1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( (wtFlags & TERM_VIRTUAL)==0 ) pWC->nBase = pWC->nTerm; 83 if( p && ExprHasProperty(p, EP_Unlikely) ){ 84 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 85 }else{ 86 pTerm->truthProb = 1; 87 } 88 pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p); 89 pTerm->wtFlags = wtFlags; 90 pTerm->pWC = pWC; 91 pTerm->iParent = -1; 92 memset(&pTerm->eOperator, 0, 93 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 94 return idx; 95 } 96 97 /* 98 ** Return TRUE if the given operator is one of the operators that is 99 ** allowed for an indexable WHERE clause term. The allowed operators are 100 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 101 */ 102 static int allowedOp(int op){ 103 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 104 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 105 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 106 assert( TK_GE==TK_EQ+4 ); 107 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 108 } 109 110 /* 111 ** Commute a comparison operator. Expressions of the form "X op Y" 112 ** are converted into "Y op X". 113 */ 114 static u16 exprCommute(Parse *pParse, Expr *pExpr){ 115 if( pExpr->pLeft->op==TK_VECTOR 116 || pExpr->pRight->op==TK_VECTOR 117 || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) != 118 sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft) 119 ){ 120 pExpr->flags ^= EP_Commuted; 121 } 122 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 123 if( pExpr->op>=TK_GT ){ 124 assert( TK_LT==TK_GT+2 ); 125 assert( TK_GE==TK_LE+2 ); 126 assert( TK_GT>TK_EQ ); 127 assert( TK_GT<TK_LE ); 128 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 129 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 130 } 131 return 0; 132 } 133 134 /* 135 ** Translate from TK_xx operator to WO_xx bitmask. 136 */ 137 static u16 operatorMask(int op){ 138 u16 c; 139 assert( allowedOp(op) ); 140 if( op==TK_IN ){ 141 c = WO_IN; 142 }else if( op==TK_ISNULL ){ 143 c = WO_ISNULL; 144 }else if( op==TK_IS ){ 145 c = WO_IS; 146 }else{ 147 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 148 c = (u16)(WO_EQ<<(op-TK_EQ)); 149 } 150 assert( op!=TK_ISNULL || c==WO_ISNULL ); 151 assert( op!=TK_IN || c==WO_IN ); 152 assert( op!=TK_EQ || c==WO_EQ ); 153 assert( op!=TK_LT || c==WO_LT ); 154 assert( op!=TK_LE || c==WO_LE ); 155 assert( op!=TK_GT || c==WO_GT ); 156 assert( op!=TK_GE || c==WO_GE ); 157 assert( op!=TK_IS || c==WO_IS ); 158 return c; 159 } 160 161 162 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 163 /* 164 ** Check to see if the given expression is a LIKE or GLOB operator that 165 ** can be optimized using inequality constraints. Return TRUE if it is 166 ** so and false if not. 167 ** 168 ** In order for the operator to be optimizible, the RHS must be a string 169 ** literal that does not begin with a wildcard. The LHS must be a column 170 ** that may only be NULL, a string, or a BLOB, never a number. (This means 171 ** that virtual tables cannot participate in the LIKE optimization.) The 172 ** collating sequence for the column on the LHS must be appropriate for 173 ** the operator. 174 */ 175 static int isLikeOrGlob( 176 Parse *pParse, /* Parsing and code generating context */ 177 Expr *pExpr, /* Test this expression */ 178 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 179 int *pisComplete, /* True if the only wildcard is % in the last character */ 180 int *pnoCase /* True if uppercase is equivalent to lowercase */ 181 ){ 182 const u8 *z = 0; /* String on RHS of LIKE operator */ 183 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 184 ExprList *pList; /* List of operands to the LIKE operator */ 185 u8 c; /* One character in z[] */ 186 int cnt; /* Number of non-wildcard prefix characters */ 187 u8 wc[4]; /* Wildcard characters */ 188 sqlite3 *db = pParse->db; /* Database connection */ 189 sqlite3_value *pVal = 0; 190 int op; /* Opcode of pRight */ 191 int rc; /* Result code to return */ 192 193 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){ 194 return 0; 195 } 196 #ifdef SQLITE_EBCDIC 197 if( *pnoCase ) return 0; 198 #endif 199 assert( ExprUseXList(pExpr) ); 200 pList = pExpr->x.pList; 201 pLeft = pList->a[1].pExpr; 202 203 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 204 op = pRight->op; 205 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 206 Vdbe *pReprepare = pParse->pReprepare; 207 int iCol = pRight->iColumn; 208 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 209 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 210 z = sqlite3_value_text(pVal); 211 } 212 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 213 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 214 }else if( op==TK_STRING ){ 215 assert( !ExprHasProperty(pRight, EP_IntValue) ); 216 z = (u8*)pRight->u.zToken; 217 } 218 if( z ){ 219 220 /* Count the number of prefix characters prior to the first wildcard */ 221 cnt = 0; 222 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 223 cnt++; 224 if( c==wc[3] && z[cnt]!=0 ) cnt++; 225 } 226 227 /* The optimization is possible only if (1) the pattern does not begin 228 ** with a wildcard and if (2) the non-wildcard prefix does not end with 229 ** an (illegal 0xff) character, or (3) the pattern does not consist of 230 ** a single escape character. The second condition is necessary so 231 ** that we can increment the prefix key to find an upper bound for the 232 ** range search. The third is because the caller assumes that the pattern 233 ** consists of at least one character after all escapes have been 234 ** removed. */ 235 if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){ 236 Expr *pPrefix; 237 238 /* A "complete" match if the pattern ends with "*" or "%" */ 239 *pisComplete = c==wc[0] && z[cnt+1]==0; 240 241 /* Get the pattern prefix. Remove all escapes from the prefix. */ 242 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); 243 if( pPrefix ){ 244 int iFrom, iTo; 245 char *zNew; 246 assert( !ExprHasProperty(pPrefix, EP_IntValue) ); 247 zNew = pPrefix->u.zToken; 248 zNew[cnt] = 0; 249 for(iFrom=iTo=0; iFrom<cnt; iFrom++){ 250 if( zNew[iFrom]==wc[3] ) iFrom++; 251 zNew[iTo++] = zNew[iFrom]; 252 } 253 zNew[iTo] = 0; 254 assert( iTo>0 ); 255 256 /* If the LHS is not an ordinary column with TEXT affinity, then the 257 ** pattern prefix boundaries (both the start and end boundaries) must 258 ** not look like a number. Otherwise the pattern might be treated as 259 ** a number, which will invalidate the LIKE optimization. 260 ** 261 ** Getting this right has been a persistent source of bugs in the 262 ** LIKE optimization. See, for example: 263 ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1 264 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28 265 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07 266 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975 267 ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a 268 */ 269 if( pLeft->op!=TK_COLUMN 270 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 271 || (ALWAYS( ExprUseYTab(pLeft) ) 272 && pLeft->y.pTab 273 && IsVirtual(pLeft->y.pTab)) /* Might be numeric */ 274 ){ 275 int isNum; 276 double rDummy; 277 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); 278 if( isNum<=0 ){ 279 if( iTo==1 && zNew[0]=='-' ){ 280 isNum = +1; 281 }else{ 282 zNew[iTo-1]++; 283 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8); 284 zNew[iTo-1]--; 285 } 286 } 287 if( isNum>0 ){ 288 sqlite3ExprDelete(db, pPrefix); 289 sqlite3ValueFree(pVal); 290 return 0; 291 } 292 } 293 } 294 *ppPrefix = pPrefix; 295 296 /* If the RHS pattern is a bound parameter, make arrangements to 297 ** reprepare the statement when that parameter is rebound */ 298 if( op==TK_VARIABLE ){ 299 Vdbe *v = pParse->pVdbe; 300 sqlite3VdbeSetVarmask(v, pRight->iColumn); 301 assert( !ExprHasProperty(pRight, EP_IntValue) ); 302 if( *pisComplete && pRight->u.zToken[1] ){ 303 /* If the rhs of the LIKE expression is a variable, and the current 304 ** value of the variable means there is no need to invoke the LIKE 305 ** function, then no OP_Variable will be added to the program. 306 ** This causes problems for the sqlite3_bind_parameter_name() 307 ** API. To work around them, add a dummy OP_Variable here. 308 */ 309 int r1 = sqlite3GetTempReg(pParse); 310 sqlite3ExprCodeTarget(pParse, pRight, r1); 311 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 312 sqlite3ReleaseTempReg(pParse, r1); 313 } 314 } 315 }else{ 316 z = 0; 317 } 318 } 319 320 rc = (z!=0); 321 sqlite3ValueFree(pVal); 322 return rc; 323 } 324 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 325 326 327 #ifndef SQLITE_OMIT_VIRTUALTABLE 328 /* 329 ** Check to see if the pExpr expression is a form that needs to be passed 330 ** to the xBestIndex method of virtual tables. Forms of interest include: 331 ** 332 ** Expression Virtual Table Operator 333 ** ----------------------- --------------------------------- 334 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH 335 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB 336 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE 337 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP 338 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE 339 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE 340 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT 341 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT 342 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL 343 ** 344 ** In every case, "column" must be a column of a virtual table. If there 345 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the 346 ** "expr" expression (even though in forms (6) and (8) the column is on the 347 ** right and the expression is on the left). Also set *peOp2 to the 348 ** appropriate virtual table operator. The return value is 1 or 2 if there 349 ** is a match. The usual return is 1, but if the RHS is also a column 350 ** of virtual table in forms (5) or (7) then return 2. 351 ** 352 ** If the expression matches none of the patterns above, return 0. 353 */ 354 static int isAuxiliaryVtabOperator( 355 sqlite3 *db, /* Parsing context */ 356 Expr *pExpr, /* Test this expression */ 357 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */ 358 Expr **ppLeft, /* Column expression to left of MATCH/op2 */ 359 Expr **ppRight /* Expression to left of MATCH/op2 */ 360 ){ 361 if( pExpr->op==TK_FUNCTION ){ 362 static const struct Op2 { 363 const char *zOp; 364 unsigned char eOp2; 365 } aOp[] = { 366 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 367 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 368 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 369 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 370 }; 371 ExprList *pList; 372 Expr *pCol; /* Column reference */ 373 int i; 374 375 assert( ExprUseXList(pExpr) ); 376 pList = pExpr->x.pList; 377 if( pList==0 || pList->nExpr!=2 ){ 378 return 0; 379 } 380 381 /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a 382 ** virtual table on their second argument, which is the same as 383 ** the left-hand side operand in their in-fix form. 384 ** 385 ** vtab_column MATCH expression 386 ** MATCH(expression,vtab_column) 387 */ 388 pCol = pList->a[1].pExpr; 389 assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) ); 390 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 ); 391 if( ExprIsVtab(pCol) ){ 392 for(i=0; i<ArraySize(aOp); i++){ 393 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 394 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 395 *peOp2 = aOp[i].eOp2; 396 *ppRight = pList->a[0].pExpr; 397 *ppLeft = pCol; 398 return 1; 399 } 400 } 401 } 402 403 /* We can also match against the first column of overloaded 404 ** functions where xFindFunction returns a value of at least 405 ** SQLITE_INDEX_CONSTRAINT_FUNCTION. 406 ** 407 ** OVERLOADED(vtab_column,expression) 408 ** 409 ** Historically, xFindFunction expected to see lower-case function 410 ** names. But for this use case, xFindFunction is expected to deal 411 ** with function names in an arbitrary case. 412 */ 413 pCol = pList->a[0].pExpr; 414 assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) ); 415 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 ); 416 if( ExprIsVtab(pCol) ){ 417 sqlite3_vtab *pVtab; 418 sqlite3_module *pMod; 419 void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**); 420 void *pNotUsed; 421 pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab; 422 assert( pVtab!=0 ); 423 assert( pVtab->pModule!=0 ); 424 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 425 pMod = (sqlite3_module *)pVtab->pModule; 426 if( pMod->xFindFunction!=0 ){ 427 i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed); 428 if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ 429 *peOp2 = i; 430 *ppRight = pList->a[1].pExpr; 431 *ppLeft = pCol; 432 return 1; 433 } 434 } 435 } 436 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ 437 int res = 0; 438 Expr *pLeft = pExpr->pLeft; 439 Expr *pRight = pExpr->pRight; 440 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 441 testcase( pLeft->op==TK_COLUMN && pLeft->y.pTab==0 ); 442 if( ExprIsVtab(pLeft) ){ 443 res++; 444 } 445 assert( pRight==0 || pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 446 testcase( pRight && pRight->op==TK_COLUMN && pRight->y.pTab==0 ); 447 if( pRight && ExprIsVtab(pRight) ){ 448 res++; 449 SWAP(Expr*, pLeft, pRight); 450 } 451 *ppLeft = pLeft; 452 *ppRight = pRight; 453 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; 454 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; 455 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL; 456 return res; 457 } 458 return 0; 459 } 460 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 461 462 /* 463 ** If the pBase expression originated in the ON or USING clause of 464 ** a join, then transfer the appropriate markings over to derived. 465 */ 466 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 467 if( pDerived ){ 468 pDerived->flags |= pBase->flags & EP_FromJoin; 469 pDerived->iRightJoinTable = pBase->iRightJoinTable; 470 } 471 } 472 473 /* 474 ** Mark term iChild as being a child of term iParent 475 */ 476 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 477 pWC->a[iChild].iParent = iParent; 478 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 479 pWC->a[iParent].nChild++; 480 } 481 482 /* 483 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 484 ** a conjunction, then return just pTerm when N==0. If N is exceeds 485 ** the number of available subterms, return NULL. 486 */ 487 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 488 if( pTerm->eOperator!=WO_AND ){ 489 return N==0 ? pTerm : 0; 490 } 491 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 492 return &pTerm->u.pAndInfo->wc.a[N]; 493 } 494 return 0; 495 } 496 497 /* 498 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 499 ** two subterms are in disjunction - they are OR-ed together. 500 ** 501 ** If these two terms are both of the form: "A op B" with the same 502 ** A and B values but different operators and if the operators are 503 ** compatible (if one is = and the other is <, for example) then 504 ** add a new virtual AND term to pWC that is the combination of the 505 ** two. 506 ** 507 ** Some examples: 508 ** 509 ** x<y OR x=y --> x<=y 510 ** x=y OR x=y --> x=y 511 ** x<=y OR x<y --> x<=y 512 ** 513 ** The following is NOT generated: 514 ** 515 ** x<y OR x>y --> x!=y 516 */ 517 static void whereCombineDisjuncts( 518 SrcList *pSrc, /* the FROM clause */ 519 WhereClause *pWC, /* The complete WHERE clause */ 520 WhereTerm *pOne, /* First disjunct */ 521 WhereTerm *pTwo /* Second disjunct */ 522 ){ 523 u16 eOp = pOne->eOperator | pTwo->eOperator; 524 sqlite3 *db; /* Database connection (for malloc) */ 525 Expr *pNew; /* New virtual expression */ 526 int op; /* Operator for the combined expression */ 527 int idxNew; /* Index in pWC of the next virtual term */ 528 529 if( (pOne->wtFlags | pTwo->wtFlags) & TERM_VNULL ) return; 530 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 531 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 532 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 533 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 534 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 535 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 536 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 537 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; 538 /* If we reach this point, it means the two subterms can be combined */ 539 if( (eOp & (eOp-1))!=0 ){ 540 if( eOp & (WO_LT|WO_LE) ){ 541 eOp = WO_LE; 542 }else{ 543 assert( eOp & (WO_GT|WO_GE) ); 544 eOp = WO_GE; 545 } 546 } 547 db = pWC->pWInfo->pParse->db; 548 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 549 if( pNew==0 ) return; 550 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 551 pNew->op = op; 552 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 553 exprAnalyze(pSrc, pWC, idxNew); 554 } 555 556 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 557 /* 558 ** Analyze a term that consists of two or more OR-connected 559 ** subterms. So in: 560 ** 561 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 562 ** ^^^^^^^^^^^^^^^^^^^^ 563 ** 564 ** This routine analyzes terms such as the middle term in the above example. 565 ** A WhereOrTerm object is computed and attached to the term under 566 ** analysis, regardless of the outcome of the analysis. Hence: 567 ** 568 ** WhereTerm.wtFlags |= TERM_ORINFO 569 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 570 ** 571 ** The term being analyzed must have two or more of OR-connected subterms. 572 ** A single subterm might be a set of AND-connected sub-subterms. 573 ** Examples of terms under analysis: 574 ** 575 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 576 ** (B) x=expr1 OR expr2=x OR x=expr3 577 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 578 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 579 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 580 ** (F) x>A OR (x=A AND y>=B) 581 ** 582 ** CASE 1: 583 ** 584 ** If all subterms are of the form T.C=expr for some single column of C and 585 ** a single table T (as shown in example B above) then create a new virtual 586 ** term that is an equivalent IN expression. In other words, if the term 587 ** being analyzed is: 588 ** 589 ** x = expr1 OR expr2 = x OR x = expr3 590 ** 591 ** then create a new virtual term like this: 592 ** 593 ** x IN (expr1,expr2,expr3) 594 ** 595 ** CASE 2: 596 ** 597 ** If there are exactly two disjuncts and one side has x>A and the other side 598 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 599 ** WHERE clause of the form "x>=A". Example: 600 ** 601 ** x>A OR (x=A AND y>B) adds: x>=A 602 ** 603 ** The added conjunct can sometimes be helpful in query planning. 604 ** 605 ** CASE 3: 606 ** 607 ** If all subterms are indexable by a single table T, then set 608 ** 609 ** WhereTerm.eOperator = WO_OR 610 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 611 ** 612 ** A subterm is "indexable" if it is of the form 613 ** "T.C <op> <expr>" where C is any column of table T and 614 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 615 ** A subterm is also indexable if it is an AND of two or more 616 ** subsubterms at least one of which is indexable. Indexable AND 617 ** subterms have their eOperator set to WO_AND and they have 618 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 619 ** 620 ** From another point of view, "indexable" means that the subterm could 621 ** potentially be used with an index if an appropriate index exists. 622 ** This analysis does not consider whether or not the index exists; that 623 ** is decided elsewhere. This analysis only looks at whether subterms 624 ** appropriate for indexing exist. 625 ** 626 ** All examples A through E above satisfy case 3. But if a term 627 ** also satisfies case 1 (such as B) we know that the optimizer will 628 ** always prefer case 1, so in that case we pretend that case 3 is not 629 ** satisfied. 630 ** 631 ** It might be the case that multiple tables are indexable. For example, 632 ** (E) above is indexable on tables P, Q, and R. 633 ** 634 ** Terms that satisfy case 3 are candidates for lookup by using 635 ** separate indices to find rowids for each subterm and composing 636 ** the union of all rowids using a RowSet object. This is similar 637 ** to "bitmap indices" in other database engines. 638 ** 639 ** OTHERWISE: 640 ** 641 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 642 ** zero. This term is not useful for search. 643 */ 644 static void exprAnalyzeOrTerm( 645 SrcList *pSrc, /* the FROM clause */ 646 WhereClause *pWC, /* the complete WHERE clause */ 647 int idxTerm /* Index of the OR-term to be analyzed */ 648 ){ 649 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 650 Parse *pParse = pWInfo->pParse; /* Parser context */ 651 sqlite3 *db = pParse->db; /* Database connection */ 652 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 653 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 654 int i; /* Loop counters */ 655 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 656 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 657 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 658 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 659 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 660 661 /* 662 ** Break the OR clause into its separate subterms. The subterms are 663 ** stored in a WhereClause structure containing within the WhereOrInfo 664 ** object that is attached to the original OR clause term. 665 */ 666 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 667 assert( pExpr->op==TK_OR ); 668 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 669 if( pOrInfo==0 ) return; 670 pTerm->wtFlags |= TERM_ORINFO; 671 pOrWc = &pOrInfo->wc; 672 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 673 sqlite3WhereClauseInit(pOrWc, pWInfo); 674 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 675 sqlite3WhereExprAnalyze(pSrc, pOrWc); 676 if( db->mallocFailed ) return; 677 assert( pOrWc->nTerm>=2 ); 678 679 /* 680 ** Compute the set of tables that might satisfy cases 1 or 3. 681 */ 682 indexable = ~(Bitmask)0; 683 chngToIN = ~(Bitmask)0; 684 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 685 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 686 WhereAndInfo *pAndInfo; 687 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 688 chngToIN = 0; 689 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 690 if( pAndInfo ){ 691 WhereClause *pAndWC; 692 WhereTerm *pAndTerm; 693 int j; 694 Bitmask b = 0; 695 pOrTerm->u.pAndInfo = pAndInfo; 696 pOrTerm->wtFlags |= TERM_ANDINFO; 697 pOrTerm->eOperator = WO_AND; 698 pOrTerm->leftCursor = -1; 699 pAndWC = &pAndInfo->wc; 700 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 701 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 702 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 703 sqlite3WhereExprAnalyze(pSrc, pAndWC); 704 pAndWC->pOuter = pWC; 705 if( !db->mallocFailed ){ 706 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 707 assert( pAndTerm->pExpr ); 708 if( allowedOp(pAndTerm->pExpr->op) 709 || pAndTerm->eOperator==WO_AUX 710 ){ 711 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 712 } 713 } 714 } 715 indexable &= b; 716 } 717 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 718 /* Skip this term for now. We revisit it when we process the 719 ** corresponding TERM_VIRTUAL term */ 720 }else{ 721 Bitmask b; 722 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 723 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 724 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 725 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 726 } 727 indexable &= b; 728 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 729 chngToIN = 0; 730 }else{ 731 chngToIN &= b; 732 } 733 } 734 } 735 736 /* 737 ** Record the set of tables that satisfy case 3. The set might be 738 ** empty. 739 */ 740 pOrInfo->indexable = indexable; 741 pTerm->eOperator = WO_OR; 742 pTerm->leftCursor = -1; 743 if( indexable ){ 744 pWC->hasOr = 1; 745 } 746 747 /* For a two-way OR, attempt to implementation case 2. 748 */ 749 if( indexable && pOrWc->nTerm==2 ){ 750 int iOne = 0; 751 WhereTerm *pOne; 752 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 753 int iTwo = 0; 754 WhereTerm *pTwo; 755 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 756 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 757 } 758 } 759 } 760 761 /* 762 ** chngToIN holds a set of tables that *might* satisfy case 1. But 763 ** we have to do some additional checking to see if case 1 really 764 ** is satisfied. 765 ** 766 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 767 ** that there is no possibility of transforming the OR clause into an 768 ** IN operator because one or more terms in the OR clause contain 769 ** something other than == on a column in the single table. The 1-bit 770 ** case means that every term of the OR clause is of the form 771 ** "table.column=expr" for some single table. The one bit that is set 772 ** will correspond to the common table. We still need to check to make 773 ** sure the same column is used on all terms. The 2-bit case is when 774 ** the all terms are of the form "table1.column=table2.column". It 775 ** might be possible to form an IN operator with either table1.column 776 ** or table2.column as the LHS if either is common to every term of 777 ** the OR clause. 778 ** 779 ** Note that terms of the form "table.column1=table.column2" (the 780 ** same table on both sizes of the ==) cannot be optimized. 781 */ 782 if( chngToIN ){ 783 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 784 int iColumn = -1; /* Column index on lhs of IN operator */ 785 int iCursor = -1; /* Table cursor common to all terms */ 786 int j = 0; /* Loop counter */ 787 788 /* Search for a table and column that appears on one side or the 789 ** other of the == operator in every subterm. That table and column 790 ** will be recorded in iCursor and iColumn. There might not be any 791 ** such table and column. Set okToChngToIN if an appropriate table 792 ** and column is found but leave okToChngToIN false if not found. 793 */ 794 for(j=0; j<2 && !okToChngToIN; j++){ 795 Expr *pLeft = 0; 796 pOrTerm = pOrWc->a; 797 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 798 assert( pOrTerm->eOperator & WO_EQ ); 799 pOrTerm->wtFlags &= ~TERM_OK; 800 if( pOrTerm->leftCursor==iCursor ){ 801 /* This is the 2-bit case and we are on the second iteration and 802 ** current term is from the first iteration. So skip this term. */ 803 assert( j==1 ); 804 continue; 805 } 806 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 807 pOrTerm->leftCursor))==0 ){ 808 /* This term must be of the form t1.a==t2.b where t2 is in the 809 ** chngToIN set but t1 is not. This term will be either preceded 810 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 811 ** and use its inversion. */ 812 testcase( pOrTerm->wtFlags & TERM_COPIED ); 813 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 814 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 815 continue; 816 } 817 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); 818 iColumn = pOrTerm->u.x.leftColumn; 819 iCursor = pOrTerm->leftCursor; 820 pLeft = pOrTerm->pExpr->pLeft; 821 break; 822 } 823 if( i<0 ){ 824 /* No candidate table+column was found. This can only occur 825 ** on the second iteration */ 826 assert( j==1 ); 827 assert( IsPowerOfTwo(chngToIN) ); 828 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 829 break; 830 } 831 testcase( j==1 ); 832 833 /* We have found a candidate table and column. Check to see if that 834 ** table and column is common to every term in the OR clause */ 835 okToChngToIN = 1; 836 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 837 assert( pOrTerm->eOperator & WO_EQ ); 838 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); 839 if( pOrTerm->leftCursor!=iCursor ){ 840 pOrTerm->wtFlags &= ~TERM_OK; 841 }else if( pOrTerm->u.x.leftColumn!=iColumn || (iColumn==XN_EXPR 842 && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1) 843 )){ 844 okToChngToIN = 0; 845 }else{ 846 int affLeft, affRight; 847 /* If the right-hand side is also a column, then the affinities 848 ** of both right and left sides must be such that no type 849 ** conversions are required on the right. (Ticket #2249) 850 */ 851 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 852 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 853 if( affRight!=0 && affRight!=affLeft ){ 854 okToChngToIN = 0; 855 }else{ 856 pOrTerm->wtFlags |= TERM_OK; 857 } 858 } 859 } 860 } 861 862 /* At this point, okToChngToIN is true if original pTerm satisfies 863 ** case 1. In that case, construct a new virtual term that is 864 ** pTerm converted into an IN operator. 865 */ 866 if( okToChngToIN ){ 867 Expr *pDup; /* A transient duplicate expression */ 868 ExprList *pList = 0; /* The RHS of the IN operator */ 869 Expr *pLeft = 0; /* The LHS of the IN operator */ 870 Expr *pNew; /* The complete IN operator */ 871 872 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 873 if( (pOrTerm->wtFlags & TERM_OK)==0 ) continue; 874 assert( pOrTerm->eOperator & WO_EQ ); 875 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 ); 876 assert( pOrTerm->leftCursor==iCursor ); 877 assert( pOrTerm->u.x.leftColumn==iColumn ); 878 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 879 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 880 pLeft = pOrTerm->pExpr->pLeft; 881 } 882 assert( pLeft!=0 ); 883 pDup = sqlite3ExprDup(db, pLeft, 0); 884 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 885 if( pNew ){ 886 int idxNew; 887 transferJoinMarkings(pNew, pExpr); 888 assert( ExprUseXList(pNew) ); 889 pNew->x.pList = pList; 890 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 891 testcase( idxNew==0 ); 892 exprAnalyze(pSrc, pWC, idxNew); 893 /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */ 894 markTermAsChild(pWC, idxNew, idxTerm); 895 }else{ 896 sqlite3ExprListDelete(db, pList); 897 } 898 } 899 } 900 } 901 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 902 903 /* 904 ** We already know that pExpr is a binary operator where both operands are 905 ** column references. This routine checks to see if pExpr is an equivalence 906 ** relation: 907 ** 1. The SQLITE_Transitive optimization must be enabled 908 ** 2. Must be either an == or an IS operator 909 ** 3. Not originating in the ON clause of an OUTER JOIN 910 ** 4. The affinities of A and B must be compatible 911 ** 5a. Both operands use the same collating sequence OR 912 ** 5b. The overall collating sequence is BINARY 913 ** If this routine returns TRUE, that means that the RHS can be substituted 914 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 915 ** This is an optimization. No harm comes from returning 0. But if 1 is 916 ** returned when it should not be, then incorrect answers might result. 917 */ 918 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 919 char aff1, aff2; 920 CollSeq *pColl; 921 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 922 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 923 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 924 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 925 aff2 = sqlite3ExprAffinity(pExpr->pRight); 926 if( aff1!=aff2 927 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 928 ){ 929 return 0; 930 } 931 pColl = sqlite3ExprCompareCollSeq(pParse, pExpr); 932 if( sqlite3IsBinary(pColl) ) return 1; 933 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight); 934 } 935 936 /* 937 ** Recursively walk the expressions of a SELECT statement and generate 938 ** a bitmask indicating which tables are used in that expression 939 ** tree. 940 */ 941 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 942 Bitmask mask = 0; 943 while( pS ){ 944 SrcList *pSrc = pS->pSrc; 945 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 946 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 947 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 948 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 949 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 950 if( ALWAYS(pSrc!=0) ){ 951 int i; 952 for(i=0; i<pSrc->nSrc; i++){ 953 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 954 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 955 if( pSrc->a[i].fg.isTabFunc ){ 956 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg); 957 } 958 } 959 } 960 pS = pS->pPrior; 961 } 962 return mask; 963 } 964 965 /* 966 ** Expression pExpr is one operand of a comparison operator that might 967 ** be useful for indexing. This routine checks to see if pExpr appears 968 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 969 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor 970 ** number of the table that is indexed and aiCurCol[1] to the column number 971 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 972 ** indexed. 973 ** 974 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 975 ** true even if that particular column is not indexed, because the column 976 ** might be added to an automatic index later. 977 */ 978 static SQLITE_NOINLINE int exprMightBeIndexed2( 979 SrcList *pFrom, /* The FROM clause */ 980 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 981 int *aiCurCol, /* Write the referenced table cursor and column here */ 982 Expr *pExpr /* An operand of a comparison operator */ 983 ){ 984 Index *pIdx; 985 int i; 986 int iCur; 987 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 988 iCur = pFrom->a[i].iCursor; 989 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 990 if( pIdx->aColExpr==0 ) continue; 991 for(i=0; i<pIdx->nKeyCol; i++){ 992 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 993 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 994 aiCurCol[0] = iCur; 995 aiCurCol[1] = XN_EXPR; 996 return 1; 997 } 998 } 999 } 1000 return 0; 1001 } 1002 static int exprMightBeIndexed( 1003 SrcList *pFrom, /* The FROM clause */ 1004 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 1005 int *aiCurCol, /* Write the referenced table cursor & column here */ 1006 Expr *pExpr, /* An operand of a comparison operator */ 1007 int op /* The specific comparison operator */ 1008 ){ 1009 /* If this expression is a vector to the left or right of a 1010 ** inequality constraint (>, <, >= or <=), perform the processing 1011 ** on the first element of the vector. */ 1012 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 1013 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 1014 assert( op<=TK_GE ); 1015 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 1016 assert( ExprUseXList(pExpr) ); 1017 pExpr = pExpr->x.pList->a[0].pExpr; 1018 1019 } 1020 1021 if( pExpr->op==TK_COLUMN ){ 1022 aiCurCol[0] = pExpr->iTable; 1023 aiCurCol[1] = pExpr->iColumn; 1024 return 1; 1025 } 1026 if( mPrereq==0 ) return 0; /* No table references */ 1027 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 1028 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr); 1029 } 1030 1031 1032 /* 1033 ** The input to this routine is an WhereTerm structure with only the 1034 ** "pExpr" field filled in. The job of this routine is to analyze the 1035 ** subexpression and populate all the other fields of the WhereTerm 1036 ** structure. 1037 ** 1038 ** If the expression is of the form "<expr> <op> X" it gets commuted 1039 ** to the standard form of "X <op> <expr>". 1040 ** 1041 ** If the expression is of the form "X <op> Y" where both X and Y are 1042 ** columns, then the original expression is unchanged and a new virtual 1043 ** term of the form "Y <op> X" is added to the WHERE clause and 1044 ** analyzed separately. The original term is marked with TERM_COPIED 1045 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1046 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1047 ** is a commuted copy of a prior term.) The original term has nChild=1 1048 ** and the copy has idxParent set to the index of the original term. 1049 */ 1050 static void exprAnalyze( 1051 SrcList *pSrc, /* the FROM clause */ 1052 WhereClause *pWC, /* the WHERE clause */ 1053 int idxTerm /* Index of the term to be analyzed */ 1054 ){ 1055 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 1056 WhereTerm *pTerm; /* The term to be analyzed */ 1057 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1058 Expr *pExpr; /* The expression to be analyzed */ 1059 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1060 Bitmask prereqAll; /* Prerequesites of pExpr */ 1061 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 1062 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 1063 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 1064 int noCase = 0; /* uppercase equivalent to lowercase */ 1065 int op; /* Top-level operator. pExpr->op */ 1066 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1067 sqlite3 *db = pParse->db; /* Database connection */ 1068 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */ 1069 int nLeft; /* Number of elements on left side vector */ 1070 1071 if( db->mallocFailed ){ 1072 return; 1073 } 1074 assert( pWC->nTerm > idxTerm ); 1075 pTerm = &pWC->a[idxTerm]; 1076 pMaskSet = &pWInfo->sMaskSet; 1077 pExpr = pTerm->pExpr; 1078 assert( pExpr!=0 ); /* Because malloc() has not failed */ 1079 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 1080 pMaskSet->bVarSelect = 0; 1081 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 1082 op = pExpr->op; 1083 if( op==TK_IN ){ 1084 assert( pExpr->pRight==0 ); 1085 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 1086 if( ExprUseXSelect(pExpr) ){ 1087 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 1088 }else{ 1089 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 1090 } 1091 prereqAll = prereqLeft | pTerm->prereqRight; 1092 }else{ 1093 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 1094 if( pExpr->pLeft==0 1095 || ExprHasProperty(pExpr, EP_xIsSelect|EP_IfNullRow) 1096 || pExpr->x.pList!=0 1097 ){ 1098 prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr); 1099 }else{ 1100 prereqAll = prereqLeft | pTerm->prereqRight; 1101 } 1102 } 1103 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; 1104 1105 #ifdef SQLITE_DEBUG 1106 if( prereqAll!=sqlite3WhereExprUsageNN(pMaskSet, pExpr) ){ 1107 printf("\n*** Incorrect prereqAll computed for:\n"); 1108 sqlite3TreeViewExpr(0,pExpr,0); 1109 abort(); 1110 } 1111 #endif 1112 1113 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1114 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 1115 prereqAll |= x; 1116 extraRight = x-1; /* ON clause terms may not be used with an index 1117 ** on left table of a LEFT JOIN. Ticket #3015 */ 1118 if( (prereqAll>>1)>=x ){ 1119 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); 1120 return; 1121 } 1122 } 1123 pTerm->prereqAll = prereqAll; 1124 pTerm->leftCursor = -1; 1125 pTerm->iParent = -1; 1126 pTerm->eOperator = 0; 1127 if( allowedOp(op) ){ 1128 int aiCurCol[2]; 1129 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 1130 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 1131 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 1132 1133 if( pTerm->u.x.iField>0 ){ 1134 assert( op==TK_IN ); 1135 assert( pLeft->op==TK_VECTOR ); 1136 assert( ExprUseXList(pLeft) ); 1137 pLeft = pLeft->x.pList->a[pTerm->u.x.iField-1].pExpr; 1138 } 1139 1140 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){ 1141 pTerm->leftCursor = aiCurCol[0]; 1142 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1143 pTerm->u.x.leftColumn = aiCurCol[1]; 1144 pTerm->eOperator = operatorMask(op) & opMask; 1145 } 1146 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 1147 if( pRight 1148 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op) 1149 && !ExprHasProperty(pRight, EP_FixedCol) 1150 ){ 1151 WhereTerm *pNew; 1152 Expr *pDup; 1153 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 1154 assert( pTerm->u.x.iField==0 ); 1155 if( pTerm->leftCursor>=0 ){ 1156 int idxNew; 1157 pDup = sqlite3ExprDup(db, pExpr, 0); 1158 if( db->mallocFailed ){ 1159 sqlite3ExprDelete(db, pDup); 1160 return; 1161 } 1162 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1163 if( idxNew==0 ) return; 1164 pNew = &pWC->a[idxNew]; 1165 markTermAsChild(pWC, idxNew, idxTerm); 1166 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 1167 pTerm = &pWC->a[idxTerm]; 1168 pTerm->wtFlags |= TERM_COPIED; 1169 1170 if( termIsEquivalence(pParse, pDup) ){ 1171 pTerm->eOperator |= WO_EQUIV; 1172 eExtraOp = WO_EQUIV; 1173 } 1174 }else{ 1175 pDup = pExpr; 1176 pNew = pTerm; 1177 } 1178 pNew->wtFlags |= exprCommute(pParse, pDup); 1179 pNew->leftCursor = aiCurCol[0]; 1180 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1181 pNew->u.x.leftColumn = aiCurCol[1]; 1182 testcase( (prereqLeft | extraRight) != prereqLeft ); 1183 pNew->prereqRight = prereqLeft | extraRight; 1184 pNew->prereqAll = prereqAll; 1185 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1186 }else 1187 if( op==TK_ISNULL 1188 && !ExprHasProperty(pExpr,EP_FromJoin) 1189 && 0==sqlite3ExprCanBeNull(pLeft) 1190 ){ 1191 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1192 pExpr->op = TK_TRUEFALSE; 1193 pExpr->u.zToken = "false"; 1194 ExprSetProperty(pExpr, EP_IsFalse); 1195 pTerm->prereqAll = 0; 1196 pTerm->eOperator = 0; 1197 } 1198 } 1199 1200 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1201 /* If a term is the BETWEEN operator, create two new virtual terms 1202 ** that define the range that the BETWEEN implements. For example: 1203 ** 1204 ** a BETWEEN b AND c 1205 ** 1206 ** is converted into: 1207 ** 1208 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1209 ** 1210 ** The two new terms are added onto the end of the WhereClause object. 1211 ** The new terms are "dynamic" and are children of the original BETWEEN 1212 ** term. That means that if the BETWEEN term is coded, the children are 1213 ** skipped. Or, if the children are satisfied by an index, the original 1214 ** BETWEEN term is skipped. 1215 */ 1216 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1217 ExprList *pList; 1218 int i; 1219 static const u8 ops[] = {TK_GE, TK_LE}; 1220 assert( ExprUseXList(pExpr) ); 1221 pList = pExpr->x.pList; 1222 assert( pList!=0 ); 1223 assert( pList->nExpr==2 ); 1224 for(i=0; i<2; i++){ 1225 Expr *pNewExpr; 1226 int idxNew; 1227 pNewExpr = sqlite3PExpr(pParse, ops[i], 1228 sqlite3ExprDup(db, pExpr->pLeft, 0), 1229 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 1230 transferJoinMarkings(pNewExpr, pExpr); 1231 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1232 testcase( idxNew==0 ); 1233 exprAnalyze(pSrc, pWC, idxNew); 1234 pTerm = &pWC->a[idxTerm]; 1235 markTermAsChild(pWC, idxNew, idxTerm); 1236 } 1237 } 1238 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1239 1240 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1241 /* Analyze a term that is composed of two or more subterms connected by 1242 ** an OR operator. 1243 */ 1244 else if( pExpr->op==TK_OR ){ 1245 assert( pWC->op==TK_AND ); 1246 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1247 pTerm = &pWC->a[idxTerm]; 1248 } 1249 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1250 /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently 1251 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1252 ** virtual term of that form. 1253 ** 1254 ** The virtual term must be tagged with TERM_VNULL. 1255 */ 1256 else if( pExpr->op==TK_NOTNULL ){ 1257 if( pExpr->pLeft->op==TK_COLUMN 1258 && pExpr->pLeft->iColumn>=0 1259 && !ExprHasProperty(pExpr, EP_FromJoin) 1260 ){ 1261 Expr *pNewExpr; 1262 Expr *pLeft = pExpr->pLeft; 1263 int idxNew; 1264 WhereTerm *pNewTerm; 1265 1266 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1267 sqlite3ExprDup(db, pLeft, 0), 1268 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 1269 1270 idxNew = whereClauseInsert(pWC, pNewExpr, 1271 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1272 if( idxNew ){ 1273 pNewTerm = &pWC->a[idxNew]; 1274 pNewTerm->prereqRight = 0; 1275 pNewTerm->leftCursor = pLeft->iTable; 1276 pNewTerm->u.x.leftColumn = pLeft->iColumn; 1277 pNewTerm->eOperator = WO_GT; 1278 markTermAsChild(pWC, idxNew, idxTerm); 1279 pTerm = &pWC->a[idxTerm]; 1280 pTerm->wtFlags |= TERM_COPIED; 1281 pNewTerm->prereqAll = pTerm->prereqAll; 1282 } 1283 } 1284 } 1285 1286 1287 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1288 /* Add constraints to reduce the search space on a LIKE or GLOB 1289 ** operator. 1290 ** 1291 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1292 ** 1293 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1294 ** 1295 ** The last character of the prefix "abc" is incremented to form the 1296 ** termination condition "abd". If case is not significant (the default 1297 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1298 ** bound is made all lowercase so that the bounds also work when comparing 1299 ** BLOBs. 1300 */ 1301 else if( pExpr->op==TK_FUNCTION 1302 && pWC->op==TK_AND 1303 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1304 ){ 1305 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1306 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1307 Expr *pNewExpr1; 1308 Expr *pNewExpr2; 1309 int idxNew1; 1310 int idxNew2; 1311 const char *zCollSeqName; /* Name of collating sequence */ 1312 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1313 1314 assert( ExprUseXList(pExpr) ); 1315 pLeft = pExpr->x.pList->a[1].pExpr; 1316 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1317 assert( pStr1==0 || !ExprHasProperty(pStr1, EP_IntValue) ); 1318 assert( pStr2==0 || !ExprHasProperty(pStr2, EP_IntValue) ); 1319 1320 1321 /* Convert the lower bound to upper-case and the upper bound to 1322 ** lower-case (upper-case is less than lower-case in ASCII) so that 1323 ** the range constraints also work for BLOBs 1324 */ 1325 if( noCase && !pParse->db->mallocFailed ){ 1326 int i; 1327 char c; 1328 pTerm->wtFlags |= TERM_LIKE; 1329 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1330 pStr1->u.zToken[i] = sqlite3Toupper(c); 1331 pStr2->u.zToken[i] = sqlite3Tolower(c); 1332 } 1333 } 1334 1335 if( !db->mallocFailed ){ 1336 u8 c, *pC; /* Last character before the first wildcard */ 1337 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1338 c = *pC; 1339 if( noCase ){ 1340 /* The point is to increment the last character before the first 1341 ** wildcard. But if we increment '@', that will push it into the 1342 ** alphabetic range where case conversions will mess up the 1343 ** inequality. To avoid this, make sure to also run the full 1344 ** LIKE on all candidate expressions by clearing the isComplete flag 1345 */ 1346 if( c=='A'-1 ) isComplete = 0; 1347 c = sqlite3UpperToLower[c]; 1348 } 1349 *pC = c + 1; 1350 } 1351 zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY; 1352 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1353 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1354 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1355 pStr1); 1356 transferJoinMarkings(pNewExpr1, pExpr); 1357 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1358 testcase( idxNew1==0 ); 1359 exprAnalyze(pSrc, pWC, idxNew1); 1360 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1361 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1362 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1363 pStr2); 1364 transferJoinMarkings(pNewExpr2, pExpr); 1365 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1366 testcase( idxNew2==0 ); 1367 exprAnalyze(pSrc, pWC, idxNew2); 1368 pTerm = &pWC->a[idxTerm]; 1369 if( isComplete ){ 1370 markTermAsChild(pWC, idxNew1, idxTerm); 1371 markTermAsChild(pWC, idxNew2, idxTerm); 1372 } 1373 } 1374 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1375 1376 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1377 ** new terms for each component comparison - "a = ?" and "b = ?". The 1378 ** new terms completely replace the original vector comparison, which is 1379 ** no longer used. 1380 ** 1381 ** This is only required if at least one side of the comparison operation 1382 ** is not a sub-select. 1383 ** 1384 ** tag-20220128a 1385 */ 1386 if( (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1387 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 1388 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft 1389 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1390 || (pExpr->pRight->flags & EP_xIsSelect)==0) 1391 && pWC->op==TK_AND 1392 ){ 1393 int i; 1394 for(i=0; i<nLeft; i++){ 1395 int idxNew; 1396 Expr *pNew; 1397 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i, nLeft); 1398 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i, nLeft); 1399 1400 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 1401 transferJoinMarkings(pNew, pExpr); 1402 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1403 exprAnalyze(pSrc, pWC, idxNew); 1404 } 1405 pTerm = &pWC->a[idxTerm]; 1406 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1407 pTerm->eOperator = 0; 1408 } 1409 1410 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1411 ** a virtual term for each vector component. The expression object 1412 ** used by each such virtual term is pExpr (the full vector IN(...) 1413 ** expression). The WhereTerm.u.x.iField variable identifies the index within 1414 ** the vector on the LHS that the virtual term represents. 1415 ** 1416 ** This only works if the RHS is a simple SELECT (not a compound) that does 1417 ** not use window functions. 1418 */ 1419 else if( pExpr->op==TK_IN 1420 && pTerm->u.x.iField==0 1421 && pExpr->pLeft->op==TK_VECTOR 1422 && ALWAYS( ExprUseXSelect(pExpr) ) 1423 && pExpr->x.pSelect->pPrior==0 1424 #ifndef SQLITE_OMIT_WINDOWFUNC 1425 && pExpr->x.pSelect->pWin==0 1426 #endif 1427 && pWC->op==TK_AND 1428 ){ 1429 int i; 1430 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1431 int idxNew; 1432 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1433 pWC->a[idxNew].u.x.iField = i+1; 1434 exprAnalyze(pSrc, pWC, idxNew); 1435 markTermAsChild(pWC, idxNew, idxTerm); 1436 } 1437 } 1438 1439 #ifndef SQLITE_OMIT_VIRTUALTABLE 1440 /* Add a WO_AUX auxiliary term to the constraint set if the 1441 ** current expression is of the form "column OP expr" where OP 1442 ** is an operator that gets passed into virtual tables but which is 1443 ** not normally optimized for ordinary tables. In other words, OP 1444 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL. 1445 ** This information is used by the xBestIndex methods of 1446 ** virtual tables. The native query optimizer does not attempt 1447 ** to do anything with MATCH functions. 1448 */ 1449 else if( pWC->op==TK_AND ){ 1450 Expr *pRight = 0, *pLeft = 0; 1451 int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight); 1452 while( res-- > 0 ){ 1453 int idxNew; 1454 WhereTerm *pNewTerm; 1455 Bitmask prereqColumn, prereqExpr; 1456 1457 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1458 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1459 if( (prereqExpr & prereqColumn)==0 ){ 1460 Expr *pNewExpr; 1461 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1462 0, sqlite3ExprDup(db, pRight, 0)); 1463 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){ 1464 ExprSetProperty(pNewExpr, EP_FromJoin); 1465 pNewExpr->iRightJoinTable = pExpr->iRightJoinTable; 1466 } 1467 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1468 testcase( idxNew==0 ); 1469 pNewTerm = &pWC->a[idxNew]; 1470 pNewTerm->prereqRight = prereqExpr; 1471 pNewTerm->leftCursor = pLeft->iTable; 1472 pNewTerm->u.x.leftColumn = pLeft->iColumn; 1473 pNewTerm->eOperator = WO_AUX; 1474 pNewTerm->eMatchOp = eOp2; 1475 markTermAsChild(pWC, idxNew, idxTerm); 1476 pTerm = &pWC->a[idxTerm]; 1477 pTerm->wtFlags |= TERM_COPIED; 1478 pNewTerm->prereqAll = pTerm->prereqAll; 1479 } 1480 SWAP(Expr*, pLeft, pRight); 1481 } 1482 } 1483 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1484 1485 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1486 ** an index for tables to the left of the join. 1487 */ 1488 testcase( pTerm!=&pWC->a[idxTerm] ); 1489 pTerm = &pWC->a[idxTerm]; 1490 pTerm->prereqRight |= extraRight; 1491 } 1492 1493 /*************************************************************************** 1494 ** Routines with file scope above. Interface to the rest of the where.c 1495 ** subsystem follows. 1496 ***************************************************************************/ 1497 1498 /* 1499 ** This routine identifies subexpressions in the WHERE clause where 1500 ** each subexpression is separated by the AND operator or some other 1501 ** operator specified in the op parameter. The WhereClause structure 1502 ** is filled with pointers to subexpressions. For example: 1503 ** 1504 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1505 ** \________/ \_______________/ \________________/ 1506 ** slot[0] slot[1] slot[2] 1507 ** 1508 ** The original WHERE clause in pExpr is unaltered. All this routine 1509 ** does is make slot[] entries point to substructure within pExpr. 1510 ** 1511 ** In the previous sentence and in the diagram, "slot[]" refers to 1512 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1513 ** all terms of the WHERE clause. 1514 */ 1515 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1516 Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr); 1517 pWC->op = op; 1518 assert( pE2!=0 || pExpr==0 ); 1519 if( pE2==0 ) return; 1520 if( pE2->op!=op ){ 1521 whereClauseInsert(pWC, pExpr, 0); 1522 }else{ 1523 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1524 sqlite3WhereSplit(pWC, pE2->pRight, op); 1525 } 1526 } 1527 1528 /* 1529 ** Add either a LIMIT (if eMatchOp==SQLITE_INDEX_CONSTRAINT_LIMIT) or 1530 ** OFFSET (if eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET) term to the 1531 ** where-clause passed as the first argument. The value for the term 1532 ** is found in register iReg. 1533 ** 1534 ** In the common case where the value is a simple integer 1535 ** (example: "LIMIT 5 OFFSET 10") then the expression codes as a 1536 ** TK_INTEGER so that it will be available to sqlite3_vtab_rhs_value(). 1537 ** If not, then it codes as a TK_REGISTER expression. 1538 */ 1539 void whereAddLimitExpr( 1540 WhereClause *pWC, /* Add the constraint to this WHERE clause */ 1541 int iReg, /* Register that will hold value of the limit/offset */ 1542 Expr *pExpr, /* Expression that defines the limit/offset */ 1543 int iCsr, /* Cursor to which the constraint applies */ 1544 int eMatchOp /* SQLITE_INDEX_CONSTRAINT_LIMIT or _OFFSET */ 1545 ){ 1546 Parse *pParse = pWC->pWInfo->pParse; 1547 sqlite3 *db = pParse->db; 1548 Expr *pNew; 1549 int iVal = 0; 1550 1551 if( sqlite3ExprIsInteger(pExpr, &iVal) && iVal>=0 ){ 1552 Expr *pVal = sqlite3Expr(db, TK_INTEGER, 0); 1553 if( pVal==0 ) return; 1554 ExprSetProperty(pVal, EP_IntValue); 1555 pVal->u.iValue = iVal; 1556 pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal); 1557 }else{ 1558 Expr *pVal = sqlite3Expr(db, TK_REGISTER, 0); 1559 if( pVal==0 ) return; 1560 pVal->iTable = iReg; 1561 pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal); 1562 } 1563 if( pNew ){ 1564 WhereTerm *pTerm; 1565 int idx; 1566 idx = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_VIRTUAL); 1567 pTerm = &pWC->a[idx]; 1568 pTerm->leftCursor = iCsr; 1569 pTerm->eOperator = WO_AUX; 1570 pTerm->eMatchOp = eMatchOp; 1571 } 1572 } 1573 1574 /* 1575 ** Possibly add terms corresponding to the LIMIT and OFFSET clauses of the 1576 ** SELECT statement passed as the second argument. These terms are only 1577 ** added if: 1578 ** 1579 ** 1. The SELECT statement has a LIMIT clause, and 1580 ** 2. The SELECT statement is not an aggregate or DISTINCT query, and 1581 ** 3. The SELECT statement has exactly one object in its from clause, and 1582 ** that object is a virtual table, and 1583 ** 4. There are no terms in the WHERE clause that will not be passed 1584 ** to the virtual table xBestIndex method. 1585 ** 5. The ORDER BY clause, if any, will be made available to the xBestIndex 1586 ** method. 1587 ** 1588 ** LIMIT and OFFSET terms are ignored by most of the planner code. They 1589 ** exist only so that they may be passed to the xBestIndex method of the 1590 ** single virtual table in the FROM clause of the SELECT. 1591 */ 1592 void sqlite3WhereAddLimit(WhereClause *pWC, Select *p){ 1593 assert( p==0 || (p->pGroupBy==0 && (p->selFlags & SF_Aggregate)==0) ); 1594 if( (p && p->pLimit) /* 1 */ 1595 && (p->selFlags & (SF_Distinct|SF_Aggregate))==0 /* 2 */ 1596 && (p->pSrc->nSrc==1 && IsVirtual(p->pSrc->a[0].pTab)) /* 3 */ 1597 ){ 1598 ExprList *pOrderBy = p->pOrderBy; 1599 int iCsr = p->pSrc->a[0].iCursor; 1600 int ii; 1601 1602 /* Check condition (4). Return early if it is not met. */ 1603 for(ii=0; ii<pWC->nTerm; ii++){ 1604 if( pWC->a[ii].wtFlags & TERM_CODED ){ 1605 /* This term is a vector operation that has been decomposed into 1606 ** other, subsequent terms. It can be ignored. See tag-20220128a */ 1607 assert( pWC->a[ii].wtFlags & TERM_VIRTUAL ); 1608 assert( pWC->a[ii].eOperator==0 ); 1609 continue; 1610 } 1611 if( pWC->a[ii].leftCursor!=iCsr ) return; 1612 } 1613 1614 /* Check condition (5). Return early if it is not met. */ 1615 if( pOrderBy ){ 1616 for(ii=0; ii<pOrderBy->nExpr; ii++){ 1617 Expr *pExpr = pOrderBy->a[ii].pExpr; 1618 if( pExpr->op!=TK_COLUMN ) return; 1619 if( pExpr->iTable!=iCsr ) return; 1620 if( pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_BIGNULL ) return; 1621 } 1622 } 1623 1624 /* All conditions are met. Add the terms to the where-clause object. */ 1625 assert( p->pLimit->op==TK_LIMIT ); 1626 whereAddLimitExpr(pWC, p->iLimit, p->pLimit->pLeft, 1627 iCsr, SQLITE_INDEX_CONSTRAINT_LIMIT); 1628 if( p->iOffset>0 ){ 1629 whereAddLimitExpr(pWC, p->iOffset, p->pLimit->pRight, 1630 iCsr, SQLITE_INDEX_CONSTRAINT_OFFSET); 1631 } 1632 } 1633 } 1634 1635 /* 1636 ** Initialize a preallocated WhereClause structure. 1637 */ 1638 void sqlite3WhereClauseInit( 1639 WhereClause *pWC, /* The WhereClause to be initialized */ 1640 WhereInfo *pWInfo /* The WHERE processing context */ 1641 ){ 1642 pWC->pWInfo = pWInfo; 1643 pWC->hasOr = 0; 1644 pWC->pOuter = 0; 1645 pWC->nTerm = 0; 1646 pWC->nBase = 0; 1647 pWC->nSlot = ArraySize(pWC->aStatic); 1648 pWC->a = pWC->aStatic; 1649 } 1650 1651 /* 1652 ** Deallocate a WhereClause structure. The WhereClause structure 1653 ** itself is not freed. This routine is the inverse of 1654 ** sqlite3WhereClauseInit(). 1655 */ 1656 void sqlite3WhereClauseClear(WhereClause *pWC){ 1657 sqlite3 *db = pWC->pWInfo->pParse->db; 1658 assert( pWC->nTerm>=pWC->nBase ); 1659 if( pWC->nTerm>0 ){ 1660 WhereTerm *a = pWC->a; 1661 WhereTerm *aLast = &pWC->a[pWC->nTerm-1]; 1662 #ifdef SQLITE_DEBUG 1663 int i; 1664 /* Verify that every term past pWC->nBase is virtual */ 1665 for(i=pWC->nBase; i<pWC->nTerm; i++){ 1666 assert( (pWC->a[i].wtFlags & TERM_VIRTUAL)!=0 ); 1667 } 1668 #endif 1669 while(1){ 1670 assert( a->eMatchOp==0 || a->eOperator==WO_AUX ); 1671 if( a->wtFlags & TERM_DYNAMIC ){ 1672 sqlite3ExprDelete(db, a->pExpr); 1673 } 1674 if( a->wtFlags & (TERM_ORINFO|TERM_ANDINFO) ){ 1675 if( a->wtFlags & TERM_ORINFO ){ 1676 assert( (a->wtFlags & TERM_ANDINFO)==0 ); 1677 whereOrInfoDelete(db, a->u.pOrInfo); 1678 }else{ 1679 assert( (a->wtFlags & TERM_ANDINFO)!=0 ); 1680 whereAndInfoDelete(db, a->u.pAndInfo); 1681 } 1682 } 1683 if( a==aLast ) break; 1684 a++; 1685 } 1686 } 1687 if( pWC->a!=pWC->aStatic ){ 1688 sqlite3DbFree(db, pWC->a); 1689 } 1690 } 1691 1692 1693 /* 1694 ** These routines walk (recursively) an expression tree and generate 1695 ** a bitmask indicating which tables are used in that expression 1696 ** tree. 1697 ** 1698 ** sqlite3WhereExprUsage(MaskSet, Expr) -> 1699 ** 1700 ** Return a Bitmask of all tables referenced by Expr. Expr can be 1701 ** be NULL, in which case 0 is returned. 1702 ** 1703 ** sqlite3WhereExprUsageNN(MaskSet, Expr) -> 1704 ** 1705 ** Same as sqlite3WhereExprUsage() except that Expr must not be 1706 ** NULL. The "NN" suffix on the name stands for "Not Null". 1707 ** 1708 ** sqlite3WhereExprListUsage(MaskSet, ExprList) -> 1709 ** 1710 ** Return a Bitmask of all tables referenced by every expression 1711 ** in the expression list ExprList. ExprList can be NULL, in which 1712 ** case 0 is returned. 1713 ** 1714 ** sqlite3WhereExprUsageFull(MaskSet, ExprList) -> 1715 ** 1716 ** Internal use only. Called only by sqlite3WhereExprUsageNN() for 1717 ** complex expressions that require pushing register values onto 1718 ** the stack. Many calls to sqlite3WhereExprUsageNN() do not need 1719 ** the more complex analysis done by this routine. Hence, the 1720 ** computations done by this routine are broken out into a separate 1721 ** "no-inline" function to avoid the stack push overhead in the 1722 ** common case where it is not needed. 1723 */ 1724 static SQLITE_NOINLINE Bitmask sqlite3WhereExprUsageFull( 1725 WhereMaskSet *pMaskSet, 1726 Expr *p 1727 ){ 1728 Bitmask mask; 1729 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; 1730 if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft); 1731 if( p->pRight ){ 1732 mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight); 1733 assert( p->x.pList==0 ); 1734 }else if( ExprUseXSelect(p) ){ 1735 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; 1736 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1737 }else if( p->x.pList ){ 1738 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1739 } 1740 #ifndef SQLITE_OMIT_WINDOWFUNC 1741 if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && ExprUseYWin(p) ){ 1742 assert( p->y.pWin!=0 ); 1743 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition); 1744 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy); 1745 mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter); 1746 } 1747 #endif 1748 return mask; 1749 } 1750 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){ 1751 if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 1752 return sqlite3WhereGetMask(pMaskSet, p->iTable); 1753 }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1754 assert( p->op!=TK_IF_NULL_ROW ); 1755 return 0; 1756 } 1757 return sqlite3WhereExprUsageFull(pMaskSet, p); 1758 } 1759 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1760 return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0; 1761 } 1762 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1763 int i; 1764 Bitmask mask = 0; 1765 if( pList ){ 1766 for(i=0; i<pList->nExpr; i++){ 1767 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1768 } 1769 } 1770 return mask; 1771 } 1772 1773 1774 /* 1775 ** Call exprAnalyze on all terms in a WHERE clause. 1776 ** 1777 ** Note that exprAnalyze() might add new virtual terms onto the 1778 ** end of the WHERE clause. We do not want to analyze these new 1779 ** virtual terms, so start analyzing at the end and work forward 1780 ** so that the added virtual terms are never processed. 1781 */ 1782 void sqlite3WhereExprAnalyze( 1783 SrcList *pTabList, /* the FROM clause */ 1784 WhereClause *pWC /* the WHERE clause to be analyzed */ 1785 ){ 1786 int i; 1787 for(i=pWC->nTerm-1; i>=0; i--){ 1788 exprAnalyze(pTabList, pWC, i); 1789 } 1790 } 1791 1792 /* 1793 ** For table-valued-functions, transform the function arguments into 1794 ** new WHERE clause terms. 1795 ** 1796 ** Each function argument translates into an equality constraint against 1797 ** a HIDDEN column in the table. 1798 */ 1799 void sqlite3WhereTabFuncArgs( 1800 Parse *pParse, /* Parsing context */ 1801 SrcItem *pItem, /* The FROM clause term to process */ 1802 WhereClause *pWC /* Xfer function arguments to here */ 1803 ){ 1804 Table *pTab; 1805 int j, k; 1806 ExprList *pArgs; 1807 Expr *pColRef; 1808 Expr *pTerm; 1809 if( pItem->fg.isTabFunc==0 ) return; 1810 pTab = pItem->pTab; 1811 assert( pTab!=0 ); 1812 pArgs = pItem->u1.pFuncArg; 1813 if( pArgs==0 ) return; 1814 for(j=k=0; j<pArgs->nExpr; j++){ 1815 Expr *pRhs; 1816 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1817 if( k>=pTab->nCol ){ 1818 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1819 pTab->zName, j); 1820 return; 1821 } 1822 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1823 if( pColRef==0 ) return; 1824 pColRef->iTable = pItem->iCursor; 1825 pColRef->iColumn = k++; 1826 assert( ExprUseYTab(pColRef) ); 1827 pColRef->y.pTab = pTab; 1828 pItem->colUsed |= sqlite3ExprColUsed(pColRef); 1829 pRhs = sqlite3PExpr(pParse, TK_UPLUS, 1830 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); 1831 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs); 1832 if( pItem->fg.jointype & JT_LEFT ){ 1833 sqlite3SetJoinExpr(pTerm, pItem->iCursor); 1834 } 1835 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1836 } 1837 } 1838