1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm)); 81 } 82 pTerm = &pWC->a[idx = pWC->nTerm++]; 83 if( p && ExprHasProperty(p, EP_Unlikely) ){ 84 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 85 }else{ 86 pTerm->truthProb = 1; 87 } 88 pTerm->pExpr = sqlite3ExprSkipCollate(p); 89 pTerm->wtFlags = wtFlags; 90 pTerm->pWC = pWC; 91 pTerm->iParent = -1; 92 return idx; 93 } 94 95 /* 96 ** Return TRUE if the given operator is one of the operators that is 97 ** allowed for an indexable WHERE clause term. The allowed operators are 98 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" 99 */ 100 static int allowedOp(int op){ 101 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 102 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 103 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 104 assert( TK_GE==TK_EQ+4 ); 105 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 106 } 107 108 /* 109 ** Commute a comparison operator. Expressions of the form "X op Y" 110 ** are converted into "Y op X". 111 ** 112 ** If left/right precedence rules come into play when determining the 113 ** collating sequence, then COLLATE operators are adjusted to ensure 114 ** that the collating sequence does not change. For example: 115 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 116 ** the left hand side of a comparison overrides any collation sequence 117 ** attached to the right. For the same reason the EP_Collate flag 118 ** is not commuted. 119 */ 120 static void exprCommute(Parse *pParse, Expr *pExpr){ 121 u16 expRight = (pExpr->pRight->flags & EP_Collate); 122 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 123 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 124 if( expRight==expLeft ){ 125 /* Either X and Y both have COLLATE operator or neither do */ 126 if( expRight ){ 127 /* Both X and Y have COLLATE operators. Make sure X is always 128 ** used by clearing the EP_Collate flag from Y. */ 129 pExpr->pRight->flags &= ~EP_Collate; 130 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 131 /* Neither X nor Y have COLLATE operators, but X has a non-default 132 ** collating sequence. So add the EP_Collate marker on X to cause 133 ** it to be searched first. */ 134 pExpr->pLeft->flags |= EP_Collate; 135 } 136 } 137 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 138 if( pExpr->op>=TK_GT ){ 139 assert( TK_LT==TK_GT+2 ); 140 assert( TK_GE==TK_LE+2 ); 141 assert( TK_GT>TK_EQ ); 142 assert( TK_GT<TK_LE ); 143 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 144 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 145 } 146 } 147 148 /* 149 ** Translate from TK_xx operator to WO_xx bitmask. 150 */ 151 static u16 operatorMask(int op){ 152 u16 c; 153 assert( allowedOp(op) ); 154 if( op==TK_IN ){ 155 c = WO_IN; 156 }else if( op==TK_ISNULL ){ 157 c = WO_ISNULL; 158 }else if( op==TK_IS ){ 159 c = WO_IS; 160 }else{ 161 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 162 c = (u16)(WO_EQ<<(op-TK_EQ)); 163 } 164 assert( op!=TK_ISNULL || c==WO_ISNULL ); 165 assert( op!=TK_IN || c==WO_IN ); 166 assert( op!=TK_EQ || c==WO_EQ ); 167 assert( op!=TK_LT || c==WO_LT ); 168 assert( op!=TK_LE || c==WO_LE ); 169 assert( op!=TK_GT || c==WO_GT ); 170 assert( op!=TK_GE || c==WO_GE ); 171 assert( op!=TK_IS || c==WO_IS ); 172 return c; 173 } 174 175 176 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 177 /* 178 ** Check to see if the given expression is a LIKE or GLOB operator that 179 ** can be optimized using inequality constraints. Return TRUE if it is 180 ** so and false if not. 181 ** 182 ** In order for the operator to be optimizible, the RHS must be a string 183 ** literal that does not begin with a wildcard. The LHS must be a column 184 ** that may only be NULL, a string, or a BLOB, never a number. (This means 185 ** that virtual tables cannot participate in the LIKE optimization.) The 186 ** collating sequence for the column on the LHS must be appropriate for 187 ** the operator. 188 */ 189 static int isLikeOrGlob( 190 Parse *pParse, /* Parsing and code generating context */ 191 Expr *pExpr, /* Test this expression */ 192 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 193 int *pisComplete, /* True if the only wildcard is % in the last character */ 194 int *pnoCase /* True if uppercase is equivalent to lowercase */ 195 ){ 196 const char *z = 0; /* String on RHS of LIKE operator */ 197 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 198 ExprList *pList; /* List of operands to the LIKE operator */ 199 int c; /* One character in z[] */ 200 int cnt; /* Number of non-wildcard prefix characters */ 201 char wc[3]; /* Wildcard characters */ 202 sqlite3 *db = pParse->db; /* Database connection */ 203 sqlite3_value *pVal = 0; 204 int op; /* Opcode of pRight */ 205 206 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 207 return 0; 208 } 209 #ifdef SQLITE_EBCDIC 210 if( *pnoCase ) return 0; 211 #endif 212 pList = pExpr->x.pList; 213 pLeft = pList->a[1].pExpr; 214 if( pLeft->op!=TK_COLUMN 215 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 216 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 217 ){ 218 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 219 ** be the name of an indexed column with TEXT affinity. */ 220 return 0; 221 } 222 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 223 224 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 225 op = pRight->op; 226 if( op==TK_VARIABLE ){ 227 Vdbe *pReprepare = pParse->pReprepare; 228 int iCol = pRight->iColumn; 229 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 230 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 231 z = (char *)sqlite3_value_text(pVal); 232 } 233 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 234 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 235 }else if( op==TK_STRING ){ 236 z = pRight->u.zToken; 237 } 238 if( z ){ 239 cnt = 0; 240 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 241 cnt++; 242 } 243 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 244 Expr *pPrefix; 245 *pisComplete = c==wc[0] && z[cnt+1]==0; 246 pPrefix = sqlite3Expr(db, TK_STRING, z); 247 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 248 *ppPrefix = pPrefix; 249 if( op==TK_VARIABLE ){ 250 Vdbe *v = pParse->pVdbe; 251 sqlite3VdbeSetVarmask(v, pRight->iColumn); 252 if( *pisComplete && pRight->u.zToken[1] ){ 253 /* If the rhs of the LIKE expression is a variable, and the current 254 ** value of the variable means there is no need to invoke the LIKE 255 ** function, then no OP_Variable will be added to the program. 256 ** This causes problems for the sqlite3_bind_parameter_name() 257 ** API. To work around them, add a dummy OP_Variable here. 258 */ 259 int r1 = sqlite3GetTempReg(pParse); 260 sqlite3ExprCodeTarget(pParse, pRight, r1); 261 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 262 sqlite3ReleaseTempReg(pParse, r1); 263 } 264 } 265 }else{ 266 z = 0; 267 } 268 } 269 270 sqlite3ValueFree(pVal); 271 return (z!=0); 272 } 273 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 274 275 276 #ifndef SQLITE_OMIT_VIRTUALTABLE 277 /* 278 ** Check to see if the given expression is of the form 279 ** 280 ** column MATCH expr 281 ** 282 ** If it is then return TRUE. If not, return FALSE. 283 */ 284 static int isMatchOfColumn( 285 Expr *pExpr /* Test this expression */ 286 ){ 287 ExprList *pList; 288 289 if( pExpr->op!=TK_FUNCTION ){ 290 return 0; 291 } 292 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ 293 return 0; 294 } 295 pList = pExpr->x.pList; 296 if( pList->nExpr!=2 ){ 297 return 0; 298 } 299 if( pList->a[1].pExpr->op != TK_COLUMN ){ 300 return 0; 301 } 302 return 1; 303 } 304 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 305 306 /* 307 ** If the pBase expression originated in the ON or USING clause of 308 ** a join, then transfer the appropriate markings over to derived. 309 */ 310 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 311 if( pDerived ){ 312 pDerived->flags |= pBase->flags & EP_FromJoin; 313 pDerived->iRightJoinTable = pBase->iRightJoinTable; 314 } 315 } 316 317 /* 318 ** Mark term iChild as being a child of term iParent 319 */ 320 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 321 pWC->a[iChild].iParent = iParent; 322 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 323 pWC->a[iParent].nChild++; 324 } 325 326 /* 327 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 328 ** a conjunction, then return just pTerm when N==0. If N is exceeds 329 ** the number of available subterms, return NULL. 330 */ 331 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 332 if( pTerm->eOperator!=WO_AND ){ 333 return N==0 ? pTerm : 0; 334 } 335 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 336 return &pTerm->u.pAndInfo->wc.a[N]; 337 } 338 return 0; 339 } 340 341 /* 342 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 343 ** two subterms are in disjunction - they are OR-ed together. 344 ** 345 ** If these two terms are both of the form: "A op B" with the same 346 ** A and B values but different operators and if the operators are 347 ** compatible (if one is = and the other is <, for example) then 348 ** add a new virtual AND term to pWC that is the combination of the 349 ** two. 350 ** 351 ** Some examples: 352 ** 353 ** x<y OR x=y --> x<=y 354 ** x=y OR x=y --> x=y 355 ** x<=y OR x<y --> x<=y 356 ** 357 ** The following is NOT generated: 358 ** 359 ** x<y OR x>y --> x!=y 360 */ 361 static void whereCombineDisjuncts( 362 SrcList *pSrc, /* the FROM clause */ 363 WhereClause *pWC, /* The complete WHERE clause */ 364 WhereTerm *pOne, /* First disjunct */ 365 WhereTerm *pTwo /* Second disjunct */ 366 ){ 367 u16 eOp = pOne->eOperator | pTwo->eOperator; 368 sqlite3 *db; /* Database connection (for malloc) */ 369 Expr *pNew; /* New virtual expression */ 370 int op; /* Operator for the combined expression */ 371 int idxNew; /* Index in pWC of the next virtual term */ 372 373 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 374 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 375 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 376 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 377 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 378 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 379 if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 380 if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; 381 /* If we reach this point, it means the two subterms can be combined */ 382 if( (eOp & (eOp-1))!=0 ){ 383 if( eOp & (WO_LT|WO_LE) ){ 384 eOp = WO_LE; 385 }else{ 386 assert( eOp & (WO_GT|WO_GE) ); 387 eOp = WO_GE; 388 } 389 } 390 db = pWC->pWInfo->pParse->db; 391 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 392 if( pNew==0 ) return; 393 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 394 pNew->op = op; 395 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 396 exprAnalyze(pSrc, pWC, idxNew); 397 } 398 399 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 400 /* 401 ** Analyze a term that consists of two or more OR-connected 402 ** subterms. So in: 403 ** 404 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 405 ** ^^^^^^^^^^^^^^^^^^^^ 406 ** 407 ** This routine analyzes terms such as the middle term in the above example. 408 ** A WhereOrTerm object is computed and attached to the term under 409 ** analysis, regardless of the outcome of the analysis. Hence: 410 ** 411 ** WhereTerm.wtFlags |= TERM_ORINFO 412 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 413 ** 414 ** The term being analyzed must have two or more of OR-connected subterms. 415 ** A single subterm might be a set of AND-connected sub-subterms. 416 ** Examples of terms under analysis: 417 ** 418 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 419 ** (B) x=expr1 OR expr2=x OR x=expr3 420 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 421 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 422 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 423 ** (F) x>A OR (x=A AND y>=B) 424 ** 425 ** CASE 1: 426 ** 427 ** If all subterms are of the form T.C=expr for some single column of C and 428 ** a single table T (as shown in example B above) then create a new virtual 429 ** term that is an equivalent IN expression. In other words, if the term 430 ** being analyzed is: 431 ** 432 ** x = expr1 OR expr2 = x OR x = expr3 433 ** 434 ** then create a new virtual term like this: 435 ** 436 ** x IN (expr1,expr2,expr3) 437 ** 438 ** CASE 2: 439 ** 440 ** If there are exactly two disjuncts and one side has x>A and the other side 441 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 442 ** WHERE clause of the form "x>=A". Example: 443 ** 444 ** x>A OR (x=A AND y>B) adds: x>=A 445 ** 446 ** The added conjunct can sometimes be helpful in query planning. 447 ** 448 ** CASE 3: 449 ** 450 ** If all subterms are indexable by a single table T, then set 451 ** 452 ** WhereTerm.eOperator = WO_OR 453 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 454 ** 455 ** A subterm is "indexable" if it is of the form 456 ** "T.C <op> <expr>" where C is any column of table T and 457 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 458 ** A subterm is also indexable if it is an AND of two or more 459 ** subsubterms at least one of which is indexable. Indexable AND 460 ** subterms have their eOperator set to WO_AND and they have 461 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 462 ** 463 ** From another point of view, "indexable" means that the subterm could 464 ** potentially be used with an index if an appropriate index exists. 465 ** This analysis does not consider whether or not the index exists; that 466 ** is decided elsewhere. This analysis only looks at whether subterms 467 ** appropriate for indexing exist. 468 ** 469 ** All examples A through E above satisfy case 3. But if a term 470 ** also satisfies case 1 (such as B) we know that the optimizer will 471 ** always prefer case 1, so in that case we pretend that case 3 is not 472 ** satisfied. 473 ** 474 ** It might be the case that multiple tables are indexable. For example, 475 ** (E) above is indexable on tables P, Q, and R. 476 ** 477 ** Terms that satisfy case 3 are candidates for lookup by using 478 ** separate indices to find rowids for each subterm and composing 479 ** the union of all rowids using a RowSet object. This is similar 480 ** to "bitmap indices" in other database engines. 481 ** 482 ** OTHERWISE: 483 ** 484 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 485 ** zero. This term is not useful for search. 486 */ 487 static void exprAnalyzeOrTerm( 488 SrcList *pSrc, /* the FROM clause */ 489 WhereClause *pWC, /* the complete WHERE clause */ 490 int idxTerm /* Index of the OR-term to be analyzed */ 491 ){ 492 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 493 Parse *pParse = pWInfo->pParse; /* Parser context */ 494 sqlite3 *db = pParse->db; /* Database connection */ 495 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 496 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 497 int i; /* Loop counters */ 498 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 499 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 500 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 501 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 502 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 503 504 /* 505 ** Break the OR clause into its separate subterms. The subterms are 506 ** stored in a WhereClause structure containing within the WhereOrInfo 507 ** object that is attached to the original OR clause term. 508 */ 509 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 510 assert( pExpr->op==TK_OR ); 511 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 512 if( pOrInfo==0 ) return; 513 pTerm->wtFlags |= TERM_ORINFO; 514 pOrWc = &pOrInfo->wc; 515 sqlite3WhereClauseInit(pOrWc, pWInfo); 516 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 517 sqlite3WhereExprAnalyze(pSrc, pOrWc); 518 if( db->mallocFailed ) return; 519 assert( pOrWc->nTerm>=2 ); 520 521 /* 522 ** Compute the set of tables that might satisfy cases 1 or 3. 523 */ 524 indexable = ~(Bitmask)0; 525 chngToIN = ~(Bitmask)0; 526 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 527 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 528 WhereAndInfo *pAndInfo; 529 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 530 chngToIN = 0; 531 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 532 if( pAndInfo ){ 533 WhereClause *pAndWC; 534 WhereTerm *pAndTerm; 535 int j; 536 Bitmask b = 0; 537 pOrTerm->u.pAndInfo = pAndInfo; 538 pOrTerm->wtFlags |= TERM_ANDINFO; 539 pOrTerm->eOperator = WO_AND; 540 pAndWC = &pAndInfo->wc; 541 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 542 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 543 sqlite3WhereExprAnalyze(pSrc, pAndWC); 544 pAndWC->pOuter = pWC; 545 testcase( db->mallocFailed ); 546 if( !db->mallocFailed ){ 547 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 548 assert( pAndTerm->pExpr ); 549 if( allowedOp(pAndTerm->pExpr->op) ){ 550 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 551 } 552 } 553 } 554 indexable &= b; 555 } 556 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 557 /* Skip this term for now. We revisit it when we process the 558 ** corresponding TERM_VIRTUAL term */ 559 }else{ 560 Bitmask b; 561 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 562 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 563 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 564 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 565 } 566 indexable &= b; 567 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 568 chngToIN = 0; 569 }else{ 570 chngToIN &= b; 571 } 572 } 573 } 574 575 /* 576 ** Record the set of tables that satisfy case 3. The set might be 577 ** empty. 578 */ 579 pOrInfo->indexable = indexable; 580 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 581 582 /* For a two-way OR, attempt to implementation case 2. 583 */ 584 if( indexable && pOrWc->nTerm==2 ){ 585 int iOne = 0; 586 WhereTerm *pOne; 587 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 588 int iTwo = 0; 589 WhereTerm *pTwo; 590 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 591 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 592 } 593 } 594 } 595 596 /* 597 ** chngToIN holds a set of tables that *might* satisfy case 1. But 598 ** we have to do some additional checking to see if case 1 really 599 ** is satisfied. 600 ** 601 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 602 ** that there is no possibility of transforming the OR clause into an 603 ** IN operator because one or more terms in the OR clause contain 604 ** something other than == on a column in the single table. The 1-bit 605 ** case means that every term of the OR clause is of the form 606 ** "table.column=expr" for some single table. The one bit that is set 607 ** will correspond to the common table. We still need to check to make 608 ** sure the same column is used on all terms. The 2-bit case is when 609 ** the all terms are of the form "table1.column=table2.column". It 610 ** might be possible to form an IN operator with either table1.column 611 ** or table2.column as the LHS if either is common to every term of 612 ** the OR clause. 613 ** 614 ** Note that terms of the form "table.column1=table.column2" (the 615 ** same table on both sizes of the ==) cannot be optimized. 616 */ 617 if( chngToIN ){ 618 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 619 int iColumn = -1; /* Column index on lhs of IN operator */ 620 int iCursor = -1; /* Table cursor common to all terms */ 621 int j = 0; /* Loop counter */ 622 623 /* Search for a table and column that appears on one side or the 624 ** other of the == operator in every subterm. That table and column 625 ** will be recorded in iCursor and iColumn. There might not be any 626 ** such table and column. Set okToChngToIN if an appropriate table 627 ** and column is found but leave okToChngToIN false if not found. 628 */ 629 for(j=0; j<2 && !okToChngToIN; j++){ 630 pOrTerm = pOrWc->a; 631 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 632 assert( pOrTerm->eOperator & WO_EQ ); 633 pOrTerm->wtFlags &= ~TERM_OR_OK; 634 if( pOrTerm->leftCursor==iCursor ){ 635 /* This is the 2-bit case and we are on the second iteration and 636 ** current term is from the first iteration. So skip this term. */ 637 assert( j==1 ); 638 continue; 639 } 640 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 641 pOrTerm->leftCursor))==0 ){ 642 /* This term must be of the form t1.a==t2.b where t2 is in the 643 ** chngToIN set but t1 is not. This term will be either preceded 644 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 645 ** and use its inversion. */ 646 testcase( pOrTerm->wtFlags & TERM_COPIED ); 647 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 648 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 649 continue; 650 } 651 iColumn = pOrTerm->u.leftColumn; 652 iCursor = pOrTerm->leftCursor; 653 break; 654 } 655 if( i<0 ){ 656 /* No candidate table+column was found. This can only occur 657 ** on the second iteration */ 658 assert( j==1 ); 659 assert( IsPowerOfTwo(chngToIN) ); 660 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 661 break; 662 } 663 testcase( j==1 ); 664 665 /* We have found a candidate table and column. Check to see if that 666 ** table and column is common to every term in the OR clause */ 667 okToChngToIN = 1; 668 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 669 assert( pOrTerm->eOperator & WO_EQ ); 670 if( pOrTerm->leftCursor!=iCursor ){ 671 pOrTerm->wtFlags &= ~TERM_OR_OK; 672 }else if( pOrTerm->u.leftColumn!=iColumn ){ 673 okToChngToIN = 0; 674 }else{ 675 int affLeft, affRight; 676 /* If the right-hand side is also a column, then the affinities 677 ** of both right and left sides must be such that no type 678 ** conversions are required on the right. (Ticket #2249) 679 */ 680 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 681 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 682 if( affRight!=0 && affRight!=affLeft ){ 683 okToChngToIN = 0; 684 }else{ 685 pOrTerm->wtFlags |= TERM_OR_OK; 686 } 687 } 688 } 689 } 690 691 /* At this point, okToChngToIN is true if original pTerm satisfies 692 ** case 1. In that case, construct a new virtual term that is 693 ** pTerm converted into an IN operator. 694 */ 695 if( okToChngToIN ){ 696 Expr *pDup; /* A transient duplicate expression */ 697 ExprList *pList = 0; /* The RHS of the IN operator */ 698 Expr *pLeft = 0; /* The LHS of the IN operator */ 699 Expr *pNew; /* The complete IN operator */ 700 701 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 702 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 703 assert( pOrTerm->eOperator & WO_EQ ); 704 assert( pOrTerm->leftCursor==iCursor ); 705 assert( pOrTerm->u.leftColumn==iColumn ); 706 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 707 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 708 pLeft = pOrTerm->pExpr->pLeft; 709 } 710 assert( pLeft!=0 ); 711 pDup = sqlite3ExprDup(db, pLeft, 0); 712 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 713 if( pNew ){ 714 int idxNew; 715 transferJoinMarkings(pNew, pExpr); 716 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 717 pNew->x.pList = pList; 718 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 719 testcase( idxNew==0 ); 720 exprAnalyze(pSrc, pWC, idxNew); 721 pTerm = &pWC->a[idxTerm]; 722 markTermAsChild(pWC, idxNew, idxTerm); 723 }else{ 724 sqlite3ExprListDelete(db, pList); 725 } 726 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 727 } 728 } 729 } 730 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 731 732 /* 733 ** We already know that pExpr is a binary operator where both operands are 734 ** column references. This routine checks to see if pExpr is an equivalence 735 ** relation: 736 ** 1. The SQLITE_Transitive optimization must be enabled 737 ** 2. Must be either an == or an IS operator 738 ** 3. Not originating in the ON clause of an OUTER JOIN 739 ** 4. The affinities of A and B must be compatible 740 ** 5a. Both operands use the same collating sequence OR 741 ** 5b. The overall collating sequence is BINARY 742 ** If this routine returns TRUE, that means that the RHS can be substituted 743 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 744 ** This is an optimization. No harm comes from returning 0. But if 1 is 745 ** returned when it should not be, then incorrect answers might result. 746 */ 747 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 748 char aff1, aff2; 749 CollSeq *pColl; 750 const char *zColl1, *zColl2; 751 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 752 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 753 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 754 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 755 aff2 = sqlite3ExprAffinity(pExpr->pRight); 756 if( aff1!=aff2 757 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 758 ){ 759 return 0; 760 } 761 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 762 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 763 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 764 /* Since pLeft and pRight are both a column references, their collating 765 ** sequence should always be defined. */ 766 zColl1 = ALWAYS(pColl) ? pColl->zName : 0; 767 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 768 zColl2 = ALWAYS(pColl) ? pColl->zName : 0; 769 return sqlite3StrICmp(zColl1, zColl2)==0; 770 } 771 772 /* 773 ** Recursively walk the expressions of a SELECT statement and generate 774 ** a bitmask indicating which tables are used in that expression 775 ** tree. 776 */ 777 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 778 Bitmask mask = 0; 779 while( pS ){ 780 SrcList *pSrc = pS->pSrc; 781 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 782 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 783 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 784 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 785 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 786 if( ALWAYS(pSrc!=0) ){ 787 int i; 788 for(i=0; i<pSrc->nSrc; i++){ 789 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 790 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 791 } 792 } 793 pS = pS->pPrior; 794 } 795 return mask; 796 } 797 798 /* 799 ** Expression pExpr is one operand of a comparison operator that might 800 ** be useful for indexing. This routine checks to see if pExpr appears 801 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 802 ** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor 803 ** number of the table that is indexed and *piColumn to the column number 804 ** of the column that is indexed, or -2 if an expression is being indexed. 805 ** 806 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 807 ** true even if that particular column is not indexed, because the column 808 ** might be added to an automatic index later. 809 */ 810 static int exprMightBeIndexed( 811 SrcList *pFrom, /* The FROM clause */ 812 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 813 Expr *pExpr, /* An operand of a comparison operator */ 814 int *piCur, /* Write the referenced table cursor number here */ 815 int *piColumn /* Write the referenced table column number here */ 816 ){ 817 Index *pIdx; 818 int i; 819 int iCur; 820 if( pExpr->op==TK_COLUMN ){ 821 *piCur = pExpr->iTable; 822 *piColumn = pExpr->iColumn; 823 return 1; 824 } 825 if( mPrereq==0 ) return 0; /* No table references */ 826 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 827 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 828 iCur = pFrom->a[i].iCursor; 829 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 830 if( pIdx->aColExpr==0 ) continue; 831 for(i=0; i<pIdx->nKeyCol; i++){ 832 if( pIdx->aiColumn[i]!=(-2) ) continue; 833 if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 834 *piCur = iCur; 835 *piColumn = -2; 836 return 1; 837 } 838 } 839 } 840 return 0; 841 } 842 843 /* 844 ** The input to this routine is an WhereTerm structure with only the 845 ** "pExpr" field filled in. The job of this routine is to analyze the 846 ** subexpression and populate all the other fields of the WhereTerm 847 ** structure. 848 ** 849 ** If the expression is of the form "<expr> <op> X" it gets commuted 850 ** to the standard form of "X <op> <expr>". 851 ** 852 ** If the expression is of the form "X <op> Y" where both X and Y are 853 ** columns, then the original expression is unchanged and a new virtual 854 ** term of the form "Y <op> X" is added to the WHERE clause and 855 ** analyzed separately. The original term is marked with TERM_COPIED 856 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 857 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 858 ** is a commuted copy of a prior term.) The original term has nChild=1 859 ** and the copy has idxParent set to the index of the original term. 860 */ 861 static void exprAnalyze( 862 SrcList *pSrc, /* the FROM clause */ 863 WhereClause *pWC, /* the WHERE clause */ 864 int idxTerm /* Index of the term to be analyzed */ 865 ){ 866 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 867 WhereTerm *pTerm; /* The term to be analyzed */ 868 WhereMaskSet *pMaskSet; /* Set of table index masks */ 869 Expr *pExpr; /* The expression to be analyzed */ 870 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 871 Bitmask prereqAll; /* Prerequesites of pExpr */ 872 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 873 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 874 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 875 int noCase = 0; /* uppercase equivalent to lowercase */ 876 int op; /* Top-level operator. pExpr->op */ 877 Parse *pParse = pWInfo->pParse; /* Parsing context */ 878 sqlite3 *db = pParse->db; /* Database connection */ 879 880 if( db->mallocFailed ){ 881 return; 882 } 883 pTerm = &pWC->a[idxTerm]; 884 pMaskSet = &pWInfo->sMaskSet; 885 pExpr = pTerm->pExpr; 886 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 887 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 888 op = pExpr->op; 889 if( op==TK_IN ){ 890 assert( pExpr->pRight==0 ); 891 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 892 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 893 }else{ 894 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 895 } 896 }else if( op==TK_ISNULL ){ 897 pTerm->prereqRight = 0; 898 }else{ 899 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 900 } 901 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 902 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 903 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 904 prereqAll |= x; 905 extraRight = x-1; /* ON clause terms may not be used with an index 906 ** on left table of a LEFT JOIN. Ticket #3015 */ 907 } 908 pTerm->prereqAll = prereqAll; 909 pTerm->leftCursor = -1; 910 pTerm->iParent = -1; 911 pTerm->eOperator = 0; 912 if( allowedOp(op) ){ 913 int iCur, iColumn; 914 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 915 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 916 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 917 if( exprMightBeIndexed(pSrc, prereqLeft, pLeft, &iCur, &iColumn) ){ 918 pTerm->leftCursor = iCur; 919 pTerm->u.leftColumn = iColumn; 920 pTerm->eOperator = operatorMask(op) & opMask; 921 } 922 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 923 if( pRight 924 && exprMightBeIndexed(pSrc, pTerm->prereqRight, pRight, &iCur, &iColumn) 925 ){ 926 WhereTerm *pNew; 927 Expr *pDup; 928 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 929 if( pTerm->leftCursor>=0 ){ 930 int idxNew; 931 pDup = sqlite3ExprDup(db, pExpr, 0); 932 if( db->mallocFailed ){ 933 sqlite3ExprDelete(db, pDup); 934 return; 935 } 936 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 937 if( idxNew==0 ) return; 938 pNew = &pWC->a[idxNew]; 939 markTermAsChild(pWC, idxNew, idxTerm); 940 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 941 pTerm = &pWC->a[idxTerm]; 942 pTerm->wtFlags |= TERM_COPIED; 943 944 if( termIsEquivalence(pParse, pDup) ){ 945 pTerm->eOperator |= WO_EQUIV; 946 eExtraOp = WO_EQUIV; 947 } 948 }else{ 949 pDup = pExpr; 950 pNew = pTerm; 951 } 952 exprCommute(pParse, pDup); 953 pNew->leftCursor = iCur; 954 pNew->u.leftColumn = iColumn; 955 testcase( (prereqLeft | extraRight) != prereqLeft ); 956 pNew->prereqRight = prereqLeft | extraRight; 957 pNew->prereqAll = prereqAll; 958 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 959 } 960 } 961 962 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 963 /* If a term is the BETWEEN operator, create two new virtual terms 964 ** that define the range that the BETWEEN implements. For example: 965 ** 966 ** a BETWEEN b AND c 967 ** 968 ** is converted into: 969 ** 970 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 971 ** 972 ** The two new terms are added onto the end of the WhereClause object. 973 ** The new terms are "dynamic" and are children of the original BETWEEN 974 ** term. That means that if the BETWEEN term is coded, the children are 975 ** skipped. Or, if the children are satisfied by an index, the original 976 ** BETWEEN term is skipped. 977 */ 978 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 979 ExprList *pList = pExpr->x.pList; 980 int i; 981 static const u8 ops[] = {TK_GE, TK_LE}; 982 assert( pList!=0 ); 983 assert( pList->nExpr==2 ); 984 for(i=0; i<2; i++){ 985 Expr *pNewExpr; 986 int idxNew; 987 pNewExpr = sqlite3PExpr(pParse, ops[i], 988 sqlite3ExprDup(db, pExpr->pLeft, 0), 989 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 990 transferJoinMarkings(pNewExpr, pExpr); 991 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 992 testcase( idxNew==0 ); 993 exprAnalyze(pSrc, pWC, idxNew); 994 pTerm = &pWC->a[idxTerm]; 995 markTermAsChild(pWC, idxNew, idxTerm); 996 } 997 } 998 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 999 1000 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1001 /* Analyze a term that is composed of two or more subterms connected by 1002 ** an OR operator. 1003 */ 1004 else if( pExpr->op==TK_OR ){ 1005 assert( pWC->op==TK_AND ); 1006 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1007 pTerm = &pWC->a[idxTerm]; 1008 } 1009 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1010 1011 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1012 /* Add constraints to reduce the search space on a LIKE or GLOB 1013 ** operator. 1014 ** 1015 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1016 ** 1017 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1018 ** 1019 ** The last character of the prefix "abc" is incremented to form the 1020 ** termination condition "abd". If case is not significant (the default 1021 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1022 ** bound is made all lowercase so that the bounds also work when comparing 1023 ** BLOBs. 1024 */ 1025 if( pWC->op==TK_AND 1026 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1027 ){ 1028 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1029 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1030 Expr *pNewExpr1; 1031 Expr *pNewExpr2; 1032 int idxNew1; 1033 int idxNew2; 1034 const char *zCollSeqName; /* Name of collating sequence */ 1035 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1036 1037 pLeft = pExpr->x.pList->a[1].pExpr; 1038 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1039 1040 /* Convert the lower bound to upper-case and the upper bound to 1041 ** lower-case (upper-case is less than lower-case in ASCII) so that 1042 ** the range constraints also work for BLOBs 1043 */ 1044 if( noCase && !pParse->db->mallocFailed ){ 1045 int i; 1046 char c; 1047 pTerm->wtFlags |= TERM_LIKE; 1048 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1049 pStr1->u.zToken[i] = sqlite3Toupper(c); 1050 pStr2->u.zToken[i] = sqlite3Tolower(c); 1051 } 1052 } 1053 1054 if( !db->mallocFailed ){ 1055 u8 c, *pC; /* Last character before the first wildcard */ 1056 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1057 c = *pC; 1058 if( noCase ){ 1059 /* The point is to increment the last character before the first 1060 ** wildcard. But if we increment '@', that will push it into the 1061 ** alphabetic range where case conversions will mess up the 1062 ** inequality. To avoid this, make sure to also run the full 1063 ** LIKE on all candidate expressions by clearing the isComplete flag 1064 */ 1065 if( c=='A'-1 ) isComplete = 0; 1066 c = sqlite3UpperToLower[c]; 1067 } 1068 *pC = c + 1; 1069 } 1070 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1071 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1072 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1073 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1074 pStr1, 0); 1075 transferJoinMarkings(pNewExpr1, pExpr); 1076 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1077 testcase( idxNew1==0 ); 1078 exprAnalyze(pSrc, pWC, idxNew1); 1079 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1080 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1081 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1082 pStr2, 0); 1083 transferJoinMarkings(pNewExpr2, pExpr); 1084 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1085 testcase( idxNew2==0 ); 1086 exprAnalyze(pSrc, pWC, idxNew2); 1087 pTerm = &pWC->a[idxTerm]; 1088 if( isComplete ){ 1089 markTermAsChild(pWC, idxNew1, idxTerm); 1090 markTermAsChild(pWC, idxNew2, idxTerm); 1091 } 1092 } 1093 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1094 1095 #ifndef SQLITE_OMIT_VIRTUALTABLE 1096 /* Add a WO_MATCH auxiliary term to the constraint set if the 1097 ** current expression is of the form: column MATCH expr. 1098 ** This information is used by the xBestIndex methods of 1099 ** virtual tables. The native query optimizer does not attempt 1100 ** to do anything with MATCH functions. 1101 */ 1102 if( isMatchOfColumn(pExpr) ){ 1103 int idxNew; 1104 Expr *pRight, *pLeft; 1105 WhereTerm *pNewTerm; 1106 Bitmask prereqColumn, prereqExpr; 1107 1108 pRight = pExpr->x.pList->a[0].pExpr; 1109 pLeft = pExpr->x.pList->a[1].pExpr; 1110 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1111 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1112 if( (prereqExpr & prereqColumn)==0 ){ 1113 Expr *pNewExpr; 1114 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1115 0, sqlite3ExprDup(db, pRight, 0), 0); 1116 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1117 testcase( idxNew==0 ); 1118 pNewTerm = &pWC->a[idxNew]; 1119 pNewTerm->prereqRight = prereqExpr; 1120 pNewTerm->leftCursor = pLeft->iTable; 1121 pNewTerm->u.leftColumn = pLeft->iColumn; 1122 pNewTerm->eOperator = WO_MATCH; 1123 markTermAsChild(pWC, idxNew, idxTerm); 1124 pTerm = &pWC->a[idxTerm]; 1125 pTerm->wtFlags |= TERM_COPIED; 1126 pNewTerm->prereqAll = pTerm->prereqAll; 1127 } 1128 } 1129 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1130 1131 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1132 /* When sqlite_stat3 histogram data is available an operator of the 1133 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1134 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1135 ** virtual term of that form. 1136 ** 1137 ** Note that the virtual term must be tagged with TERM_VNULL. 1138 */ 1139 if( pExpr->op==TK_NOTNULL 1140 && pExpr->pLeft->op==TK_COLUMN 1141 && pExpr->pLeft->iColumn>=0 1142 && OptimizationEnabled(db, SQLITE_Stat34) 1143 ){ 1144 Expr *pNewExpr; 1145 Expr *pLeft = pExpr->pLeft; 1146 int idxNew; 1147 WhereTerm *pNewTerm; 1148 1149 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1150 sqlite3ExprDup(db, pLeft, 0), 1151 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); 1152 1153 idxNew = whereClauseInsert(pWC, pNewExpr, 1154 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1155 if( idxNew ){ 1156 pNewTerm = &pWC->a[idxNew]; 1157 pNewTerm->prereqRight = 0; 1158 pNewTerm->leftCursor = pLeft->iTable; 1159 pNewTerm->u.leftColumn = pLeft->iColumn; 1160 pNewTerm->eOperator = WO_GT; 1161 markTermAsChild(pWC, idxNew, idxTerm); 1162 pTerm = &pWC->a[idxTerm]; 1163 pTerm->wtFlags |= TERM_COPIED; 1164 pNewTerm->prereqAll = pTerm->prereqAll; 1165 } 1166 } 1167 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1168 1169 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1170 ** an index for tables to the left of the join. 1171 */ 1172 pTerm->prereqRight |= extraRight; 1173 } 1174 1175 /*************************************************************************** 1176 ** Routines with file scope above. Interface to the rest of the where.c 1177 ** subsystem follows. 1178 ***************************************************************************/ 1179 1180 /* 1181 ** This routine identifies subexpressions in the WHERE clause where 1182 ** each subexpression is separated by the AND operator or some other 1183 ** operator specified in the op parameter. The WhereClause structure 1184 ** is filled with pointers to subexpressions. For example: 1185 ** 1186 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1187 ** \________/ \_______________/ \________________/ 1188 ** slot[0] slot[1] slot[2] 1189 ** 1190 ** The original WHERE clause in pExpr is unaltered. All this routine 1191 ** does is make slot[] entries point to substructure within pExpr. 1192 ** 1193 ** In the previous sentence and in the diagram, "slot[]" refers to 1194 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1195 ** all terms of the WHERE clause. 1196 */ 1197 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1198 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1199 pWC->op = op; 1200 if( pE2==0 ) return; 1201 if( pE2->op!=op ){ 1202 whereClauseInsert(pWC, pExpr, 0); 1203 }else{ 1204 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1205 sqlite3WhereSplit(pWC, pE2->pRight, op); 1206 } 1207 } 1208 1209 /* 1210 ** Initialize a preallocated WhereClause structure. 1211 */ 1212 void sqlite3WhereClauseInit( 1213 WhereClause *pWC, /* The WhereClause to be initialized */ 1214 WhereInfo *pWInfo /* The WHERE processing context */ 1215 ){ 1216 pWC->pWInfo = pWInfo; 1217 pWC->pOuter = 0; 1218 pWC->nTerm = 0; 1219 pWC->nSlot = ArraySize(pWC->aStatic); 1220 pWC->a = pWC->aStatic; 1221 } 1222 1223 /* 1224 ** Deallocate a WhereClause structure. The WhereClause structure 1225 ** itself is not freed. This routine is the inverse of sqlite3WhereClauseInit(). 1226 */ 1227 void sqlite3WhereClauseClear(WhereClause *pWC){ 1228 int i; 1229 WhereTerm *a; 1230 sqlite3 *db = pWC->pWInfo->pParse->db; 1231 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1232 if( a->wtFlags & TERM_DYNAMIC ){ 1233 sqlite3ExprDelete(db, a->pExpr); 1234 } 1235 if( a->wtFlags & TERM_ORINFO ){ 1236 whereOrInfoDelete(db, a->u.pOrInfo); 1237 }else if( a->wtFlags & TERM_ANDINFO ){ 1238 whereAndInfoDelete(db, a->u.pAndInfo); 1239 } 1240 } 1241 if( pWC->a!=pWC->aStatic ){ 1242 sqlite3DbFree(db, pWC->a); 1243 } 1244 } 1245 1246 1247 /* 1248 ** These routines walk (recursively) an expression tree and generate 1249 ** a bitmask indicating which tables are used in that expression 1250 ** tree. 1251 */ 1252 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1253 Bitmask mask = 0; 1254 if( p==0 ) return 0; 1255 if( p->op==TK_COLUMN ){ 1256 mask = sqlite3WhereGetMask(pMaskSet, p->iTable); 1257 return mask; 1258 } 1259 mask = sqlite3WhereExprUsage(pMaskSet, p->pRight); 1260 mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 1261 if( ExprHasProperty(p, EP_xIsSelect) ){ 1262 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1263 }else{ 1264 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1265 } 1266 return mask; 1267 } 1268 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1269 int i; 1270 Bitmask mask = 0; 1271 if( pList ){ 1272 for(i=0; i<pList->nExpr; i++){ 1273 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1274 } 1275 } 1276 return mask; 1277 } 1278 1279 1280 /* 1281 ** Call exprAnalyze on all terms in a WHERE clause. 1282 ** 1283 ** Note that exprAnalyze() might add new virtual terms onto the 1284 ** end of the WHERE clause. We do not want to analyze these new 1285 ** virtual terms, so start analyzing at the end and work forward 1286 ** so that the added virtual terms are never processed. 1287 */ 1288 void sqlite3WhereExprAnalyze( 1289 SrcList *pTabList, /* the FROM clause */ 1290 WhereClause *pWC /* the WHERE clause to be analyzed */ 1291 ){ 1292 int i; 1293 for(i=pWC->nTerm-1; i>=0; i--){ 1294 exprAnalyze(pTabList, pWC, i); 1295 } 1296 } 1297 1298 /* 1299 ** For table-valued-functions, transform the function arguments into 1300 ** new WHERE clause terms. 1301 ** 1302 ** Each function argument translates into an equality constraint against 1303 ** a HIDDEN column in the table. 1304 */ 1305 void sqlite3WhereTabFuncArgs( 1306 Parse *pParse, /* Parsing context */ 1307 struct SrcList_item *pItem, /* The FROM clause term to process */ 1308 WhereClause *pWC /* Xfer function arguments to here */ 1309 ){ 1310 Table *pTab; 1311 int j, k; 1312 ExprList *pArgs; 1313 Expr *pColRef; 1314 Expr *pTerm; 1315 if( pItem->fg.isTabFunc==0 ) return; 1316 pTab = pItem->pTab; 1317 assert( pTab!=0 ); 1318 pArgs = pItem->u1.pFuncArg; 1319 assert( pArgs!=0 ); 1320 for(j=k=0; j<pArgs->nExpr; j++){ 1321 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){ k++; } 1322 if( k>=pTab->nCol ){ 1323 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1324 pTab->zName, j); 1325 return; 1326 } 1327 pColRef = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1328 if( pColRef==0 ) return; 1329 pColRef->iTable = pItem->iCursor; 1330 pColRef->iColumn = k++; 1331 pColRef->pTab = pTab; 1332 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1333 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); 1334 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1335 } 1336 } 1337