1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm)); 81 } 82 pTerm = &pWC->a[idx = pWC->nTerm++]; 83 if( p && ExprHasProperty(p, EP_Unlikely) ){ 84 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 85 }else{ 86 pTerm->truthProb = 1; 87 } 88 pTerm->pExpr = sqlite3ExprSkipCollate(p); 89 pTerm->wtFlags = wtFlags; 90 pTerm->pWC = pWC; 91 pTerm->iParent = -1; 92 return idx; 93 } 94 95 /* 96 ** Return TRUE if the given operator is one of the operators that is 97 ** allowed for an indexable WHERE clause term. The allowed operators are 98 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" 99 */ 100 static int allowedOp(int op){ 101 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 102 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 103 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 104 assert( TK_GE==TK_EQ+4 ); 105 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 106 } 107 108 /* 109 ** Commute a comparison operator. Expressions of the form "X op Y" 110 ** are converted into "Y op X". 111 ** 112 ** If left/right precedence rules come into play when determining the 113 ** collating sequence, then COLLATE operators are adjusted to ensure 114 ** that the collating sequence does not change. For example: 115 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 116 ** the left hand side of a comparison overrides any collation sequence 117 ** attached to the right. For the same reason the EP_Collate flag 118 ** is not commuted. 119 */ 120 static void exprCommute(Parse *pParse, Expr *pExpr){ 121 u16 expRight = (pExpr->pRight->flags & EP_Collate); 122 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 123 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 124 if( expRight==expLeft ){ 125 /* Either X and Y both have COLLATE operator or neither do */ 126 if( expRight ){ 127 /* Both X and Y have COLLATE operators. Make sure X is always 128 ** used by clearing the EP_Collate flag from Y. */ 129 pExpr->pRight->flags &= ~EP_Collate; 130 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 131 /* Neither X nor Y have COLLATE operators, but X has a non-default 132 ** collating sequence. So add the EP_Collate marker on X to cause 133 ** it to be searched first. */ 134 pExpr->pLeft->flags |= EP_Collate; 135 } 136 } 137 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 138 if( pExpr->op>=TK_GT ){ 139 assert( TK_LT==TK_GT+2 ); 140 assert( TK_GE==TK_LE+2 ); 141 assert( TK_GT>TK_EQ ); 142 assert( TK_GT<TK_LE ); 143 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 144 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 145 } 146 } 147 148 /* 149 ** Translate from TK_xx operator to WO_xx bitmask. 150 */ 151 static u16 operatorMask(int op){ 152 u16 c; 153 assert( allowedOp(op) ); 154 if( op==TK_IN ){ 155 c = WO_IN; 156 }else if( op==TK_ISNULL ){ 157 c = WO_ISNULL; 158 }else if( op==TK_IS ){ 159 c = WO_IS; 160 }else{ 161 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 162 c = (u16)(WO_EQ<<(op-TK_EQ)); 163 } 164 assert( op!=TK_ISNULL || c==WO_ISNULL ); 165 assert( op!=TK_IN || c==WO_IN ); 166 assert( op!=TK_EQ || c==WO_EQ ); 167 assert( op!=TK_LT || c==WO_LT ); 168 assert( op!=TK_LE || c==WO_LE ); 169 assert( op!=TK_GT || c==WO_GT ); 170 assert( op!=TK_GE || c==WO_GE ); 171 assert( op!=TK_IS || c==WO_IS ); 172 return c; 173 } 174 175 176 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 177 /* 178 ** Check to see if the given expression is a LIKE or GLOB operator that 179 ** can be optimized using inequality constraints. Return TRUE if it is 180 ** so and false if not. 181 ** 182 ** In order for the operator to be optimizible, the RHS must be a string 183 ** literal that does not begin with a wildcard. The LHS must be a column 184 ** that may only be NULL, a string, or a BLOB, never a number. (This means 185 ** that virtual tables cannot participate in the LIKE optimization.) The 186 ** collating sequence for the column on the LHS must be appropriate for 187 ** the operator. 188 */ 189 static int isLikeOrGlob( 190 Parse *pParse, /* Parsing and code generating context */ 191 Expr *pExpr, /* Test this expression */ 192 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 193 int *pisComplete, /* True if the only wildcard is % in the last character */ 194 int *pnoCase /* True if uppercase is equivalent to lowercase */ 195 ){ 196 const char *z = 0; /* String on RHS of LIKE operator */ 197 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 198 ExprList *pList; /* List of operands to the LIKE operator */ 199 int c; /* One character in z[] */ 200 int cnt; /* Number of non-wildcard prefix characters */ 201 char wc[3]; /* Wildcard characters */ 202 sqlite3 *db = pParse->db; /* Database connection */ 203 sqlite3_value *pVal = 0; 204 int op; /* Opcode of pRight */ 205 int rc; /* Result code to return */ 206 207 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 208 return 0; 209 } 210 #ifdef SQLITE_EBCDIC 211 if( *pnoCase ) return 0; 212 #endif 213 pList = pExpr->x.pList; 214 pLeft = pList->a[1].pExpr; 215 if( pLeft->op!=TK_COLUMN 216 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 217 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 218 ){ 219 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 220 ** be the name of an indexed column with TEXT affinity. */ 221 return 0; 222 } 223 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 224 225 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 226 op = pRight->op; 227 if( op==TK_VARIABLE ){ 228 Vdbe *pReprepare = pParse->pReprepare; 229 int iCol = pRight->iColumn; 230 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 231 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 232 z = (char *)sqlite3_value_text(pVal); 233 } 234 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 235 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 236 }else if( op==TK_STRING ){ 237 z = pRight->u.zToken; 238 } 239 if( z ){ 240 cnt = 0; 241 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 242 cnt++; 243 } 244 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 245 Expr *pPrefix; 246 *pisComplete = c==wc[0] && z[cnt+1]==0; 247 pPrefix = sqlite3Expr(db, TK_STRING, z); 248 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 249 *ppPrefix = pPrefix; 250 if( op==TK_VARIABLE ){ 251 Vdbe *v = pParse->pVdbe; 252 sqlite3VdbeSetVarmask(v, pRight->iColumn); 253 if( *pisComplete && pRight->u.zToken[1] ){ 254 /* If the rhs of the LIKE expression is a variable, and the current 255 ** value of the variable means there is no need to invoke the LIKE 256 ** function, then no OP_Variable will be added to the program. 257 ** This causes problems for the sqlite3_bind_parameter_name() 258 ** API. To work around them, add a dummy OP_Variable here. 259 */ 260 int r1 = sqlite3GetTempReg(pParse); 261 sqlite3ExprCodeTarget(pParse, pRight, r1); 262 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 263 sqlite3ReleaseTempReg(pParse, r1); 264 } 265 } 266 }else{ 267 z = 0; 268 } 269 } 270 271 rc = (z!=0); 272 sqlite3ValueFree(pVal); 273 return rc; 274 } 275 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 276 277 278 #ifndef SQLITE_OMIT_VIRTUALTABLE 279 /* 280 ** Check to see if the given expression is of the form 281 ** 282 ** column OP expr 283 ** 284 ** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a 285 ** column of a virtual table. 286 ** 287 ** If it is then return TRUE. If not, return FALSE. 288 */ 289 static int isMatchOfColumn( 290 Expr *pExpr, /* Test this expression */ 291 unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ 292 ){ 293 struct Op2 { 294 const char *zOp; 295 unsigned char eOp2; 296 } aOp[] = { 297 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 298 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 299 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 300 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 301 }; 302 ExprList *pList; 303 Expr *pCol; /* Column reference */ 304 int i; 305 306 if( pExpr->op!=TK_FUNCTION ){ 307 return 0; 308 } 309 pList = pExpr->x.pList; 310 if( pList==0 || pList->nExpr!=2 ){ 311 return 0; 312 } 313 pCol = pList->a[1].pExpr; 314 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 315 return 0; 316 } 317 for(i=0; i<ArraySize(aOp); i++){ 318 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 319 *peOp2 = aOp[i].eOp2; 320 return 1; 321 } 322 } 323 return 0; 324 } 325 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 326 327 /* 328 ** If the pBase expression originated in the ON or USING clause of 329 ** a join, then transfer the appropriate markings over to derived. 330 */ 331 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 332 if( pDerived ){ 333 pDerived->flags |= pBase->flags & EP_FromJoin; 334 pDerived->iRightJoinTable = pBase->iRightJoinTable; 335 } 336 } 337 338 /* 339 ** Mark term iChild as being a child of term iParent 340 */ 341 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 342 pWC->a[iChild].iParent = iParent; 343 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 344 pWC->a[iParent].nChild++; 345 } 346 347 /* 348 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 349 ** a conjunction, then return just pTerm when N==0. If N is exceeds 350 ** the number of available subterms, return NULL. 351 */ 352 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 353 if( pTerm->eOperator!=WO_AND ){ 354 return N==0 ? pTerm : 0; 355 } 356 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 357 return &pTerm->u.pAndInfo->wc.a[N]; 358 } 359 return 0; 360 } 361 362 /* 363 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 364 ** two subterms are in disjunction - they are OR-ed together. 365 ** 366 ** If these two terms are both of the form: "A op B" with the same 367 ** A and B values but different operators and if the operators are 368 ** compatible (if one is = and the other is <, for example) then 369 ** add a new virtual AND term to pWC that is the combination of the 370 ** two. 371 ** 372 ** Some examples: 373 ** 374 ** x<y OR x=y --> x<=y 375 ** x=y OR x=y --> x=y 376 ** x<=y OR x<y --> x<=y 377 ** 378 ** The following is NOT generated: 379 ** 380 ** x<y OR x>y --> x!=y 381 */ 382 static void whereCombineDisjuncts( 383 SrcList *pSrc, /* the FROM clause */ 384 WhereClause *pWC, /* The complete WHERE clause */ 385 WhereTerm *pOne, /* First disjunct */ 386 WhereTerm *pTwo /* Second disjunct */ 387 ){ 388 u16 eOp = pOne->eOperator | pTwo->eOperator; 389 sqlite3 *db; /* Database connection (for malloc) */ 390 Expr *pNew; /* New virtual expression */ 391 int op; /* Operator for the combined expression */ 392 int idxNew; /* Index in pWC of the next virtual term */ 393 394 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 395 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 396 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 397 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 398 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 399 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 400 if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 401 if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; 402 /* If we reach this point, it means the two subterms can be combined */ 403 if( (eOp & (eOp-1))!=0 ){ 404 if( eOp & (WO_LT|WO_LE) ){ 405 eOp = WO_LE; 406 }else{ 407 assert( eOp & (WO_GT|WO_GE) ); 408 eOp = WO_GE; 409 } 410 } 411 db = pWC->pWInfo->pParse->db; 412 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 413 if( pNew==0 ) return; 414 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 415 pNew->op = op; 416 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 417 exprAnalyze(pSrc, pWC, idxNew); 418 } 419 420 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 421 /* 422 ** Analyze a term that consists of two or more OR-connected 423 ** subterms. So in: 424 ** 425 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 426 ** ^^^^^^^^^^^^^^^^^^^^ 427 ** 428 ** This routine analyzes terms such as the middle term in the above example. 429 ** A WhereOrTerm object is computed and attached to the term under 430 ** analysis, regardless of the outcome of the analysis. Hence: 431 ** 432 ** WhereTerm.wtFlags |= TERM_ORINFO 433 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 434 ** 435 ** The term being analyzed must have two or more of OR-connected subterms. 436 ** A single subterm might be a set of AND-connected sub-subterms. 437 ** Examples of terms under analysis: 438 ** 439 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 440 ** (B) x=expr1 OR expr2=x OR x=expr3 441 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 442 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 443 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 444 ** (F) x>A OR (x=A AND y>=B) 445 ** 446 ** CASE 1: 447 ** 448 ** If all subterms are of the form T.C=expr for some single column of C and 449 ** a single table T (as shown in example B above) then create a new virtual 450 ** term that is an equivalent IN expression. In other words, if the term 451 ** being analyzed is: 452 ** 453 ** x = expr1 OR expr2 = x OR x = expr3 454 ** 455 ** then create a new virtual term like this: 456 ** 457 ** x IN (expr1,expr2,expr3) 458 ** 459 ** CASE 2: 460 ** 461 ** If there are exactly two disjuncts and one side has x>A and the other side 462 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 463 ** WHERE clause of the form "x>=A". Example: 464 ** 465 ** x>A OR (x=A AND y>B) adds: x>=A 466 ** 467 ** The added conjunct can sometimes be helpful in query planning. 468 ** 469 ** CASE 3: 470 ** 471 ** If all subterms are indexable by a single table T, then set 472 ** 473 ** WhereTerm.eOperator = WO_OR 474 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 475 ** 476 ** A subterm is "indexable" if it is of the form 477 ** "T.C <op> <expr>" where C is any column of table T and 478 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 479 ** A subterm is also indexable if it is an AND of two or more 480 ** subsubterms at least one of which is indexable. Indexable AND 481 ** subterms have their eOperator set to WO_AND and they have 482 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 483 ** 484 ** From another point of view, "indexable" means that the subterm could 485 ** potentially be used with an index if an appropriate index exists. 486 ** This analysis does not consider whether or not the index exists; that 487 ** is decided elsewhere. This analysis only looks at whether subterms 488 ** appropriate for indexing exist. 489 ** 490 ** All examples A through E above satisfy case 3. But if a term 491 ** also satisfies case 1 (such as B) we know that the optimizer will 492 ** always prefer case 1, so in that case we pretend that case 3 is not 493 ** satisfied. 494 ** 495 ** It might be the case that multiple tables are indexable. For example, 496 ** (E) above is indexable on tables P, Q, and R. 497 ** 498 ** Terms that satisfy case 3 are candidates for lookup by using 499 ** separate indices to find rowids for each subterm and composing 500 ** the union of all rowids using a RowSet object. This is similar 501 ** to "bitmap indices" in other database engines. 502 ** 503 ** OTHERWISE: 504 ** 505 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 506 ** zero. This term is not useful for search. 507 */ 508 static void exprAnalyzeOrTerm( 509 SrcList *pSrc, /* the FROM clause */ 510 WhereClause *pWC, /* the complete WHERE clause */ 511 int idxTerm /* Index of the OR-term to be analyzed */ 512 ){ 513 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 514 Parse *pParse = pWInfo->pParse; /* Parser context */ 515 sqlite3 *db = pParse->db; /* Database connection */ 516 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 517 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 518 int i; /* Loop counters */ 519 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 520 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 521 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 522 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 523 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 524 525 /* 526 ** Break the OR clause into its separate subterms. The subterms are 527 ** stored in a WhereClause structure containing within the WhereOrInfo 528 ** object that is attached to the original OR clause term. 529 */ 530 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 531 assert( pExpr->op==TK_OR ); 532 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 533 if( pOrInfo==0 ) return; 534 pTerm->wtFlags |= TERM_ORINFO; 535 pOrWc = &pOrInfo->wc; 536 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 537 sqlite3WhereClauseInit(pOrWc, pWInfo); 538 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 539 sqlite3WhereExprAnalyze(pSrc, pOrWc); 540 if( db->mallocFailed ) return; 541 assert( pOrWc->nTerm>=2 ); 542 543 /* 544 ** Compute the set of tables that might satisfy cases 1 or 3. 545 */ 546 indexable = ~(Bitmask)0; 547 chngToIN = ~(Bitmask)0; 548 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 549 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 550 WhereAndInfo *pAndInfo; 551 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 552 chngToIN = 0; 553 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 554 if( pAndInfo ){ 555 WhereClause *pAndWC; 556 WhereTerm *pAndTerm; 557 int j; 558 Bitmask b = 0; 559 pOrTerm->u.pAndInfo = pAndInfo; 560 pOrTerm->wtFlags |= TERM_ANDINFO; 561 pOrTerm->eOperator = WO_AND; 562 pAndWC = &pAndInfo->wc; 563 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 564 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 565 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 566 sqlite3WhereExprAnalyze(pSrc, pAndWC); 567 pAndWC->pOuter = pWC; 568 if( !db->mallocFailed ){ 569 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 570 assert( pAndTerm->pExpr ); 571 if( allowedOp(pAndTerm->pExpr->op) ){ 572 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 573 } 574 } 575 } 576 indexable &= b; 577 } 578 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 579 /* Skip this term for now. We revisit it when we process the 580 ** corresponding TERM_VIRTUAL term */ 581 }else{ 582 Bitmask b; 583 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 584 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 585 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 586 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 587 } 588 indexable &= b; 589 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 590 chngToIN = 0; 591 }else{ 592 chngToIN &= b; 593 } 594 } 595 } 596 597 /* 598 ** Record the set of tables that satisfy case 3. The set might be 599 ** empty. 600 */ 601 pOrInfo->indexable = indexable; 602 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 603 604 /* For a two-way OR, attempt to implementation case 2. 605 */ 606 if( indexable && pOrWc->nTerm==2 ){ 607 int iOne = 0; 608 WhereTerm *pOne; 609 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 610 int iTwo = 0; 611 WhereTerm *pTwo; 612 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 613 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 614 } 615 } 616 } 617 618 /* 619 ** chngToIN holds a set of tables that *might* satisfy case 1. But 620 ** we have to do some additional checking to see if case 1 really 621 ** is satisfied. 622 ** 623 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 624 ** that there is no possibility of transforming the OR clause into an 625 ** IN operator because one or more terms in the OR clause contain 626 ** something other than == on a column in the single table. The 1-bit 627 ** case means that every term of the OR clause is of the form 628 ** "table.column=expr" for some single table. The one bit that is set 629 ** will correspond to the common table. We still need to check to make 630 ** sure the same column is used on all terms. The 2-bit case is when 631 ** the all terms are of the form "table1.column=table2.column". It 632 ** might be possible to form an IN operator with either table1.column 633 ** or table2.column as the LHS if either is common to every term of 634 ** the OR clause. 635 ** 636 ** Note that terms of the form "table.column1=table.column2" (the 637 ** same table on both sizes of the ==) cannot be optimized. 638 */ 639 if( chngToIN ){ 640 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 641 int iColumn = -1; /* Column index on lhs of IN operator */ 642 int iCursor = -1; /* Table cursor common to all terms */ 643 int j = 0; /* Loop counter */ 644 645 /* Search for a table and column that appears on one side or the 646 ** other of the == operator in every subterm. That table and column 647 ** will be recorded in iCursor and iColumn. There might not be any 648 ** such table and column. Set okToChngToIN if an appropriate table 649 ** and column is found but leave okToChngToIN false if not found. 650 */ 651 for(j=0; j<2 && !okToChngToIN; j++){ 652 pOrTerm = pOrWc->a; 653 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 654 assert( pOrTerm->eOperator & WO_EQ ); 655 pOrTerm->wtFlags &= ~TERM_OR_OK; 656 if( pOrTerm->leftCursor==iCursor ){ 657 /* This is the 2-bit case and we are on the second iteration and 658 ** current term is from the first iteration. So skip this term. */ 659 assert( j==1 ); 660 continue; 661 } 662 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 663 pOrTerm->leftCursor))==0 ){ 664 /* This term must be of the form t1.a==t2.b where t2 is in the 665 ** chngToIN set but t1 is not. This term will be either preceded 666 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 667 ** and use its inversion. */ 668 testcase( pOrTerm->wtFlags & TERM_COPIED ); 669 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 670 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 671 continue; 672 } 673 iColumn = pOrTerm->u.leftColumn; 674 iCursor = pOrTerm->leftCursor; 675 break; 676 } 677 if( i<0 ){ 678 /* No candidate table+column was found. This can only occur 679 ** on the second iteration */ 680 assert( j==1 ); 681 assert( IsPowerOfTwo(chngToIN) ); 682 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 683 break; 684 } 685 testcase( j==1 ); 686 687 /* We have found a candidate table and column. Check to see if that 688 ** table and column is common to every term in the OR clause */ 689 okToChngToIN = 1; 690 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 691 assert( pOrTerm->eOperator & WO_EQ ); 692 if( pOrTerm->leftCursor!=iCursor ){ 693 pOrTerm->wtFlags &= ~TERM_OR_OK; 694 }else if( pOrTerm->u.leftColumn!=iColumn ){ 695 okToChngToIN = 0; 696 }else{ 697 int affLeft, affRight; 698 /* If the right-hand side is also a column, then the affinities 699 ** of both right and left sides must be such that no type 700 ** conversions are required on the right. (Ticket #2249) 701 */ 702 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 703 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 704 if( affRight!=0 && affRight!=affLeft ){ 705 okToChngToIN = 0; 706 }else{ 707 pOrTerm->wtFlags |= TERM_OR_OK; 708 } 709 } 710 } 711 } 712 713 /* At this point, okToChngToIN is true if original pTerm satisfies 714 ** case 1. In that case, construct a new virtual term that is 715 ** pTerm converted into an IN operator. 716 */ 717 if( okToChngToIN ){ 718 Expr *pDup; /* A transient duplicate expression */ 719 ExprList *pList = 0; /* The RHS of the IN operator */ 720 Expr *pLeft = 0; /* The LHS of the IN operator */ 721 Expr *pNew; /* The complete IN operator */ 722 723 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 724 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 725 assert( pOrTerm->eOperator & WO_EQ ); 726 assert( pOrTerm->leftCursor==iCursor ); 727 assert( pOrTerm->u.leftColumn==iColumn ); 728 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 729 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 730 pLeft = pOrTerm->pExpr->pLeft; 731 } 732 assert( pLeft!=0 ); 733 pDup = sqlite3ExprDup(db, pLeft, 0); 734 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 735 if( pNew ){ 736 int idxNew; 737 transferJoinMarkings(pNew, pExpr); 738 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 739 pNew->x.pList = pList; 740 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 741 testcase( idxNew==0 ); 742 exprAnalyze(pSrc, pWC, idxNew); 743 pTerm = &pWC->a[idxTerm]; 744 markTermAsChild(pWC, idxNew, idxTerm); 745 }else{ 746 sqlite3ExprListDelete(db, pList); 747 } 748 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 749 } 750 } 751 } 752 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 753 754 /* 755 ** We already know that pExpr is a binary operator where both operands are 756 ** column references. This routine checks to see if pExpr is an equivalence 757 ** relation: 758 ** 1. The SQLITE_Transitive optimization must be enabled 759 ** 2. Must be either an == or an IS operator 760 ** 3. Not originating in the ON clause of an OUTER JOIN 761 ** 4. The affinities of A and B must be compatible 762 ** 5a. Both operands use the same collating sequence OR 763 ** 5b. The overall collating sequence is BINARY 764 ** If this routine returns TRUE, that means that the RHS can be substituted 765 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 766 ** This is an optimization. No harm comes from returning 0. But if 1 is 767 ** returned when it should not be, then incorrect answers might result. 768 */ 769 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 770 char aff1, aff2; 771 CollSeq *pColl; 772 const char *zColl1, *zColl2; 773 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 774 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 775 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 776 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 777 aff2 = sqlite3ExprAffinity(pExpr->pRight); 778 if( aff1!=aff2 779 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 780 ){ 781 return 0; 782 } 783 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 784 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 785 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 786 /* Since pLeft and pRight are both a column references, their collating 787 ** sequence should always be defined. */ 788 zColl1 = ALWAYS(pColl) ? pColl->zName : 0; 789 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 790 zColl2 = ALWAYS(pColl) ? pColl->zName : 0; 791 return sqlite3StrICmp(zColl1, zColl2)==0; 792 } 793 794 /* 795 ** Recursively walk the expressions of a SELECT statement and generate 796 ** a bitmask indicating which tables are used in that expression 797 ** tree. 798 */ 799 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 800 Bitmask mask = 0; 801 while( pS ){ 802 SrcList *pSrc = pS->pSrc; 803 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 804 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 805 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 806 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 807 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 808 if( ALWAYS(pSrc!=0) ){ 809 int i; 810 for(i=0; i<pSrc->nSrc; i++){ 811 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 812 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 813 } 814 } 815 pS = pS->pPrior; 816 } 817 return mask; 818 } 819 820 /* 821 ** Expression pExpr is one operand of a comparison operator that might 822 ** be useful for indexing. This routine checks to see if pExpr appears 823 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 824 ** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor 825 ** number of the table that is indexed and *piColumn to the column number 826 ** of the column that is indexed, or -2 if an expression is being indexed. 827 ** 828 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 829 ** true even if that particular column is not indexed, because the column 830 ** might be added to an automatic index later. 831 */ 832 static int exprMightBeIndexed( 833 SrcList *pFrom, /* The FROM clause */ 834 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 835 Expr *pExpr, /* An operand of a comparison operator */ 836 int *piCur, /* Write the referenced table cursor number here */ 837 int *piColumn /* Write the referenced table column number here */ 838 ){ 839 Index *pIdx; 840 int i; 841 int iCur; 842 if( pExpr->op==TK_COLUMN ){ 843 *piCur = pExpr->iTable; 844 *piColumn = pExpr->iColumn; 845 return 1; 846 } 847 if( mPrereq==0 ) return 0; /* No table references */ 848 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 849 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 850 iCur = pFrom->a[i].iCursor; 851 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 852 if( pIdx->aColExpr==0 ) continue; 853 for(i=0; i<pIdx->nKeyCol; i++){ 854 if( pIdx->aiColumn[i]!=(-2) ) continue; 855 if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 856 *piCur = iCur; 857 *piColumn = -2; 858 return 1; 859 } 860 } 861 } 862 return 0; 863 } 864 865 /* 866 ** The input to this routine is an WhereTerm structure with only the 867 ** "pExpr" field filled in. The job of this routine is to analyze the 868 ** subexpression and populate all the other fields of the WhereTerm 869 ** structure. 870 ** 871 ** If the expression is of the form "<expr> <op> X" it gets commuted 872 ** to the standard form of "X <op> <expr>". 873 ** 874 ** If the expression is of the form "X <op> Y" where both X and Y are 875 ** columns, then the original expression is unchanged and a new virtual 876 ** term of the form "Y <op> X" is added to the WHERE clause and 877 ** analyzed separately. The original term is marked with TERM_COPIED 878 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 879 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 880 ** is a commuted copy of a prior term.) The original term has nChild=1 881 ** and the copy has idxParent set to the index of the original term. 882 */ 883 static void exprAnalyze( 884 SrcList *pSrc, /* the FROM clause */ 885 WhereClause *pWC, /* the WHERE clause */ 886 int idxTerm /* Index of the term to be analyzed */ 887 ){ 888 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 889 WhereTerm *pTerm; /* The term to be analyzed */ 890 WhereMaskSet *pMaskSet; /* Set of table index masks */ 891 Expr *pExpr; /* The expression to be analyzed */ 892 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 893 Bitmask prereqAll; /* Prerequesites of pExpr */ 894 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 895 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 896 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 897 int noCase = 0; /* uppercase equivalent to lowercase */ 898 int op; /* Top-level operator. pExpr->op */ 899 Parse *pParse = pWInfo->pParse; /* Parsing context */ 900 sqlite3 *db = pParse->db; /* Database connection */ 901 unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ 902 903 if( db->mallocFailed ){ 904 return; 905 } 906 pTerm = &pWC->a[idxTerm]; 907 pMaskSet = &pWInfo->sMaskSet; 908 pExpr = pTerm->pExpr; 909 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 910 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 911 op = pExpr->op; 912 if( op==TK_IN ){ 913 assert( pExpr->pRight==0 ); 914 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 915 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 916 }else{ 917 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 918 } 919 }else if( op==TK_ISNULL ){ 920 pTerm->prereqRight = 0; 921 }else{ 922 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 923 } 924 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 925 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 926 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 927 prereqAll |= x; 928 extraRight = x-1; /* ON clause terms may not be used with an index 929 ** on left table of a LEFT JOIN. Ticket #3015 */ 930 } 931 pTerm->prereqAll = prereqAll; 932 pTerm->leftCursor = -1; 933 pTerm->iParent = -1; 934 pTerm->eOperator = 0; 935 if( allowedOp(op) ){ 936 int iCur, iColumn; 937 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 938 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 939 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 940 if( exprMightBeIndexed(pSrc, prereqLeft, pLeft, &iCur, &iColumn) ){ 941 pTerm->leftCursor = iCur; 942 pTerm->u.leftColumn = iColumn; 943 pTerm->eOperator = operatorMask(op) & opMask; 944 } 945 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 946 if( pRight 947 && exprMightBeIndexed(pSrc, pTerm->prereqRight, pRight, &iCur, &iColumn) 948 ){ 949 WhereTerm *pNew; 950 Expr *pDup; 951 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 952 if( pTerm->leftCursor>=0 ){ 953 int idxNew; 954 pDup = sqlite3ExprDup(db, pExpr, 0); 955 if( db->mallocFailed ){ 956 sqlite3ExprDelete(db, pDup); 957 return; 958 } 959 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 960 if( idxNew==0 ) return; 961 pNew = &pWC->a[idxNew]; 962 markTermAsChild(pWC, idxNew, idxTerm); 963 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 964 pTerm = &pWC->a[idxTerm]; 965 pTerm->wtFlags |= TERM_COPIED; 966 967 if( termIsEquivalence(pParse, pDup) ){ 968 pTerm->eOperator |= WO_EQUIV; 969 eExtraOp = WO_EQUIV; 970 } 971 }else{ 972 pDup = pExpr; 973 pNew = pTerm; 974 } 975 exprCommute(pParse, pDup); 976 pNew->leftCursor = iCur; 977 pNew->u.leftColumn = iColumn; 978 testcase( (prereqLeft | extraRight) != prereqLeft ); 979 pNew->prereqRight = prereqLeft | extraRight; 980 pNew->prereqAll = prereqAll; 981 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 982 } 983 } 984 985 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 986 /* If a term is the BETWEEN operator, create two new virtual terms 987 ** that define the range that the BETWEEN implements. For example: 988 ** 989 ** a BETWEEN b AND c 990 ** 991 ** is converted into: 992 ** 993 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 994 ** 995 ** The two new terms are added onto the end of the WhereClause object. 996 ** The new terms are "dynamic" and are children of the original BETWEEN 997 ** term. That means that if the BETWEEN term is coded, the children are 998 ** skipped. Or, if the children are satisfied by an index, the original 999 ** BETWEEN term is skipped. 1000 */ 1001 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1002 ExprList *pList = pExpr->x.pList; 1003 int i; 1004 static const u8 ops[] = {TK_GE, TK_LE}; 1005 assert( pList!=0 ); 1006 assert( pList->nExpr==2 ); 1007 for(i=0; i<2; i++){ 1008 Expr *pNewExpr; 1009 int idxNew; 1010 pNewExpr = sqlite3PExpr(pParse, ops[i], 1011 sqlite3ExprDup(db, pExpr->pLeft, 0), 1012 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1013 transferJoinMarkings(pNewExpr, pExpr); 1014 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1015 testcase( idxNew==0 ); 1016 exprAnalyze(pSrc, pWC, idxNew); 1017 pTerm = &pWC->a[idxTerm]; 1018 markTermAsChild(pWC, idxNew, idxTerm); 1019 } 1020 } 1021 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1022 1023 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1024 /* Analyze a term that is composed of two or more subterms connected by 1025 ** an OR operator. 1026 */ 1027 else if( pExpr->op==TK_OR ){ 1028 assert( pWC->op==TK_AND ); 1029 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1030 pTerm = &pWC->a[idxTerm]; 1031 } 1032 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1033 1034 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1035 /* Add constraints to reduce the search space on a LIKE or GLOB 1036 ** operator. 1037 ** 1038 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1039 ** 1040 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1041 ** 1042 ** The last character of the prefix "abc" is incremented to form the 1043 ** termination condition "abd". If case is not significant (the default 1044 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1045 ** bound is made all lowercase so that the bounds also work when comparing 1046 ** BLOBs. 1047 */ 1048 if( pWC->op==TK_AND 1049 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1050 ){ 1051 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1052 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1053 Expr *pNewExpr1; 1054 Expr *pNewExpr2; 1055 int idxNew1; 1056 int idxNew2; 1057 const char *zCollSeqName; /* Name of collating sequence */ 1058 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1059 1060 pLeft = pExpr->x.pList->a[1].pExpr; 1061 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1062 1063 /* Convert the lower bound to upper-case and the upper bound to 1064 ** lower-case (upper-case is less than lower-case in ASCII) so that 1065 ** the range constraints also work for BLOBs 1066 */ 1067 if( noCase && !pParse->db->mallocFailed ){ 1068 int i; 1069 char c; 1070 pTerm->wtFlags |= TERM_LIKE; 1071 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1072 pStr1->u.zToken[i] = sqlite3Toupper(c); 1073 pStr2->u.zToken[i] = sqlite3Tolower(c); 1074 } 1075 } 1076 1077 if( !db->mallocFailed ){ 1078 u8 c, *pC; /* Last character before the first wildcard */ 1079 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1080 c = *pC; 1081 if( noCase ){ 1082 /* The point is to increment the last character before the first 1083 ** wildcard. But if we increment '@', that will push it into the 1084 ** alphabetic range where case conversions will mess up the 1085 ** inequality. To avoid this, make sure to also run the full 1086 ** LIKE on all candidate expressions by clearing the isComplete flag 1087 */ 1088 if( c=='A'-1 ) isComplete = 0; 1089 c = sqlite3UpperToLower[c]; 1090 } 1091 *pC = c + 1; 1092 } 1093 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1094 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1095 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1096 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1097 pStr1, 0); 1098 transferJoinMarkings(pNewExpr1, pExpr); 1099 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1100 testcase( idxNew1==0 ); 1101 exprAnalyze(pSrc, pWC, idxNew1); 1102 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1103 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1104 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1105 pStr2, 0); 1106 transferJoinMarkings(pNewExpr2, pExpr); 1107 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1108 testcase( idxNew2==0 ); 1109 exprAnalyze(pSrc, pWC, idxNew2); 1110 pTerm = &pWC->a[idxTerm]; 1111 if( isComplete ){ 1112 markTermAsChild(pWC, idxNew1, idxTerm); 1113 markTermAsChild(pWC, idxNew2, idxTerm); 1114 } 1115 } 1116 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1117 1118 #ifndef SQLITE_OMIT_VIRTUALTABLE 1119 /* Add a WO_MATCH auxiliary term to the constraint set if the 1120 ** current expression is of the form: column MATCH expr. 1121 ** This information is used by the xBestIndex methods of 1122 ** virtual tables. The native query optimizer does not attempt 1123 ** to do anything with MATCH functions. 1124 */ 1125 if( isMatchOfColumn(pExpr, &eOp2) ){ 1126 int idxNew; 1127 Expr *pRight, *pLeft; 1128 WhereTerm *pNewTerm; 1129 Bitmask prereqColumn, prereqExpr; 1130 1131 pRight = pExpr->x.pList->a[0].pExpr; 1132 pLeft = pExpr->x.pList->a[1].pExpr; 1133 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1134 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1135 if( (prereqExpr & prereqColumn)==0 ){ 1136 Expr *pNewExpr; 1137 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1138 0, sqlite3ExprDup(db, pRight, 0), 0); 1139 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1140 testcase( idxNew==0 ); 1141 pNewTerm = &pWC->a[idxNew]; 1142 pNewTerm->prereqRight = prereqExpr; 1143 pNewTerm->leftCursor = pLeft->iTable; 1144 pNewTerm->u.leftColumn = pLeft->iColumn; 1145 pNewTerm->eOperator = WO_MATCH; 1146 pNewTerm->eMatchOp = eOp2; 1147 markTermAsChild(pWC, idxNew, idxTerm); 1148 pTerm = &pWC->a[idxTerm]; 1149 pTerm->wtFlags |= TERM_COPIED; 1150 pNewTerm->prereqAll = pTerm->prereqAll; 1151 } 1152 } 1153 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1154 1155 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1156 /* When sqlite_stat3 histogram data is available an operator of the 1157 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1158 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1159 ** virtual term of that form. 1160 ** 1161 ** Note that the virtual term must be tagged with TERM_VNULL. 1162 */ 1163 if( pExpr->op==TK_NOTNULL 1164 && pExpr->pLeft->op==TK_COLUMN 1165 && pExpr->pLeft->iColumn>=0 1166 && OptimizationEnabled(db, SQLITE_Stat34) 1167 ){ 1168 Expr *pNewExpr; 1169 Expr *pLeft = pExpr->pLeft; 1170 int idxNew; 1171 WhereTerm *pNewTerm; 1172 1173 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1174 sqlite3ExprDup(db, pLeft, 0), 1175 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); 1176 1177 idxNew = whereClauseInsert(pWC, pNewExpr, 1178 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1179 if( idxNew ){ 1180 pNewTerm = &pWC->a[idxNew]; 1181 pNewTerm->prereqRight = 0; 1182 pNewTerm->leftCursor = pLeft->iTable; 1183 pNewTerm->u.leftColumn = pLeft->iColumn; 1184 pNewTerm->eOperator = WO_GT; 1185 markTermAsChild(pWC, idxNew, idxTerm); 1186 pTerm = &pWC->a[idxTerm]; 1187 pTerm->wtFlags |= TERM_COPIED; 1188 pNewTerm->prereqAll = pTerm->prereqAll; 1189 } 1190 } 1191 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1192 1193 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1194 ** an index for tables to the left of the join. 1195 */ 1196 pTerm->prereqRight |= extraRight; 1197 } 1198 1199 /*************************************************************************** 1200 ** Routines with file scope above. Interface to the rest of the where.c 1201 ** subsystem follows. 1202 ***************************************************************************/ 1203 1204 /* 1205 ** This routine identifies subexpressions in the WHERE clause where 1206 ** each subexpression is separated by the AND operator or some other 1207 ** operator specified in the op parameter. The WhereClause structure 1208 ** is filled with pointers to subexpressions. For example: 1209 ** 1210 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1211 ** \________/ \_______________/ \________________/ 1212 ** slot[0] slot[1] slot[2] 1213 ** 1214 ** The original WHERE clause in pExpr is unaltered. All this routine 1215 ** does is make slot[] entries point to substructure within pExpr. 1216 ** 1217 ** In the previous sentence and in the diagram, "slot[]" refers to 1218 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1219 ** all terms of the WHERE clause. 1220 */ 1221 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1222 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1223 pWC->op = op; 1224 if( pE2==0 ) return; 1225 if( pE2->op!=op ){ 1226 whereClauseInsert(pWC, pExpr, 0); 1227 }else{ 1228 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1229 sqlite3WhereSplit(pWC, pE2->pRight, op); 1230 } 1231 } 1232 1233 /* 1234 ** Initialize a preallocated WhereClause structure. 1235 */ 1236 void sqlite3WhereClauseInit( 1237 WhereClause *pWC, /* The WhereClause to be initialized */ 1238 WhereInfo *pWInfo /* The WHERE processing context */ 1239 ){ 1240 pWC->pWInfo = pWInfo; 1241 pWC->pOuter = 0; 1242 pWC->nTerm = 0; 1243 pWC->nSlot = ArraySize(pWC->aStatic); 1244 pWC->a = pWC->aStatic; 1245 } 1246 1247 /* 1248 ** Deallocate a WhereClause structure. The WhereClause structure 1249 ** itself is not freed. This routine is the inverse of 1250 ** sqlite3WhereClauseInit(). 1251 */ 1252 void sqlite3WhereClauseClear(WhereClause *pWC){ 1253 int i; 1254 WhereTerm *a; 1255 sqlite3 *db = pWC->pWInfo->pParse->db; 1256 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1257 if( a->wtFlags & TERM_DYNAMIC ){ 1258 sqlite3ExprDelete(db, a->pExpr); 1259 } 1260 if( a->wtFlags & TERM_ORINFO ){ 1261 whereOrInfoDelete(db, a->u.pOrInfo); 1262 }else if( a->wtFlags & TERM_ANDINFO ){ 1263 whereAndInfoDelete(db, a->u.pAndInfo); 1264 } 1265 } 1266 if( pWC->a!=pWC->aStatic ){ 1267 sqlite3DbFree(db, pWC->a); 1268 } 1269 } 1270 1271 1272 /* 1273 ** These routines walk (recursively) an expression tree and generate 1274 ** a bitmask indicating which tables are used in that expression 1275 ** tree. 1276 */ 1277 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1278 Bitmask mask = 0; 1279 if( p==0 ) return 0; 1280 if( p->op==TK_COLUMN ){ 1281 mask = sqlite3WhereGetMask(pMaskSet, p->iTable); 1282 return mask; 1283 } 1284 mask = sqlite3WhereExprUsage(pMaskSet, p->pRight); 1285 mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 1286 if( ExprHasProperty(p, EP_xIsSelect) ){ 1287 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1288 }else{ 1289 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1290 } 1291 return mask; 1292 } 1293 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1294 int i; 1295 Bitmask mask = 0; 1296 if( pList ){ 1297 for(i=0; i<pList->nExpr; i++){ 1298 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1299 } 1300 } 1301 return mask; 1302 } 1303 1304 1305 /* 1306 ** Call exprAnalyze on all terms in a WHERE clause. 1307 ** 1308 ** Note that exprAnalyze() might add new virtual terms onto the 1309 ** end of the WHERE clause. We do not want to analyze these new 1310 ** virtual terms, so start analyzing at the end and work forward 1311 ** so that the added virtual terms are never processed. 1312 */ 1313 void sqlite3WhereExprAnalyze( 1314 SrcList *pTabList, /* the FROM clause */ 1315 WhereClause *pWC /* the WHERE clause to be analyzed */ 1316 ){ 1317 int i; 1318 for(i=pWC->nTerm-1; i>=0; i--){ 1319 exprAnalyze(pTabList, pWC, i); 1320 } 1321 } 1322 1323 /* 1324 ** For table-valued-functions, transform the function arguments into 1325 ** new WHERE clause terms. 1326 ** 1327 ** Each function argument translates into an equality constraint against 1328 ** a HIDDEN column in the table. 1329 */ 1330 void sqlite3WhereTabFuncArgs( 1331 Parse *pParse, /* Parsing context */ 1332 struct SrcList_item *pItem, /* The FROM clause term to process */ 1333 WhereClause *pWC /* Xfer function arguments to here */ 1334 ){ 1335 Table *pTab; 1336 int j, k; 1337 ExprList *pArgs; 1338 Expr *pColRef; 1339 Expr *pTerm; 1340 if( pItem->fg.isTabFunc==0 ) return; 1341 pTab = pItem->pTab; 1342 assert( pTab!=0 ); 1343 pArgs = pItem->u1.pFuncArg; 1344 if( pArgs==0 ) return; 1345 for(j=k=0; j<pArgs->nExpr; j++){ 1346 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1347 if( k>=pTab->nCol ){ 1348 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1349 pTab->zName, j); 1350 return; 1351 } 1352 pColRef = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1353 if( pColRef==0 ) return; 1354 pColRef->iTable = pItem->iCursor; 1355 pColRef->iColumn = k++; 1356 pColRef->pTab = pTab; 1357 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1358 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); 1359 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1360 } 1361 } 1362