xref: /sqlite-3.40.0/src/whereexpr.c (revision a3bc8425)
1 /*
2 ** 2015-06-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity.  This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declarations */
23 static void exprAnalyze(SrcList*, WhereClause*, int);
24 
25 /*
26 ** Deallocate all memory associated with a WhereOrInfo object.
27 */
28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
29   sqlite3WhereClauseClear(&p->wc);
30   sqlite3DbFree(db, p);
31 }
32 
33 /*
34 ** Deallocate all memory associated with a WhereAndInfo object.
35 */
36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
37   sqlite3WhereClauseClear(&p->wc);
38   sqlite3DbFree(db, p);
39 }
40 
41 /*
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error.  The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
48 **
49 ** This routine will increase the size of the pWC->a[] array as necessary.
50 **
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
54 **
55 ** WARNING:  This routine might reallocate the space used to store
56 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
57 ** calling this routine.  Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
59 */
60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
61   WhereTerm *pTerm;
62   int idx;
63   testcase( wtFlags & TERM_VIRTUAL );
64   if( pWC->nTerm>=pWC->nSlot ){
65     WhereTerm *pOld = pWC->a;
66     sqlite3 *db = pWC->pWInfo->pParse->db;
67     pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
68     if( pWC->a==0 ){
69       if( wtFlags & TERM_DYNAMIC ){
70         sqlite3ExprDelete(db, p);
71       }
72       pWC->a = pOld;
73       return 0;
74     }
75     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
76     if( pOld!=pWC->aStatic ){
77       sqlite3DbFree(db, pOld);
78     }
79     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
80   }
81   pTerm = &pWC->a[idx = pWC->nTerm++];
82   if( p && ExprHasProperty(p, EP_Unlikely) ){
83     pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
84   }else{
85     pTerm->truthProb = 1;
86   }
87   pTerm->pExpr = sqlite3ExprSkipCollate(p);
88   pTerm->wtFlags = wtFlags;
89   pTerm->pWC = pWC;
90   pTerm->iParent = -1;
91   memset(&pTerm->eOperator, 0,
92          sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
93   return idx;
94 }
95 
96 /*
97 ** Return TRUE if the given operator is one of the operators that is
98 ** allowed for an indexable WHERE clause term.  The allowed operators are
99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
100 */
101 static int allowedOp(int op){
102   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
103   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
104   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
105   assert( TK_GE==TK_EQ+4 );
106   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
107 }
108 
109 /*
110 ** Commute a comparison operator.  Expressions of the form "X op Y"
111 ** are converted into "Y op X".
112 **
113 ** If left/right precedence rules come into play when determining the
114 ** collating sequence, then COLLATE operators are adjusted to ensure
115 ** that the collating sequence does not change.  For example:
116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
117 ** the left hand side of a comparison overrides any collation sequence
118 ** attached to the right. For the same reason the EP_Collate flag
119 ** is not commuted.
120 */
121 static void exprCommute(Parse *pParse, Expr *pExpr){
122   u16 expRight = (pExpr->pRight->flags & EP_Collate);
123   u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
124   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
125   if( expRight==expLeft ){
126     /* Either X and Y both have COLLATE operator or neither do */
127     if( expRight ){
128       /* Both X and Y have COLLATE operators.  Make sure X is always
129       ** used by clearing the EP_Collate flag from Y. */
130       pExpr->pRight->flags &= ~EP_Collate;
131     }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){
132       /* Neither X nor Y have COLLATE operators, but X has a non-default
133       ** collating sequence.  So add the EP_Collate marker on X to cause
134       ** it to be searched first. */
135       pExpr->pLeft->flags |= EP_Collate;
136     }
137   }
138   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
139   if( pExpr->op>=TK_GT ){
140     assert( TK_LT==TK_GT+2 );
141     assert( TK_GE==TK_LE+2 );
142     assert( TK_GT>TK_EQ );
143     assert( TK_GT<TK_LE );
144     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
145     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
146   }
147 }
148 
149 /*
150 ** Translate from TK_xx operator to WO_xx bitmask.
151 */
152 static u16 operatorMask(int op){
153   u16 c;
154   assert( allowedOp(op) );
155   if( op==TK_IN ){
156     c = WO_IN;
157   }else if( op==TK_ISNULL ){
158     c = WO_ISNULL;
159   }else if( op==TK_IS ){
160     c = WO_IS;
161   }else{
162     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
163     c = (u16)(WO_EQ<<(op-TK_EQ));
164   }
165   assert( op!=TK_ISNULL || c==WO_ISNULL );
166   assert( op!=TK_IN || c==WO_IN );
167   assert( op!=TK_EQ || c==WO_EQ );
168   assert( op!=TK_LT || c==WO_LT );
169   assert( op!=TK_LE || c==WO_LE );
170   assert( op!=TK_GT || c==WO_GT );
171   assert( op!=TK_GE || c==WO_GE );
172   assert( op!=TK_IS || c==WO_IS );
173   return c;
174 }
175 
176 
177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
178 /*
179 ** Check to see if the given expression is a LIKE or GLOB operator that
180 ** can be optimized using inequality constraints.  Return TRUE if it is
181 ** so and false if not.
182 **
183 ** In order for the operator to be optimizible, the RHS must be a string
184 ** literal that does not begin with a wildcard.  The LHS must be a column
185 ** that may only be NULL, a string, or a BLOB, never a number. (This means
186 ** that virtual tables cannot participate in the LIKE optimization.)  The
187 ** collating sequence for the column on the LHS must be appropriate for
188 ** the operator.
189 */
190 static int isLikeOrGlob(
191   Parse *pParse,    /* Parsing and code generating context */
192   Expr *pExpr,      /* Test this expression */
193   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
194   int *pisComplete, /* True if the only wildcard is % in the last character */
195   int *pnoCase      /* True if uppercase is equivalent to lowercase */
196 ){
197   const u8 *z = 0;         /* String on RHS of LIKE operator */
198   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
199   ExprList *pList;           /* List of operands to the LIKE operator */
200   int c;                     /* One character in z[] */
201   int cnt;                   /* Number of non-wildcard prefix characters */
202   char wc[4];                /* Wildcard characters */
203   sqlite3 *db = pParse->db;  /* Database connection */
204   sqlite3_value *pVal = 0;
205   int op;                    /* Opcode of pRight */
206   int rc;                    /* Result code to return */
207 
208   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
209     return 0;
210   }
211 #ifdef SQLITE_EBCDIC
212   if( *pnoCase ) return 0;
213 #endif
214   pList = pExpr->x.pList;
215   pLeft = pList->a[1].pExpr;
216 
217   pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
218   op = pRight->op;
219   if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
220     Vdbe *pReprepare = pParse->pReprepare;
221     int iCol = pRight->iColumn;
222     pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
223     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
224       z = sqlite3_value_text(pVal);
225     }
226     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
227     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
228   }else if( op==TK_STRING ){
229     z = (u8*)pRight->u.zToken;
230   }
231   if( z ){
232 
233     /* If the RHS begins with a digit or a minus sign, then the LHS must
234     ** be an ordinary column (not a virtual table column) with TEXT affinity.
235     ** Otherwise the LHS might be numeric and "lhs >= rhs" would be false
236     ** even though "lhs LIKE rhs" is true.  But if the RHS does not start
237     ** with a digit or '-', then "lhs LIKE rhs" will always be false if
238     ** the LHS is numeric and so the optimization still works.
239     */
240     if( sqlite3Isdigit(z[0]) || z[0]=='-' ){
241       if( pLeft->op!=TK_COLUMN
242        || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
243        || IsVirtual(pLeft->pTab)  /* Value might be numeric */
244       ){
245         sqlite3ValueFree(pVal);
246         return 0;
247       }
248     }
249 
250     /* Count the number of prefix characters prior to the first wildcard */
251     cnt = 0;
252     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
253       cnt++;
254       if( c==wc[3] && z[cnt]!=0 ) cnt++;
255     }
256 
257     /* The optimization is possible only if (1) the pattern does not begin
258     ** with a wildcard and if (2) the non-wildcard prefix does not end with
259     ** an (illegal 0xff) character.  The second condition is necessary so
260     ** that we can increment the prefix key to find an upper bound for the
261     ** range search.
262     */
263     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
264       Expr *pPrefix;
265 
266       /* A "complete" match if the pattern ends with "*" or "%" */
267       *pisComplete = c==wc[0] && z[cnt+1]==0;
268 
269       /* Get the pattern prefix.  Remove all escapes from the prefix. */
270       pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
271       if( pPrefix ){
272         int iFrom, iTo;
273         char *zNew = pPrefix->u.zToken;
274         zNew[cnt] = 0;
275         for(iFrom=iTo=0; iFrom<cnt; iFrom++){
276           if( zNew[iFrom]==wc[3] ) iFrom++;
277           zNew[iTo++] = zNew[iFrom];
278         }
279         zNew[iTo] = 0;
280       }
281       *ppPrefix = pPrefix;
282 
283       /* If the RHS pattern is a bound parameter, make arrangements to
284       ** reprepare the statement when that parameter is rebound */
285       if( op==TK_VARIABLE ){
286         Vdbe *v = pParse->pVdbe;
287         sqlite3VdbeSetVarmask(v, pRight->iColumn);
288         if( *pisComplete && pRight->u.zToken[1] ){
289           /* If the rhs of the LIKE expression is a variable, and the current
290           ** value of the variable means there is no need to invoke the LIKE
291           ** function, then no OP_Variable will be added to the program.
292           ** This causes problems for the sqlite3_bind_parameter_name()
293           ** API. To work around them, add a dummy OP_Variable here.
294           */
295           int r1 = sqlite3GetTempReg(pParse);
296           sqlite3ExprCodeTarget(pParse, pRight, r1);
297           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
298           sqlite3ReleaseTempReg(pParse, r1);
299         }
300       }
301     }else{
302       z = 0;
303     }
304   }
305 
306   rc = (z!=0);
307   sqlite3ValueFree(pVal);
308   return rc;
309 }
310 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
311 
312 
313 #ifndef SQLITE_OMIT_VIRTUALTABLE
314 /*
315 ** Check to see if the pExpr expression is a form that needs to be passed
316 ** to the xBestIndex method of virtual tables.  Forms of interest include:
317 **
318 **          Expression                   Virtual Table Operator
319 **          -----------------------      ---------------------------------
320 **      1.  column MATCH expr            SQLITE_INDEX_CONSTRAINT_MATCH
321 **      2.  column GLOB expr             SQLITE_INDEX_CONSTRAINT_GLOB
322 **      3.  column LIKE expr             SQLITE_INDEX_CONSTRAINT_LIKE
323 **      4.  column REGEXP expr           SQLITE_INDEX_CONSTRAINT_REGEXP
324 **      5.  column != expr               SQLITE_INDEX_CONSTRAINT_NE
325 **      6.  expr != column               SQLITE_INDEX_CONSTRAINT_NE
326 **      7.  column IS NOT expr           SQLITE_INDEX_CONSTRAINT_ISNOT
327 **      8.  expr IS NOT column           SQLITE_INDEX_CONSTRAINT_ISNOT
328 **      9.  column IS NOT NULL           SQLITE_INDEX_CONSTRAINT_ISNOTNULL
329 **
330 ** In every case, "column" must be a column of a virtual table.  If there
331 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
332 ** "expr" expression (even though in forms (6) and (8) the column is on the
333 ** right and the expression is on the left).  Also set *peOp2 to the
334 ** appropriate virtual table operator.  The return value is 1 or 2 if there
335 ** is a match.  The usual return is 1, but if the RHS is also a column
336 ** of virtual table in forms (5) or (7) then return 2.
337 **
338 ** If the expression matches none of the patterns above, return 0.
339 */
340 static int isAuxiliaryVtabOperator(
341   Expr *pExpr,                    /* Test this expression */
342   unsigned char *peOp2,           /* OUT: 0 for MATCH, or else an op2 value */
343   Expr **ppLeft,                  /* Column expression to left of MATCH/op2 */
344   Expr **ppRight                  /* Expression to left of MATCH/op2 */
345 ){
346   if( pExpr->op==TK_FUNCTION ){
347     static const struct Op2 {
348       const char *zOp;
349       unsigned char eOp2;
350     } aOp[] = {
351       { "match",  SQLITE_INDEX_CONSTRAINT_MATCH },
352       { "glob",   SQLITE_INDEX_CONSTRAINT_GLOB },
353       { "like",   SQLITE_INDEX_CONSTRAINT_LIKE },
354       { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
355     };
356     ExprList *pList;
357     Expr *pCol;                     /* Column reference */
358     int i;
359 
360     pList = pExpr->x.pList;
361     if( pList==0 || pList->nExpr!=2 ){
362       return 0;
363     }
364     pCol = pList->a[1].pExpr;
365     if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){
366       return 0;
367     }
368     for(i=0; i<ArraySize(aOp); i++){
369       if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
370         *peOp2 = aOp[i].eOp2;
371         *ppRight = pList->a[0].pExpr;
372         *ppLeft = pCol;
373         return 1;
374       }
375     }
376   }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
377     int res = 0;
378     Expr *pLeft = pExpr->pLeft;
379     Expr *pRight = pExpr->pRight;
380     if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->pTab) ){
381       res++;
382     }
383     if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->pTab) ){
384       res++;
385       SWAP(Expr*, pLeft, pRight);
386     }
387     *ppLeft = pLeft;
388     *ppRight = pRight;
389     if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
390     if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
391     if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
392     return res;
393   }
394   return 0;
395 }
396 #endif /* SQLITE_OMIT_VIRTUALTABLE */
397 
398 /*
399 ** If the pBase expression originated in the ON or USING clause of
400 ** a join, then transfer the appropriate markings over to derived.
401 */
402 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
403   if( pDerived ){
404     pDerived->flags |= pBase->flags & EP_FromJoin;
405     pDerived->iRightJoinTable = pBase->iRightJoinTable;
406   }
407 }
408 
409 /*
410 ** Mark term iChild as being a child of term iParent
411 */
412 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
413   pWC->a[iChild].iParent = iParent;
414   pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
415   pWC->a[iParent].nChild++;
416 }
417 
418 /*
419 ** Return the N-th AND-connected subterm of pTerm.  Or if pTerm is not
420 ** a conjunction, then return just pTerm when N==0.  If N is exceeds
421 ** the number of available subterms, return NULL.
422 */
423 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
424   if( pTerm->eOperator!=WO_AND ){
425     return N==0 ? pTerm : 0;
426   }
427   if( N<pTerm->u.pAndInfo->wc.nTerm ){
428     return &pTerm->u.pAndInfo->wc.a[N];
429   }
430   return 0;
431 }
432 
433 /*
434 ** Subterms pOne and pTwo are contained within WHERE clause pWC.  The
435 ** two subterms are in disjunction - they are OR-ed together.
436 **
437 ** If these two terms are both of the form:  "A op B" with the same
438 ** A and B values but different operators and if the operators are
439 ** compatible (if one is = and the other is <, for example) then
440 ** add a new virtual AND term to pWC that is the combination of the
441 ** two.
442 **
443 ** Some examples:
444 **
445 **    x<y OR x=y    -->     x<=y
446 **    x=y OR x=y    -->     x=y
447 **    x<=y OR x<y   -->     x<=y
448 **
449 ** The following is NOT generated:
450 **
451 **    x<y OR x>y    -->     x!=y
452 */
453 static void whereCombineDisjuncts(
454   SrcList *pSrc,         /* the FROM clause */
455   WhereClause *pWC,      /* The complete WHERE clause */
456   WhereTerm *pOne,       /* First disjunct */
457   WhereTerm *pTwo        /* Second disjunct */
458 ){
459   u16 eOp = pOne->eOperator | pTwo->eOperator;
460   sqlite3 *db;           /* Database connection (for malloc) */
461   Expr *pNew;            /* New virtual expression */
462   int op;                /* Operator for the combined expression */
463   int idxNew;            /* Index in pWC of the next virtual term */
464 
465   if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
466   if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
467   if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
468    && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
469   assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
470   assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
471   if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
472   if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
473   /* If we reach this point, it means the two subterms can be combined */
474   if( (eOp & (eOp-1))!=0 ){
475     if( eOp & (WO_LT|WO_LE) ){
476       eOp = WO_LE;
477     }else{
478       assert( eOp & (WO_GT|WO_GE) );
479       eOp = WO_GE;
480     }
481   }
482   db = pWC->pWInfo->pParse->db;
483   pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
484   if( pNew==0 ) return;
485   for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
486   pNew->op = op;
487   idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
488   exprAnalyze(pSrc, pWC, idxNew);
489 }
490 
491 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
492 /*
493 ** Analyze a term that consists of two or more OR-connected
494 ** subterms.  So in:
495 **
496 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
497 **                          ^^^^^^^^^^^^^^^^^^^^
498 **
499 ** This routine analyzes terms such as the middle term in the above example.
500 ** A WhereOrTerm object is computed and attached to the term under
501 ** analysis, regardless of the outcome of the analysis.  Hence:
502 **
503 **     WhereTerm.wtFlags   |=  TERM_ORINFO
504 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
505 **
506 ** The term being analyzed must have two or more of OR-connected subterms.
507 ** A single subterm might be a set of AND-connected sub-subterms.
508 ** Examples of terms under analysis:
509 **
510 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
511 **     (B)     x=expr1 OR expr2=x OR x=expr3
512 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
513 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
514 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
515 **     (F)     x>A OR (x=A AND y>=B)
516 **
517 ** CASE 1:
518 **
519 ** If all subterms are of the form T.C=expr for some single column of C and
520 ** a single table T (as shown in example B above) then create a new virtual
521 ** term that is an equivalent IN expression.  In other words, if the term
522 ** being analyzed is:
523 **
524 **      x = expr1  OR  expr2 = x  OR  x = expr3
525 **
526 ** then create a new virtual term like this:
527 **
528 **      x IN (expr1,expr2,expr3)
529 **
530 ** CASE 2:
531 **
532 ** If there are exactly two disjuncts and one side has x>A and the other side
533 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
534 ** WHERE clause of the form "x>=A".  Example:
535 **
536 **      x>A OR (x=A AND y>B)    adds:    x>=A
537 **
538 ** The added conjunct can sometimes be helpful in query planning.
539 **
540 ** CASE 3:
541 **
542 ** If all subterms are indexable by a single table T, then set
543 **
544 **     WhereTerm.eOperator              =  WO_OR
545 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
546 **
547 ** A subterm is "indexable" if it is of the form
548 ** "T.C <op> <expr>" where C is any column of table T and
549 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
550 ** A subterm is also indexable if it is an AND of two or more
551 ** subsubterms at least one of which is indexable.  Indexable AND
552 ** subterms have their eOperator set to WO_AND and they have
553 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
554 **
555 ** From another point of view, "indexable" means that the subterm could
556 ** potentially be used with an index if an appropriate index exists.
557 ** This analysis does not consider whether or not the index exists; that
558 ** is decided elsewhere.  This analysis only looks at whether subterms
559 ** appropriate for indexing exist.
560 **
561 ** All examples A through E above satisfy case 3.  But if a term
562 ** also satisfies case 1 (such as B) we know that the optimizer will
563 ** always prefer case 1, so in that case we pretend that case 3 is not
564 ** satisfied.
565 **
566 ** It might be the case that multiple tables are indexable.  For example,
567 ** (E) above is indexable on tables P, Q, and R.
568 **
569 ** Terms that satisfy case 3 are candidates for lookup by using
570 ** separate indices to find rowids for each subterm and composing
571 ** the union of all rowids using a RowSet object.  This is similar
572 ** to "bitmap indices" in other database engines.
573 **
574 ** OTHERWISE:
575 **
576 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
577 ** zero.  This term is not useful for search.
578 */
579 static void exprAnalyzeOrTerm(
580   SrcList *pSrc,            /* the FROM clause */
581   WhereClause *pWC,         /* the complete WHERE clause */
582   int idxTerm               /* Index of the OR-term to be analyzed */
583 ){
584   WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
585   Parse *pParse = pWInfo->pParse;         /* Parser context */
586   sqlite3 *db = pParse->db;               /* Database connection */
587   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
588   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
589   int i;                                  /* Loop counters */
590   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
591   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
592   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
593   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
594   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
595 
596   /*
597   ** Break the OR clause into its separate subterms.  The subterms are
598   ** stored in a WhereClause structure containing within the WhereOrInfo
599   ** object that is attached to the original OR clause term.
600   */
601   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
602   assert( pExpr->op==TK_OR );
603   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
604   if( pOrInfo==0 ) return;
605   pTerm->wtFlags |= TERM_ORINFO;
606   pOrWc = &pOrInfo->wc;
607   memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
608   sqlite3WhereClauseInit(pOrWc, pWInfo);
609   sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
610   sqlite3WhereExprAnalyze(pSrc, pOrWc);
611   if( db->mallocFailed ) return;
612   assert( pOrWc->nTerm>=2 );
613 
614   /*
615   ** Compute the set of tables that might satisfy cases 1 or 3.
616   */
617   indexable = ~(Bitmask)0;
618   chngToIN = ~(Bitmask)0;
619   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
620     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
621       WhereAndInfo *pAndInfo;
622       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
623       chngToIN = 0;
624       pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
625       if( pAndInfo ){
626         WhereClause *pAndWC;
627         WhereTerm *pAndTerm;
628         int j;
629         Bitmask b = 0;
630         pOrTerm->u.pAndInfo = pAndInfo;
631         pOrTerm->wtFlags |= TERM_ANDINFO;
632         pOrTerm->eOperator = WO_AND;
633         pAndWC = &pAndInfo->wc;
634         memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
635         sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
636         sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
637         sqlite3WhereExprAnalyze(pSrc, pAndWC);
638         pAndWC->pOuter = pWC;
639         if( !db->mallocFailed ){
640           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
641             assert( pAndTerm->pExpr );
642             if( allowedOp(pAndTerm->pExpr->op)
643              || pAndTerm->eOperator==WO_AUX
644             ){
645               b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
646             }
647           }
648         }
649         indexable &= b;
650       }
651     }else if( pOrTerm->wtFlags & TERM_COPIED ){
652       /* Skip this term for now.  We revisit it when we process the
653       ** corresponding TERM_VIRTUAL term */
654     }else{
655       Bitmask b;
656       b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
657       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
658         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
659         b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
660       }
661       indexable &= b;
662       if( (pOrTerm->eOperator & WO_EQ)==0 ){
663         chngToIN = 0;
664       }else{
665         chngToIN &= b;
666       }
667     }
668   }
669 
670   /*
671   ** Record the set of tables that satisfy case 3.  The set might be
672   ** empty.
673   */
674   pOrInfo->indexable = indexable;
675   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
676 
677   /* For a two-way OR, attempt to implementation case 2.
678   */
679   if( indexable && pOrWc->nTerm==2 ){
680     int iOne = 0;
681     WhereTerm *pOne;
682     while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
683       int iTwo = 0;
684       WhereTerm *pTwo;
685       while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
686         whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
687       }
688     }
689   }
690 
691   /*
692   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
693   ** we have to do some additional checking to see if case 1 really
694   ** is satisfied.
695   **
696   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
697   ** that there is no possibility of transforming the OR clause into an
698   ** IN operator because one or more terms in the OR clause contain
699   ** something other than == on a column in the single table.  The 1-bit
700   ** case means that every term of the OR clause is of the form
701   ** "table.column=expr" for some single table.  The one bit that is set
702   ** will correspond to the common table.  We still need to check to make
703   ** sure the same column is used on all terms.  The 2-bit case is when
704   ** the all terms are of the form "table1.column=table2.column".  It
705   ** might be possible to form an IN operator with either table1.column
706   ** or table2.column as the LHS if either is common to every term of
707   ** the OR clause.
708   **
709   ** Note that terms of the form "table.column1=table.column2" (the
710   ** same table on both sizes of the ==) cannot be optimized.
711   */
712   if( chngToIN ){
713     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
714     int iColumn = -1;         /* Column index on lhs of IN operator */
715     int iCursor = -1;         /* Table cursor common to all terms */
716     int j = 0;                /* Loop counter */
717 
718     /* Search for a table and column that appears on one side or the
719     ** other of the == operator in every subterm.  That table and column
720     ** will be recorded in iCursor and iColumn.  There might not be any
721     ** such table and column.  Set okToChngToIN if an appropriate table
722     ** and column is found but leave okToChngToIN false if not found.
723     */
724     for(j=0; j<2 && !okToChngToIN; j++){
725       pOrTerm = pOrWc->a;
726       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
727         assert( pOrTerm->eOperator & WO_EQ );
728         pOrTerm->wtFlags &= ~TERM_OR_OK;
729         if( pOrTerm->leftCursor==iCursor ){
730           /* This is the 2-bit case and we are on the second iteration and
731           ** current term is from the first iteration.  So skip this term. */
732           assert( j==1 );
733           continue;
734         }
735         if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
736                                             pOrTerm->leftCursor))==0 ){
737           /* This term must be of the form t1.a==t2.b where t2 is in the
738           ** chngToIN set but t1 is not.  This term will be either preceded
739           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
740           ** and use its inversion. */
741           testcase( pOrTerm->wtFlags & TERM_COPIED );
742           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
743           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
744           continue;
745         }
746         iColumn = pOrTerm->u.leftColumn;
747         iCursor = pOrTerm->leftCursor;
748         break;
749       }
750       if( i<0 ){
751         /* No candidate table+column was found.  This can only occur
752         ** on the second iteration */
753         assert( j==1 );
754         assert( IsPowerOfTwo(chngToIN) );
755         assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
756         break;
757       }
758       testcase( j==1 );
759 
760       /* We have found a candidate table and column.  Check to see if that
761       ** table and column is common to every term in the OR clause */
762       okToChngToIN = 1;
763       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
764         assert( pOrTerm->eOperator & WO_EQ );
765         if( pOrTerm->leftCursor!=iCursor ){
766           pOrTerm->wtFlags &= ~TERM_OR_OK;
767         }else if( pOrTerm->u.leftColumn!=iColumn ){
768           okToChngToIN = 0;
769         }else{
770           int affLeft, affRight;
771           /* If the right-hand side is also a column, then the affinities
772           ** of both right and left sides must be such that no type
773           ** conversions are required on the right.  (Ticket #2249)
774           */
775           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
776           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
777           if( affRight!=0 && affRight!=affLeft ){
778             okToChngToIN = 0;
779           }else{
780             pOrTerm->wtFlags |= TERM_OR_OK;
781           }
782         }
783       }
784     }
785 
786     /* At this point, okToChngToIN is true if original pTerm satisfies
787     ** case 1.  In that case, construct a new virtual term that is
788     ** pTerm converted into an IN operator.
789     */
790     if( okToChngToIN ){
791       Expr *pDup;            /* A transient duplicate expression */
792       ExprList *pList = 0;   /* The RHS of the IN operator */
793       Expr *pLeft = 0;       /* The LHS of the IN operator */
794       Expr *pNew;            /* The complete IN operator */
795 
796       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
797         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
798         assert( pOrTerm->eOperator & WO_EQ );
799         assert( pOrTerm->leftCursor==iCursor );
800         assert( pOrTerm->u.leftColumn==iColumn );
801         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
802         pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
803         pLeft = pOrTerm->pExpr->pLeft;
804       }
805       assert( pLeft!=0 );
806       pDup = sqlite3ExprDup(db, pLeft, 0);
807       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
808       if( pNew ){
809         int idxNew;
810         transferJoinMarkings(pNew, pExpr);
811         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
812         pNew->x.pList = pList;
813         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
814         testcase( idxNew==0 );
815         exprAnalyze(pSrc, pWC, idxNew);
816         pTerm = &pWC->a[idxTerm];
817         markTermAsChild(pWC, idxNew, idxTerm);
818       }else{
819         sqlite3ExprListDelete(db, pList);
820       }
821       pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 3 */
822     }
823   }
824 }
825 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
826 
827 /*
828 ** We already know that pExpr is a binary operator where both operands are
829 ** column references.  This routine checks to see if pExpr is an equivalence
830 ** relation:
831 **   1.  The SQLITE_Transitive optimization must be enabled
832 **   2.  Must be either an == or an IS operator
833 **   3.  Not originating in the ON clause of an OUTER JOIN
834 **   4.  The affinities of A and B must be compatible
835 **   5a. Both operands use the same collating sequence OR
836 **   5b. The overall collating sequence is BINARY
837 ** If this routine returns TRUE, that means that the RHS can be substituted
838 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
839 ** This is an optimization.  No harm comes from returning 0.  But if 1 is
840 ** returned when it should not be, then incorrect answers might result.
841 */
842 static int termIsEquivalence(Parse *pParse, Expr *pExpr){
843   char aff1, aff2;
844   CollSeq *pColl;
845   if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
846   if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
847   if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
848   aff1 = sqlite3ExprAffinity(pExpr->pLeft);
849   aff2 = sqlite3ExprAffinity(pExpr->pRight);
850   if( aff1!=aff2
851    && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
852   ){
853     return 0;
854   }
855   pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight);
856   if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1;
857   return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
858 }
859 
860 /*
861 ** Recursively walk the expressions of a SELECT statement and generate
862 ** a bitmask indicating which tables are used in that expression
863 ** tree.
864 */
865 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
866   Bitmask mask = 0;
867   while( pS ){
868     SrcList *pSrc = pS->pSrc;
869     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
870     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
871     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
872     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
873     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
874     if( ALWAYS(pSrc!=0) ){
875       int i;
876       for(i=0; i<pSrc->nSrc; i++){
877         mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
878         mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
879       }
880     }
881     pS = pS->pPrior;
882   }
883   return mask;
884 }
885 
886 /*
887 ** Expression pExpr is one operand of a comparison operator that might
888 ** be useful for indexing.  This routine checks to see if pExpr appears
889 ** in any index.  Return TRUE (1) if pExpr is an indexed term and return
890 ** FALSE (0) if not.  If TRUE is returned, also set aiCurCol[0] to the cursor
891 ** number of the table that is indexed and aiCurCol[1] to the column number
892 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
893 ** indexed.
894 **
895 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
896 ** true even if that particular column is not indexed, because the column
897 ** might be added to an automatic index later.
898 */
899 static SQLITE_NOINLINE int exprMightBeIndexed2(
900   SrcList *pFrom,        /* The FROM clause */
901   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
902   int *aiCurCol,         /* Write the referenced table cursor and column here */
903   Expr *pExpr            /* An operand of a comparison operator */
904 ){
905   Index *pIdx;
906   int i;
907   int iCur;
908   for(i=0; mPrereq>1; i++, mPrereq>>=1){}
909   iCur = pFrom->a[i].iCursor;
910   for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
911     if( pIdx->aColExpr==0 ) continue;
912     for(i=0; i<pIdx->nKeyCol; i++){
913       if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
914       if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
915         aiCurCol[0] = iCur;
916         aiCurCol[1] = XN_EXPR;
917         return 1;
918       }
919     }
920   }
921   return 0;
922 }
923 static int exprMightBeIndexed(
924   SrcList *pFrom,        /* The FROM clause */
925   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
926   int *aiCurCol,         /* Write the referenced table cursor & column here */
927   Expr *pExpr,           /* An operand of a comparison operator */
928   int op                 /* The specific comparison operator */
929 ){
930   /* If this expression is a vector to the left or right of a
931   ** inequality constraint (>, <, >= or <=), perform the processing
932   ** on the first element of the vector.  */
933   assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
934   assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
935   assert( op<=TK_GE );
936   if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
937     pExpr = pExpr->x.pList->a[0].pExpr;
938   }
939 
940   if( pExpr->op==TK_COLUMN ){
941     aiCurCol[0] = pExpr->iTable;
942     aiCurCol[1] = pExpr->iColumn;
943     return 1;
944   }
945   if( mPrereq==0 ) return 0;                 /* No table references */
946   if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
947   return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
948 }
949 
950 /*
951 ** The input to this routine is an WhereTerm structure with only the
952 ** "pExpr" field filled in.  The job of this routine is to analyze the
953 ** subexpression and populate all the other fields of the WhereTerm
954 ** structure.
955 **
956 ** If the expression is of the form "<expr> <op> X" it gets commuted
957 ** to the standard form of "X <op> <expr>".
958 **
959 ** If the expression is of the form "X <op> Y" where both X and Y are
960 ** columns, then the original expression is unchanged and a new virtual
961 ** term of the form "Y <op> X" is added to the WHERE clause and
962 ** analyzed separately.  The original term is marked with TERM_COPIED
963 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
964 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
965 ** is a commuted copy of a prior term.)  The original term has nChild=1
966 ** and the copy has idxParent set to the index of the original term.
967 */
968 static void exprAnalyze(
969   SrcList *pSrc,            /* the FROM clause */
970   WhereClause *pWC,         /* the WHERE clause */
971   int idxTerm               /* Index of the term to be analyzed */
972 ){
973   WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
974   WhereTerm *pTerm;                /* The term to be analyzed */
975   WhereMaskSet *pMaskSet;          /* Set of table index masks */
976   Expr *pExpr;                     /* The expression to be analyzed */
977   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
978   Bitmask prereqAll;               /* Prerequesites of pExpr */
979   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
980   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
981   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
982   int noCase = 0;                  /* uppercase equivalent to lowercase */
983   int op;                          /* Top-level operator.  pExpr->op */
984   Parse *pParse = pWInfo->pParse;  /* Parsing context */
985   sqlite3 *db = pParse->db;        /* Database connection */
986   unsigned char eOp2 = 0;          /* op2 value for LIKE/REGEXP/GLOB */
987   int nLeft;                       /* Number of elements on left side vector */
988 
989   if( db->mallocFailed ){
990     return;
991   }
992   pTerm = &pWC->a[idxTerm];
993   pMaskSet = &pWInfo->sMaskSet;
994   pExpr = pTerm->pExpr;
995   assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
996   prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
997   op = pExpr->op;
998   if( op==TK_IN ){
999     assert( pExpr->pRight==0 );
1000     if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
1001     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1002       pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
1003     }else{
1004       pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
1005     }
1006   }else if( op==TK_ISNULL ){
1007     pTerm->prereqRight = 0;
1008   }else{
1009     pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
1010   }
1011   pMaskSet->bVarSelect = 0;
1012   prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr);
1013   if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
1014   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1015     Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
1016     prereqAll |= x;
1017     extraRight = x-1;  /* ON clause terms may not be used with an index
1018                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1019     if( (prereqAll>>1)>=x ){
1020       sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
1021       return;
1022     }
1023   }
1024   pTerm->prereqAll = prereqAll;
1025   pTerm->leftCursor = -1;
1026   pTerm->iParent = -1;
1027   pTerm->eOperator = 0;
1028   if( allowedOp(op) ){
1029     int aiCurCol[2];
1030     Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1031     Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1032     u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1033 
1034     if( pTerm->iField>0 ){
1035       assert( op==TK_IN );
1036       assert( pLeft->op==TK_VECTOR );
1037       pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
1038     }
1039 
1040     if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
1041       pTerm->leftCursor = aiCurCol[0];
1042       pTerm->u.leftColumn = aiCurCol[1];
1043       pTerm->eOperator = operatorMask(op) & opMask;
1044     }
1045     if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
1046     if( pRight
1047      && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
1048     ){
1049       WhereTerm *pNew;
1050       Expr *pDup;
1051       u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
1052       assert( pTerm->iField==0 );
1053       if( pTerm->leftCursor>=0 ){
1054         int idxNew;
1055         pDup = sqlite3ExprDup(db, pExpr, 0);
1056         if( db->mallocFailed ){
1057           sqlite3ExprDelete(db, pDup);
1058           return;
1059         }
1060         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1061         if( idxNew==0 ) return;
1062         pNew = &pWC->a[idxNew];
1063         markTermAsChild(pWC, idxNew, idxTerm);
1064         if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
1065         pTerm = &pWC->a[idxTerm];
1066         pTerm->wtFlags |= TERM_COPIED;
1067 
1068         if( termIsEquivalence(pParse, pDup) ){
1069           pTerm->eOperator |= WO_EQUIV;
1070           eExtraOp = WO_EQUIV;
1071         }
1072       }else{
1073         pDup = pExpr;
1074         pNew = pTerm;
1075       }
1076       exprCommute(pParse, pDup);
1077       pNew->leftCursor = aiCurCol[0];
1078       pNew->u.leftColumn = aiCurCol[1];
1079       testcase( (prereqLeft | extraRight) != prereqLeft );
1080       pNew->prereqRight = prereqLeft | extraRight;
1081       pNew->prereqAll = prereqAll;
1082       pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1083     }
1084   }
1085 
1086 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1087   /* If a term is the BETWEEN operator, create two new virtual terms
1088   ** that define the range that the BETWEEN implements.  For example:
1089   **
1090   **      a BETWEEN b AND c
1091   **
1092   ** is converted into:
1093   **
1094   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1095   **
1096   ** The two new terms are added onto the end of the WhereClause object.
1097   ** The new terms are "dynamic" and are children of the original BETWEEN
1098   ** term.  That means that if the BETWEEN term is coded, the children are
1099   ** skipped.  Or, if the children are satisfied by an index, the original
1100   ** BETWEEN term is skipped.
1101   */
1102   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1103     ExprList *pList = pExpr->x.pList;
1104     int i;
1105     static const u8 ops[] = {TK_GE, TK_LE};
1106     assert( pList!=0 );
1107     assert( pList->nExpr==2 );
1108     for(i=0; i<2; i++){
1109       Expr *pNewExpr;
1110       int idxNew;
1111       pNewExpr = sqlite3PExpr(pParse, ops[i],
1112                              sqlite3ExprDup(db, pExpr->pLeft, 0),
1113                              sqlite3ExprDup(db, pList->a[i].pExpr, 0));
1114       transferJoinMarkings(pNewExpr, pExpr);
1115       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1116       testcase( idxNew==0 );
1117       exprAnalyze(pSrc, pWC, idxNew);
1118       pTerm = &pWC->a[idxTerm];
1119       markTermAsChild(pWC, idxNew, idxTerm);
1120     }
1121   }
1122 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1123 
1124 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1125   /* Analyze a term that is composed of two or more subterms connected by
1126   ** an OR operator.
1127   */
1128   else if( pExpr->op==TK_OR ){
1129     assert( pWC->op==TK_AND );
1130     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1131     pTerm = &pWC->a[idxTerm];
1132   }
1133 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1134 
1135 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1136   /* Add constraints to reduce the search space on a LIKE or GLOB
1137   ** operator.
1138   **
1139   ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1140   **
1141   **          x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1142   **
1143   ** The last character of the prefix "abc" is incremented to form the
1144   ** termination condition "abd".  If case is not significant (the default
1145   ** for LIKE) then the lower-bound is made all uppercase and the upper-
1146   ** bound is made all lowercase so that the bounds also work when comparing
1147   ** BLOBs.
1148   */
1149   if( pWC->op==TK_AND
1150    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1151   ){
1152     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
1153     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1154     Expr *pNewExpr1;
1155     Expr *pNewExpr2;
1156     int idxNew1;
1157     int idxNew2;
1158     const char *zCollSeqName;     /* Name of collating sequence */
1159     const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
1160 
1161     pLeft = pExpr->x.pList->a[1].pExpr;
1162     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1163 
1164     /* Convert the lower bound to upper-case and the upper bound to
1165     ** lower-case (upper-case is less than lower-case in ASCII) so that
1166     ** the range constraints also work for BLOBs
1167     */
1168     if( noCase && !pParse->db->mallocFailed ){
1169       int i;
1170       char c;
1171       pTerm->wtFlags |= TERM_LIKE;
1172       for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
1173         pStr1->u.zToken[i] = sqlite3Toupper(c);
1174         pStr2->u.zToken[i] = sqlite3Tolower(c);
1175       }
1176     }
1177 
1178     if( !db->mallocFailed ){
1179       u8 c, *pC;       /* Last character before the first wildcard */
1180       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1181       c = *pC;
1182       if( noCase ){
1183         /* The point is to increment the last character before the first
1184         ** wildcard.  But if we increment '@', that will push it into the
1185         ** alphabetic range where case conversions will mess up the
1186         ** inequality.  To avoid this, make sure to also run the full
1187         ** LIKE on all candidate expressions by clearing the isComplete flag
1188         */
1189         if( c=='A'-1 ) isComplete = 0;
1190         c = sqlite3UpperToLower[c];
1191       }
1192       *pC = c + 1;
1193     }
1194     zCollSeqName = noCase ? "NOCASE" : "BINARY";
1195     pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1196     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1197            sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
1198            pStr1);
1199     transferJoinMarkings(pNewExpr1, pExpr);
1200     idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
1201     testcase( idxNew1==0 );
1202     exprAnalyze(pSrc, pWC, idxNew1);
1203     pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1204     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1205            sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
1206            pStr2);
1207     transferJoinMarkings(pNewExpr2, pExpr);
1208     idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
1209     testcase( idxNew2==0 );
1210     exprAnalyze(pSrc, pWC, idxNew2);
1211     pTerm = &pWC->a[idxTerm];
1212     if( isComplete ){
1213       markTermAsChild(pWC, idxNew1, idxTerm);
1214       markTermAsChild(pWC, idxNew2, idxTerm);
1215     }
1216   }
1217 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1218 
1219 #ifndef SQLITE_OMIT_VIRTUALTABLE
1220   /* Add a WO_AUX auxiliary term to the constraint set if the
1221   ** current expression is of the form "column OP expr" where OP
1222   ** is an operator that gets passed into virtual tables but which is
1223   ** not normally optimized for ordinary tables.  In other words, OP
1224   ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1225   ** This information is used by the xBestIndex methods of
1226   ** virtual tables.  The native query optimizer does not attempt
1227   ** to do anything with MATCH functions.
1228   */
1229   if( pWC->op==TK_AND ){
1230     Expr *pRight = 0, *pLeft = 0;
1231     int res = isAuxiliaryVtabOperator(pExpr, &eOp2, &pLeft, &pRight);
1232     while( res-- > 0 ){
1233       int idxNew;
1234       WhereTerm *pNewTerm;
1235       Bitmask prereqColumn, prereqExpr;
1236 
1237       prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
1238       prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
1239       if( (prereqExpr & prereqColumn)==0 ){
1240         Expr *pNewExpr;
1241         pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1242             0, sqlite3ExprDup(db, pRight, 0));
1243         if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){
1244           ExprSetProperty(pNewExpr, EP_FromJoin);
1245         }
1246         idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1247         testcase( idxNew==0 );
1248         pNewTerm = &pWC->a[idxNew];
1249         pNewTerm->prereqRight = prereqExpr;
1250         pNewTerm->leftCursor = pLeft->iTable;
1251         pNewTerm->u.leftColumn = pLeft->iColumn;
1252         pNewTerm->eOperator = WO_AUX;
1253         pNewTerm->eMatchOp = eOp2;
1254         markTermAsChild(pWC, idxNew, idxTerm);
1255         pTerm = &pWC->a[idxTerm];
1256         pTerm->wtFlags |= TERM_COPIED;
1257         pNewTerm->prereqAll = pTerm->prereqAll;
1258       }
1259       SWAP(Expr*, pLeft, pRight);
1260     }
1261   }
1262 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1263 
1264   /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1265   ** new terms for each component comparison - "a = ?" and "b = ?".  The
1266   ** new terms completely replace the original vector comparison, which is
1267   ** no longer used.
1268   **
1269   ** This is only required if at least one side of the comparison operation
1270   ** is not a sub-select.  */
1271   if( pWC->op==TK_AND
1272   && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
1273   && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
1274   && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
1275   && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
1276     || (pExpr->pRight->flags & EP_xIsSelect)==0)
1277   ){
1278     int i;
1279     for(i=0; i<nLeft; i++){
1280       int idxNew;
1281       Expr *pNew;
1282       Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
1283       Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);
1284 
1285       pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
1286       transferJoinMarkings(pNew, pExpr);
1287       idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
1288       exprAnalyze(pSrc, pWC, idxNew);
1289     }
1290     pTerm = &pWC->a[idxTerm];
1291     pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL;  /* Disable the original */
1292     pTerm->eOperator = 0;
1293   }
1294 
1295   /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1296   ** a virtual term for each vector component. The expression object
1297   ** used by each such virtual term is pExpr (the full vector IN(...)
1298   ** expression). The WhereTerm.iField variable identifies the index within
1299   ** the vector on the LHS that the virtual term represents.
1300   **
1301   ** This only works if the RHS is a simple SELECT, not a compound
1302   */
1303   if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0
1304    && pExpr->pLeft->op==TK_VECTOR
1305    && pExpr->x.pSelect->pPrior==0
1306   ){
1307     int i;
1308     for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
1309       int idxNew;
1310       idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
1311       pWC->a[idxNew].iField = i+1;
1312       exprAnalyze(pSrc, pWC, idxNew);
1313       markTermAsChild(pWC, idxNew, idxTerm);
1314     }
1315   }
1316 
1317 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1318   /* When sqlite_stat3 histogram data is available an operator of the
1319   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1320   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
1321   ** virtual term of that form.
1322   **
1323   ** Note that the virtual term must be tagged with TERM_VNULL.
1324   */
1325   if( pExpr->op==TK_NOTNULL
1326    && pExpr->pLeft->op==TK_COLUMN
1327    && pExpr->pLeft->iColumn>=0
1328    && OptimizationEnabled(db, SQLITE_Stat34)
1329   ){
1330     Expr *pNewExpr;
1331     Expr *pLeft = pExpr->pLeft;
1332     int idxNew;
1333     WhereTerm *pNewTerm;
1334 
1335     pNewExpr = sqlite3PExpr(pParse, TK_GT,
1336                             sqlite3ExprDup(db, pLeft, 0),
1337                             sqlite3ExprAlloc(db, TK_NULL, 0, 0));
1338 
1339     idxNew = whereClauseInsert(pWC, pNewExpr,
1340                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1341     if( idxNew ){
1342       pNewTerm = &pWC->a[idxNew];
1343       pNewTerm->prereqRight = 0;
1344       pNewTerm->leftCursor = pLeft->iTable;
1345       pNewTerm->u.leftColumn = pLeft->iColumn;
1346       pNewTerm->eOperator = WO_GT;
1347       markTermAsChild(pWC, idxNew, idxTerm);
1348       pTerm = &pWC->a[idxTerm];
1349       pTerm->wtFlags |= TERM_COPIED;
1350       pNewTerm->prereqAll = pTerm->prereqAll;
1351     }
1352   }
1353 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1354 
1355   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1356   ** an index for tables to the left of the join.
1357   */
1358   testcase( pTerm!=&pWC->a[idxTerm] );
1359   pTerm = &pWC->a[idxTerm];
1360   pTerm->prereqRight |= extraRight;
1361 }
1362 
1363 /***************************************************************************
1364 ** Routines with file scope above.  Interface to the rest of the where.c
1365 ** subsystem follows.
1366 ***************************************************************************/
1367 
1368 /*
1369 ** This routine identifies subexpressions in the WHERE clause where
1370 ** each subexpression is separated by the AND operator or some other
1371 ** operator specified in the op parameter.  The WhereClause structure
1372 ** is filled with pointers to subexpressions.  For example:
1373 **
1374 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1375 **           \________/     \_______________/     \________________/
1376 **            slot[0]            slot[1]               slot[2]
1377 **
1378 ** The original WHERE clause in pExpr is unaltered.  All this routine
1379 ** does is make slot[] entries point to substructure within pExpr.
1380 **
1381 ** In the previous sentence and in the diagram, "slot[]" refers to
1382 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
1383 ** all terms of the WHERE clause.
1384 */
1385 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
1386   Expr *pE2 = sqlite3ExprSkipCollate(pExpr);
1387   pWC->op = op;
1388   if( pE2==0 ) return;
1389   if( pE2->op!=op ){
1390     whereClauseInsert(pWC, pExpr, 0);
1391   }else{
1392     sqlite3WhereSplit(pWC, pE2->pLeft, op);
1393     sqlite3WhereSplit(pWC, pE2->pRight, op);
1394   }
1395 }
1396 
1397 /*
1398 ** Initialize a preallocated WhereClause structure.
1399 */
1400 void sqlite3WhereClauseInit(
1401   WhereClause *pWC,        /* The WhereClause to be initialized */
1402   WhereInfo *pWInfo        /* The WHERE processing context */
1403 ){
1404   pWC->pWInfo = pWInfo;
1405   pWC->pOuter = 0;
1406   pWC->nTerm = 0;
1407   pWC->nSlot = ArraySize(pWC->aStatic);
1408   pWC->a = pWC->aStatic;
1409 }
1410 
1411 /*
1412 ** Deallocate a WhereClause structure.  The WhereClause structure
1413 ** itself is not freed.  This routine is the inverse of
1414 ** sqlite3WhereClauseInit().
1415 */
1416 void sqlite3WhereClauseClear(WhereClause *pWC){
1417   int i;
1418   WhereTerm *a;
1419   sqlite3 *db = pWC->pWInfo->pParse->db;
1420   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
1421     if( a->wtFlags & TERM_DYNAMIC ){
1422       sqlite3ExprDelete(db, a->pExpr);
1423     }
1424     if( a->wtFlags & TERM_ORINFO ){
1425       whereOrInfoDelete(db, a->u.pOrInfo);
1426     }else if( a->wtFlags & TERM_ANDINFO ){
1427       whereAndInfoDelete(db, a->u.pAndInfo);
1428     }
1429   }
1430   if( pWC->a!=pWC->aStatic ){
1431     sqlite3DbFree(db, pWC->a);
1432   }
1433 }
1434 
1435 
1436 /*
1437 ** These routines walk (recursively) an expression tree and generate
1438 ** a bitmask indicating which tables are used in that expression
1439 ** tree.
1440 */
1441 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
1442   Bitmask mask;
1443   if( p==0 ) return 0;
1444   if( p->op==TK_COLUMN ){
1445     return sqlite3WhereGetMask(pMaskSet, p->iTable);
1446   }
1447   mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
1448   assert( !ExprHasProperty(p, EP_TokenOnly) );
1449   if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft);
1450   if( p->pRight ){
1451     mask |= sqlite3WhereExprUsage(pMaskSet, p->pRight);
1452     assert( p->x.pList==0 );
1453   }else if( ExprHasProperty(p, EP_xIsSelect) ){
1454     if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
1455     mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
1456   }else if( p->x.pList ){
1457     mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
1458   }
1459   return mask;
1460 }
1461 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
1462   int i;
1463   Bitmask mask = 0;
1464   if( pList ){
1465     for(i=0; i<pList->nExpr; i++){
1466       mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
1467     }
1468   }
1469   return mask;
1470 }
1471 
1472 
1473 /*
1474 ** Call exprAnalyze on all terms in a WHERE clause.
1475 **
1476 ** Note that exprAnalyze() might add new virtual terms onto the
1477 ** end of the WHERE clause.  We do not want to analyze these new
1478 ** virtual terms, so start analyzing at the end and work forward
1479 ** so that the added virtual terms are never processed.
1480 */
1481 void sqlite3WhereExprAnalyze(
1482   SrcList *pTabList,       /* the FROM clause */
1483   WhereClause *pWC         /* the WHERE clause to be analyzed */
1484 ){
1485   int i;
1486   for(i=pWC->nTerm-1; i>=0; i--){
1487     exprAnalyze(pTabList, pWC, i);
1488   }
1489 }
1490 
1491 /*
1492 ** For table-valued-functions, transform the function arguments into
1493 ** new WHERE clause terms.
1494 **
1495 ** Each function argument translates into an equality constraint against
1496 ** a HIDDEN column in the table.
1497 */
1498 void sqlite3WhereTabFuncArgs(
1499   Parse *pParse,                    /* Parsing context */
1500   struct SrcList_item *pItem,       /* The FROM clause term to process */
1501   WhereClause *pWC                  /* Xfer function arguments to here */
1502 ){
1503   Table *pTab;
1504   int j, k;
1505   ExprList *pArgs;
1506   Expr *pColRef;
1507   Expr *pTerm;
1508   if( pItem->fg.isTabFunc==0 ) return;
1509   pTab = pItem->pTab;
1510   assert( pTab!=0 );
1511   pArgs = pItem->u1.pFuncArg;
1512   if( pArgs==0 ) return;
1513   for(j=k=0; j<pArgs->nExpr; j++){
1514     while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
1515     if( k>=pTab->nCol ){
1516       sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
1517                       pTab->zName, j);
1518       return;
1519     }
1520     pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
1521     if( pColRef==0 ) return;
1522     pColRef->iTable = pItem->iCursor;
1523     pColRef->iColumn = k++;
1524     pColRef->pTab = pTab;
1525     pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef,
1526                          sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0));
1527     whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
1528   }
1529 }
1530