1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 84 }else{ 85 pTerm->truthProb = 1; 86 } 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); 88 pTerm->wtFlags = wtFlags; 89 pTerm->pWC = pWC; 90 pTerm->iParent = -1; 91 memset(&pTerm->eOperator, 0, 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 93 return idx; 94 } 95 96 /* 97 ** Return TRUE if the given operator is one of the operators that is 98 ** allowed for an indexable WHERE clause term. The allowed operators are 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 100 */ 101 static int allowedOp(int op){ 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 105 assert( TK_GE==TK_EQ+4 ); 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 107 } 108 109 /* 110 ** Commute a comparison operator. Expressions of the form "X op Y" 111 ** are converted into "Y op X". 112 ** 113 ** If left/right precedence rules come into play when determining the 114 ** collating sequence, then COLLATE operators are adjusted to ensure 115 ** that the collating sequence does not change. For example: 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 117 ** the left hand side of a comparison overrides any collation sequence 118 ** attached to the right. For the same reason the EP_Collate flag 119 ** is not commuted. 120 */ 121 static void exprCommute(Parse *pParse, Expr *pExpr){ 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 125 if( expRight==expLeft ){ 126 /* Either X and Y both have COLLATE operator or neither do */ 127 if( expRight ){ 128 /* Both X and Y have COLLATE operators. Make sure X is always 129 ** used by clearing the EP_Collate flag from Y. */ 130 pExpr->pRight->flags &= ~EP_Collate; 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 132 /* Neither X nor Y have COLLATE operators, but X has a non-default 133 ** collating sequence. So add the EP_Collate marker on X to cause 134 ** it to be searched first. */ 135 pExpr->pLeft->flags |= EP_Collate; 136 } 137 } 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 139 if( pExpr->op>=TK_GT ){ 140 assert( TK_LT==TK_GT+2 ); 141 assert( TK_GE==TK_LE+2 ); 142 assert( TK_GT>TK_EQ ); 143 assert( TK_GT<TK_LE ); 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 146 } 147 } 148 149 /* 150 ** Translate from TK_xx operator to WO_xx bitmask. 151 */ 152 static u16 operatorMask(int op){ 153 u16 c; 154 assert( allowedOp(op) ); 155 if( op==TK_IN ){ 156 c = WO_IN; 157 }else if( op==TK_ISNULL ){ 158 c = WO_ISNULL; 159 }else if( op==TK_IS ){ 160 c = WO_IS; 161 }else{ 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 163 c = (u16)(WO_EQ<<(op-TK_EQ)); 164 } 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 166 assert( op!=TK_IN || c==WO_IN ); 167 assert( op!=TK_EQ || c==WO_EQ ); 168 assert( op!=TK_LT || c==WO_LT ); 169 assert( op!=TK_LE || c==WO_LE ); 170 assert( op!=TK_GT || c==WO_GT ); 171 assert( op!=TK_GE || c==WO_GE ); 172 assert( op!=TK_IS || c==WO_IS ); 173 return c; 174 } 175 176 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 178 /* 179 ** Check to see if the given expression is a LIKE or GLOB operator that 180 ** can be optimized using inequality constraints. Return TRUE if it is 181 ** so and false if not. 182 ** 183 ** In order for the operator to be optimizible, the RHS must be a string 184 ** literal that does not begin with a wildcard. The LHS must be a column 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 186 ** that virtual tables cannot participate in the LIKE optimization.) The 187 ** collating sequence for the column on the LHS must be appropriate for 188 ** the operator. 189 */ 190 static int isLikeOrGlob( 191 Parse *pParse, /* Parsing and code generating context */ 192 Expr *pExpr, /* Test this expression */ 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 194 int *pisComplete, /* True if the only wildcard is % in the last character */ 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 196 ){ 197 const u8 *z = 0; /* String on RHS of LIKE operator */ 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 199 ExprList *pList; /* List of operands to the LIKE operator */ 200 int c; /* One character in z[] */ 201 int cnt; /* Number of non-wildcard prefix characters */ 202 char wc[4]; /* Wildcard characters */ 203 sqlite3 *db = pParse->db; /* Database connection */ 204 sqlite3_value *pVal = 0; 205 int op; /* Opcode of pRight */ 206 int rc; /* Result code to return */ 207 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 209 return 0; 210 } 211 #ifdef SQLITE_EBCDIC 212 if( *pnoCase ) return 0; 213 #endif 214 pList = pExpr->x.pList; 215 pLeft = pList->a[1].pExpr; 216 217 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 218 op = pRight->op; 219 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 220 Vdbe *pReprepare = pParse->pReprepare; 221 int iCol = pRight->iColumn; 222 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 223 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 224 z = sqlite3_value_text(pVal); 225 } 226 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 227 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 228 }else if( op==TK_STRING ){ 229 z = (u8*)pRight->u.zToken; 230 } 231 if( z ){ 232 233 /* If the RHS begins with a digit or a minus sign, then the LHS must 234 ** be an ordinary column (not a virtual table column) with TEXT affinity. 235 ** Otherwise the LHS might be numeric and "lhs >= rhs" would be false 236 ** even though "lhs LIKE rhs" is true. But if the RHS does not start 237 ** with a digit or '-', then "lhs LIKE rhs" will always be false if 238 ** the LHS is numeric and so the optimization still works. 239 */ 240 if( sqlite3Isdigit(z[0]) || z[0]=='-' ){ 241 if( pLeft->op!=TK_COLUMN 242 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 243 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 244 ){ 245 sqlite3ValueFree(pVal); 246 return 0; 247 } 248 } 249 250 /* Count the number of prefix characters prior to the first wildcard */ 251 cnt = 0; 252 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 253 cnt++; 254 if( c==wc[3] && z[cnt]!=0 ) cnt++; 255 } 256 257 /* The optimization is possible only if (1) the pattern does not begin 258 ** with a wildcard and if (2) the non-wildcard prefix does not end with 259 ** an (illegal 0xff) character, or (3) the pattern does not consist of 260 ** a single escape character. The second condition is necessary so 261 ** that we can increment the prefix key to find an upper bound for the 262 ** range search. The third is because the caller assumes that the pattern 263 ** consists of at least one character after all escapes have been 264 ** removed. */ 265 if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){ 266 Expr *pPrefix; 267 268 /* A "complete" match if the pattern ends with "*" or "%" */ 269 *pisComplete = c==wc[0] && z[cnt+1]==0; 270 271 /* Get the pattern prefix. Remove all escapes from the prefix. */ 272 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); 273 if( pPrefix ){ 274 int iFrom, iTo; 275 char *zNew = pPrefix->u.zToken; 276 zNew[cnt] = 0; 277 for(iFrom=iTo=0; iFrom<cnt; iFrom++){ 278 if( zNew[iFrom]==wc[3] ) iFrom++; 279 zNew[iTo++] = zNew[iFrom]; 280 } 281 zNew[iTo] = 0; 282 } 283 *ppPrefix = pPrefix; 284 285 /* If the RHS pattern is a bound parameter, make arrangements to 286 ** reprepare the statement when that parameter is rebound */ 287 if( op==TK_VARIABLE ){ 288 Vdbe *v = pParse->pVdbe; 289 sqlite3VdbeSetVarmask(v, pRight->iColumn); 290 if( *pisComplete && pRight->u.zToken[1] ){ 291 /* If the rhs of the LIKE expression is a variable, and the current 292 ** value of the variable means there is no need to invoke the LIKE 293 ** function, then no OP_Variable will be added to the program. 294 ** This causes problems for the sqlite3_bind_parameter_name() 295 ** API. To work around them, add a dummy OP_Variable here. 296 */ 297 int r1 = sqlite3GetTempReg(pParse); 298 sqlite3ExprCodeTarget(pParse, pRight, r1); 299 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 300 sqlite3ReleaseTempReg(pParse, r1); 301 } 302 } 303 }else{ 304 z = 0; 305 } 306 } 307 308 rc = (z!=0); 309 sqlite3ValueFree(pVal); 310 return rc; 311 } 312 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 313 314 315 #ifndef SQLITE_OMIT_VIRTUALTABLE 316 /* 317 ** Check to see if the pExpr expression is a form that needs to be passed 318 ** to the xBestIndex method of virtual tables. Forms of interest include: 319 ** 320 ** Expression Virtual Table Operator 321 ** ----------------------- --------------------------------- 322 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH 323 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB 324 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE 325 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP 326 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE 327 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE 328 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT 329 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT 330 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL 331 ** 332 ** In every case, "column" must be a column of a virtual table. If there 333 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the 334 ** "expr" expression (even though in forms (6) and (8) the column is on the 335 ** right and the expression is on the left). Also set *peOp2 to the 336 ** appropriate virtual table operator. The return value is 1 or 2 if there 337 ** is a match. The usual return is 1, but if the RHS is also a column 338 ** of virtual table in forms (5) or (7) then return 2. 339 ** 340 ** If the expression matches none of the patterns above, return 0. 341 */ 342 static int isAuxiliaryVtabOperator( 343 Expr *pExpr, /* Test this expression */ 344 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */ 345 Expr **ppLeft, /* Column expression to left of MATCH/op2 */ 346 Expr **ppRight /* Expression to left of MATCH/op2 */ 347 ){ 348 if( pExpr->op==TK_FUNCTION ){ 349 static const struct Op2 { 350 const char *zOp; 351 unsigned char eOp2; 352 } aOp[] = { 353 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 354 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 355 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 356 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 357 }; 358 ExprList *pList; 359 Expr *pCol; /* Column reference */ 360 int i; 361 362 pList = pExpr->x.pList; 363 if( pList==0 || pList->nExpr!=2 ){ 364 return 0; 365 } 366 pCol = pList->a[1].pExpr; 367 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 368 return 0; 369 } 370 for(i=0; i<ArraySize(aOp); i++){ 371 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 372 *peOp2 = aOp[i].eOp2; 373 *ppRight = pList->a[0].pExpr; 374 *ppLeft = pCol; 375 return 1; 376 } 377 } 378 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ 379 int res = 0; 380 Expr *pLeft = pExpr->pLeft; 381 Expr *pRight = pExpr->pRight; 382 if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->pTab) ){ 383 res++; 384 } 385 if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->pTab) ){ 386 res++; 387 SWAP(Expr*, pLeft, pRight); 388 } 389 *ppLeft = pLeft; 390 *ppRight = pRight; 391 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; 392 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; 393 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL; 394 return res; 395 } 396 return 0; 397 } 398 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 399 400 /* 401 ** If the pBase expression originated in the ON or USING clause of 402 ** a join, then transfer the appropriate markings over to derived. 403 */ 404 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 405 if( pDerived ){ 406 pDerived->flags |= pBase->flags & EP_FromJoin; 407 pDerived->iRightJoinTable = pBase->iRightJoinTable; 408 } 409 } 410 411 /* 412 ** Mark term iChild as being a child of term iParent 413 */ 414 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 415 pWC->a[iChild].iParent = iParent; 416 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 417 pWC->a[iParent].nChild++; 418 } 419 420 /* 421 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 422 ** a conjunction, then return just pTerm when N==0. If N is exceeds 423 ** the number of available subterms, return NULL. 424 */ 425 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 426 if( pTerm->eOperator!=WO_AND ){ 427 return N==0 ? pTerm : 0; 428 } 429 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 430 return &pTerm->u.pAndInfo->wc.a[N]; 431 } 432 return 0; 433 } 434 435 /* 436 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 437 ** two subterms are in disjunction - they are OR-ed together. 438 ** 439 ** If these two terms are both of the form: "A op B" with the same 440 ** A and B values but different operators and if the operators are 441 ** compatible (if one is = and the other is <, for example) then 442 ** add a new virtual AND term to pWC that is the combination of the 443 ** two. 444 ** 445 ** Some examples: 446 ** 447 ** x<y OR x=y --> x<=y 448 ** x=y OR x=y --> x=y 449 ** x<=y OR x<y --> x<=y 450 ** 451 ** The following is NOT generated: 452 ** 453 ** x<y OR x>y --> x!=y 454 */ 455 static void whereCombineDisjuncts( 456 SrcList *pSrc, /* the FROM clause */ 457 WhereClause *pWC, /* The complete WHERE clause */ 458 WhereTerm *pOne, /* First disjunct */ 459 WhereTerm *pTwo /* Second disjunct */ 460 ){ 461 u16 eOp = pOne->eOperator | pTwo->eOperator; 462 sqlite3 *db; /* Database connection (for malloc) */ 463 Expr *pNew; /* New virtual expression */ 464 int op; /* Operator for the combined expression */ 465 int idxNew; /* Index in pWC of the next virtual term */ 466 467 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 468 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 469 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 470 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 471 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 472 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 473 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 474 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; 475 /* If we reach this point, it means the two subterms can be combined */ 476 if( (eOp & (eOp-1))!=0 ){ 477 if( eOp & (WO_LT|WO_LE) ){ 478 eOp = WO_LE; 479 }else{ 480 assert( eOp & (WO_GT|WO_GE) ); 481 eOp = WO_GE; 482 } 483 } 484 db = pWC->pWInfo->pParse->db; 485 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 486 if( pNew==0 ) return; 487 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 488 pNew->op = op; 489 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 490 exprAnalyze(pSrc, pWC, idxNew); 491 } 492 493 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 494 /* 495 ** Analyze a term that consists of two or more OR-connected 496 ** subterms. So in: 497 ** 498 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 499 ** ^^^^^^^^^^^^^^^^^^^^ 500 ** 501 ** This routine analyzes terms such as the middle term in the above example. 502 ** A WhereOrTerm object is computed and attached to the term under 503 ** analysis, regardless of the outcome of the analysis. Hence: 504 ** 505 ** WhereTerm.wtFlags |= TERM_ORINFO 506 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 507 ** 508 ** The term being analyzed must have two or more of OR-connected subterms. 509 ** A single subterm might be a set of AND-connected sub-subterms. 510 ** Examples of terms under analysis: 511 ** 512 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 513 ** (B) x=expr1 OR expr2=x OR x=expr3 514 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 515 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 516 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 517 ** (F) x>A OR (x=A AND y>=B) 518 ** 519 ** CASE 1: 520 ** 521 ** If all subterms are of the form T.C=expr for some single column of C and 522 ** a single table T (as shown in example B above) then create a new virtual 523 ** term that is an equivalent IN expression. In other words, if the term 524 ** being analyzed is: 525 ** 526 ** x = expr1 OR expr2 = x OR x = expr3 527 ** 528 ** then create a new virtual term like this: 529 ** 530 ** x IN (expr1,expr2,expr3) 531 ** 532 ** CASE 2: 533 ** 534 ** If there are exactly two disjuncts and one side has x>A and the other side 535 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 536 ** WHERE clause of the form "x>=A". Example: 537 ** 538 ** x>A OR (x=A AND y>B) adds: x>=A 539 ** 540 ** The added conjunct can sometimes be helpful in query planning. 541 ** 542 ** CASE 3: 543 ** 544 ** If all subterms are indexable by a single table T, then set 545 ** 546 ** WhereTerm.eOperator = WO_OR 547 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 548 ** 549 ** A subterm is "indexable" if it is of the form 550 ** "T.C <op> <expr>" where C is any column of table T and 551 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 552 ** A subterm is also indexable if it is an AND of two or more 553 ** subsubterms at least one of which is indexable. Indexable AND 554 ** subterms have their eOperator set to WO_AND and they have 555 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 556 ** 557 ** From another point of view, "indexable" means that the subterm could 558 ** potentially be used with an index if an appropriate index exists. 559 ** This analysis does not consider whether or not the index exists; that 560 ** is decided elsewhere. This analysis only looks at whether subterms 561 ** appropriate for indexing exist. 562 ** 563 ** All examples A through E above satisfy case 3. But if a term 564 ** also satisfies case 1 (such as B) we know that the optimizer will 565 ** always prefer case 1, so in that case we pretend that case 3 is not 566 ** satisfied. 567 ** 568 ** It might be the case that multiple tables are indexable. For example, 569 ** (E) above is indexable on tables P, Q, and R. 570 ** 571 ** Terms that satisfy case 3 are candidates for lookup by using 572 ** separate indices to find rowids for each subterm and composing 573 ** the union of all rowids using a RowSet object. This is similar 574 ** to "bitmap indices" in other database engines. 575 ** 576 ** OTHERWISE: 577 ** 578 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 579 ** zero. This term is not useful for search. 580 */ 581 static void exprAnalyzeOrTerm( 582 SrcList *pSrc, /* the FROM clause */ 583 WhereClause *pWC, /* the complete WHERE clause */ 584 int idxTerm /* Index of the OR-term to be analyzed */ 585 ){ 586 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 587 Parse *pParse = pWInfo->pParse; /* Parser context */ 588 sqlite3 *db = pParse->db; /* Database connection */ 589 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 590 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 591 int i; /* Loop counters */ 592 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 593 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 594 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 595 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 596 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 597 598 /* 599 ** Break the OR clause into its separate subterms. The subterms are 600 ** stored in a WhereClause structure containing within the WhereOrInfo 601 ** object that is attached to the original OR clause term. 602 */ 603 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 604 assert( pExpr->op==TK_OR ); 605 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 606 if( pOrInfo==0 ) return; 607 pTerm->wtFlags |= TERM_ORINFO; 608 pOrWc = &pOrInfo->wc; 609 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 610 sqlite3WhereClauseInit(pOrWc, pWInfo); 611 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 612 sqlite3WhereExprAnalyze(pSrc, pOrWc); 613 if( db->mallocFailed ) return; 614 assert( pOrWc->nTerm>=2 ); 615 616 /* 617 ** Compute the set of tables that might satisfy cases 1 or 3. 618 */ 619 indexable = ~(Bitmask)0; 620 chngToIN = ~(Bitmask)0; 621 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 622 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 623 WhereAndInfo *pAndInfo; 624 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 625 chngToIN = 0; 626 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 627 if( pAndInfo ){ 628 WhereClause *pAndWC; 629 WhereTerm *pAndTerm; 630 int j; 631 Bitmask b = 0; 632 pOrTerm->u.pAndInfo = pAndInfo; 633 pOrTerm->wtFlags |= TERM_ANDINFO; 634 pOrTerm->eOperator = WO_AND; 635 pAndWC = &pAndInfo->wc; 636 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 637 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 638 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 639 sqlite3WhereExprAnalyze(pSrc, pAndWC); 640 pAndWC->pOuter = pWC; 641 if( !db->mallocFailed ){ 642 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 643 assert( pAndTerm->pExpr ); 644 if( allowedOp(pAndTerm->pExpr->op) 645 || pAndTerm->eOperator==WO_AUX 646 ){ 647 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 648 } 649 } 650 } 651 indexable &= b; 652 } 653 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 654 /* Skip this term for now. We revisit it when we process the 655 ** corresponding TERM_VIRTUAL term */ 656 }else{ 657 Bitmask b; 658 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 659 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 660 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 661 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 662 } 663 indexable &= b; 664 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 665 chngToIN = 0; 666 }else{ 667 chngToIN &= b; 668 } 669 } 670 } 671 672 /* 673 ** Record the set of tables that satisfy case 3. The set might be 674 ** empty. 675 */ 676 pOrInfo->indexable = indexable; 677 if( indexable ){ 678 pTerm->eOperator = WO_OR; 679 pWC->hasOr = 1; 680 }else{ 681 pTerm->eOperator = WO_OR; 682 } 683 684 /* For a two-way OR, attempt to implementation case 2. 685 */ 686 if( indexable && pOrWc->nTerm==2 ){ 687 int iOne = 0; 688 WhereTerm *pOne; 689 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 690 int iTwo = 0; 691 WhereTerm *pTwo; 692 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 693 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 694 } 695 } 696 } 697 698 /* 699 ** chngToIN holds a set of tables that *might* satisfy case 1. But 700 ** we have to do some additional checking to see if case 1 really 701 ** is satisfied. 702 ** 703 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 704 ** that there is no possibility of transforming the OR clause into an 705 ** IN operator because one or more terms in the OR clause contain 706 ** something other than == on a column in the single table. The 1-bit 707 ** case means that every term of the OR clause is of the form 708 ** "table.column=expr" for some single table. The one bit that is set 709 ** will correspond to the common table. We still need to check to make 710 ** sure the same column is used on all terms. The 2-bit case is when 711 ** the all terms are of the form "table1.column=table2.column". It 712 ** might be possible to form an IN operator with either table1.column 713 ** or table2.column as the LHS if either is common to every term of 714 ** the OR clause. 715 ** 716 ** Note that terms of the form "table.column1=table.column2" (the 717 ** same table on both sizes of the ==) cannot be optimized. 718 */ 719 if( chngToIN ){ 720 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 721 int iColumn = -1; /* Column index on lhs of IN operator */ 722 int iCursor = -1; /* Table cursor common to all terms */ 723 int j = 0; /* Loop counter */ 724 725 /* Search for a table and column that appears on one side or the 726 ** other of the == operator in every subterm. That table and column 727 ** will be recorded in iCursor and iColumn. There might not be any 728 ** such table and column. Set okToChngToIN if an appropriate table 729 ** and column is found but leave okToChngToIN false if not found. 730 */ 731 for(j=0; j<2 && !okToChngToIN; j++){ 732 pOrTerm = pOrWc->a; 733 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 734 assert( pOrTerm->eOperator & WO_EQ ); 735 pOrTerm->wtFlags &= ~TERM_OR_OK; 736 if( pOrTerm->leftCursor==iCursor ){ 737 /* This is the 2-bit case and we are on the second iteration and 738 ** current term is from the first iteration. So skip this term. */ 739 assert( j==1 ); 740 continue; 741 } 742 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 743 pOrTerm->leftCursor))==0 ){ 744 /* This term must be of the form t1.a==t2.b where t2 is in the 745 ** chngToIN set but t1 is not. This term will be either preceded 746 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 747 ** and use its inversion. */ 748 testcase( pOrTerm->wtFlags & TERM_COPIED ); 749 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 750 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 751 continue; 752 } 753 iColumn = pOrTerm->u.leftColumn; 754 iCursor = pOrTerm->leftCursor; 755 break; 756 } 757 if( i<0 ){ 758 /* No candidate table+column was found. This can only occur 759 ** on the second iteration */ 760 assert( j==1 ); 761 assert( IsPowerOfTwo(chngToIN) ); 762 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 763 break; 764 } 765 testcase( j==1 ); 766 767 /* We have found a candidate table and column. Check to see if that 768 ** table and column is common to every term in the OR clause */ 769 okToChngToIN = 1; 770 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 771 assert( pOrTerm->eOperator & WO_EQ ); 772 if( pOrTerm->leftCursor!=iCursor ){ 773 pOrTerm->wtFlags &= ~TERM_OR_OK; 774 }else if( pOrTerm->u.leftColumn!=iColumn ){ 775 okToChngToIN = 0; 776 }else{ 777 int affLeft, affRight; 778 /* If the right-hand side is also a column, then the affinities 779 ** of both right and left sides must be such that no type 780 ** conversions are required on the right. (Ticket #2249) 781 */ 782 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 783 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 784 if( affRight!=0 && affRight!=affLeft ){ 785 okToChngToIN = 0; 786 }else{ 787 pOrTerm->wtFlags |= TERM_OR_OK; 788 } 789 } 790 } 791 } 792 793 /* At this point, okToChngToIN is true if original pTerm satisfies 794 ** case 1. In that case, construct a new virtual term that is 795 ** pTerm converted into an IN operator. 796 */ 797 if( okToChngToIN ){ 798 Expr *pDup; /* A transient duplicate expression */ 799 ExprList *pList = 0; /* The RHS of the IN operator */ 800 Expr *pLeft = 0; /* The LHS of the IN operator */ 801 Expr *pNew; /* The complete IN operator */ 802 803 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 804 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 805 assert( pOrTerm->eOperator & WO_EQ ); 806 assert( pOrTerm->leftCursor==iCursor ); 807 assert( pOrTerm->u.leftColumn==iColumn ); 808 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 809 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 810 pLeft = pOrTerm->pExpr->pLeft; 811 } 812 assert( pLeft!=0 ); 813 pDup = sqlite3ExprDup(db, pLeft, 0); 814 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 815 if( pNew ){ 816 int idxNew; 817 transferJoinMarkings(pNew, pExpr); 818 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 819 pNew->x.pList = pList; 820 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 821 testcase( idxNew==0 ); 822 exprAnalyze(pSrc, pWC, idxNew); 823 pTerm = &pWC->a[idxTerm]; 824 markTermAsChild(pWC, idxNew, idxTerm); 825 }else{ 826 sqlite3ExprListDelete(db, pList); 827 } 828 } 829 } 830 } 831 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 832 833 /* 834 ** We already know that pExpr is a binary operator where both operands are 835 ** column references. This routine checks to see if pExpr is an equivalence 836 ** relation: 837 ** 1. The SQLITE_Transitive optimization must be enabled 838 ** 2. Must be either an == or an IS operator 839 ** 3. Not originating in the ON clause of an OUTER JOIN 840 ** 4. The affinities of A and B must be compatible 841 ** 5a. Both operands use the same collating sequence OR 842 ** 5b. The overall collating sequence is BINARY 843 ** If this routine returns TRUE, that means that the RHS can be substituted 844 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 845 ** This is an optimization. No harm comes from returning 0. But if 1 is 846 ** returned when it should not be, then incorrect answers might result. 847 */ 848 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 849 char aff1, aff2; 850 CollSeq *pColl; 851 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 852 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 853 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 854 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 855 aff2 = sqlite3ExprAffinity(pExpr->pRight); 856 if( aff1!=aff2 857 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 858 ){ 859 return 0; 860 } 861 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 862 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 863 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight); 864 } 865 866 /* 867 ** Recursively walk the expressions of a SELECT statement and generate 868 ** a bitmask indicating which tables are used in that expression 869 ** tree. 870 */ 871 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 872 Bitmask mask = 0; 873 while( pS ){ 874 SrcList *pSrc = pS->pSrc; 875 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 876 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 877 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 878 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 879 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 880 if( ALWAYS(pSrc!=0) ){ 881 int i; 882 for(i=0; i<pSrc->nSrc; i++){ 883 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 884 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 885 if( pSrc->a[i].fg.isTabFunc ){ 886 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg); 887 } 888 } 889 } 890 pS = pS->pPrior; 891 } 892 return mask; 893 } 894 895 /* 896 ** Expression pExpr is one operand of a comparison operator that might 897 ** be useful for indexing. This routine checks to see if pExpr appears 898 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 899 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor 900 ** number of the table that is indexed and aiCurCol[1] to the column number 901 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 902 ** indexed. 903 ** 904 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 905 ** true even if that particular column is not indexed, because the column 906 ** might be added to an automatic index later. 907 */ 908 static SQLITE_NOINLINE int exprMightBeIndexed2( 909 SrcList *pFrom, /* The FROM clause */ 910 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 911 int *aiCurCol, /* Write the referenced table cursor and column here */ 912 Expr *pExpr /* An operand of a comparison operator */ 913 ){ 914 Index *pIdx; 915 int i; 916 int iCur; 917 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 918 iCur = pFrom->a[i].iCursor; 919 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 920 if( pIdx->aColExpr==0 ) continue; 921 for(i=0; i<pIdx->nKeyCol; i++){ 922 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 923 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 924 aiCurCol[0] = iCur; 925 aiCurCol[1] = XN_EXPR; 926 return 1; 927 } 928 } 929 } 930 return 0; 931 } 932 static int exprMightBeIndexed( 933 SrcList *pFrom, /* The FROM clause */ 934 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 935 int *aiCurCol, /* Write the referenced table cursor & column here */ 936 Expr *pExpr, /* An operand of a comparison operator */ 937 int op /* The specific comparison operator */ 938 ){ 939 /* If this expression is a vector to the left or right of a 940 ** inequality constraint (>, <, >= or <=), perform the processing 941 ** on the first element of the vector. */ 942 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 943 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 944 assert( op<=TK_GE ); 945 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 946 pExpr = pExpr->x.pList->a[0].pExpr; 947 } 948 949 if( pExpr->op==TK_COLUMN ){ 950 aiCurCol[0] = pExpr->iTable; 951 aiCurCol[1] = pExpr->iColumn; 952 return 1; 953 } 954 if( mPrereq==0 ) return 0; /* No table references */ 955 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 956 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr); 957 } 958 959 /* 960 ** The input to this routine is an WhereTerm structure with only the 961 ** "pExpr" field filled in. The job of this routine is to analyze the 962 ** subexpression and populate all the other fields of the WhereTerm 963 ** structure. 964 ** 965 ** If the expression is of the form "<expr> <op> X" it gets commuted 966 ** to the standard form of "X <op> <expr>". 967 ** 968 ** If the expression is of the form "X <op> Y" where both X and Y are 969 ** columns, then the original expression is unchanged and a new virtual 970 ** term of the form "Y <op> X" is added to the WHERE clause and 971 ** analyzed separately. The original term is marked with TERM_COPIED 972 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 973 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 974 ** is a commuted copy of a prior term.) The original term has nChild=1 975 ** and the copy has idxParent set to the index of the original term. 976 */ 977 static void exprAnalyze( 978 SrcList *pSrc, /* the FROM clause */ 979 WhereClause *pWC, /* the WHERE clause */ 980 int idxTerm /* Index of the term to be analyzed */ 981 ){ 982 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 983 WhereTerm *pTerm; /* The term to be analyzed */ 984 WhereMaskSet *pMaskSet; /* Set of table index masks */ 985 Expr *pExpr; /* The expression to be analyzed */ 986 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 987 Bitmask prereqAll; /* Prerequesites of pExpr */ 988 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 989 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 990 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 991 int noCase = 0; /* uppercase equivalent to lowercase */ 992 int op; /* Top-level operator. pExpr->op */ 993 Parse *pParse = pWInfo->pParse; /* Parsing context */ 994 sqlite3 *db = pParse->db; /* Database connection */ 995 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */ 996 int nLeft; /* Number of elements on left side vector */ 997 998 if( db->mallocFailed ){ 999 return; 1000 } 1001 pTerm = &pWC->a[idxTerm]; 1002 pMaskSet = &pWInfo->sMaskSet; 1003 pExpr = pTerm->pExpr; 1004 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 1005 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 1006 op = pExpr->op; 1007 if( op==TK_IN ){ 1008 assert( pExpr->pRight==0 ); 1009 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 1010 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1011 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 1012 }else{ 1013 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 1014 } 1015 }else if( op==TK_ISNULL ){ 1016 pTerm->prereqRight = 0; 1017 }else{ 1018 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 1019 } 1020 pMaskSet->bVarSelect = 0; 1021 prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr); 1022 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; 1023 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1024 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 1025 prereqAll |= x; 1026 extraRight = x-1; /* ON clause terms may not be used with an index 1027 ** on left table of a LEFT JOIN. Ticket #3015 */ 1028 if( (prereqAll>>1)>=x ){ 1029 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); 1030 return; 1031 } 1032 } 1033 pTerm->prereqAll = prereqAll; 1034 pTerm->leftCursor = -1; 1035 pTerm->iParent = -1; 1036 pTerm->eOperator = 0; 1037 if( allowedOp(op) ){ 1038 int aiCurCol[2]; 1039 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 1040 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 1041 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 1042 1043 if( pTerm->iField>0 ){ 1044 assert( op==TK_IN ); 1045 assert( pLeft->op==TK_VECTOR ); 1046 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 1047 } 1048 1049 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){ 1050 pTerm->leftCursor = aiCurCol[0]; 1051 pTerm->u.leftColumn = aiCurCol[1]; 1052 pTerm->eOperator = operatorMask(op) & opMask; 1053 } 1054 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 1055 if( pRight 1056 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op) 1057 ){ 1058 WhereTerm *pNew; 1059 Expr *pDup; 1060 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 1061 assert( pTerm->iField==0 ); 1062 if( pTerm->leftCursor>=0 ){ 1063 int idxNew; 1064 pDup = sqlite3ExprDup(db, pExpr, 0); 1065 if( db->mallocFailed ){ 1066 sqlite3ExprDelete(db, pDup); 1067 return; 1068 } 1069 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1070 if( idxNew==0 ) return; 1071 pNew = &pWC->a[idxNew]; 1072 markTermAsChild(pWC, idxNew, idxTerm); 1073 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 1074 pTerm = &pWC->a[idxTerm]; 1075 pTerm->wtFlags |= TERM_COPIED; 1076 1077 if( termIsEquivalence(pParse, pDup) ){ 1078 pTerm->eOperator |= WO_EQUIV; 1079 eExtraOp = WO_EQUIV; 1080 } 1081 }else{ 1082 pDup = pExpr; 1083 pNew = pTerm; 1084 } 1085 exprCommute(pParse, pDup); 1086 pNew->leftCursor = aiCurCol[0]; 1087 pNew->u.leftColumn = aiCurCol[1]; 1088 testcase( (prereqLeft | extraRight) != prereqLeft ); 1089 pNew->prereqRight = prereqLeft | extraRight; 1090 pNew->prereqAll = prereqAll; 1091 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1092 } 1093 } 1094 1095 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1096 /* If a term is the BETWEEN operator, create two new virtual terms 1097 ** that define the range that the BETWEEN implements. For example: 1098 ** 1099 ** a BETWEEN b AND c 1100 ** 1101 ** is converted into: 1102 ** 1103 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1104 ** 1105 ** The two new terms are added onto the end of the WhereClause object. 1106 ** The new terms are "dynamic" and are children of the original BETWEEN 1107 ** term. That means that if the BETWEEN term is coded, the children are 1108 ** skipped. Or, if the children are satisfied by an index, the original 1109 ** BETWEEN term is skipped. 1110 */ 1111 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1112 ExprList *pList = pExpr->x.pList; 1113 int i; 1114 static const u8 ops[] = {TK_GE, TK_LE}; 1115 assert( pList!=0 ); 1116 assert( pList->nExpr==2 ); 1117 for(i=0; i<2; i++){ 1118 Expr *pNewExpr; 1119 int idxNew; 1120 pNewExpr = sqlite3PExpr(pParse, ops[i], 1121 sqlite3ExprDup(db, pExpr->pLeft, 0), 1122 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 1123 transferJoinMarkings(pNewExpr, pExpr); 1124 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1125 testcase( idxNew==0 ); 1126 exprAnalyze(pSrc, pWC, idxNew); 1127 pTerm = &pWC->a[idxTerm]; 1128 markTermAsChild(pWC, idxNew, idxTerm); 1129 } 1130 } 1131 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1132 1133 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1134 /* Analyze a term that is composed of two or more subterms connected by 1135 ** an OR operator. 1136 */ 1137 else if( pExpr->op==TK_OR ){ 1138 assert( pWC->op==TK_AND ); 1139 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1140 pTerm = &pWC->a[idxTerm]; 1141 } 1142 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1143 1144 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1145 /* Add constraints to reduce the search space on a LIKE or GLOB 1146 ** operator. 1147 ** 1148 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1149 ** 1150 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1151 ** 1152 ** The last character of the prefix "abc" is incremented to form the 1153 ** termination condition "abd". If case is not significant (the default 1154 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1155 ** bound is made all lowercase so that the bounds also work when comparing 1156 ** BLOBs. 1157 */ 1158 if( pWC->op==TK_AND 1159 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1160 ){ 1161 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1162 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1163 Expr *pNewExpr1; 1164 Expr *pNewExpr2; 1165 int idxNew1; 1166 int idxNew2; 1167 const char *zCollSeqName; /* Name of collating sequence */ 1168 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1169 1170 pLeft = pExpr->x.pList->a[1].pExpr; 1171 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1172 1173 /* Convert the lower bound to upper-case and the upper bound to 1174 ** lower-case (upper-case is less than lower-case in ASCII) so that 1175 ** the range constraints also work for BLOBs 1176 */ 1177 if( noCase && !pParse->db->mallocFailed ){ 1178 int i; 1179 char c; 1180 pTerm->wtFlags |= TERM_LIKE; 1181 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1182 pStr1->u.zToken[i] = sqlite3Toupper(c); 1183 pStr2->u.zToken[i] = sqlite3Tolower(c); 1184 } 1185 } 1186 1187 if( !db->mallocFailed ){ 1188 u8 c, *pC; /* Last character before the first wildcard */ 1189 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1190 c = *pC; 1191 if( noCase ){ 1192 /* The point is to increment the last character before the first 1193 ** wildcard. But if we increment '@', that will push it into the 1194 ** alphabetic range where case conversions will mess up the 1195 ** inequality. To avoid this, make sure to also run the full 1196 ** LIKE on all candidate expressions by clearing the isComplete flag 1197 */ 1198 if( c=='A'-1 ) isComplete = 0; 1199 c = sqlite3UpperToLower[c]; 1200 } 1201 *pC = c + 1; 1202 } 1203 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1204 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1205 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1206 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1207 pStr1); 1208 transferJoinMarkings(pNewExpr1, pExpr); 1209 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1210 testcase( idxNew1==0 ); 1211 exprAnalyze(pSrc, pWC, idxNew1); 1212 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1213 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1214 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1215 pStr2); 1216 transferJoinMarkings(pNewExpr2, pExpr); 1217 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1218 testcase( idxNew2==0 ); 1219 exprAnalyze(pSrc, pWC, idxNew2); 1220 pTerm = &pWC->a[idxTerm]; 1221 if( isComplete ){ 1222 markTermAsChild(pWC, idxNew1, idxTerm); 1223 markTermAsChild(pWC, idxNew2, idxTerm); 1224 } 1225 } 1226 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1227 1228 #ifndef SQLITE_OMIT_VIRTUALTABLE 1229 /* Add a WO_AUX auxiliary term to the constraint set if the 1230 ** current expression is of the form "column OP expr" where OP 1231 ** is an operator that gets passed into virtual tables but which is 1232 ** not normally optimized for ordinary tables. In other words, OP 1233 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL. 1234 ** This information is used by the xBestIndex methods of 1235 ** virtual tables. The native query optimizer does not attempt 1236 ** to do anything with MATCH functions. 1237 */ 1238 if( pWC->op==TK_AND ){ 1239 Expr *pRight = 0, *pLeft = 0; 1240 int res = isAuxiliaryVtabOperator(pExpr, &eOp2, &pLeft, &pRight); 1241 while( res-- > 0 ){ 1242 int idxNew; 1243 WhereTerm *pNewTerm; 1244 Bitmask prereqColumn, prereqExpr; 1245 1246 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1247 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1248 if( (prereqExpr & prereqColumn)==0 ){ 1249 Expr *pNewExpr; 1250 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1251 0, sqlite3ExprDup(db, pRight, 0)); 1252 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){ 1253 ExprSetProperty(pNewExpr, EP_FromJoin); 1254 } 1255 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1256 testcase( idxNew==0 ); 1257 pNewTerm = &pWC->a[idxNew]; 1258 pNewTerm->prereqRight = prereqExpr; 1259 pNewTerm->leftCursor = pLeft->iTable; 1260 pNewTerm->u.leftColumn = pLeft->iColumn; 1261 pNewTerm->eOperator = WO_AUX; 1262 pNewTerm->eMatchOp = eOp2; 1263 markTermAsChild(pWC, idxNew, idxTerm); 1264 pTerm = &pWC->a[idxTerm]; 1265 pTerm->wtFlags |= TERM_COPIED; 1266 pNewTerm->prereqAll = pTerm->prereqAll; 1267 } 1268 SWAP(Expr*, pLeft, pRight); 1269 } 1270 } 1271 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1272 1273 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1274 ** new terms for each component comparison - "a = ?" and "b = ?". The 1275 ** new terms completely replace the original vector comparison, which is 1276 ** no longer used. 1277 ** 1278 ** This is only required if at least one side of the comparison operation 1279 ** is not a sub-select. */ 1280 if( pWC->op==TK_AND 1281 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1282 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 1283 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft 1284 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1285 || (pExpr->pRight->flags & EP_xIsSelect)==0) 1286 ){ 1287 int i; 1288 for(i=0; i<nLeft; i++){ 1289 int idxNew; 1290 Expr *pNew; 1291 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 1292 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 1293 1294 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 1295 transferJoinMarkings(pNew, pExpr); 1296 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1297 exprAnalyze(pSrc, pWC, idxNew); 1298 } 1299 pTerm = &pWC->a[idxTerm]; 1300 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1301 pTerm->eOperator = 0; 1302 } 1303 1304 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1305 ** a virtual term for each vector component. The expression object 1306 ** used by each such virtual term is pExpr (the full vector IN(...) 1307 ** expression). The WhereTerm.iField variable identifies the index within 1308 ** the vector on the LHS that the virtual term represents. 1309 ** 1310 ** This only works if the RHS is a simple SELECT, not a compound 1311 */ 1312 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 1313 && pExpr->pLeft->op==TK_VECTOR 1314 && pExpr->x.pSelect->pPrior==0 1315 ){ 1316 int i; 1317 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1318 int idxNew; 1319 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1320 pWC->a[idxNew].iField = i+1; 1321 exprAnalyze(pSrc, pWC, idxNew); 1322 markTermAsChild(pWC, idxNew, idxTerm); 1323 } 1324 } 1325 1326 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1327 /* When sqlite_stat3 histogram data is available an operator of the 1328 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1329 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1330 ** virtual term of that form. 1331 ** 1332 ** Note that the virtual term must be tagged with TERM_VNULL. 1333 */ 1334 if( pExpr->op==TK_NOTNULL 1335 && pExpr->pLeft->op==TK_COLUMN 1336 && pExpr->pLeft->iColumn>=0 1337 && OptimizationEnabled(db, SQLITE_Stat34) 1338 ){ 1339 Expr *pNewExpr; 1340 Expr *pLeft = pExpr->pLeft; 1341 int idxNew; 1342 WhereTerm *pNewTerm; 1343 1344 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1345 sqlite3ExprDup(db, pLeft, 0), 1346 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 1347 1348 idxNew = whereClauseInsert(pWC, pNewExpr, 1349 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1350 if( idxNew ){ 1351 pNewTerm = &pWC->a[idxNew]; 1352 pNewTerm->prereqRight = 0; 1353 pNewTerm->leftCursor = pLeft->iTable; 1354 pNewTerm->u.leftColumn = pLeft->iColumn; 1355 pNewTerm->eOperator = WO_GT; 1356 markTermAsChild(pWC, idxNew, idxTerm); 1357 pTerm = &pWC->a[idxTerm]; 1358 pTerm->wtFlags |= TERM_COPIED; 1359 pNewTerm->prereqAll = pTerm->prereqAll; 1360 } 1361 } 1362 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1363 1364 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1365 ** an index for tables to the left of the join. 1366 */ 1367 testcase( pTerm!=&pWC->a[idxTerm] ); 1368 pTerm = &pWC->a[idxTerm]; 1369 pTerm->prereqRight |= extraRight; 1370 } 1371 1372 /*************************************************************************** 1373 ** Routines with file scope above. Interface to the rest of the where.c 1374 ** subsystem follows. 1375 ***************************************************************************/ 1376 1377 /* 1378 ** This routine identifies subexpressions in the WHERE clause where 1379 ** each subexpression is separated by the AND operator or some other 1380 ** operator specified in the op parameter. The WhereClause structure 1381 ** is filled with pointers to subexpressions. For example: 1382 ** 1383 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1384 ** \________/ \_______________/ \________________/ 1385 ** slot[0] slot[1] slot[2] 1386 ** 1387 ** The original WHERE clause in pExpr is unaltered. All this routine 1388 ** does is make slot[] entries point to substructure within pExpr. 1389 ** 1390 ** In the previous sentence and in the diagram, "slot[]" refers to 1391 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1392 ** all terms of the WHERE clause. 1393 */ 1394 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1395 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1396 pWC->op = op; 1397 if( pE2==0 ) return; 1398 if( pE2->op!=op ){ 1399 whereClauseInsert(pWC, pExpr, 0); 1400 }else{ 1401 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1402 sqlite3WhereSplit(pWC, pE2->pRight, op); 1403 } 1404 } 1405 1406 /* 1407 ** Initialize a preallocated WhereClause structure. 1408 */ 1409 void sqlite3WhereClauseInit( 1410 WhereClause *pWC, /* The WhereClause to be initialized */ 1411 WhereInfo *pWInfo /* The WHERE processing context */ 1412 ){ 1413 pWC->pWInfo = pWInfo; 1414 pWC->hasOr = 0; 1415 pWC->pOuter = 0; 1416 pWC->nTerm = 0; 1417 pWC->nSlot = ArraySize(pWC->aStatic); 1418 pWC->a = pWC->aStatic; 1419 } 1420 1421 /* 1422 ** Deallocate a WhereClause structure. The WhereClause structure 1423 ** itself is not freed. This routine is the inverse of 1424 ** sqlite3WhereClauseInit(). 1425 */ 1426 void sqlite3WhereClauseClear(WhereClause *pWC){ 1427 int i; 1428 WhereTerm *a; 1429 sqlite3 *db = pWC->pWInfo->pParse->db; 1430 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1431 if( a->wtFlags & TERM_DYNAMIC ){ 1432 sqlite3ExprDelete(db, a->pExpr); 1433 } 1434 if( a->wtFlags & TERM_ORINFO ){ 1435 whereOrInfoDelete(db, a->u.pOrInfo); 1436 }else if( a->wtFlags & TERM_ANDINFO ){ 1437 whereAndInfoDelete(db, a->u.pAndInfo); 1438 } 1439 } 1440 if( pWC->a!=pWC->aStatic ){ 1441 sqlite3DbFree(db, pWC->a); 1442 } 1443 } 1444 1445 1446 /* 1447 ** These routines walk (recursively) an expression tree and generate 1448 ** a bitmask indicating which tables are used in that expression 1449 ** tree. 1450 */ 1451 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){ 1452 Bitmask mask; 1453 if( p->op==TK_COLUMN ){ 1454 return sqlite3WhereGetMask(pMaskSet, p->iTable); 1455 }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1456 assert( p->op!=TK_IF_NULL_ROW ); 1457 return 0; 1458 } 1459 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; 1460 if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft); 1461 if( p->pRight ){ 1462 mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight); 1463 assert( p->x.pList==0 ); 1464 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1465 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; 1466 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1467 }else if( p->x.pList ){ 1468 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1469 } 1470 return mask; 1471 } 1472 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1473 return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0; 1474 } 1475 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1476 int i; 1477 Bitmask mask = 0; 1478 if( pList ){ 1479 for(i=0; i<pList->nExpr; i++){ 1480 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1481 } 1482 } 1483 return mask; 1484 } 1485 1486 1487 /* 1488 ** Call exprAnalyze on all terms in a WHERE clause. 1489 ** 1490 ** Note that exprAnalyze() might add new virtual terms onto the 1491 ** end of the WHERE clause. We do not want to analyze these new 1492 ** virtual terms, so start analyzing at the end and work forward 1493 ** so that the added virtual terms are never processed. 1494 */ 1495 void sqlite3WhereExprAnalyze( 1496 SrcList *pTabList, /* the FROM clause */ 1497 WhereClause *pWC /* the WHERE clause to be analyzed */ 1498 ){ 1499 int i; 1500 for(i=pWC->nTerm-1; i>=0; i--){ 1501 exprAnalyze(pTabList, pWC, i); 1502 } 1503 } 1504 1505 /* 1506 ** For table-valued-functions, transform the function arguments into 1507 ** new WHERE clause terms. 1508 ** 1509 ** Each function argument translates into an equality constraint against 1510 ** a HIDDEN column in the table. 1511 */ 1512 void sqlite3WhereTabFuncArgs( 1513 Parse *pParse, /* Parsing context */ 1514 struct SrcList_item *pItem, /* The FROM clause term to process */ 1515 WhereClause *pWC /* Xfer function arguments to here */ 1516 ){ 1517 Table *pTab; 1518 int j, k; 1519 ExprList *pArgs; 1520 Expr *pColRef; 1521 Expr *pTerm; 1522 if( pItem->fg.isTabFunc==0 ) return; 1523 pTab = pItem->pTab; 1524 assert( pTab!=0 ); 1525 pArgs = pItem->u1.pFuncArg; 1526 if( pArgs==0 ) return; 1527 for(j=k=0; j<pArgs->nExpr; j++){ 1528 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1529 if( k>=pTab->nCol ){ 1530 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1531 pTab->zName, j); 1532 return; 1533 } 1534 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1535 if( pColRef==0 ) return; 1536 pColRef->iTable = pItem->iCursor; 1537 pColRef->iColumn = k++; 1538 pColRef->pTab = pTab; 1539 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1540 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); 1541 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1542 } 1543 } 1544