *pExpr){ 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 125 if( expRight==expLeft ){ 126 /* Either X and Y both have COLLATE operator or neither do */ 127 if( expRight ){ 128 /* Both X and Y have COLLATE operators. Make sure X is always 129 ** used by clearing the EP_Collate flag from Y. */ 130 pExpr->pRight->flags &= ~EP_Collate; 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 132 /* Neither X nor Y have COLLATE operators, but X has a non-default 133 ** collating sequence. So add the EP_Collate marker on X to cause 134 ** it to be searched first. */ 135 pExpr->pLeft->flags |= EP_Collate; 136 } 137 } 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 139 if( pExpr->op>=TK_GT ){ 140 assert( TK_LT==TK_GT+2 ); 141 assert( TK_GE==TK_LE+2 ); 142 assert( TK_GT>TK_EQ ); 143 assert( TK_GT<TK_LE ); 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 146 } 147 } 148 149 /* 150 ** Translate from TK_xx operator to WO_xx bitmask. 151 */ 152 static u16 operatorMask(int op){ 153 u16 c; 154 assert( allowedOp(op) ); 155 if( op==TK_IN ){ 156 c = WO_IN; 157 }else if( op==TK_ISNULL ){ 158 c = WO_ISNULL; 159 }else if( op==TK_IS ){ 160 c = WO_IS; 161 }else{ 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 163 c = (u16)(WO_EQ<<(op-TK_EQ)); 164 } 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 166 assert( op!=TK_IN || c==WO_IN ); 167 assert( op!=TK_EQ || c==WO_EQ ); 168 assert( op!=TK_LT || c==WO_LT ); 169 assert( op!=TK_LE || c==WO_LE ); 170 assert( op!=TK_GT || c==WO_GT ); 171 assert( op!=TK_GE || c==WO_GE ); 172 assert( op!=TK_IS || c==WO_IS ); 173 return c; 174 } 175 176 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 178 /* 179 ** Check to see if the given expression is a LIKE or GLOB operator that 180 ** can be optimized using inequality constraints. Return TRUE if it is 181 ** so and false if not. 182 ** 183 ** In order for the operator to be optimizible, the RHS must be a string 184 ** literal that does not begin with a wildcard. The LHS must be a column 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 186 ** that virtual tables cannot participate in the LIKE optimization.) The 187 ** collating sequence for the column on the LHS must be appropriate for 188 ** the operator. 189 */ 190 static int isLikeOrGlob( 191 Parse *pParse, /* Parsing and code generating context */ 192 Expr *pExpr, /* Test this expression */ 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 194 int *pisComplete, /* True if the only wildcard is % in the last character */ 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 196 ){ 197 const u8 *z = 0; /* String on RHS of LIKE operator */ 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 199 ExprList *pList; /* List of operands to the LIKE operator */ 200 u8 c; /* One character in z[] */ 201 int cnt; /* Number of non-wildcard prefix characters */ 202 u8 wc[4]; /* Wildcard characters */ 203 sqlite3 *db = pParse->db; /* Database connection */ 204 sqlite3_value *pVal = 0; 205 int op; /* Opcode of pRight */ 206 int rc; /* Result code to return */ 207 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){ 209 return 0; 210 } 211 #ifdef SQLITE_EBCDIC 212 if( *pnoCase ) return 0; 213 #endif 214 pList = pExpr->x.pList; 215 pLeft = pList->a[1].pExpr; 216 217 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 218 op = pRight->op; 219 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 220 Vdbe *pReprepare = pParse->pReprepare; 221 int iCol = pRight->iColumn; 222 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 223 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 224 z = sqlite3_value_text(pVal); 225 } 226 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 227 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 228 }else if( op==TK_STRING ){ 229 z = (u8*)pRight->u.zToken; 230 } 231 if( z ){ 232 233 /* Count the number of prefix characters prior to the first wildcard */ 234 cnt = 0; 235 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 236 cnt++; 237 if( c==wc[3] && z[cnt]!=0 ) cnt++; 238 } 239 240 /* The optimization is possible only if (1) the pattern does not begin 241 ** with a wildcard and if (2) the non-wildcard prefix does not end with 242 ** an (illegal 0xff) character, or (3) the pattern does not consist of 243 ** a single escape character. The second condition is necessary so 244 ** that we can increment the prefix key to find an upper bound for the 245 ** range search. The third is because the caller assumes that the pattern 246 ** consists of at least one character after all escapes have been 247 ** removed. */ 248 if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){ 249 Expr *pPrefix; 250 251 /* A "complete" match if the pattern ends with "*" or "%" */ 252 *pisComplete = c==wc[0] && z[cnt+1]==0; 253 254 /* Get the pattern prefix. Remove all escapes from the prefix. */ 255 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); 256 if( pPrefix ){ 257 int iFrom, iTo; 258 char *zNew = pPrefix->u.zToken; 259 zNew[cnt] = 0; 260 for(iFrom=iTo=0; iFrom<cnt; iFrom++){ 261 if( zNew[iFrom]==wc[3] ) iFrom++; 262 zNew[iTo++] = zNew[iFrom]; 263 } 264 zNew[iTo] = 0; 265 assert( iTo>0 ); 266 267 /* If the LHS is not an ordinary column with TEXT affinity, then the 268 ** pattern prefix boundaries (both the start and end boundaries) must 269 ** not look like a number. Otherwise the pattern might be treated as 270 ** a number, which will invalidate the LIKE optimization. 271 ** 272 ** Getting this right has been a persistent source of bugs in the 273 ** LIKE optimization. See, for example: 274 ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1 275 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28 276 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07 277 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975 278 */ 279 if( pLeft->op!=TK_COLUMN 280 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 281 || IsVirtual(pLeft->y.pTab) /* Value might be numeric */ 282 ){ 283 int isNum; 284 double rDummy; 285 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); 286 if( isNum<=0 ){ 287 zNew[iTo-1]++; 288 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); 289 zNew[iTo-1]--; 290 } 291 if( isNum>0 ){ 292 sqlite3ExprDelete(db, pPrefix); 293 sqlite3ValueFree(pVal); 294 return 0; 295 } 296 } 297 } 298 *ppPrefix = pPrefix; 299 300 /* If the RHS pattern is a bound parameter, make arrangements to 301 ** reprepare the statement when that parameter is rebound */ 302 if( op==TK_VARIABLE ){ 303 Vdbe *v = pParse->pVdbe; 304 sqlite3VdbeSetVarmask(v, pRight->iColumn); 305 if( *pisComplete && pRight->u.zToken[1] ){ 306 /* If the rhs of the LIKE expression is a variable, and the current 307 ** value of the variable means there is no need to invoke the LIKE 308 ** function, then no OP_Variable will be added to the program. 309 ** This causes problems for the sqlite3_bind_parameter_name() 310 ** API. To work around them, add a dummy OP_Variable here. 311 */ 312 int r1 = sqlite3GetTempReg(pParse); 313 sqlite3ExprCodeTarget(pParse, pRight, r1); 314 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 315 sqlite3ReleaseTempReg(pParse, r1); 316 } 317 } 318 }else{ 319 z = 0; 320 } 321 } 322 323 rc = (z!=0); 324 sqlite3ValueFree(pVal); 325 return rc; 326 } 327 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 328 329 330 #ifndef SQLITE_OMIT_VIRTUALTABLE 331 /* 332 ** Check to see if the pExpr expression is a form that needs to be passed 333 ** to the xBestIndex method of virtual tables. Forms of interest include: 334 ** 335 ** Expression Virtual Table Operator 336 ** ----------------------- --------------------------------- 337 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH 338 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB 339 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE 340 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP 341 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE 342 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE 343 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT 344 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT 345 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL 346 ** 347 ** In every case, "column" must be a column of a virtual table. If there 348 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the 349 ** "expr" expression (even though in forms (6) and (8) the column is on the 350 ** right and the expression is on the left). Also set *peOp2 to the 351 ** appropriate virtual table operator. The return value is 1 or 2 if there 352 ** is a match. The usual return is 1, but if the RHS is also a column 353 ** of virtual table in forms (5) or (7) then return 2. 354 ** 355 ** If the expression matches none of the patterns above, return 0. 356 */ 357 static int isAuxiliaryVtabOperator( 358 sqlite3 *db, /* Parsing context */ 359 Expr *pExpr, /* Test this expression */ 360 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */ 361 Expr **ppLeft, /* Column expression to left of MATCH/op2 */ 362 Expr **ppRight /* Expression to left of MATCH/op2 */ 363 ){ 364 if( pExpr->op==TK_FUNCTION ){ 365 static const struct Op2 { 366 const char *zOp; 367 unsigned char eOp2; 368 } aOp[] = { 369 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 370 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 371 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 372 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 373 }; 374 ExprList *pList; 375 Expr *pCol; /* Column reference */ 376 int i; 377 378 pList = pExpr->x.pList; 379 if( pList==0 || pList->nExpr!=2 ){ 380 return 0; 381 } 382 383 /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a 384 ** virtual table on their second argument, which is the same as 385 ** the left-hand side operand in their in-fix form. 386 ** 387 ** vtab_column MATCH expression 388 ** MATCH(expression,vtab_column) 389 */ 390 pCol = pList->a[1].pExpr; 391 if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){ 392 for(i=0; i<ArraySize(aOp); i++){ 393 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 394 *peOp2 = aOp[i].eOp2; 395 *ppRight = pList->a[0].pExpr; 396 *ppLeft = pCol; 397 return 1; 398 } 399 } 400 } 401 402 /* We can also match against the first column of overloaded 403 ** functions where xFindFunction returns a value of at least 404 ** SQLITE_INDEX_CONSTRAINT_FUNCTION. 405 ** 406 ** OVERLOADED(vtab_column,expression) 407 ** 408 ** Historically, xFindFunction expected to see lower-case function 409 ** names. But for this use case, xFindFunction is expected to deal 410 ** with function names in an arbitrary case. 411 */ 412 pCol = pList->a[0].pExpr; 413 if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){ 414 sqlite3_vtab *pVtab; 415 sqlite3_module *pMod; 416 void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**); 417 void *pNotUsed; 418 pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab; 419 assert( pVtab!=0 ); 420 assert( pVtab->pModule!=0 ); 421 pMod = (sqlite3_module *)pVtab->pModule; 422 if( pMod->xFindFunction!=0 ){ 423 i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed); 424 if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ 425 *peOp2 = i; 426 *ppRight = pList->a[1].pExpr; 427 *ppLeft = pCol; 428 return 1; 429 } 430 } 431 } 432 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ 433 int res = 0; 434 Expr *pLeft = pExpr->pLeft; 435 Expr *pRight = pExpr->pRight; 436 if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->y.pTab) ){ 437 res++; 438 } 439 if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->y.pTab) ){ 440 res++; 441 SWAP(Expr*, pLeft, pRight); 442 } 443 *ppLeft = pLeft; 444 *ppRight = pRight; 445 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; 446 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; 447 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL; 448 return res; 449 } 450 return 0; 451 } 452 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 453 454 /* 455 ** If the pBase expression originated in the ON or USING clause of 456 ** a join, then transfer the appropriate markings over to derived. 457 */ 458 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 459 if( pDerived ){ 460 pDerived->flags |= pBase->flags & EP_FromJoin; 461 pDerived->iRightJoinTable = pBase->iRightJoinTable; 462 } 463 } 464 465 /* 466 ** Mark term iChild as being a child of term iParent 467 */ 468 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 469 pWC->a[iChild].iParent = iParent; 470 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 471 pWC->a[iParent].nChild++; 472 } 473 474 /* 475 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 476 ** a conjunction, then return just pTerm when N==0. If N is exceeds 477 ** the number of available subterms, return NULL. 478 */ 479 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 480 if( pTerm->eOperator!=WO_AND ){ 481 return N==0 ? pTerm : 0; 482 } 483 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 484 return &pTerm->u.pAndInfo->wc.a[N]; 485 } 486 return 0; 487 } 488 489 /* 490 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 491 ** two subterms are in disjunction - they are OR-ed together. 492 ** 493 ** If these two terms are both of the form: "A op B" with the same 494 ** A and B values but different operators and if the operators are 495 ** compatible (if one is = and the other is <, for example) then 496 ** add a new virtual AND term to pWC that is the combination of the 497 ** two. 498 ** 499 ** Some examples: 500 ** 501 ** x<y OR x=y --> x<=y 502 ** x=y OR x=y --> x=y 503 ** x<=y OR x<y --> x<=y 504 ** 505 ** The following is NOT generated: 506 ** 507 ** x<y OR x>y --> x!=y 508 */ 509 static void whereCombineDisjuncts( 510 SrcList *pSrc, /* the FROM clause */ 511 WhereClause *pWC, /* The complete WHERE clause */ 512 WhereTerm *pOne, /* First disjunct */ 513 WhereTerm *pTwo /* Second disjunct */ 514 ){ 515 u16 eOp = pOne->eOperator | pTwo->eOperator; 516 sqlite3 *db; /* Database connection (for malloc) */ 517 Expr *pNew; /* New virtual expression */ 518 int op; /* Operator for the combined expression */ 519 int idxNew; /* Index in pWC of the next virtual term */ 520 521 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 522 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 523 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 524 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 525 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 526 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 527 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 528 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; 529 /* If we reach this point, it means the two subterms can be combined */ 530 if( (eOp & (eOp-1))!=0 ){ 531 if( eOp & (WO_LT|WO_LE) ){ 532 eOp = WO_LE; 533 }else{ 534 assert( eOp & (WO_GT|WO_GE) ); 535 eOp = WO_GE; 536 } 537 } 538 db = pWC->pWInfo->pParse->db; 539 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 540 if( pNew==0 ) return; 541 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 542 pNew->op = op; 543 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 544 exprAnalyze(pSrc, pWC, idxNew); 545 } 546 547 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 548 /* 549 ** Analyze a term that consists of two or more OR-connected 550 ** subterms. So in: 551 ** 552 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 553 ** ^^^^^^^^^^^^^^^^^^^^ 554 ** 555 ** This routine analyzes terms such as the middle term in the above example. 556 ** A WhereOrTerm object is computed and attached to the term under 557 ** analysis, regardless of the outcome of the analysis. Hence: 558 ** 559 ** WhereTerm.wtFlags |= TERM_ORINFO 560 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 561 ** 562 ** The term being analyzed must have two or more of OR-connected subterms. 563 ** A single subterm might be a set of AND-connected sub-subterms. 564 ** Examples of terms under analysis: 565 ** 566 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 567 ** (B) x=expr1 OR expr2=x OR x=expr3 568 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 569 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 570 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 571 ** (F) x>A OR (x=A AND y>=B) 572 ** 573 ** CASE 1: 574 ** 575 ** If all subterms are of the form T.C=expr for some single column of C and 576 ** a single table T (as shown in example B above) then create a new virtual 577 ** term that is an equivalent IN expression. In other words, if the term 578 ** being analyzed is: 579 ** 580 ** x = expr1 OR expr2 = x OR x = expr3 581 ** 582 ** then create a new virtual term like this: 583 ** 584 ** x IN (expr1,expr2,expr3) 585 ** 586 ** CASE 2: 587 ** 588 ** If there are exactly two disjuncts and one side has x>A and the other side 589 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 590 ** WHERE clause of the form "x>=A". Example: 591 ** 592 ** x>A OR (x=A AND y>B) adds: x>=A 593 ** 594 ** The added conjunct can sometimes be helpful in query planning. 595 ** 596 ** CASE 3: 597 ** 598 ** If all subterms are indexable by a single table T, then set 599 ** 600 ** WhereTerm.eOperator = WO_OR 601 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 602 ** 603 ** A subterm is "indexable" if it is of the form 604 ** "T.C <op> <expr>" where C is any column of table T and 605 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 606 ** A subterm is also indexable if it is an AND of two or more 607 ** subsubterms at least one of which is indexable. Indexable AND 608 ** subterms have their eOperator set to WO_AND and they have 609 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 610 ** 611 ** From another point of view, "indexable" means that the subterm could 612 ** potentially be used with an index if an appropriate index exists. 613 ** This analysis does not consider whether or not the index exists; that 614 ** is decided elsewhere. This analysis only looks at whether subterms 615 ** appropriate for indexing exist. 616 ** 617 ** All examples A through E above satisfy case 3. But if a term 618 ** also satisfies case 1 (such as B) we know that the optimizer will 619 ** always prefer case 1, so in that case we pretend that case 3 is not 620 ** satisfied. 621 ** 622 ** It might be the case that multiple tables are indexable. For example, 623 ** (E) above is indexable on tables P, Q, and R. 624 ** 625 ** Terms that satisfy case 3 are candidates for lookup by using 626 ** separate indices to find rowids for each subterm and composing 627 ** the union of all rowids using a RowSet object. This is similar 628 ** to "bitmap indices" in other database engines. 629 ** 630 ** OTHERWISE: 631 ** 632 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 633 ** zero. This term is not useful for search. 634 */ 635 static void exprAnalyzeOrTerm( 636 SrcList *pSrc, /* the FROM clause */ 637 WhereClause *pWC, /* the complete WHERE clause */ 638 int idxTerm /* Index of the OR-term to be analyzed */ 639 ){ 640 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 641 Parse *pParse = pWInfo->pParse; /* Parser context */ 642 sqlite3 *db = pParse->db; /* Database connection */ 643 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 644 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 645 int i; /* Loop counters */ 646 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 647 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 648 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 649 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 650 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 651 652 /* 653 ** Break the OR clause into its separate subterms. The subterms are 654 ** stored in a WhereClause structure containing within the WhereOrInfo 655 ** object that is attached to the original OR clause term. 656 */ 657 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 658 assert( pExpr->op==TK_OR ); 659 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 660 if( pOrInfo==0 ) return; 661 pTerm->wtFlags |= TERM_ORINFO; 662 pOrWc = &pOrInfo->wc; 663 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 664 sqlite3WhereClauseInit(pOrWc, pWInfo); 665 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 666 sqlite3WhereExprAnalyze(pSrc, pOrWc); 667 if( db->mallocFailed ) return; 668 assert( pOrWc->nTerm>=2 ); 669 670 /* 671 ** Compute the set of tables that might satisfy cases 1 or 3. 672 */ 673 indexable = ~(Bitmask)0; 674 chngToIN = ~(Bitmask)0; 675 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 676 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 677 WhereAndInfo *pAndInfo; 678 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 679 chngToIN = 0; 680 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 681 if( pAndInfo ){ 682 WhereClause *pAndWC; 683 WhereTerm *pAndTerm; 684 int j; 685 Bitmask b = 0; 686 pOrTerm->u.pAndInfo = pAndInfo; 687 pOrTerm->wtFlags |= TERM_ANDINFO; 688 pOrTerm->eOperator = WO_AND; 689 pAndWC = &pAndInfo->wc; 690 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 691 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 692 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 693 sqlite3WhereExprAnalyze(pSrc, pAndWC); 694 pAndWC->pOuter = pWC; 695 if( !db->mallocFailed ){ 696 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 697 assert( pAndTerm->pExpr ); 698 if( allowedOp(pAndTerm->pExpr->op) 699 || pAndTerm->eOperator==WO_AUX 700 ){ 701 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 702 } 703 } 704 } 705 indexable &= b; 706 } 707 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 708 /* Skip this term for now. We revisit it when we process the 709 ** corresponding TERM_VIRTUAL term */ 710 }else{ 711 Bitmask b; 712 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 713 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 714 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 715 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 716 } 717 indexable &= b; 718 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 719 chngToIN = 0; 720 }else{ 721 chngToIN &= b; 722 } 723 } 724 } 725 726 /* 727 ** Record the set of tables that satisfy case 3. The set might be 728 ** empty. 729 */ 730 pOrInfo->indexable = indexable; 731 if( indexable ){ 732 pTerm->eOperator = WO_OR; 733 pWC->hasOr = 1; 734 }else{ 735 pTerm->eOperator = WO_OR; 736 } 737 738 /* For a two-way OR, attempt to implementation case 2. 739 */ 740 if( indexable && pOrWc->nTerm==2 ){ 741 int iOne = 0; 742 WhereTerm *pOne; 743 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 744 int iTwo = 0; 745 WhereTerm *pTwo; 746 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 747 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 748 } 749 } 750 } 751 752 /* 753 ** chngToIN holds a set of tables that *might* satisfy case 1. But 754 ** we have to do some additional checking to see if case 1 really 755 ** is satisfied. 756 ** 757 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 758 ** that there is no possibility of transforming the OR clause into an 759 ** IN operator because one or more terms in the OR clause contain 760 ** something other than == on a column in the single table. The 1-bit 761 ** case means that every term of the OR clause is of the form 762 ** "table.column=expr" for some single table. The one bit that is set 763 ** will correspond to the common table. We still need to check to make 764 ** sure the same column is used on all terms. The 2-bit case is when 765 ** the all terms are of the form "table1.column=table2.column". It 766 ** might be possible to form an IN operator with either table1.column 767 ** or table2.column as the LHS if either is common to every term of 768 ** the OR clause. 769 ** 770 ** Note that terms of the form "table.column1=table.column2" (the 771 ** same table on both sizes of the ==) cannot be optimized. 772 */ 773 if( chngToIN ){ 774 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 775 int iColumn = -1; /* Column index on lhs of IN operator */ 776 int iCursor = -1; /* Table cursor common to all terms */ 777 int j = 0; /* Loop counter */ 778 779 /* Search for a table and column that appears on one side or the 780 ** other of the == operator in every subterm. That table and column 781 ** will be recorded in iCursor and iColumn. There might not be any 782 ** such table and column. Set okToChngToIN if an appropriate table 783 ** and column is found but leave okToChngToIN false if not found. 784 */ 785 for(j=0; j<2 && !okToChngToIN; j++){ 786 Expr *pLeft = 0; 787 pOrTerm = pOrWc->a; 788 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 789 assert( pOrTerm->eOperator & WO_EQ ); 790 pOrTerm->wtFlags &= ~TERM_OR_OK; 791 if( pOrTerm->leftCursor==iCursor ){ 792 /* This is the 2-bit case and we are on the second iteration and 793 ** current term is from the first iteration. So skip this term. */ 794 assert( j==1 ); 795 continue; 796 } 797 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 798 pOrTerm->leftCursor))==0 ){ 799 /* This term must be of the form t1.a==t2.b where t2 is in the 800 ** chngToIN set but t1 is not. This term will be either preceded 801 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 802 ** and use its inversion. */ 803 testcase( pOrTerm->wtFlags & TERM_COPIED ); 804 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 805 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 806 continue; 807 } 808 iColumn = pOrTerm->u.leftColumn; 809 iCursor = pOrTerm->leftCursor; 810 pLeft = pOrTerm->pExpr->pLeft; 811 break; 812 } 813 if( i<0 ){ 814 /* No candidate table+column was found. This can only occur 815 ** on the second iteration */ 816 assert( j==1 ); 817 assert( IsPowerOfTwo(chngToIN) ); 818 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 819 break; 820 } 821 testcase( j==1 ); 822 823 /* We have found a candidate table and column. Check to see if that 824 ** table and column is common to every term in the OR clause */ 825 okToChngToIN = 1; 826 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 827 assert( pOrTerm->eOperator & WO_EQ ); 828 if( pOrTerm->leftCursor!=iCursor ){ 829 pOrTerm->wtFlags &= ~TERM_OR_OK; 830 }else if( pOrTerm->u.leftColumn!=iColumn || (iColumn==XN_EXPR 831 && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1) 832 )){ 833 okToChngToIN = 0; 834 }else{ 835 int affLeft, affRight; 836 /* If the right-hand side is also a column, then the affinities 837 ** of both right and left sides must be such that no type 838 ** conversions are required on the right. (Ticket #2249) 839 */ 840 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 841 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 842 if( affRight!=0 && affRight!=affLeft ){ 843 okToChngToIN = 0; 844 }else{ 845 pOrTerm->wtFlags |= TERM_OR_OK; 846 } 847 } 848 } 849 } 850 851 /* At this point, okToChngToIN is true if original pTerm satisfies 852 ** case 1. In that case, construct a new virtual term that is 853 ** pTerm converted into an IN operator. 854 */ 855 if( okToChngToIN ){ 856 Expr *pDup; /* A transient duplicate expression */ 857 ExprList *pList = 0; /* The RHS of the IN operator */ 858 Expr *pLeft = 0; /* The LHS of the IN operator */ 859 Expr *pNew; /* The complete IN operator */ 860 861 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 862 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 863 assert( pOrTerm->eOperator & WO_EQ ); 864 assert( pOrTerm->leftCursor==iCursor ); 865 assert( pOrTerm->u.leftColumn==iColumn ); 866 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 867 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 868 pLeft = pOrTerm->pExpr->pLeft; 869 } 870 assert( pLeft!=0 ); 871 pDup = sqlite3ExprDup(db, pLeft, 0); 872 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 873 if( pNew ){ 874 int idxNew; 875 transferJoinMarkings(pNew, pExpr); 876 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 877 pNew->x.pList = pList; 878 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 879 testcase( idxNew==0 ); 880 exprAnalyze(pSrc, pWC, idxNew); 881 /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where used again */ 882 markTermAsChild(pWC, idxNew, idxTerm); 883 }else{ 884 sqlite3ExprListDelete(db, pList); 885 } 886 } 887 } 888 } 889 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 890 891 /* 892 ** We already know that pExpr is a binary operator where both operands are 893 ** column references. This routine checks to see if pExpr is an equivalence 894 ** relation: 895 ** 1. The SQLITE_Transitive optimization must be enabled 896 ** 2. Must be either an == or an IS operator 897 ** 3. Not originating in the ON clause of an OUTER JOIN 898 ** 4. The affinities of A and B must be compatible 899 ** 5a. Both operands use the same collating sequence OR 900 ** 5b. The overall collating sequence is BINARY 901 ** If this routine returns TRUE, that means that the RHS can be substituted 902 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 903 ** This is an optimization. No harm comes from returning 0. But if 1 is 904 ** returned when it should not be, then incorrect answers might result. 905 */ 906 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 907 char aff1, aff2; 908 CollSeq *pColl; 909 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 910 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 911 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 912 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 913 aff2 = sqlite3ExprAffinity(pExpr->pRight); 914 if( aff1!=aff2 915 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 916 ){ 917 return 0; 918 } 919 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 920 if( sqlite3IsBinary(pColl) ) return 1; 921 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight); 922 } 923 924 /* 925 ** Recursively walk the expressions of a SELECT statement and generate 926 ** a bitmask indicating which tables are used in that expression 927 ** tree. 928 */ 929 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 930 Bitmask mask = 0; 931 while( pS ){ 932 SrcList *pSrc = pS->pSrc; 933 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 934 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 935 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 936 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 937 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 938 if( ALWAYS(pSrc!=0) ){ 939 int i; 940 for(i=0; i<pSrc->nSrc; i++){ 941 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 942 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 943 if( pSrc->a[i].fg.isTabFunc ){ 944 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg); 945 } 946 } 947 } 948 pS = pS->pPrior; 949 } 950 return mask; 951 } 952 953 /* 954 ** Expression pExpr is one operand of a comparison operator that might 955 ** be useful for indexing. This routine checks to see if pExpr appears 956 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 957 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor 958 ** number of the table that is indexed and aiCurCol[1] to the column number 959 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 960 ** indexed. 961 ** 962 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 963 ** true even if that particular column is not indexed, because the column 964 ** might be added to an automatic index later. 965 */ 966 static SQLITE_NOINLINE int exprMightBeIndexed2( 967 SrcList *pFrom, /* The FROM clause */ 968 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 969 int *aiCurCol, /* Write the referenced table cursor and column here */ 970 Expr *pExpr /* An operand of a comparison operator */ 971 ){ 972 Index *pIdx; 973 int i; 974 int iCur; 975 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 976 iCur = pFrom->a[i].iCursor; 977 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 978 if( pIdx->aColExpr==0 ) continue; 979 for(i=0; i<pIdx->nKeyCol; i++){ 980 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 981 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 982 aiCurCol[0] = iCur; 983 aiCurCol[1] = XN_EXPR; 984 return 1; 985 } 986 } 987 } 988 return 0; 989 } 990 static int exprMightBeIndexed( 991 SrcList *pFrom, /* The FROM clause */ 992 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 993 int *aiCurCol, /* Write the referenced table cursor & column here */ 994 Expr *pExpr, /* An operand of a comparison operator */ 995 int op /* The specific comparison operator */ 996 ){ 997 /* If this expression is a vector to the left or right of a 998 ** inequality constraint (>, <, >= or <=), perform the processing 999 ** on the first element of the vector. */ 1000 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 1001 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 1002 assert( op<=TK_GE ); 1003 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 1004 pExpr = pExpr->x.pList->a[0].pExpr; 1005 } 1006 1007 if( pExpr->op==TK_COLUMN ){ 1008 aiCurCol[0] = pExpr->iTable; 1009 aiCurCol[1] = pExpr->iColumn; 1010 return 1; 1011 } 1012 if( mPrereq==0 ) return 0; /* No table references */ 1013 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 1014 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr); 1015 } 1016 1017 /* 1018 ** The input to this routine is an WhereTerm structure with only the 1019 ** "pExpr" field filled in. The job of this routine is to analyze the 1020 ** subexpression and populate all the other fields of the WhereTerm 1021 ** structure. 1022 ** 1023 ** If the expression is of the form "<expr> <op> X" it gets commuted 1024 ** to the standard form of "X <op> <expr>". 1025 ** 1026 ** If the expression is of the form "X <op> Y" where both X and Y are 1027 ** columns, then the original expression is unchanged and a new virtual 1028 ** term of the form "Y <op> X" is added to the WHERE clause and 1029 ** analyzed separately. The original term is marked with TERM_COPIED 1030 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1031 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1032 ** is a commuted copy of a prior term.) The original term has nChild=1 1033 ** and the copy has idxParent set to the index of the original term. 1034 */ 1035 static void exprAnalyze( 1036 SrcList *pSrc, /* the FROM clause */ 1037 WhereClause *pWC, /* the WHERE clause */ 1038 int idxTerm /* Index of the term to be analyzed */ 1039 ){ 1040 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 1041 WhereTerm *pTerm; /* The term to be analyzed */ 1042 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1043 Expr *pExpr; /* The expression to be analyzed */ 1044 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1045 Bitmask prereqAll; /* Prerequesites of pExpr */ 1046 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 1047 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 1048 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 1049 int noCase = 0; /* uppercase equivalent to lowercase */ 1050 int op; /* Top-level operator. pExpr->op */ 1051 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1052 sqlite3 *db = pParse->db; /* Database connection */ 1053 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */ 1054 int nLeft; /* Number of elements on left side vector */ 1055 1056 if( db->mallocFailed ){ 1057 return; 1058 } 1059 pTerm = &pWC->a[idxTerm]; 1060 pMaskSet = &pWInfo->sMaskSet; 1061 pExpr = pTerm->pExpr; 1062 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 1063 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 1064 op = pExpr->op; 1065 if( op==TK_IN ){ 1066 assert( pExpr->pRight==0 ); 1067 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 1068 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1069 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 1070 }else{ 1071 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 1072 } 1073 }else if( op==TK_ISNULL ){ 1074 pTerm->prereqRight = 0; 1075 }else{ 1076 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 1077 } 1078 pMaskSet->bVarSelect = 0; 1079 prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr); 1080 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; 1081 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1082 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 1083 prereqAll |= x; 1084 extraRight = x-1; /* ON clause terms may not be used with an index 1085 ** on left table of a LEFT JOIN. Ticket #3015 */ 1086 if( (prereqAll>>1)>=x ){ 1087 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); 1088 return; 1089 } 1090 } 1091 pTerm->prereqAll = prereqAll; 1092 pTerm->leftCursor = -1; 1093 pTerm->iParent = -1; 1094 pTerm->eOperator = 0; 1095 if( allowedOp(op) ){ 1096 int aiCurCol[2]; 1097 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 1098 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 1099 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 1100 1101 if( pTerm->iField>0 ){ 1102 assert( op==TK_IN ); 1103 assert( pLeft->op==TK_VECTOR ); 1104 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 1105 } 1106 1107 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){ 1108 pTerm->leftCursor = aiCurCol[0]; 1109 pTerm->u.leftColumn = aiCurCol[1]; 1110 pTerm->eOperator = operatorMask(op) & opMask; 1111 } 1112 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 1113 if( pRight 1114 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op) 1115 ){ 1116 WhereTerm *pNew; 1117 Expr *pDup; 1118 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 1119 assert( pTerm->iField==0 ); 1120 if( pTerm->leftCursor>=0 ){ 1121 int idxNew; 1122 pDup = sqlite3ExprDup(db, pExpr, 0); 1123 if( db->mallocFailed ){ 1124 sqlite3ExprDelete(db, pDup); 1125 return; 1126 } 1127 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1128 if( idxNew==0 ) return; 1129 pNew = &pWC->a[idxNew]; 1130 markTermAsChild(pWC, idxNew, idxTerm); 1131 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 1132 pTerm = &pWC->a[idxTerm]; 1133 pTerm->wtFlags |= TERM_COPIED; 1134 1135 if( termIsEquivalence(pParse, pDup) ){ 1136 pTerm->eOperator |= WO_EQUIV; 1137 eExtraOp = WO_EQUIV; 1138 } 1139 }else{ 1140 pDup = pExpr; 1141 pNew = pTerm; 1142 } 1143 exprCommute(pParse, pDup); 1144 pNew->leftCursor = aiCurCol[0]; 1145 pNew->u.leftColumn = aiCurCol[1]; 1146 testcase( (prereqLeft | extraRight) != prereqLeft ); 1147 pNew->prereqRight = prereqLeft | extraRight; 1148 pNew->prereqAll = prereqAll; 1149 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1150 } 1151 } 1152 1153 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1154 /* If a term is the BETWEEN operator, create two new virtual terms 1155 ** that define the range that the BETWEEN implements. For example: 1156 ** 1157 ** a BETWEEN b AND c 1158 ** 1159 ** is converted into: 1160 ** 1161 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1162 ** 1163 ** The two new terms are added onto the end of the WhereClause object. 1164 ** The new terms are "dynamic" and are children of the original BETWEEN 1165 ** term. That means that if the BETWEEN term is coded, the children are 1166 ** skipped. Or, if the children are satisfied by an index, the original 1167 ** BETWEEN term is skipped. 1168 */ 1169 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1170 ExprList *pList = pExpr->x.pList; 1171 int i; 1172 static const u8 ops[] = {TK_GE, TK_LE}; 1173 assert( pList!=0 ); 1174 assert( pList->nExpr==2 ); 1175 for(i=0; i<2; i++){ 1176 Expr *pNewExpr; 1177 int idxNew; 1178 pNewExpr = sqlite3PExpr(pParse, ops[i], 1179 sqlite3ExprDup(db, pExpr->pLeft, 0), 1180 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 1181 transferJoinMarkings(pNewExpr, pExpr); 1182 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1183 testcase( idxNew==0 ); 1184 exprAnalyze(pSrc, pWC, idxNew); 1185 pTerm = &pWC->a[idxTerm]; 1186 markTermAsChild(pWC, idxNew, idxTerm); 1187 } 1188 } 1189 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1190 1191 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1192 /* Analyze a term that is composed of two or more subterms connected by 1193 ** an OR operator. 1194 */ 1195 else if( pExpr->op==TK_OR ){ 1196 assert( pWC->op==TK_AND ); 1197 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1198 pTerm = &pWC->a[idxTerm]; 1199 } 1200 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1201 1202 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1203 /* Add constraints to reduce the search space on a LIKE or GLOB 1204 ** operator. 1205 ** 1206 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1207 ** 1208 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1209 ** 1210 ** The last character of the prefix "abc" is incremented to form the 1211 ** termination condition "abd". If case is not significant (the default 1212 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1213 ** bound is made all lowercase so that the bounds also work when comparing 1214 ** BLOBs. 1215 */ 1216 if( pWC->op==TK_AND 1217 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1218 ){ 1219 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1220 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1221 Expr *pNewExpr1; 1222 Expr *pNewExpr2; 1223 int idxNew1; 1224 int idxNew2; 1225 const char *zCollSeqName; /* Name of collating sequence */ 1226 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1227 1228 pLeft = pExpr->x.pList->a[1].pExpr; 1229 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1230 1231 /* Convert the lower bound to upper-case and the upper bound to 1232 ** lower-case (upper-case is less than lower-case in ASCII) so that 1233 ** the range constraints also work for BLOBs 1234 */ 1235 if( noCase && !pParse->db->mallocFailed ){ 1236 int i; 1237 char c; 1238 pTerm->wtFlags |= TERM_LIKE; 1239 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1240 pStr1->u.zToken[i] = sqlite3Toupper(c); 1241 pStr2->u.zToken[i] = sqlite3Tolower(c); 1242 } 1243 } 1244 1245 if( !db->mallocFailed ){ 1246 u8 c, *pC; /* Last character before the first wildcard */ 1247 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1248 c = *pC; 1249 if( noCase ){ 1250 /* The point is to increment the last character before the first 1251 ** wildcard. But if we increment '@', that will push it into the 1252 ** alphabetic range where case conversions will mess up the 1253 ** inequality. To avoid this, make sure to also run the full 1254 ** LIKE on all candidate expressions by clearing the isComplete flag 1255 */ 1256 if( c=='A'-1 ) isComplete = 0; 1257 c = sqlite3UpperToLower[c]; 1258 } 1259 *pC = c + 1; 1260 } 1261 zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY; 1262 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1263 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1264 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1265 pStr1); 1266 transferJoinMarkings(pNewExpr1, pExpr); 1267 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1268 testcase( idxNew1==0 ); 1269 exprAnalyze(pSrc, pWC, idxNew1); 1270 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1271 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1272 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1273 pStr2); 1274 transferJoinMarkings(pNewExpr2, pExpr); 1275 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1276 testcase( idxNew2==0 ); 1277 exprAnalyze(pSrc, pWC, idxNew2); 1278 pTerm = &pWC->a[idxTerm]; 1279 if( isComplete ){ 1280 markTermAsChild(pWC, idxNew1, idxTerm); 1281 markTermAsChild(pWC, idxNew2, idxTerm); 1282 } 1283 } 1284 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1285 1286 #ifndef SQLITE_OMIT_VIRTUALTABLE 1287 /* Add a WO_AUX auxiliary term to the constraint set if the 1288 ** current expression is of the form "column OP expr" where OP 1289 ** is an operator that gets passed into virtual tables but which is 1290 ** not normally optimized for ordinary tables. In other words, OP 1291 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL. 1292 ** This information is used by the xBestIndex methods of 1293 ** virtual tables. The native query optimizer does not attempt 1294 ** to do anything with MATCH functions. 1295 */ 1296 if( pWC->op==TK_AND ){ 1297 Expr *pRight = 0, *pLeft = 0; 1298 int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight); 1299 while( res-- > 0 ){ 1300 int idxNew; 1301 WhereTerm *pNewTerm; 1302 Bitmask prereqColumn, prereqExpr; 1303 1304 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1305 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1306 if( (prereqExpr & prereqColumn)==0 ){ 1307 Expr *pNewExpr; 1308 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1309 0, sqlite3ExprDup(db, pRight, 0)); 1310 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){ 1311 ExprSetProperty(pNewExpr, EP_FromJoin); 1312 } 1313 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1314 testcase( idxNew==0 ); 1315 pNewTerm = &pWC->a[idxNew]; 1316 pNewTerm->prereqRight = prereqExpr; 1317 pNewTerm->leftCursor = pLeft->iTable; 1318 pNewTerm->u.leftColumn = pLeft->iColumn; 1319 pNewTerm->eOperator = WO_AUX; 1320 pNewTerm->eMatchOp = eOp2; 1321 markTermAsChild(pWC, idxNew, idxTerm); 1322 pTerm = &pWC->a[idxTerm]; 1323 pTerm->wtFlags |= TERM_COPIED; 1324 pNewTerm->prereqAll = pTerm->prereqAll; 1325 } 1326 SWAP(Expr*, pLeft, pRight); 1327 } 1328 } 1329 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1330 1331 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1332 ** new terms for each component comparison - "a = ?" and "b = ?". The 1333 ** new terms completely replace the original vector comparison, which is 1334 ** no longer used. 1335 ** 1336 ** This is only required if at least one side of the comparison operation 1337 ** is not a sub-select. */ 1338 if( pWC->op==TK_AND 1339 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1340 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 1341 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft 1342 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1343 || (pExpr->pRight->flags & EP_xIsSelect)==0) 1344 ){ 1345 int i; 1346 for(i=0; i<nLeft; i++){ 1347 int idxNew; 1348 Expr *pNew; 1349 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 1350 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 1351 1352 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 1353 transferJoinMarkings(pNew, pExpr); 1354 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1355 exprAnalyze(pSrc, pWC, idxNew); 1356 } 1357 pTerm = &pWC->a[idxTerm]; 1358 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1359 pTerm->eOperator = 0; 1360 } 1361 1362 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1363 ** a virtual term for each vector component. The expression object 1364 ** used by each such virtual term is pExpr (the full vector IN(...) 1365 ** expression). The WhereTerm.iField variable identifies the index within 1366 ** the vector on the LHS that the virtual term represents. 1367 ** 1368 ** This only works if the RHS is a simple SELECT, not a compound 1369 */ 1370 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 1371 && pExpr->pLeft->op==TK_VECTOR 1372 && pExpr->x.pSelect->pPrior==0 1373 ){ 1374 int i; 1375 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1376 int idxNew; 1377 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1378 pWC->a[idxNew].iField = i+1; 1379 exprAnalyze(pSrc, pWC, idxNew); 1380 markTermAsChild(pWC, idxNew, idxTerm); 1381 } 1382 } 1383 1384 #ifdef SQLITE_ENABLE_STAT4 1385 /* When sqlite_stat4 histogram data is available an operator of the 1386 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1387 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1388 ** virtual term of that form. 1389 ** 1390 ** Note that the virtual term must be tagged with TERM_VNULL. 1391 */ 1392 if( pExpr->op==TK_NOTNULL 1393 && pExpr->pLeft->op==TK_COLUMN 1394 && pExpr->pLeft->iColumn>=0 1395 && !ExprHasProperty(pExpr, EP_FromJoin) 1396 && OptimizationEnabled(db, SQLITE_Stat4) 1397 ){ 1398 Expr *pNewExpr; 1399 Expr *pLeft = pExpr->pLeft; 1400 int idxNew; 1401 WhereTerm *pNewTerm; 1402 1403 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1404 sqlite3ExprDup(db, pLeft, 0), 1405 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 1406 1407 idxNew = whereClauseInsert(pWC, pNewExpr, 1408 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1409 if( idxNew ){ 1410 pNewTerm = &pWC->a[idxNew]; 1411 pNewTerm->prereqRight = 0; 1412 pNewTerm->leftCursor = pLeft->iTable; 1413 pNewTerm->u.leftColumn = pLeft->iColumn; 1414 pNewTerm->eOperator = WO_GT; 1415 markTermAsChild(pWC, idxNew, idxTerm); 1416 pTerm = &pWC->a[idxTerm]; 1417 pTerm->wtFlags |= TERM_COPIED; 1418 pNewTerm->prereqAll = pTerm->prereqAll; 1419 } 1420 } 1421 #endif /* SQLITE_ENABLE_STAT4 */ 1422 1423 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1424 ** an index for tables to the left of the join. 1425 */ 1426 testcase( pTerm!=&pWC->a[idxTerm] ); 1427 pTerm = &pWC->a[idxTerm]; 1428 pTerm->prereqRight |= extraRight; 1429 } 1430 1431 /*************************************************************************** 1432 ** Routines with file scope above. Interface to the rest of the where.c 1433 ** subsystem follows. 1434 ***************************************************************************/ 1435 1436 /* 1437 ** This routine identifies subexpressions in the WHERE clause where 1438 ** each subexpression is separated by the AND operator or some other 1439 ** operator specified in the op parameter. The WhereClause structure 1440 ** is filled with pointers to subexpressions. For example: 1441 ** 1442 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1443 ** \________/ \_______________/ \________________/ 1444 ** slot[0] slot[1] slot[2] 1445 ** 1446 ** The original WHERE clause in pExpr is unaltered. All this routine 1447 ** does is make slot[] entries point to substructure within pExpr. 1448 ** 1449 ** In the previous sentence and in the diagram, "slot[]" refers to 1450 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1451 ** all terms of the WHERE clause. 1452 */ 1453 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1454 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1455 pWC->op = op; 1456 if( pE2==0 ) return; 1457 if( pE2->op!=op ){ 1458 whereClauseInsert(pWC, pExpr, 0); 1459 }else{ 1460 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1461 sqlite3WhereSplit(pWC, pE2->pRight, op); 1462 } 1463 } 1464 1465 /* 1466 ** Initialize a preallocated WhereClause structure. 1467 */ 1468 void sqlite3WhereClauseInit( 1469 WhereClause *pWC, /* The WhereClause to be initialized */ 1470 WhereInfo *pWInfo /* The WHERE processing context */ 1471 ){ 1472 pWC->pWInfo = pWInfo; 1473 pWC->hasOr = 0; 1474 pWC->pOuter = 0; 1475 pWC->nTerm = 0; 1476 pWC->nSlot = ArraySize(pWC->aStatic); 1477 pWC->a = pWC->aStatic; 1478 } 1479 1480 /* 1481 ** Deallocate a WhereClause structure. The WhereClause structure 1482 ** itself is not freed. This routine is the inverse of 1483 ** sqlite3WhereClauseInit(). 1484 */ 1485 void sqlite3WhereClauseClear(WhereClause *pWC){ 1486 int i; 1487 WhereTerm *a; 1488 sqlite3 *db = pWC->pWInfo->pParse->db; 1489 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1490 if( a->wtFlags & TERM_DYNAMIC ){ 1491 sqlite3ExprDelete(db, a->pExpr); 1492 } 1493 if( a->wtFlags & TERM_ORINFO ){ 1494 whereOrInfoDelete(db, a->u.pOrInfo); 1495 }else if( a->wtFlags & TERM_ANDINFO ){ 1496 whereAndInfoDelete(db, a->u.pAndInfo); 1497 } 1498 } 1499 if( pWC->a!=pWC->aStatic ){ 1500 sqlite3DbFree(db, pWC->a); 1501 } 1502 } 1503 1504 1505 /* 1506 ** These routines walk (recursively) an expression tree and generate 1507 ** a bitmask indicating which tables are used in that expression 1508 ** tree. 1509 */ 1510 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){ 1511 Bitmask mask; 1512 if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 1513 return sqlite3WhereGetMask(pMaskSet, p->iTable); 1514 }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1515 assert( p->op!=TK_IF_NULL_ROW ); 1516 return 0; 1517 } 1518 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; 1519 if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft); 1520 if( p->pRight ){ 1521 mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight); 1522 assert( p->x.pList==0 ); 1523 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1524 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; 1525 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1526 }else if( p->x.pList ){ 1527 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1528 } 1529 #ifndef SQLITE_OMIT_WINDOWFUNC 1530 if( p->op==TK_FUNCTION && p->y.pWin ){ 1531 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition); 1532 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy); 1533 } 1534 #endif 1535 return mask; 1536 } 1537 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1538 return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0; 1539 } 1540 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1541 int i; 1542 Bitmask mask = 0; 1543 if( pList ){ 1544 for(i=0; i<pList->nExpr; i++){ 1545 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1546 } 1547 } 1548 return mask; 1549 } 1550 1551 1552 /* 1553 ** Call exprAnalyze on all terms in a WHERE clause. 1554 ** 1555 ** Note that exprAnalyze() might add new virtual terms onto the 1556 ** end of the WHERE clause. We do not want to analyze these new 1557 ** virtual terms, so start analyzing at the end and work forward 1558 ** so that the added virtual terms are never processed. 1559 */ 1560 void sqlite3WhereExprAnalyze( 1561 SrcList *pTabList, /* the FROM clause */ 1562 WhereClause *pWC /* the WHERE clause to be analyzed */ 1563 ){ 1564 int i; 1565 for(i=pWC->nTerm-1; i>=0; i--){ 1566 exprAnalyze(pTabList, pWC, i); 1567 } 1568 } 1569 1570 /* 1571 ** For table-valued-functions, transform the function arguments into 1572 ** new WHERE clause terms. 1573 ** 1574 ** Each function argument translates into an equality constraint against 1575 ** a HIDDEN column in the table. 1576 */ 1577 void sqlite3WhereTabFuncArgs( 1578 Parse *pParse, /* Parsing context */ 1579 struct SrcList_item *pItem, /* The FROM clause term to process */ 1580 WhereClause *pWC /* Xfer function arguments to here */ 1581 ){ 1582 Table *pTab; 1583 int j, k; 1584 ExprList *pArgs; 1585 Expr *pColRef; 1586 Expr *pTerm; 1587 if( pItem->fg.isTabFunc==0 ) return; 1588 pTab = pItem->pTab; 1589 assert( pTab!=0 ); 1590 pArgs = pItem->u1.pFuncArg; 1591 if( pArgs==0 ) return; 1592 for(j=k=0; j<pArgs->nExpr; j++){ 1593 Expr *pRhs; 1594 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1595 if( k>=pTab->nCol ){ 1596 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1597 pTab->zName, j); 1598 return; 1599 } 1600 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1601 if( pColRef==0 ) return; 1602 pColRef->iTable = pItem->iCursor; 1603 pColRef->iColumn = k++; 1604 pColRef->y.pTab = pTab; 1605 pRhs = sqlite3PExpr(pParse, TK_UPLUS, 1606 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); 1607 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs); 1608 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1609 } 1610 } 1611