1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 84 }else{ 85 pTerm->truthProb = 1; 86 } 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); 88 pTerm->wtFlags = wtFlags; 89 pTerm->pWC = pWC; 90 pTerm->iParent = -1; 91 memset(&pTerm->eOperator, 0, 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 93 return idx; 94 } 95 96 /* 97 ** Return TRUE if the given operator is one of the operators that is 98 ** allowed for an indexable WHERE clause term. The allowed operators are 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 100 */ 101 static int allowedOp(int op){ 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 105 assert( TK_GE==TK_EQ+4 ); 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 107 } 108 109 /* 110 ** Commute a comparison operator. Expressions of the form "X op Y" 111 ** are converted into "Y op X". 112 ** 113 ** If left/right precedence rules come into play when determining the 114 ** collating sequence, then COLLATE operators are adjusted to ensure 115 ** that the collating sequence does not change. For example: 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 117 ** the left hand side of a comparison overrides any collation sequence 118 ** attached to the right. For the same reason the EP_Collate flag 119 ** is not commuted. 120 */ 121 static void exprCommute(Parse *pParse, Expr *pExpr){ 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 125 if( expRight==expLeft ){ 126 /* Either X and Y both have COLLATE operator or neither do */ 127 if( expRight ){ 128 /* Both X and Y have COLLATE operators. Make sure X is always 129 ** used by clearing the EP_Collate flag from Y. */ 130 pExpr->pRight->flags &= ~EP_Collate; 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 132 /* Neither X nor Y have COLLATE operators, but X has a non-default 133 ** collating sequence. So add the EP_Collate marker on X to cause 134 ** it to be searched first. */ 135 pExpr->pLeft->flags |= EP_Collate; 136 } 137 } 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 139 if( pExpr->op>=TK_GT ){ 140 assert( TK_LT==TK_GT+2 ); 141 assert( TK_GE==TK_LE+2 ); 142 assert( TK_GT>TK_EQ ); 143 assert( TK_GT<TK_LE ); 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 146 } 147 } 148 149 /* 150 ** Translate from TK_xx operator to WO_xx bitmask. 151 */ 152 static u16 operatorMask(int op){ 153 u16 c; 154 assert( allowedOp(op) ); 155 if( op==TK_IN ){ 156 c = WO_IN; 157 }else if( op==TK_ISNULL ){ 158 c = WO_ISNULL; 159 }else if( op==TK_IS ){ 160 c = WO_IS; 161 }else{ 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 163 c = (u16)(WO_EQ<<(op-TK_EQ)); 164 } 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 166 assert( op!=TK_IN || c==WO_IN ); 167 assert( op!=TK_EQ || c==WO_EQ ); 168 assert( op!=TK_LT || c==WO_LT ); 169 assert( op!=TK_LE || c==WO_LE ); 170 assert( op!=TK_GT || c==WO_GT ); 171 assert( op!=TK_GE || c==WO_GE ); 172 assert( op!=TK_IS || c==WO_IS ); 173 return c; 174 } 175 176 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 178 /* 179 ** Check to see if the given expression is a LIKE or GLOB operator that 180 ** can be optimized using inequality constraints. Return TRUE if it is 181 ** so and false if not. 182 ** 183 ** In order for the operator to be optimizible, the RHS must be a string 184 ** literal that does not begin with a wildcard. The LHS must be a column 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 186 ** that virtual tables cannot participate in the LIKE optimization.) The 187 ** collating sequence for the column on the LHS must be appropriate for 188 ** the operator. 189 */ 190 static int isLikeOrGlob( 191 Parse *pParse, /* Parsing and code generating context */ 192 Expr *pExpr, /* Test this expression */ 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 194 int *pisComplete, /* True if the only wildcard is % in the last character */ 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 196 ){ 197 const u8 *z = 0; /* String on RHS of LIKE operator */ 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 199 ExprList *pList; /* List of operands to the LIKE operator */ 200 u8 c; /* One character in z[] */ 201 int cnt; /* Number of non-wildcard prefix characters */ 202 u8 wc[4]; /* Wildcard characters */ 203 sqlite3 *db = pParse->db; /* Database connection */ 204 sqlite3_value *pVal = 0; 205 int op; /* Opcode of pRight */ 206 int rc; /* Result code to return */ 207 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){ 209 return 0; 210 } 211 #ifdef SQLITE_EBCDIC 212 if( *pnoCase ) return 0; 213 #endif 214 pList = pExpr->x.pList; 215 pLeft = pList->a[1].pExpr; 216 217 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 218 op = pRight->op; 219 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 220 Vdbe *pReprepare = pParse->pReprepare; 221 int iCol = pRight->iColumn; 222 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 223 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 224 z = sqlite3_value_text(pVal); 225 } 226 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 227 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 228 }else if( op==TK_STRING ){ 229 z = (u8*)pRight->u.zToken; 230 } 231 if( z ){ 232 233 /* Count the number of prefix characters prior to the first wildcard */ 234 cnt = 0; 235 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 236 cnt++; 237 if( c==wc[3] && z[cnt]!=0 ) cnt++; 238 } 239 240 /* The optimization is possible only if (1) the pattern does not begin 241 ** with a wildcard and if (2) the non-wildcard prefix does not end with 242 ** an (illegal 0xff) character, or (3) the pattern does not consist of 243 ** a single escape character. The second condition is necessary so 244 ** that we can increment the prefix key to find an upper bound for the 245 ** range search. The third is because the caller assumes that the pattern 246 ** consists of at least one character after all escapes have been 247 ** removed. */ 248 if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){ 249 Expr *pPrefix; 250 251 /* A "complete" match if the pattern ends with "*" or "%" */ 252 *pisComplete = c==wc[0] && z[cnt+1]==0; 253 254 /* Get the pattern prefix. Remove all escapes from the prefix. */ 255 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); 256 if( pPrefix ){ 257 int iFrom, iTo; 258 char *zNew = pPrefix->u.zToken; 259 zNew[cnt] = 0; 260 for(iFrom=iTo=0; iFrom<cnt; iFrom++){ 261 if( zNew[iFrom]==wc[3] ) iFrom++; 262 zNew[iTo++] = zNew[iFrom]; 263 } 264 zNew[iTo] = 0; 265 266 /* If the RHS begins with a digit or a minus sign, then the LHS must be 267 ** an ordinary column (not a virtual table column) with TEXT affinity. 268 ** Otherwise the LHS might be numeric and "lhs >= rhs" would be false 269 ** even though "lhs LIKE rhs" is true. But if the RHS does not start 270 ** with a digit or '-', then "lhs LIKE rhs" will always be false if 271 ** the LHS is numeric and so the optimization still works. 272 ** 273 ** 2018-09-10 ticket c94369cae9b561b1f996d0054bfab11389f9d033 274 ** The RHS pattern must not be '/%' because the termination condition 275 ** will then become "x<'0'" and if the affinity is numeric, will then 276 ** be converted into "x<0", which is incorrect. 277 */ 278 if( sqlite3Isdigit(zNew[0]) 279 || zNew[0]=='-' 280 || (zNew[0]+1=='0' && iTo==1) 281 ){ 282 if( pLeft->op!=TK_COLUMN 283 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 284 || IsVirtual(pLeft->y.pTab) /* Value might be numeric */ 285 ){ 286 sqlite3ExprDelete(db, pPrefix); 287 sqlite3ValueFree(pVal); 288 return 0; 289 } 290 } 291 } 292 *ppPrefix = pPrefix; 293 294 /* If the RHS pattern is a bound parameter, make arrangements to 295 ** reprepare the statement when that parameter is rebound */ 296 if( op==TK_VARIABLE ){ 297 Vdbe *v = pParse->pVdbe; 298 sqlite3VdbeSetVarmask(v, pRight->iColumn); 299 if( *pisComplete && pRight->u.zToken[1] ){ 300 /* If the rhs of the LIKE expression is a variable, and the current 301 ** value of the variable means there is no need to invoke the LIKE 302 ** function, then no OP_Variable will be added to the program. 303 ** This causes problems for the sqlite3_bind_parameter_name() 304 ** API. To work around them, add a dummy OP_Variable here. 305 */ 306 int r1 = sqlite3GetTempReg(pParse); 307 sqlite3ExprCodeTarget(pParse, pRight, r1); 308 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 309 sqlite3ReleaseTempReg(pParse, r1); 310 } 311 } 312 }else{ 313 z = 0; 314 } 315 } 316 317 rc = (z!=0); 318 sqlite3ValueFree(pVal); 319 return rc; 320 } 321 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 322 323 324 #ifndef SQLITE_OMIT_VIRTUALTABLE 325 /* 326 ** Check to see if the pExpr expression is a form that needs to be passed 327 ** to the xBestIndex method of virtual tables. Forms of interest include: 328 ** 329 ** Expression Virtual Table Operator 330 ** ----------------------- --------------------------------- 331 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH 332 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB 333 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE 334 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP 335 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE 336 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE 337 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT 338 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT 339 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL 340 ** 341 ** In every case, "column" must be a column of a virtual table. If there 342 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the 343 ** "expr" expression (even though in forms (6) and (8) the column is on the 344 ** right and the expression is on the left). Also set *peOp2 to the 345 ** appropriate virtual table operator. The return value is 1 or 2 if there 346 ** is a match. The usual return is 1, but if the RHS is also a column 347 ** of virtual table in forms (5) or (7) then return 2. 348 ** 349 ** If the expression matches none of the patterns above, return 0. 350 */ 351 static int isAuxiliaryVtabOperator( 352 sqlite3 *db, /* Parsing context */ 353 Expr *pExpr, /* Test this expression */ 354 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */ 355 Expr **ppLeft, /* Column expression to left of MATCH/op2 */ 356 Expr **ppRight /* Expression to left of MATCH/op2 */ 357 ){ 358 if( pExpr->op==TK_FUNCTION ){ 359 static const struct Op2 { 360 const char *zOp; 361 unsigned char eOp2; 362 } aOp[] = { 363 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 364 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 365 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 366 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 367 }; 368 ExprList *pList; 369 Expr *pCol; /* Column reference */ 370 int i; 371 372 pList = pExpr->x.pList; 373 if( pList==0 || pList->nExpr!=2 ){ 374 return 0; 375 } 376 377 /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a 378 ** virtual table on their second argument, which is the same as 379 ** the left-hand side operand in their in-fix form. 380 ** 381 ** vtab_column MATCH expression 382 ** MATCH(expression,vtab_column) 383 */ 384 pCol = pList->a[1].pExpr; 385 if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){ 386 for(i=0; i<ArraySize(aOp); i++){ 387 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 388 *peOp2 = aOp[i].eOp2; 389 *ppRight = pList->a[0].pExpr; 390 *ppLeft = pCol; 391 return 1; 392 } 393 } 394 } 395 396 /* We can also match against the first column of overloaded 397 ** functions where xFindFunction returns a value of at least 398 ** SQLITE_INDEX_CONSTRAINT_FUNCTION. 399 ** 400 ** OVERLOADED(vtab_column,expression) 401 ** 402 ** Historically, xFindFunction expected to see lower-case function 403 ** names. But for this use case, xFindFunction is expected to deal 404 ** with function names in an arbitrary case. 405 */ 406 pCol = pList->a[0].pExpr; 407 if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){ 408 sqlite3_vtab *pVtab; 409 sqlite3_module *pMod; 410 void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**); 411 void *pNotUsed; 412 pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab; 413 assert( pVtab!=0 ); 414 assert( pVtab->pModule!=0 ); 415 pMod = (sqlite3_module *)pVtab->pModule; 416 if( pMod->xFindFunction!=0 ){ 417 i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed); 418 if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ 419 *peOp2 = i; 420 *ppRight = pList->a[1].pExpr; 421 *ppLeft = pCol; 422 return 1; 423 } 424 } 425 } 426 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ 427 int res = 0; 428 Expr *pLeft = pExpr->pLeft; 429 Expr *pRight = pExpr->pRight; 430 if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->y.pTab) ){ 431 res++; 432 } 433 if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->y.pTab) ){ 434 res++; 435 SWAP(Expr*, pLeft, pRight); 436 } 437 *ppLeft = pLeft; 438 *ppRight = pRight; 439 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; 440 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; 441 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL; 442 return res; 443 } 444 return 0; 445 } 446 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 447 448 /* 449 ** If the pBase expression originated in the ON or USING clause of 450 ** a join, then transfer the appropriate markings over to derived. 451 */ 452 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 453 if( pDerived ){ 454 pDerived->flags |= pBase->flags & EP_FromJoin; 455 pDerived->iRightJoinTable = pBase->iRightJoinTable; 456 } 457 } 458 459 /* 460 ** Mark term iChild as being a child of term iParent 461 */ 462 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 463 pWC->a[iChild].iParent = iParent; 464 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 465 pWC->a[iParent].nChild++; 466 } 467 468 /* 469 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 470 ** a conjunction, then return just pTerm when N==0. If N is exceeds 471 ** the number of available subterms, return NULL. 472 */ 473 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 474 if( pTerm->eOperator!=WO_AND ){ 475 return N==0 ? pTerm : 0; 476 } 477 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 478 return &pTerm->u.pAndInfo->wc.a[N]; 479 } 480 return 0; 481 } 482 483 /* 484 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 485 ** two subterms are in disjunction - they are OR-ed together. 486 ** 487 ** If these two terms are both of the form: "A op B" with the same 488 ** A and B values but different operators and if the operators are 489 ** compatible (if one is = and the other is <, for example) then 490 ** add a new virtual AND term to pWC that is the combination of the 491 ** two. 492 ** 493 ** Some examples: 494 ** 495 ** x<y OR x=y --> x<=y 496 ** x=y OR x=y --> x=y 497 ** x<=y OR x<y --> x<=y 498 ** 499 ** The following is NOT generated: 500 ** 501 ** x<y OR x>y --> x!=y 502 */ 503 static void whereCombineDisjuncts( 504 SrcList *pSrc, /* the FROM clause */ 505 WhereClause *pWC, /* The complete WHERE clause */ 506 WhereTerm *pOne, /* First disjunct */ 507 WhereTerm *pTwo /* Second disjunct */ 508 ){ 509 u16 eOp = pOne->eOperator | pTwo->eOperator; 510 sqlite3 *db; /* Database connection (for malloc) */ 511 Expr *pNew; /* New virtual expression */ 512 int op; /* Operator for the combined expression */ 513 int idxNew; /* Index in pWC of the next virtual term */ 514 515 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 516 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 517 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 518 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 519 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 520 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 521 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 522 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; 523 /* If we reach this point, it means the two subterms can be combined */ 524 if( (eOp & (eOp-1))!=0 ){ 525 if( eOp & (WO_LT|WO_LE) ){ 526 eOp = WO_LE; 527 }else{ 528 assert( eOp & (WO_GT|WO_GE) ); 529 eOp = WO_GE; 530 } 531 } 532 db = pWC->pWInfo->pParse->db; 533 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 534 if( pNew==0 ) return; 535 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 536 pNew->op = op; 537 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 538 exprAnalyze(pSrc, pWC, idxNew); 539 } 540 541 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 542 /* 543 ** Analyze a term that consists of two or more OR-connected 544 ** subterms. So in: 545 ** 546 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 547 ** ^^^^^^^^^^^^^^^^^^^^ 548 ** 549 ** This routine analyzes terms such as the middle term in the above example. 550 ** A WhereOrTerm object is computed and attached to the term under 551 ** analysis, regardless of the outcome of the analysis. Hence: 552 ** 553 ** WhereTerm.wtFlags |= TERM_ORINFO 554 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 555 ** 556 ** The term being analyzed must have two or more of OR-connected subterms. 557 ** A single subterm might be a set of AND-connected sub-subterms. 558 ** Examples of terms under analysis: 559 ** 560 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 561 ** (B) x=expr1 OR expr2=x OR x=expr3 562 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 563 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 564 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 565 ** (F) x>A OR (x=A AND y>=B) 566 ** 567 ** CASE 1: 568 ** 569 ** If all subterms are of the form T.C=expr for some single column of C and 570 ** a single table T (as shown in example B above) then create a new virtual 571 ** term that is an equivalent IN expression. In other words, if the term 572 ** being analyzed is: 573 ** 574 ** x = expr1 OR expr2 = x OR x = expr3 575 ** 576 ** then create a new virtual term like this: 577 ** 578 ** x IN (expr1,expr2,expr3) 579 ** 580 ** CASE 2: 581 ** 582 ** If there are exactly two disjuncts and one side has x>A and the other side 583 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 584 ** WHERE clause of the form "x>=A". Example: 585 ** 586 ** x>A OR (x=A AND y>B) adds: x>=A 587 ** 588 ** The added conjunct can sometimes be helpful in query planning. 589 ** 590 ** CASE 3: 591 ** 592 ** If all subterms are indexable by a single table T, then set 593 ** 594 ** WhereTerm.eOperator = WO_OR 595 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 596 ** 597 ** A subterm is "indexable" if it is of the form 598 ** "T.C <op> <expr>" where C is any column of table T and 599 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 600 ** A subterm is also indexable if it is an AND of two or more 601 ** subsubterms at least one of which is indexable. Indexable AND 602 ** subterms have their eOperator set to WO_AND and they have 603 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 604 ** 605 ** From another point of view, "indexable" means that the subterm could 606 ** potentially be used with an index if an appropriate index exists. 607 ** This analysis does not consider whether or not the index exists; that 608 ** is decided elsewhere. This analysis only looks at whether subterms 609 ** appropriate for indexing exist. 610 ** 611 ** All examples A through E above satisfy case 3. But if a term 612 ** also satisfies case 1 (such as B) we know that the optimizer will 613 ** always prefer case 1, so in that case we pretend that case 3 is not 614 ** satisfied. 615 ** 616 ** It might be the case that multiple tables are indexable. For example, 617 ** (E) above is indexable on tables P, Q, and R. 618 ** 619 ** Terms that satisfy case 3 are candidates for lookup by using 620 ** separate indices to find rowids for each subterm and composing 621 ** the union of all rowids using a RowSet object. This is similar 622 ** to "bitmap indices" in other database engines. 623 ** 624 ** OTHERWISE: 625 ** 626 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 627 ** zero. This term is not useful for search. 628 */ 629 static void exprAnalyzeOrTerm( 630 SrcList *pSrc, /* the FROM clause */ 631 WhereClause *pWC, /* the complete WHERE clause */ 632 int idxTerm /* Index of the OR-term to be analyzed */ 633 ){ 634 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 635 Parse *pParse = pWInfo->pParse; /* Parser context */ 636 sqlite3 *db = pParse->db; /* Database connection */ 637 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 638 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 639 int i; /* Loop counters */ 640 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 641 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 642 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 643 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 644 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 645 646 /* 647 ** Break the OR clause into its separate subterms. The subterms are 648 ** stored in a WhereClause structure containing within the WhereOrInfo 649 ** object that is attached to the original OR clause term. 650 */ 651 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 652 assert( pExpr->op==TK_OR ); 653 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 654 if( pOrInfo==0 ) return; 655 pTerm->wtFlags |= TERM_ORINFO; 656 pOrWc = &pOrInfo->wc; 657 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 658 sqlite3WhereClauseInit(pOrWc, pWInfo); 659 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 660 sqlite3WhereExprAnalyze(pSrc, pOrWc); 661 if( db->mallocFailed ) return; 662 assert( pOrWc->nTerm>=2 ); 663 664 /* 665 ** Compute the set of tables that might satisfy cases 1 or 3. 666 */ 667 indexable = ~(Bitmask)0; 668 chngToIN = ~(Bitmask)0; 669 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 670 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 671 WhereAndInfo *pAndInfo; 672 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 673 chngToIN = 0; 674 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 675 if( pAndInfo ){ 676 WhereClause *pAndWC; 677 WhereTerm *pAndTerm; 678 int j; 679 Bitmask b = 0; 680 pOrTerm->u.pAndInfo = pAndInfo; 681 pOrTerm->wtFlags |= TERM_ANDINFO; 682 pOrTerm->eOperator = WO_AND; 683 pAndWC = &pAndInfo->wc; 684 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 685 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 686 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 687 sqlite3WhereExprAnalyze(pSrc, pAndWC); 688 pAndWC->pOuter = pWC; 689 if( !db->mallocFailed ){ 690 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 691 assert( pAndTerm->pExpr ); 692 if( allowedOp(pAndTerm->pExpr->op) 693 || pAndTerm->eOperator==WO_AUX 694 ){ 695 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 696 } 697 } 698 } 699 indexable &= b; 700 } 701 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 702 /* Skip this term for now. We revisit it when we process the 703 ** corresponding TERM_VIRTUAL term */ 704 }else{ 705 Bitmask b; 706 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 707 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 708 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 709 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 710 } 711 indexable &= b; 712 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 713 chngToIN = 0; 714 }else{ 715 chngToIN &= b; 716 } 717 } 718 } 719 720 /* 721 ** Record the set of tables that satisfy case 3. The set might be 722 ** empty. 723 */ 724 pOrInfo->indexable = indexable; 725 if( indexable ){ 726 pTerm->eOperator = WO_OR; 727 pWC->hasOr = 1; 728 }else{ 729 pTerm->eOperator = WO_OR; 730 } 731 732 /* For a two-way OR, attempt to implementation case 2. 733 */ 734 if( indexable && pOrWc->nTerm==2 ){ 735 int iOne = 0; 736 WhereTerm *pOne; 737 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 738 int iTwo = 0; 739 WhereTerm *pTwo; 740 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 741 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 742 } 743 } 744 } 745 746 /* 747 ** chngToIN holds a set of tables that *might* satisfy case 1. But 748 ** we have to do some additional checking to see if case 1 really 749 ** is satisfied. 750 ** 751 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 752 ** that there is no possibility of transforming the OR clause into an 753 ** IN operator because one or more terms in the OR clause contain 754 ** something other than == on a column in the single table. The 1-bit 755 ** case means that every term of the OR clause is of the form 756 ** "table.column=expr" for some single table. The one bit that is set 757 ** will correspond to the common table. We still need to check to make 758 ** sure the same column is used on all terms. The 2-bit case is when 759 ** the all terms are of the form "table1.column=table2.column". It 760 ** might be possible to form an IN operator with either table1.column 761 ** or table2.column as the LHS if either is common to every term of 762 ** the OR clause. 763 ** 764 ** Note that terms of the form "table.column1=table.column2" (the 765 ** same table on both sizes of the ==) cannot be optimized. 766 */ 767 if( chngToIN ){ 768 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 769 int iColumn = -1; /* Column index on lhs of IN operator */ 770 int iCursor = -1; /* Table cursor common to all terms */ 771 int j = 0; /* Loop counter */ 772 773 /* Search for a table and column that appears on one side or the 774 ** other of the == operator in every subterm. That table and column 775 ** will be recorded in iCursor and iColumn. There might not be any 776 ** such table and column. Set okToChngToIN if an appropriate table 777 ** and column is found but leave okToChngToIN false if not found. 778 */ 779 for(j=0; j<2 && !okToChngToIN; j++){ 780 Expr *pLeft = 0; 781 pOrTerm = pOrWc->a; 782 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 783 assert( pOrTerm->eOperator & WO_EQ ); 784 pOrTerm->wtFlags &= ~TERM_OR_OK; 785 if( pOrTerm->leftCursor==iCursor ){ 786 /* This is the 2-bit case and we are on the second iteration and 787 ** current term is from the first iteration. So skip this term. */ 788 assert( j==1 ); 789 continue; 790 } 791 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 792 pOrTerm->leftCursor))==0 ){ 793 /* This term must be of the form t1.a==t2.b where t2 is in the 794 ** chngToIN set but t1 is not. This term will be either preceded 795 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 796 ** and use its inversion. */ 797 testcase( pOrTerm->wtFlags & TERM_COPIED ); 798 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 799 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 800 continue; 801 } 802 iColumn = pOrTerm->u.leftColumn; 803 iCursor = pOrTerm->leftCursor; 804 pLeft = pOrTerm->pExpr->pLeft; 805 break; 806 } 807 if( i<0 ){ 808 /* No candidate table+column was found. This can only occur 809 ** on the second iteration */ 810 assert( j==1 ); 811 assert( IsPowerOfTwo(chngToIN) ); 812 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 813 break; 814 } 815 testcase( j==1 ); 816 817 /* We have found a candidate table and column. Check to see if that 818 ** table and column is common to every term in the OR clause */ 819 okToChngToIN = 1; 820 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 821 assert( pOrTerm->eOperator & WO_EQ ); 822 if( pOrTerm->leftCursor!=iCursor ){ 823 pOrTerm->wtFlags &= ~TERM_OR_OK; 824 }else if( pOrTerm->u.leftColumn!=iColumn || (iColumn==XN_EXPR 825 && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1) 826 )){ 827 okToChngToIN = 0; 828 }else{ 829 int affLeft, affRight; 830 /* If the right-hand side is also a column, then the affinities 831 ** of both right and left sides must be such that no type 832 ** conversions are required on the right. (Ticket #2249) 833 */ 834 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 835 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 836 if( affRight!=0 && affRight!=affLeft ){ 837 okToChngToIN = 0; 838 }else{ 839 pOrTerm->wtFlags |= TERM_OR_OK; 840 } 841 } 842 } 843 } 844 845 /* At this point, okToChngToIN is true if original pTerm satisfies 846 ** case 1. In that case, construct a new virtual term that is 847 ** pTerm converted into an IN operator. 848 */ 849 if( okToChngToIN ){ 850 Expr *pDup; /* A transient duplicate expression */ 851 ExprList *pList = 0; /* The RHS of the IN operator */ 852 Expr *pLeft = 0; /* The LHS of the IN operator */ 853 Expr *pNew; /* The complete IN operator */ 854 855 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 856 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 857 assert( pOrTerm->eOperator & WO_EQ ); 858 assert( pOrTerm->leftCursor==iCursor ); 859 assert( pOrTerm->u.leftColumn==iColumn ); 860 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 861 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 862 pLeft = pOrTerm->pExpr->pLeft; 863 } 864 assert( pLeft!=0 ); 865 pDup = sqlite3ExprDup(db, pLeft, 0); 866 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 867 if( pNew ){ 868 int idxNew; 869 transferJoinMarkings(pNew, pExpr); 870 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 871 pNew->x.pList = pList; 872 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 873 testcase( idxNew==0 ); 874 exprAnalyze(pSrc, pWC, idxNew); 875 /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where used again */ 876 markTermAsChild(pWC, idxNew, idxTerm); 877 }else{ 878 sqlite3ExprListDelete(db, pList); 879 } 880 } 881 } 882 } 883 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 884 885 /* 886 ** We already know that pExpr is a binary operator where both operands are 887 ** column references. This routine checks to see if pExpr is an equivalence 888 ** relation: 889 ** 1. The SQLITE_Transitive optimization must be enabled 890 ** 2. Must be either an == or an IS operator 891 ** 3. Not originating in the ON clause of an OUTER JOIN 892 ** 4. The affinities of A and B must be compatible 893 ** 5a. Both operands use the same collating sequence OR 894 ** 5b. The overall collating sequence is BINARY 895 ** If this routine returns TRUE, that means that the RHS can be substituted 896 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 897 ** This is an optimization. No harm comes from returning 0. But if 1 is 898 ** returned when it should not be, then incorrect answers might result. 899 */ 900 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 901 char aff1, aff2; 902 CollSeq *pColl; 903 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 904 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 905 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 906 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 907 aff2 = sqlite3ExprAffinity(pExpr->pRight); 908 if( aff1!=aff2 909 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 910 ){ 911 return 0; 912 } 913 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 914 if( sqlite3IsBinary(pColl) ) return 1; 915 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight); 916 } 917 918 /* 919 ** Recursively walk the expressions of a SELECT statement and generate 920 ** a bitmask indicating which tables are used in that expression 921 ** tree. 922 */ 923 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 924 Bitmask mask = 0; 925 while( pS ){ 926 SrcList *pSrc = pS->pSrc; 927 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 928 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 929 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 930 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 931 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 932 if( ALWAYS(pSrc!=0) ){ 933 int i; 934 for(i=0; i<pSrc->nSrc; i++){ 935 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 936 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 937 if( pSrc->a[i].fg.isTabFunc ){ 938 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg); 939 } 940 } 941 } 942 pS = pS->pPrior; 943 } 944 return mask; 945 } 946 947 /* 948 ** Expression pExpr is one operand of a comparison operator that might 949 ** be useful for indexing. This routine checks to see if pExpr appears 950 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 951 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor 952 ** number of the table that is indexed and aiCurCol[1] to the column number 953 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 954 ** indexed. 955 ** 956 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 957 ** true even if that particular column is not indexed, because the column 958 ** might be added to an automatic index later. 959 */ 960 static SQLITE_NOINLINE int exprMightBeIndexed2( 961 SrcList *pFrom, /* The FROM clause */ 962 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 963 int *aiCurCol, /* Write the referenced table cursor and column here */ 964 Expr *pExpr /* An operand of a comparison operator */ 965 ){ 966 Index *pIdx; 967 int i; 968 int iCur; 969 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 970 iCur = pFrom->a[i].iCursor; 971 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 972 if( pIdx->aColExpr==0 ) continue; 973 for(i=0; i<pIdx->nKeyCol; i++){ 974 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 975 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 976 aiCurCol[0] = iCur; 977 aiCurCol[1] = XN_EXPR; 978 return 1; 979 } 980 } 981 } 982 return 0; 983 } 984 static int exprMightBeIndexed( 985 SrcList *pFrom, /* The FROM clause */ 986 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 987 int *aiCurCol, /* Write the referenced table cursor & column here */ 988 Expr *pExpr, /* An operand of a comparison operator */ 989 int op /* The specific comparison operator */ 990 ){ 991 /* If this expression is a vector to the left or right of a 992 ** inequality constraint (>, <, >= or <=), perform the processing 993 ** on the first element of the vector. */ 994 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 995 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 996 assert( op<=TK_GE ); 997 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 998 pExpr = pExpr->x.pList->a[0].pExpr; 999 } 1000 1001 if( pExpr->op==TK_COLUMN ){ 1002 aiCurCol[0] = pExpr->iTable; 1003 aiCurCol[1] = pExpr->iColumn; 1004 return 1; 1005 } 1006 if( mPrereq==0 ) return 0; /* No table references */ 1007 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 1008 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr); 1009 } 1010 1011 /* 1012 ** The input to this routine is an WhereTerm structure with only the 1013 ** "pExpr" field filled in. The job of this routine is to analyze the 1014 ** subexpression and populate all the other fields of the WhereTerm 1015 ** structure. 1016 ** 1017 ** If the expression is of the form "<expr> <op> X" it gets commuted 1018 ** to the standard form of "X <op> <expr>". 1019 ** 1020 ** If the expression is of the form "X <op> Y" where both X and Y are 1021 ** columns, then the original expression is unchanged and a new virtual 1022 ** term of the form "Y <op> X" is added to the WHERE clause and 1023 ** analyzed separately. The original term is marked with TERM_COPIED 1024 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1025 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1026 ** is a commuted copy of a prior term.) The original term has nChild=1 1027 ** and the copy has idxParent set to the index of the original term. 1028 */ 1029 static void exprAnalyze( 1030 SrcList *pSrc, /* the FROM clause */ 1031 WhereClause *pWC, /* the WHERE clause */ 1032 int idxTerm /* Index of the term to be analyzed */ 1033 ){ 1034 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 1035 WhereTerm *pTerm; /* The term to be analyzed */ 1036 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1037 Expr *pExpr; /* The expression to be analyzed */ 1038 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1039 Bitmask prereqAll; /* Prerequesites of pExpr */ 1040 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 1041 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 1042 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 1043 int noCase = 0; /* uppercase equivalent to lowercase */ 1044 int op; /* Top-level operator. pExpr->op */ 1045 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1046 sqlite3 *db = pParse->db; /* Database connection */ 1047 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */ 1048 int nLeft; /* Number of elements on left side vector */ 1049 1050 if( db->mallocFailed ){ 1051 return; 1052 } 1053 pTerm = &pWC->a[idxTerm]; 1054 pMaskSet = &pWInfo->sMaskSet; 1055 pExpr = pTerm->pExpr; 1056 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 1057 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 1058 op = pExpr->op; 1059 if( op==TK_IN ){ 1060 assert( pExpr->pRight==0 ); 1061 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 1062 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1063 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 1064 }else{ 1065 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 1066 } 1067 }else if( op==TK_ISNULL ){ 1068 pTerm->prereqRight = 0; 1069 }else{ 1070 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 1071 } 1072 pMaskSet->bVarSelect = 0; 1073 prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr); 1074 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; 1075 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1076 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 1077 prereqAll |= x; 1078 extraRight = x-1; /* ON clause terms may not be used with an index 1079 ** on left table of a LEFT JOIN. Ticket #3015 */ 1080 if( (prereqAll>>1)>=x ){ 1081 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); 1082 return; 1083 } 1084 } 1085 pTerm->prereqAll = prereqAll; 1086 pTerm->leftCursor = -1; 1087 pTerm->iParent = -1; 1088 pTerm->eOperator = 0; 1089 if( allowedOp(op) ){ 1090 int aiCurCol[2]; 1091 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 1092 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 1093 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 1094 1095 if( pTerm->iField>0 ){ 1096 assert( op==TK_IN ); 1097 assert( pLeft->op==TK_VECTOR ); 1098 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 1099 } 1100 1101 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){ 1102 pTerm->leftCursor = aiCurCol[0]; 1103 pTerm->u.leftColumn = aiCurCol[1]; 1104 pTerm->eOperator = operatorMask(op) & opMask; 1105 } 1106 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 1107 if( pRight 1108 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op) 1109 ){ 1110 WhereTerm *pNew; 1111 Expr *pDup; 1112 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 1113 assert( pTerm->iField==0 ); 1114 if( pTerm->leftCursor>=0 ){ 1115 int idxNew; 1116 pDup = sqlite3ExprDup(db, pExpr, 0); 1117 if( db->mallocFailed ){ 1118 sqlite3ExprDelete(db, pDup); 1119 return; 1120 } 1121 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1122 if( idxNew==0 ) return; 1123 pNew = &pWC->a[idxNew]; 1124 markTermAsChild(pWC, idxNew, idxTerm); 1125 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 1126 pTerm = &pWC->a[idxTerm]; 1127 pTerm->wtFlags |= TERM_COPIED; 1128 1129 if( termIsEquivalence(pParse, pDup) ){ 1130 pTerm->eOperator |= WO_EQUIV; 1131 eExtraOp = WO_EQUIV; 1132 } 1133 }else{ 1134 pDup = pExpr; 1135 pNew = pTerm; 1136 } 1137 exprCommute(pParse, pDup); 1138 pNew->leftCursor = aiCurCol[0]; 1139 pNew->u.leftColumn = aiCurCol[1]; 1140 testcase( (prereqLeft | extraRight) != prereqLeft ); 1141 pNew->prereqRight = prereqLeft | extraRight; 1142 pNew->prereqAll = prereqAll; 1143 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1144 } 1145 } 1146 1147 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1148 /* If a term is the BETWEEN operator, create two new virtual terms 1149 ** that define the range that the BETWEEN implements. For example: 1150 ** 1151 ** a BETWEEN b AND c 1152 ** 1153 ** is converted into: 1154 ** 1155 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1156 ** 1157 ** The two new terms are added onto the end of the WhereClause object. 1158 ** The new terms are "dynamic" and are children of the original BETWEEN 1159 ** term. That means that if the BETWEEN term is coded, the children are 1160 ** skipped. Or, if the children are satisfied by an index, the original 1161 ** BETWEEN term is skipped. 1162 */ 1163 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1164 ExprList *pList = pExpr->x.pList; 1165 int i; 1166 static const u8 ops[] = {TK_GE, TK_LE}; 1167 assert( pList!=0 ); 1168 assert( pList->nExpr==2 ); 1169 for(i=0; i<2; i++){ 1170 Expr *pNewExpr; 1171 int idxNew; 1172 pNewExpr = sqlite3PExpr(pParse, ops[i], 1173 sqlite3ExprDup(db, pExpr->pLeft, 0), 1174 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 1175 transferJoinMarkings(pNewExpr, pExpr); 1176 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1177 testcase( idxNew==0 ); 1178 exprAnalyze(pSrc, pWC, idxNew); 1179 pTerm = &pWC->a[idxTerm]; 1180 markTermAsChild(pWC, idxNew, idxTerm); 1181 } 1182 } 1183 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1184 1185 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1186 /* Analyze a term that is composed of two or more subterms connected by 1187 ** an OR operator. 1188 */ 1189 else if( pExpr->op==TK_OR ){ 1190 assert( pWC->op==TK_AND ); 1191 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1192 pTerm = &pWC->a[idxTerm]; 1193 } 1194 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1195 1196 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1197 /* Add constraints to reduce the search space on a LIKE or GLOB 1198 ** operator. 1199 ** 1200 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1201 ** 1202 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1203 ** 1204 ** The last character of the prefix "abc" is incremented to form the 1205 ** termination condition "abd". If case is not significant (the default 1206 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1207 ** bound is made all lowercase so that the bounds also work when comparing 1208 ** BLOBs. 1209 */ 1210 if( pWC->op==TK_AND 1211 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1212 ){ 1213 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1214 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1215 Expr *pNewExpr1; 1216 Expr *pNewExpr2; 1217 int idxNew1; 1218 int idxNew2; 1219 const char *zCollSeqName; /* Name of collating sequence */ 1220 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1221 1222 pLeft = pExpr->x.pList->a[1].pExpr; 1223 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1224 1225 /* Convert the lower bound to upper-case and the upper bound to 1226 ** lower-case (upper-case is less than lower-case in ASCII) so that 1227 ** the range constraints also work for BLOBs 1228 */ 1229 if( noCase && !pParse->db->mallocFailed ){ 1230 int i; 1231 char c; 1232 pTerm->wtFlags |= TERM_LIKE; 1233 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1234 pStr1->u.zToken[i] = sqlite3Toupper(c); 1235 pStr2->u.zToken[i] = sqlite3Tolower(c); 1236 } 1237 } 1238 1239 if( !db->mallocFailed ){ 1240 u8 c, *pC; /* Last character before the first wildcard */ 1241 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1242 c = *pC; 1243 if( noCase ){ 1244 /* The point is to increment the last character before the first 1245 ** wildcard. But if we increment '@', that will push it into the 1246 ** alphabetic range where case conversions will mess up the 1247 ** inequality. To avoid this, make sure to also run the full 1248 ** LIKE on all candidate expressions by clearing the isComplete flag 1249 */ 1250 if( c=='A'-1 ) isComplete = 0; 1251 c = sqlite3UpperToLower[c]; 1252 } 1253 *pC = c + 1; 1254 } 1255 zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY; 1256 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1257 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1258 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1259 pStr1); 1260 transferJoinMarkings(pNewExpr1, pExpr); 1261 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1262 testcase( idxNew1==0 ); 1263 exprAnalyze(pSrc, pWC, idxNew1); 1264 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1265 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1266 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1267 pStr2); 1268 transferJoinMarkings(pNewExpr2, pExpr); 1269 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1270 testcase( idxNew2==0 ); 1271 exprAnalyze(pSrc, pWC, idxNew2); 1272 pTerm = &pWC->a[idxTerm]; 1273 if( isComplete ){ 1274 markTermAsChild(pWC, idxNew1, idxTerm); 1275 markTermAsChild(pWC, idxNew2, idxTerm); 1276 } 1277 } 1278 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1279 1280 #ifndef SQLITE_OMIT_VIRTUALTABLE 1281 /* Add a WO_AUX auxiliary term to the constraint set if the 1282 ** current expression is of the form "column OP expr" where OP 1283 ** is an operator that gets passed into virtual tables but which is 1284 ** not normally optimized for ordinary tables. In other words, OP 1285 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL. 1286 ** This information is used by the xBestIndex methods of 1287 ** virtual tables. The native query optimizer does not attempt 1288 ** to do anything with MATCH functions. 1289 */ 1290 if( pWC->op==TK_AND ){ 1291 Expr *pRight = 0, *pLeft = 0; 1292 int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight); 1293 while( res-- > 0 ){ 1294 int idxNew; 1295 WhereTerm *pNewTerm; 1296 Bitmask prereqColumn, prereqExpr; 1297 1298 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1299 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1300 if( (prereqExpr & prereqColumn)==0 ){ 1301 Expr *pNewExpr; 1302 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1303 0, sqlite3ExprDup(db, pRight, 0)); 1304 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){ 1305 ExprSetProperty(pNewExpr, EP_FromJoin); 1306 } 1307 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1308 testcase( idxNew==0 ); 1309 pNewTerm = &pWC->a[idxNew]; 1310 pNewTerm->prereqRight = prereqExpr; 1311 pNewTerm->leftCursor = pLeft->iTable; 1312 pNewTerm->u.leftColumn = pLeft->iColumn; 1313 pNewTerm->eOperator = WO_AUX; 1314 pNewTerm->eMatchOp = eOp2; 1315 markTermAsChild(pWC, idxNew, idxTerm); 1316 pTerm = &pWC->a[idxTerm]; 1317 pTerm->wtFlags |= TERM_COPIED; 1318 pNewTerm->prereqAll = pTerm->prereqAll; 1319 } 1320 SWAP(Expr*, pLeft, pRight); 1321 } 1322 } 1323 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1324 1325 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1326 ** new terms for each component comparison - "a = ?" and "b = ?". The 1327 ** new terms completely replace the original vector comparison, which is 1328 ** no longer used. 1329 ** 1330 ** This is only required if at least one side of the comparison operation 1331 ** is not a sub-select. */ 1332 if( pWC->op==TK_AND 1333 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1334 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 1335 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft 1336 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1337 || (pExpr->pRight->flags & EP_xIsSelect)==0) 1338 ){ 1339 int i; 1340 for(i=0; i<nLeft; i++){ 1341 int idxNew; 1342 Expr *pNew; 1343 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 1344 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 1345 1346 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 1347 transferJoinMarkings(pNew, pExpr); 1348 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1349 exprAnalyze(pSrc, pWC, idxNew); 1350 } 1351 pTerm = &pWC->a[idxTerm]; 1352 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1353 pTerm->eOperator = 0; 1354 } 1355 1356 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1357 ** a virtual term for each vector component. The expression object 1358 ** used by each such virtual term is pExpr (the full vector IN(...) 1359 ** expression). The WhereTerm.iField variable identifies the index within 1360 ** the vector on the LHS that the virtual term represents. 1361 ** 1362 ** This only works if the RHS is a simple SELECT, not a compound 1363 */ 1364 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 1365 && pExpr->pLeft->op==TK_VECTOR 1366 && pExpr->x.pSelect->pPrior==0 1367 ){ 1368 int i; 1369 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1370 int idxNew; 1371 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1372 pWC->a[idxNew].iField = i+1; 1373 exprAnalyze(pSrc, pWC, idxNew); 1374 markTermAsChild(pWC, idxNew, idxTerm); 1375 } 1376 } 1377 1378 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1379 /* When sqlite_stat3 histogram data is available an operator of the 1380 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1381 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1382 ** virtual term of that form. 1383 ** 1384 ** Note that the virtual term must be tagged with TERM_VNULL. 1385 */ 1386 if( pExpr->op==TK_NOTNULL 1387 && pExpr->pLeft->op==TK_COLUMN 1388 && pExpr->pLeft->iColumn>=0 1389 && !ExprHasProperty(pExpr, EP_FromJoin) 1390 && OptimizationEnabled(db, SQLITE_Stat34) 1391 ){ 1392 Expr *pNewExpr; 1393 Expr *pLeft = pExpr->pLeft; 1394 int idxNew; 1395 WhereTerm *pNewTerm; 1396 1397 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1398 sqlite3ExprDup(db, pLeft, 0), 1399 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 1400 1401 idxNew = whereClauseInsert(pWC, pNewExpr, 1402 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1403 if( idxNew ){ 1404 pNewTerm = &pWC->a[idxNew]; 1405 pNewTerm->prereqRight = 0; 1406 pNewTerm->leftCursor = pLeft->iTable; 1407 pNewTerm->u.leftColumn = pLeft->iColumn; 1408 pNewTerm->eOperator = WO_GT; 1409 markTermAsChild(pWC, idxNew, idxTerm); 1410 pTerm = &pWC->a[idxTerm]; 1411 pTerm->wtFlags |= TERM_COPIED; 1412 pNewTerm->prereqAll = pTerm->prereqAll; 1413 } 1414 } 1415 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1416 1417 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1418 ** an index for tables to the left of the join. 1419 */ 1420 testcase( pTerm!=&pWC->a[idxTerm] ); 1421 pTerm = &pWC->a[idxTerm]; 1422 pTerm->prereqRight |= extraRight; 1423 } 1424 1425 /*************************************************************************** 1426 ** Routines with file scope above. Interface to the rest of the where.c 1427 ** subsystem follows. 1428 ***************************************************************************/ 1429 1430 /* 1431 ** This routine identifies subexpressions in the WHERE clause where 1432 ** each subexpression is separated by the AND operator or some other 1433 ** operator specified in the op parameter. The WhereClause structure 1434 ** is filled with pointers to subexpressions. For example: 1435 ** 1436 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1437 ** \________/ \_______________/ \________________/ 1438 ** slot[0] slot[1] slot[2] 1439 ** 1440 ** The original WHERE clause in pExpr is unaltered. All this routine 1441 ** does is make slot[] entries point to substructure within pExpr. 1442 ** 1443 ** In the previous sentence and in the diagram, "slot[]" refers to 1444 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1445 ** all terms of the WHERE clause. 1446 */ 1447 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1448 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1449 pWC->op = op; 1450 if( pE2==0 ) return; 1451 if( pE2->op!=op ){ 1452 whereClauseInsert(pWC, pExpr, 0); 1453 }else{ 1454 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1455 sqlite3WhereSplit(pWC, pE2->pRight, op); 1456 } 1457 } 1458 1459 /* 1460 ** Initialize a preallocated WhereClause structure. 1461 */ 1462 void sqlite3WhereClauseInit( 1463 WhereClause *pWC, /* The WhereClause to be initialized */ 1464 WhereInfo *pWInfo /* The WHERE processing context */ 1465 ){ 1466 pWC->pWInfo = pWInfo; 1467 pWC->hasOr = 0; 1468 pWC->pOuter = 0; 1469 pWC->nTerm = 0; 1470 pWC->nSlot = ArraySize(pWC->aStatic); 1471 pWC->a = pWC->aStatic; 1472 } 1473 1474 /* 1475 ** Deallocate a WhereClause structure. The WhereClause structure 1476 ** itself is not freed. This routine is the inverse of 1477 ** sqlite3WhereClauseInit(). 1478 */ 1479 void sqlite3WhereClauseClear(WhereClause *pWC){ 1480 int i; 1481 WhereTerm *a; 1482 sqlite3 *db = pWC->pWInfo->pParse->db; 1483 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1484 if( a->wtFlags & TERM_DYNAMIC ){ 1485 sqlite3ExprDelete(db, a->pExpr); 1486 } 1487 if( a->wtFlags & TERM_ORINFO ){ 1488 whereOrInfoDelete(db, a->u.pOrInfo); 1489 }else if( a->wtFlags & TERM_ANDINFO ){ 1490 whereAndInfoDelete(db, a->u.pAndInfo); 1491 } 1492 } 1493 if( pWC->a!=pWC->aStatic ){ 1494 sqlite3DbFree(db, pWC->a); 1495 } 1496 } 1497 1498 1499 /* 1500 ** These routines walk (recursively) an expression tree and generate 1501 ** a bitmask indicating which tables are used in that expression 1502 ** tree. 1503 */ 1504 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){ 1505 Bitmask mask; 1506 if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 1507 return sqlite3WhereGetMask(pMaskSet, p->iTable); 1508 }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1509 assert( p->op!=TK_IF_NULL_ROW ); 1510 return 0; 1511 } 1512 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; 1513 if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft); 1514 if( p->pRight ){ 1515 mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight); 1516 assert( p->x.pList==0 ); 1517 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1518 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; 1519 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1520 }else if( p->x.pList ){ 1521 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1522 } 1523 return mask; 1524 } 1525 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1526 return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0; 1527 } 1528 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1529 int i; 1530 Bitmask mask = 0; 1531 if( pList ){ 1532 for(i=0; i<pList->nExpr; i++){ 1533 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1534 } 1535 } 1536 return mask; 1537 } 1538 1539 1540 /* 1541 ** Call exprAnalyze on all terms in a WHERE clause. 1542 ** 1543 ** Note that exprAnalyze() might add new virtual terms onto the 1544 ** end of the WHERE clause. We do not want to analyze these new 1545 ** virtual terms, so start analyzing at the end and work forward 1546 ** so that the added virtual terms are never processed. 1547 */ 1548 void sqlite3WhereExprAnalyze( 1549 SrcList *pTabList, /* the FROM clause */ 1550 WhereClause *pWC /* the WHERE clause to be analyzed */ 1551 ){ 1552 int i; 1553 for(i=pWC->nTerm-1; i>=0; i--){ 1554 exprAnalyze(pTabList, pWC, i); 1555 } 1556 } 1557 1558 /* 1559 ** For table-valued-functions, transform the function arguments into 1560 ** new WHERE clause terms. 1561 ** 1562 ** Each function argument translates into an equality constraint against 1563 ** a HIDDEN column in the table. 1564 */ 1565 void sqlite3WhereTabFuncArgs( 1566 Parse *pParse, /* Parsing context */ 1567 struct SrcList_item *pItem, /* The FROM clause term to process */ 1568 WhereClause *pWC /* Xfer function arguments to here */ 1569 ){ 1570 Table *pTab; 1571 int j, k; 1572 ExprList *pArgs; 1573 Expr *pColRef; 1574 Expr *pTerm; 1575 if( pItem->fg.isTabFunc==0 ) return; 1576 pTab = pItem->pTab; 1577 assert( pTab!=0 ); 1578 pArgs = pItem->u1.pFuncArg; 1579 if( pArgs==0 ) return; 1580 for(j=k=0; j<pArgs->nExpr; j++){ 1581 Expr *pRhs; 1582 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1583 if( k>=pTab->nCol ){ 1584 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1585 pTab->zName, j); 1586 return; 1587 } 1588 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1589 if( pColRef==0 ) return; 1590 pColRef->iTable = pItem->iCursor; 1591 pColRef->iColumn = k++; 1592 pColRef->y.pTab = pTab; 1593 pRhs = sqlite3PExpr(pParse, TK_UPLUS, 1594 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); 1595 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs); 1596 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1597 } 1598 } 1599