1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm)); 81 } 82 pTerm = &pWC->a[idx = pWC->nTerm++]; 83 if( p && ExprHasProperty(p, EP_Unlikely) ){ 84 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 85 }else{ 86 pTerm->truthProb = 1; 87 } 88 pTerm->pExpr = sqlite3ExprSkipCollate(p); 89 pTerm->wtFlags = wtFlags; 90 pTerm->pWC = pWC; 91 pTerm->iParent = -1; 92 return idx; 93 } 94 95 /* 96 ** Return TRUE if the given operator is one of the operators that is 97 ** allowed for an indexable WHERE clause term. The allowed operators are 98 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" 99 */ 100 static int allowedOp(int op){ 101 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 102 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 103 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 104 assert( TK_GE==TK_EQ+4 ); 105 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 106 } 107 108 /* 109 ** Commute a comparison operator. Expressions of the form "X op Y" 110 ** are converted into "Y op X". 111 ** 112 ** If left/right precedence rules come into play when determining the 113 ** collating sequence, then COLLATE operators are adjusted to ensure 114 ** that the collating sequence does not change. For example: 115 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 116 ** the left hand side of a comparison overrides any collation sequence 117 ** attached to the right. For the same reason the EP_Collate flag 118 ** is not commuted. 119 */ 120 static void exprCommute(Parse *pParse, Expr *pExpr){ 121 u16 expRight = (pExpr->pRight->flags & EP_Collate); 122 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 123 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 124 if( expRight==expLeft ){ 125 /* Either X and Y both have COLLATE operator or neither do */ 126 if( expRight ){ 127 /* Both X and Y have COLLATE operators. Make sure X is always 128 ** used by clearing the EP_Collate flag from Y. */ 129 pExpr->pRight->flags &= ~EP_Collate; 130 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 131 /* Neither X nor Y have COLLATE operators, but X has a non-default 132 ** collating sequence. So add the EP_Collate marker on X to cause 133 ** it to be searched first. */ 134 pExpr->pLeft->flags |= EP_Collate; 135 } 136 } 137 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 138 if( pExpr->op>=TK_GT ){ 139 assert( TK_LT==TK_GT+2 ); 140 assert( TK_GE==TK_LE+2 ); 141 assert( TK_GT>TK_EQ ); 142 assert( TK_GT<TK_LE ); 143 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 144 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 145 } 146 } 147 148 /* 149 ** Translate from TK_xx operator to WO_xx bitmask. 150 */ 151 static u16 operatorMask(int op){ 152 u16 c; 153 assert( allowedOp(op) ); 154 if( op==TK_IN ){ 155 c = WO_IN; 156 }else if( op==TK_ISNULL ){ 157 c = WO_ISNULL; 158 }else if( op==TK_IS ){ 159 c = WO_IS; 160 }else{ 161 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 162 c = (u16)(WO_EQ<<(op-TK_EQ)); 163 } 164 assert( op!=TK_ISNULL || c==WO_ISNULL ); 165 assert( op!=TK_IN || c==WO_IN ); 166 assert( op!=TK_EQ || c==WO_EQ ); 167 assert( op!=TK_LT || c==WO_LT ); 168 assert( op!=TK_LE || c==WO_LE ); 169 assert( op!=TK_GT || c==WO_GT ); 170 assert( op!=TK_GE || c==WO_GE ); 171 assert( op!=TK_IS || c==WO_IS ); 172 return c; 173 } 174 175 176 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 177 /* 178 ** Check to see if the given expression is a LIKE or GLOB operator that 179 ** can be optimized using inequality constraints. Return TRUE if it is 180 ** so and false if not. 181 ** 182 ** In order for the operator to be optimizible, the RHS must be a string 183 ** literal that does not begin with a wildcard. The LHS must be a column 184 ** that may only be NULL, a string, or a BLOB, never a number. (This means 185 ** that virtual tables cannot participate in the LIKE optimization.) The 186 ** collating sequence for the column on the LHS must be appropriate for 187 ** the operator. 188 */ 189 static int isLikeOrGlob( 190 Parse *pParse, /* Parsing and code generating context */ 191 Expr *pExpr, /* Test this expression */ 192 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 193 int *pisComplete, /* True if the only wildcard is % in the last character */ 194 int *pnoCase /* True if uppercase is equivalent to lowercase */ 195 ){ 196 const char *z = 0; /* String on RHS of LIKE operator */ 197 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 198 ExprList *pList; /* List of operands to the LIKE operator */ 199 int c; /* One character in z[] */ 200 int cnt; /* Number of non-wildcard prefix characters */ 201 char wc[3]; /* Wildcard characters */ 202 sqlite3 *db = pParse->db; /* Database connection */ 203 sqlite3_value *pVal = 0; 204 int op; /* Opcode of pRight */ 205 int rc; /* Result code to return */ 206 207 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 208 return 0; 209 } 210 #ifdef SQLITE_EBCDIC 211 if( *pnoCase ) return 0; 212 #endif 213 pList = pExpr->x.pList; 214 pLeft = pList->a[1].pExpr; 215 if( pLeft->op!=TK_COLUMN 216 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 217 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 218 ){ 219 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 220 ** be the name of an indexed column with TEXT affinity. */ 221 return 0; 222 } 223 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 224 225 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 226 op = pRight->op; 227 if( op==TK_VARIABLE ){ 228 Vdbe *pReprepare = pParse->pReprepare; 229 int iCol = pRight->iColumn; 230 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 231 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 232 z = (char *)sqlite3_value_text(pVal); 233 } 234 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 235 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 236 }else if( op==TK_STRING ){ 237 z = pRight->u.zToken; 238 } 239 if( z ){ 240 cnt = 0; 241 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 242 cnt++; 243 } 244 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 245 Expr *pPrefix; 246 *pisComplete = c==wc[0] && z[cnt+1]==0; 247 pPrefix = sqlite3Expr(db, TK_STRING, z); 248 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 249 *ppPrefix = pPrefix; 250 if( op==TK_VARIABLE ){ 251 Vdbe *v = pParse->pVdbe; 252 sqlite3VdbeSetVarmask(v, pRight->iColumn); 253 if( *pisComplete && pRight->u.zToken[1] ){ 254 /* If the rhs of the LIKE expression is a variable, and the current 255 ** value of the variable means there is no need to invoke the LIKE 256 ** function, then no OP_Variable will be added to the program. 257 ** This causes problems for the sqlite3_bind_parameter_name() 258 ** API. To work around them, add a dummy OP_Variable here. 259 */ 260 int r1 = sqlite3GetTempReg(pParse); 261 sqlite3ExprCodeTarget(pParse, pRight, r1); 262 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 263 sqlite3ReleaseTempReg(pParse, r1); 264 } 265 } 266 }else{ 267 z = 0; 268 } 269 } 270 271 rc = (z!=0); 272 sqlite3ValueFree(pVal); 273 return rc; 274 } 275 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 276 277 278 #ifndef SQLITE_OMIT_VIRTUALTABLE 279 /* 280 ** Check to see if the given expression is of the form 281 ** 282 ** column OP expr 283 ** 284 ** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a 285 ** column of a virtual table. 286 ** 287 ** If it is then return TRUE. If not, return FALSE. 288 */ 289 static int isMatchOfColumn( 290 Expr *pExpr, /* Test this expression */ 291 unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ 292 ){ 293 struct Op2 { 294 const char *zOp; 295 unsigned char eOp2; 296 } aOp[] = { 297 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 298 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 299 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 300 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 301 }; 302 ExprList *pList; 303 Expr *pCol; /* Column reference */ 304 int i; 305 306 if( pExpr->op!=TK_FUNCTION ){ 307 return 0; 308 } 309 pList = pExpr->x.pList; 310 if( pList==0 || pList->nExpr!=2 ){ 311 return 0; 312 } 313 pCol = pList->a[1].pExpr; 314 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 315 return 0; 316 } 317 for(i=0; i<ArraySize(aOp); i++){ 318 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 319 *peOp2 = aOp[i].eOp2; 320 return 1; 321 } 322 } 323 return 0; 324 } 325 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 326 327 /* 328 ** If the pBase expression originated in the ON or USING clause of 329 ** a join, then transfer the appropriate markings over to derived. 330 */ 331 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 332 if( pDerived ){ 333 pDerived->flags |= pBase->flags & EP_FromJoin; 334 pDerived->iRightJoinTable = pBase->iRightJoinTable; 335 } 336 } 337 338 /* 339 ** Mark term iChild as being a child of term iParent 340 */ 341 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 342 pWC->a[iChild].iParent = iParent; 343 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 344 pWC->a[iParent].nChild++; 345 } 346 347 /* 348 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 349 ** a conjunction, then return just pTerm when N==0. If N is exceeds 350 ** the number of available subterms, return NULL. 351 */ 352 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 353 if( pTerm->eOperator!=WO_AND ){ 354 return N==0 ? pTerm : 0; 355 } 356 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 357 return &pTerm->u.pAndInfo->wc.a[N]; 358 } 359 return 0; 360 } 361 362 /* 363 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 364 ** two subterms are in disjunction - they are OR-ed together. 365 ** 366 ** If these two terms are both of the form: "A op B" with the same 367 ** A and B values but different operators and if the operators are 368 ** compatible (if one is = and the other is <, for example) then 369 ** add a new virtual AND term to pWC that is the combination of the 370 ** two. 371 ** 372 ** Some examples: 373 ** 374 ** x<y OR x=y --> x<=y 375 ** x=y OR x=y --> x=y 376 ** x<=y OR x<y --> x<=y 377 ** 378 ** The following is NOT generated: 379 ** 380 ** x<y OR x>y --> x!=y 381 */ 382 static void whereCombineDisjuncts( 383 SrcList *pSrc, /* the FROM clause */ 384 WhereClause *pWC, /* The complete WHERE clause */ 385 WhereTerm *pOne, /* First disjunct */ 386 WhereTerm *pTwo /* Second disjunct */ 387 ){ 388 u16 eOp = pOne->eOperator | pTwo->eOperator; 389 sqlite3 *db; /* Database connection (for malloc) */ 390 Expr *pNew; /* New virtual expression */ 391 int op; /* Operator for the combined expression */ 392 int idxNew; /* Index in pWC of the next virtual term */ 393 394 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 395 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 396 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 397 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 398 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 399 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 400 if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 401 if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; 402 /* If we reach this point, it means the two subterms can be combined */ 403 if( (eOp & (eOp-1))!=0 ){ 404 if( eOp & (WO_LT|WO_LE) ){ 405 eOp = WO_LE; 406 }else{ 407 assert( eOp & (WO_GT|WO_GE) ); 408 eOp = WO_GE; 409 } 410 } 411 db = pWC->pWInfo->pParse->db; 412 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 413 if( pNew==0 ) return; 414 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 415 pNew->op = op; 416 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 417 exprAnalyze(pSrc, pWC, idxNew); 418 } 419 420 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 421 /* 422 ** Analyze a term that consists of two or more OR-connected 423 ** subterms. So in: 424 ** 425 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 426 ** ^^^^^^^^^^^^^^^^^^^^ 427 ** 428 ** This routine analyzes terms such as the middle term in the above example. 429 ** A WhereOrTerm object is computed and attached to the term under 430 ** analysis, regardless of the outcome of the analysis. Hence: 431 ** 432 ** WhereTerm.wtFlags |= TERM_ORINFO 433 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 434 ** 435 ** The term being analyzed must have two or more of OR-connected subterms. 436 ** A single subterm might be a set of AND-connected sub-subterms. 437 ** Examples of terms under analysis: 438 ** 439 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 440 ** (B) x=expr1 OR expr2=x OR x=expr3 441 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 442 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 443 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 444 ** (F) x>A OR (x=A AND y>=B) 445 ** 446 ** CASE 1: 447 ** 448 ** If all subterms are of the form T.C=expr for some single column of C and 449 ** a single table T (as shown in example B above) then create a new virtual 450 ** term that is an equivalent IN expression. In other words, if the term 451 ** being analyzed is: 452 ** 453 ** x = expr1 OR expr2 = x OR x = expr3 454 ** 455 ** then create a new virtual term like this: 456 ** 457 ** x IN (expr1,expr2,expr3) 458 ** 459 ** CASE 2: 460 ** 461 ** If there are exactly two disjuncts and one side has x>A and the other side 462 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 463 ** WHERE clause of the form "x>=A". Example: 464 ** 465 ** x>A OR (x=A AND y>B) adds: x>=A 466 ** 467 ** The added conjunct can sometimes be helpful in query planning. 468 ** 469 ** CASE 3: 470 ** 471 ** If all subterms are indexable by a single table T, then set 472 ** 473 ** WhereTerm.eOperator = WO_OR 474 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 475 ** 476 ** A subterm is "indexable" if it is of the form 477 ** "T.C <op> <expr>" where C is any column of table T and 478 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 479 ** A subterm is also indexable if it is an AND of two or more 480 ** subsubterms at least one of which is indexable. Indexable AND 481 ** subterms have their eOperator set to WO_AND and they have 482 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 483 ** 484 ** From another point of view, "indexable" means that the subterm could 485 ** potentially be used with an index if an appropriate index exists. 486 ** This analysis does not consider whether or not the index exists; that 487 ** is decided elsewhere. This analysis only looks at whether subterms 488 ** appropriate for indexing exist. 489 ** 490 ** All examples A through E above satisfy case 3. But if a term 491 ** also satisfies case 1 (such as B) we know that the optimizer will 492 ** always prefer case 1, so in that case we pretend that case 3 is not 493 ** satisfied. 494 ** 495 ** It might be the case that multiple tables are indexable. For example, 496 ** (E) above is indexable on tables P, Q, and R. 497 ** 498 ** Terms that satisfy case 3 are candidates for lookup by using 499 ** separate indices to find rowids for each subterm and composing 500 ** the union of all rowids using a RowSet object. This is similar 501 ** to "bitmap indices" in other database engines. 502 ** 503 ** OTHERWISE: 504 ** 505 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 506 ** zero. This term is not useful for search. 507 */ 508 static void exprAnalyzeOrTerm( 509 SrcList *pSrc, /* the FROM clause */ 510 WhereClause *pWC, /* the complete WHERE clause */ 511 int idxTerm /* Index of the OR-term to be analyzed */ 512 ){ 513 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 514 Parse *pParse = pWInfo->pParse; /* Parser context */ 515 sqlite3 *db = pParse->db; /* Database connection */ 516 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 517 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 518 int i; /* Loop counters */ 519 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 520 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 521 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 522 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 523 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 524 525 /* 526 ** Break the OR clause into its separate subterms. The subterms are 527 ** stored in a WhereClause structure containing within the WhereOrInfo 528 ** object that is attached to the original OR clause term. 529 */ 530 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 531 assert( pExpr->op==TK_OR ); 532 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 533 if( pOrInfo==0 ) return; 534 pTerm->wtFlags |= TERM_ORINFO; 535 pOrWc = &pOrInfo->wc; 536 sqlite3WhereClauseInit(pOrWc, pWInfo); 537 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 538 sqlite3WhereExprAnalyze(pSrc, pOrWc); 539 if( db->mallocFailed ) return; 540 assert( pOrWc->nTerm>=2 ); 541 542 /* 543 ** Compute the set of tables that might satisfy cases 1 or 3. 544 */ 545 indexable = ~(Bitmask)0; 546 chngToIN = ~(Bitmask)0; 547 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 548 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 549 WhereAndInfo *pAndInfo; 550 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 551 chngToIN = 0; 552 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 553 if( pAndInfo ){ 554 WhereClause *pAndWC; 555 WhereTerm *pAndTerm; 556 int j; 557 Bitmask b = 0; 558 pOrTerm->u.pAndInfo = pAndInfo; 559 pOrTerm->wtFlags |= TERM_ANDINFO; 560 pOrTerm->eOperator = WO_AND; 561 pAndWC = &pAndInfo->wc; 562 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 563 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 564 sqlite3WhereExprAnalyze(pSrc, pAndWC); 565 pAndWC->pOuter = pWC; 566 if( !db->mallocFailed ){ 567 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 568 assert( pAndTerm->pExpr ); 569 if( allowedOp(pAndTerm->pExpr->op) ){ 570 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 571 } 572 } 573 } 574 indexable &= b; 575 } 576 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 577 /* Skip this term for now. We revisit it when we process the 578 ** corresponding TERM_VIRTUAL term */ 579 }else{ 580 Bitmask b; 581 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 582 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 583 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 584 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 585 } 586 indexable &= b; 587 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 588 chngToIN = 0; 589 }else{ 590 chngToIN &= b; 591 } 592 } 593 } 594 595 /* 596 ** Record the set of tables that satisfy case 3. The set might be 597 ** empty. 598 */ 599 pOrInfo->indexable = indexable; 600 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 601 602 /* For a two-way OR, attempt to implementation case 2. 603 */ 604 if( indexable && pOrWc->nTerm==2 ){ 605 int iOne = 0; 606 WhereTerm *pOne; 607 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 608 int iTwo = 0; 609 WhereTerm *pTwo; 610 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 611 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 612 } 613 } 614 } 615 616 /* 617 ** chngToIN holds a set of tables that *might* satisfy case 1. But 618 ** we have to do some additional checking to see if case 1 really 619 ** is satisfied. 620 ** 621 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 622 ** that there is no possibility of transforming the OR clause into an 623 ** IN operator because one or more terms in the OR clause contain 624 ** something other than == on a column in the single table. The 1-bit 625 ** case means that every term of the OR clause is of the form 626 ** "table.column=expr" for some single table. The one bit that is set 627 ** will correspond to the common table. We still need to check to make 628 ** sure the same column is used on all terms. The 2-bit case is when 629 ** the all terms are of the form "table1.column=table2.column". It 630 ** might be possible to form an IN operator with either table1.column 631 ** or table2.column as the LHS if either is common to every term of 632 ** the OR clause. 633 ** 634 ** Note that terms of the form "table.column1=table.column2" (the 635 ** same table on both sizes of the ==) cannot be optimized. 636 */ 637 if( chngToIN ){ 638 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 639 int iColumn = -1; /* Column index on lhs of IN operator */ 640 int iCursor = -1; /* Table cursor common to all terms */ 641 int j = 0; /* Loop counter */ 642 643 /* Search for a table and column that appears on one side or the 644 ** other of the == operator in every subterm. That table and column 645 ** will be recorded in iCursor and iColumn. There might not be any 646 ** such table and column. Set okToChngToIN if an appropriate table 647 ** and column is found but leave okToChngToIN false if not found. 648 */ 649 for(j=0; j<2 && !okToChngToIN; j++){ 650 pOrTerm = pOrWc->a; 651 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 652 assert( pOrTerm->eOperator & WO_EQ ); 653 pOrTerm->wtFlags &= ~TERM_OR_OK; 654 if( pOrTerm->leftCursor==iCursor ){ 655 /* This is the 2-bit case and we are on the second iteration and 656 ** current term is from the first iteration. So skip this term. */ 657 assert( j==1 ); 658 continue; 659 } 660 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 661 pOrTerm->leftCursor))==0 ){ 662 /* This term must be of the form t1.a==t2.b where t2 is in the 663 ** chngToIN set but t1 is not. This term will be either preceded 664 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 665 ** and use its inversion. */ 666 testcase( pOrTerm->wtFlags & TERM_COPIED ); 667 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 668 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 669 continue; 670 } 671 iColumn = pOrTerm->u.leftColumn; 672 iCursor = pOrTerm->leftCursor; 673 break; 674 } 675 if( i<0 ){ 676 /* No candidate table+column was found. This can only occur 677 ** on the second iteration */ 678 assert( j==1 ); 679 assert( IsPowerOfTwo(chngToIN) ); 680 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 681 break; 682 } 683 testcase( j==1 ); 684 685 /* We have found a candidate table and column. Check to see if that 686 ** table and column is common to every term in the OR clause */ 687 okToChngToIN = 1; 688 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 689 assert( pOrTerm->eOperator & WO_EQ ); 690 if( pOrTerm->leftCursor!=iCursor ){ 691 pOrTerm->wtFlags &= ~TERM_OR_OK; 692 }else if( pOrTerm->u.leftColumn!=iColumn ){ 693 okToChngToIN = 0; 694 }else{ 695 int affLeft, affRight; 696 /* If the right-hand side is also a column, then the affinities 697 ** of both right and left sides must be such that no type 698 ** conversions are required on the right. (Ticket #2249) 699 */ 700 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 701 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 702 if( affRight!=0 && affRight!=affLeft ){ 703 okToChngToIN = 0; 704 }else{ 705 pOrTerm->wtFlags |= TERM_OR_OK; 706 } 707 } 708 } 709 } 710 711 /* At this point, okToChngToIN is true if original pTerm satisfies 712 ** case 1. In that case, construct a new virtual term that is 713 ** pTerm converted into an IN operator. 714 */ 715 if( okToChngToIN ){ 716 Expr *pDup; /* A transient duplicate expression */ 717 ExprList *pList = 0; /* The RHS of the IN operator */ 718 Expr *pLeft = 0; /* The LHS of the IN operator */ 719 Expr *pNew; /* The complete IN operator */ 720 721 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 722 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 723 assert( pOrTerm->eOperator & WO_EQ ); 724 assert( pOrTerm->leftCursor==iCursor ); 725 assert( pOrTerm->u.leftColumn==iColumn ); 726 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 727 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 728 pLeft = pOrTerm->pExpr->pLeft; 729 } 730 assert( pLeft!=0 ); 731 pDup = sqlite3ExprDup(db, pLeft, 0); 732 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 733 if( pNew ){ 734 int idxNew; 735 transferJoinMarkings(pNew, pExpr); 736 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 737 pNew->x.pList = pList; 738 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 739 testcase( idxNew==0 ); 740 exprAnalyze(pSrc, pWC, idxNew); 741 pTerm = &pWC->a[idxTerm]; 742 markTermAsChild(pWC, idxNew, idxTerm); 743 }else{ 744 sqlite3ExprListDelete(db, pList); 745 } 746 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 747 } 748 } 749 } 750 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 751 752 /* 753 ** We already know that pExpr is a binary operator where both operands are 754 ** column references. This routine checks to see if pExpr is an equivalence 755 ** relation: 756 ** 1. The SQLITE_Transitive optimization must be enabled 757 ** 2. Must be either an == or an IS operator 758 ** 3. Not originating in the ON clause of an OUTER JOIN 759 ** 4. The affinities of A and B must be compatible 760 ** 5a. Both operands use the same collating sequence OR 761 ** 5b. The overall collating sequence is BINARY 762 ** If this routine returns TRUE, that means that the RHS can be substituted 763 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 764 ** This is an optimization. No harm comes from returning 0. But if 1 is 765 ** returned when it should not be, then incorrect answers might result. 766 */ 767 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 768 char aff1, aff2; 769 CollSeq *pColl; 770 const char *zColl1, *zColl2; 771 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 772 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 773 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 774 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 775 aff2 = sqlite3ExprAffinity(pExpr->pRight); 776 if( aff1!=aff2 777 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 778 ){ 779 return 0; 780 } 781 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 782 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 783 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 784 /* Since pLeft and pRight are both a column references, their collating 785 ** sequence should always be defined. */ 786 zColl1 = ALWAYS(pColl) ? pColl->zName : 0; 787 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 788 zColl2 = ALWAYS(pColl) ? pColl->zName : 0; 789 return sqlite3StrICmp(zColl1, zColl2)==0; 790 } 791 792 /* 793 ** Recursively walk the expressions of a SELECT statement and generate 794 ** a bitmask indicating which tables are used in that expression 795 ** tree. 796 */ 797 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 798 Bitmask mask = 0; 799 while( pS ){ 800 SrcList *pSrc = pS->pSrc; 801 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 802 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 803 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 804 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 805 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 806 if( ALWAYS(pSrc!=0) ){ 807 int i; 808 for(i=0; i<pSrc->nSrc; i++){ 809 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 810 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 811 } 812 } 813 pS = pS->pPrior; 814 } 815 return mask; 816 } 817 818 /* 819 ** Expression pExpr is one operand of a comparison operator that might 820 ** be useful for indexing. This routine checks to see if pExpr appears 821 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 822 ** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor 823 ** number of the table that is indexed and *piColumn to the column number 824 ** of the column that is indexed, or -2 if an expression is being indexed. 825 ** 826 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 827 ** true even if that particular column is not indexed, because the column 828 ** might be added to an automatic index later. 829 */ 830 static int exprMightBeIndexed( 831 SrcList *pFrom, /* The FROM clause */ 832 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 833 Expr *pExpr, /* An operand of a comparison operator */ 834 int *piCur, /* Write the referenced table cursor number here */ 835 int *piColumn /* Write the referenced table column number here */ 836 ){ 837 Index *pIdx; 838 int i; 839 int iCur; 840 if( pExpr->op==TK_COLUMN ){ 841 *piCur = pExpr->iTable; 842 *piColumn = pExpr->iColumn; 843 return 1; 844 } 845 if( mPrereq==0 ) return 0; /* No table references */ 846 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 847 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 848 iCur = pFrom->a[i].iCursor; 849 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 850 if( pIdx->aColExpr==0 ) continue; 851 for(i=0; i<pIdx->nKeyCol; i++){ 852 if( pIdx->aiColumn[i]!=(-2) ) continue; 853 if( sqlite3ExprCompare(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 854 *piCur = iCur; 855 *piColumn = -2; 856 return 1; 857 } 858 } 859 } 860 return 0; 861 } 862 863 /* 864 ** The input to this routine is an WhereTerm structure with only the 865 ** "pExpr" field filled in. The job of this routine is to analyze the 866 ** subexpression and populate all the other fields of the WhereTerm 867 ** structure. 868 ** 869 ** If the expression is of the form "<expr> <op> X" it gets commuted 870 ** to the standard form of "X <op> <expr>". 871 ** 872 ** If the expression is of the form "X <op> Y" where both X and Y are 873 ** columns, then the original expression is unchanged and a new virtual 874 ** term of the form "Y <op> X" is added to the WHERE clause and 875 ** analyzed separately. The original term is marked with TERM_COPIED 876 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 877 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 878 ** is a commuted copy of a prior term.) The original term has nChild=1 879 ** and the copy has idxParent set to the index of the original term. 880 */ 881 static void exprAnalyze( 882 SrcList *pSrc, /* the FROM clause */ 883 WhereClause *pWC, /* the WHERE clause */ 884 int idxTerm /* Index of the term to be analyzed */ 885 ){ 886 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 887 WhereTerm *pTerm; /* The term to be analyzed */ 888 WhereMaskSet *pMaskSet; /* Set of table index masks */ 889 Expr *pExpr; /* The expression to be analyzed */ 890 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 891 Bitmask prereqAll; /* Prerequesites of pExpr */ 892 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 893 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 894 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 895 int noCase = 0; /* uppercase equivalent to lowercase */ 896 int op; /* Top-level operator. pExpr->op */ 897 Parse *pParse = pWInfo->pParse; /* Parsing context */ 898 sqlite3 *db = pParse->db; /* Database connection */ 899 unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ 900 901 if( db->mallocFailed ){ 902 return; 903 } 904 pTerm = &pWC->a[idxTerm]; 905 pMaskSet = &pWInfo->sMaskSet; 906 pExpr = pTerm->pExpr; 907 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 908 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 909 op = pExpr->op; 910 if( op==TK_IN ){ 911 assert( pExpr->pRight==0 ); 912 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 913 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 914 }else{ 915 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 916 } 917 }else if( op==TK_ISNULL ){ 918 pTerm->prereqRight = 0; 919 }else{ 920 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 921 } 922 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 923 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 924 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 925 prereqAll |= x; 926 extraRight = x-1; /* ON clause terms may not be used with an index 927 ** on left table of a LEFT JOIN. Ticket #3015 */ 928 } 929 pTerm->prereqAll = prereqAll; 930 pTerm->leftCursor = -1; 931 pTerm->iParent = -1; 932 pTerm->eOperator = 0; 933 if( allowedOp(op) ){ 934 int iCur, iColumn; 935 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 936 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 937 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 938 if( exprMightBeIndexed(pSrc, prereqLeft, pLeft, &iCur, &iColumn) ){ 939 pTerm->leftCursor = iCur; 940 pTerm->u.leftColumn = iColumn; 941 pTerm->eOperator = operatorMask(op) & opMask; 942 } 943 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 944 if( pRight 945 && exprMightBeIndexed(pSrc, pTerm->prereqRight, pRight, &iCur, &iColumn) 946 ){ 947 WhereTerm *pNew; 948 Expr *pDup; 949 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 950 if( pTerm->leftCursor>=0 ){ 951 int idxNew; 952 pDup = sqlite3ExprDup(db, pExpr, 0); 953 if( db->mallocFailed ){ 954 sqlite3ExprDelete(db, pDup); 955 return; 956 } 957 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 958 if( idxNew==0 ) return; 959 pNew = &pWC->a[idxNew]; 960 markTermAsChild(pWC, idxNew, idxTerm); 961 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 962 pTerm = &pWC->a[idxTerm]; 963 pTerm->wtFlags |= TERM_COPIED; 964 965 if( termIsEquivalence(pParse, pDup) ){ 966 pTerm->eOperator |= WO_EQUIV; 967 eExtraOp = WO_EQUIV; 968 } 969 }else{ 970 pDup = pExpr; 971 pNew = pTerm; 972 } 973 exprCommute(pParse, pDup); 974 pNew->leftCursor = iCur; 975 pNew->u.leftColumn = iColumn; 976 testcase( (prereqLeft | extraRight) != prereqLeft ); 977 pNew->prereqRight = prereqLeft | extraRight; 978 pNew->prereqAll = prereqAll; 979 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 980 } 981 } 982 983 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 984 /* If a term is the BETWEEN operator, create two new virtual terms 985 ** that define the range that the BETWEEN implements. For example: 986 ** 987 ** a BETWEEN b AND c 988 ** 989 ** is converted into: 990 ** 991 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 992 ** 993 ** The two new terms are added onto the end of the WhereClause object. 994 ** The new terms are "dynamic" and are children of the original BETWEEN 995 ** term. That means that if the BETWEEN term is coded, the children are 996 ** skipped. Or, if the children are satisfied by an index, the original 997 ** BETWEEN term is skipped. 998 */ 999 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1000 ExprList *pList = pExpr->x.pList; 1001 int i; 1002 static const u8 ops[] = {TK_GE, TK_LE}; 1003 assert( pList!=0 ); 1004 assert( pList->nExpr==2 ); 1005 for(i=0; i<2; i++){ 1006 Expr *pNewExpr; 1007 int idxNew; 1008 pNewExpr = sqlite3PExpr(pParse, ops[i], 1009 sqlite3ExprDup(db, pExpr->pLeft, 0), 1010 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1011 transferJoinMarkings(pNewExpr, pExpr); 1012 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1013 testcase( idxNew==0 ); 1014 exprAnalyze(pSrc, pWC, idxNew); 1015 pTerm = &pWC->a[idxTerm]; 1016 markTermAsChild(pWC, idxNew, idxTerm); 1017 } 1018 } 1019 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1020 1021 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1022 /* Analyze a term that is composed of two or more subterms connected by 1023 ** an OR operator. 1024 */ 1025 else if( pExpr->op==TK_OR ){ 1026 assert( pWC->op==TK_AND ); 1027 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1028 pTerm = &pWC->a[idxTerm]; 1029 } 1030 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1031 1032 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1033 /* Add constraints to reduce the search space on a LIKE or GLOB 1034 ** operator. 1035 ** 1036 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1037 ** 1038 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1039 ** 1040 ** The last character of the prefix "abc" is incremented to form the 1041 ** termination condition "abd". If case is not significant (the default 1042 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1043 ** bound is made all lowercase so that the bounds also work when comparing 1044 ** BLOBs. 1045 */ 1046 if( pWC->op==TK_AND 1047 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1048 ){ 1049 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1050 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1051 Expr *pNewExpr1; 1052 Expr *pNewExpr2; 1053 int idxNew1; 1054 int idxNew2; 1055 const char *zCollSeqName; /* Name of collating sequence */ 1056 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1057 1058 pLeft = pExpr->x.pList->a[1].pExpr; 1059 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1060 1061 /* Convert the lower bound to upper-case and the upper bound to 1062 ** lower-case (upper-case is less than lower-case in ASCII) so that 1063 ** the range constraints also work for BLOBs 1064 */ 1065 if( noCase && !pParse->db->mallocFailed ){ 1066 int i; 1067 char c; 1068 pTerm->wtFlags |= TERM_LIKE; 1069 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1070 pStr1->u.zToken[i] = sqlite3Toupper(c); 1071 pStr2->u.zToken[i] = sqlite3Tolower(c); 1072 } 1073 } 1074 1075 if( !db->mallocFailed ){ 1076 u8 c, *pC; /* Last character before the first wildcard */ 1077 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1078 c = *pC; 1079 if( noCase ){ 1080 /* The point is to increment the last character before the first 1081 ** wildcard. But if we increment '@', that will push it into the 1082 ** alphabetic range where case conversions will mess up the 1083 ** inequality. To avoid this, make sure to also run the full 1084 ** LIKE on all candidate expressions by clearing the isComplete flag 1085 */ 1086 if( c=='A'-1 ) isComplete = 0; 1087 c = sqlite3UpperToLower[c]; 1088 } 1089 *pC = c + 1; 1090 } 1091 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1092 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1093 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1094 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1095 pStr1, 0); 1096 transferJoinMarkings(pNewExpr1, pExpr); 1097 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1098 testcase( idxNew1==0 ); 1099 exprAnalyze(pSrc, pWC, idxNew1); 1100 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1101 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1102 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1103 pStr2, 0); 1104 transferJoinMarkings(pNewExpr2, pExpr); 1105 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1106 testcase( idxNew2==0 ); 1107 exprAnalyze(pSrc, pWC, idxNew2); 1108 pTerm = &pWC->a[idxTerm]; 1109 if( isComplete ){ 1110 markTermAsChild(pWC, idxNew1, idxTerm); 1111 markTermAsChild(pWC, idxNew2, idxTerm); 1112 } 1113 } 1114 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1115 1116 #ifndef SQLITE_OMIT_VIRTUALTABLE 1117 /* Add a WO_MATCH auxiliary term to the constraint set if the 1118 ** current expression is of the form: column MATCH expr. 1119 ** This information is used by the xBestIndex methods of 1120 ** virtual tables. The native query optimizer does not attempt 1121 ** to do anything with MATCH functions. 1122 */ 1123 if( isMatchOfColumn(pExpr, &eOp2) ){ 1124 int idxNew; 1125 Expr *pRight, *pLeft; 1126 WhereTerm *pNewTerm; 1127 Bitmask prereqColumn, prereqExpr; 1128 1129 pRight = pExpr->x.pList->a[0].pExpr; 1130 pLeft = pExpr->x.pList->a[1].pExpr; 1131 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1132 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1133 if( (prereqExpr & prereqColumn)==0 ){ 1134 Expr *pNewExpr; 1135 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1136 0, sqlite3ExprDup(db, pRight, 0), 0); 1137 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1138 testcase( idxNew==0 ); 1139 pNewTerm = &pWC->a[idxNew]; 1140 pNewTerm->prereqRight = prereqExpr; 1141 pNewTerm->leftCursor = pLeft->iTable; 1142 pNewTerm->u.leftColumn = pLeft->iColumn; 1143 pNewTerm->eOperator = WO_MATCH; 1144 pNewTerm->eMatchOp = eOp2; 1145 markTermAsChild(pWC, idxNew, idxTerm); 1146 pTerm = &pWC->a[idxTerm]; 1147 pTerm->wtFlags |= TERM_COPIED; 1148 pNewTerm->prereqAll = pTerm->prereqAll; 1149 } 1150 } 1151 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1152 1153 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1154 /* When sqlite_stat3 histogram data is available an operator of the 1155 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1156 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1157 ** virtual term of that form. 1158 ** 1159 ** Note that the virtual term must be tagged with TERM_VNULL. 1160 */ 1161 if( pExpr->op==TK_NOTNULL 1162 && pExpr->pLeft->op==TK_COLUMN 1163 && pExpr->pLeft->iColumn>=0 1164 && OptimizationEnabled(db, SQLITE_Stat34) 1165 ){ 1166 Expr *pNewExpr; 1167 Expr *pLeft = pExpr->pLeft; 1168 int idxNew; 1169 WhereTerm *pNewTerm; 1170 1171 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1172 sqlite3ExprDup(db, pLeft, 0), 1173 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); 1174 1175 idxNew = whereClauseInsert(pWC, pNewExpr, 1176 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1177 if( idxNew ){ 1178 pNewTerm = &pWC->a[idxNew]; 1179 pNewTerm->prereqRight = 0; 1180 pNewTerm->leftCursor = pLeft->iTable; 1181 pNewTerm->u.leftColumn = pLeft->iColumn; 1182 pNewTerm->eOperator = WO_GT; 1183 markTermAsChild(pWC, idxNew, idxTerm); 1184 pTerm = &pWC->a[idxTerm]; 1185 pTerm->wtFlags |= TERM_COPIED; 1186 pNewTerm->prereqAll = pTerm->prereqAll; 1187 } 1188 } 1189 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1190 1191 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1192 ** an index for tables to the left of the join. 1193 */ 1194 pTerm->prereqRight |= extraRight; 1195 } 1196 1197 /*************************************************************************** 1198 ** Routines with file scope above. Interface to the rest of the where.c 1199 ** subsystem follows. 1200 ***************************************************************************/ 1201 1202 /* 1203 ** This routine identifies subexpressions in the WHERE clause where 1204 ** each subexpression is separated by the AND operator or some other 1205 ** operator specified in the op parameter. The WhereClause structure 1206 ** is filled with pointers to subexpressions. For example: 1207 ** 1208 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1209 ** \________/ \_______________/ \________________/ 1210 ** slot[0] slot[1] slot[2] 1211 ** 1212 ** The original WHERE clause in pExpr is unaltered. All this routine 1213 ** does is make slot[] entries point to substructure within pExpr. 1214 ** 1215 ** In the previous sentence and in the diagram, "slot[]" refers to 1216 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1217 ** all terms of the WHERE clause. 1218 */ 1219 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1220 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1221 pWC->op = op; 1222 if( pE2==0 ) return; 1223 if( pE2->op!=op ){ 1224 whereClauseInsert(pWC, pExpr, 0); 1225 }else{ 1226 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1227 sqlite3WhereSplit(pWC, pE2->pRight, op); 1228 } 1229 } 1230 1231 /* 1232 ** Initialize a preallocated WhereClause structure. 1233 */ 1234 void sqlite3WhereClauseInit( 1235 WhereClause *pWC, /* The WhereClause to be initialized */ 1236 WhereInfo *pWInfo /* The WHERE processing context */ 1237 ){ 1238 pWC->pWInfo = pWInfo; 1239 pWC->pOuter = 0; 1240 pWC->nTerm = 0; 1241 pWC->nSlot = ArraySize(pWC->aStatic); 1242 pWC->a = pWC->aStatic; 1243 } 1244 1245 /* 1246 ** Deallocate a WhereClause structure. The WhereClause structure 1247 ** itself is not freed. This routine is the inverse of 1248 ** sqlite3WhereClauseInit(). 1249 */ 1250 void sqlite3WhereClauseClear(WhereClause *pWC){ 1251 int i; 1252 WhereTerm *a; 1253 sqlite3 *db = pWC->pWInfo->pParse->db; 1254 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1255 if( a->wtFlags & TERM_DYNAMIC ){ 1256 sqlite3ExprDelete(db, a->pExpr); 1257 } 1258 if( a->wtFlags & TERM_ORINFO ){ 1259 whereOrInfoDelete(db, a->u.pOrInfo); 1260 }else if( a->wtFlags & TERM_ANDINFO ){ 1261 whereAndInfoDelete(db, a->u.pAndInfo); 1262 } 1263 } 1264 if( pWC->a!=pWC->aStatic ){ 1265 sqlite3DbFree(db, pWC->a); 1266 } 1267 } 1268 1269 1270 /* 1271 ** These routines walk (recursively) an expression tree and generate 1272 ** a bitmask indicating which tables are used in that expression 1273 ** tree. 1274 */ 1275 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1276 Bitmask mask = 0; 1277 if( p==0 ) return 0; 1278 if( p->op==TK_COLUMN ){ 1279 mask = sqlite3WhereGetMask(pMaskSet, p->iTable); 1280 return mask; 1281 } 1282 mask = sqlite3WhereExprUsage(pMaskSet, p->pRight); 1283 mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 1284 if( ExprHasProperty(p, EP_xIsSelect) ){ 1285 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1286 }else{ 1287 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1288 } 1289 return mask; 1290 } 1291 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1292 int i; 1293 Bitmask mask = 0; 1294 if( pList ){ 1295 for(i=0; i<pList->nExpr; i++){ 1296 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1297 } 1298 } 1299 return mask; 1300 } 1301 1302 1303 /* 1304 ** Call exprAnalyze on all terms in a WHERE clause. 1305 ** 1306 ** Note that exprAnalyze() might add new virtual terms onto the 1307 ** end of the WHERE clause. We do not want to analyze these new 1308 ** virtual terms, so start analyzing at the end and work forward 1309 ** so that the added virtual terms are never processed. 1310 */ 1311 void sqlite3WhereExprAnalyze( 1312 SrcList *pTabList, /* the FROM clause */ 1313 WhereClause *pWC /* the WHERE clause to be analyzed */ 1314 ){ 1315 int i; 1316 for(i=pWC->nTerm-1; i>=0; i--){ 1317 exprAnalyze(pTabList, pWC, i); 1318 } 1319 } 1320 1321 /* 1322 ** For table-valued-functions, transform the function arguments into 1323 ** new WHERE clause terms. 1324 ** 1325 ** Each function argument translates into an equality constraint against 1326 ** a HIDDEN column in the table. 1327 */ 1328 void sqlite3WhereTabFuncArgs( 1329 Parse *pParse, /* Parsing context */ 1330 struct SrcList_item *pItem, /* The FROM clause term to process */ 1331 WhereClause *pWC /* Xfer function arguments to here */ 1332 ){ 1333 Table *pTab; 1334 int j, k; 1335 ExprList *pArgs; 1336 Expr *pColRef; 1337 Expr *pTerm; 1338 if( pItem->fg.isTabFunc==0 ) return; 1339 pTab = pItem->pTab; 1340 assert( pTab!=0 ); 1341 pArgs = pItem->u1.pFuncArg; 1342 if( pArgs==0 ) return; 1343 for(j=k=0; j<pArgs->nExpr; j++){ 1344 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1345 if( k>=pTab->nCol ){ 1346 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1347 pTab->zName, j); 1348 return; 1349 } 1350 pColRef = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1351 if( pColRef==0 ) return; 1352 pColRef->iTable = pItem->iCursor; 1353 pColRef->iColumn = k++; 1354 pColRef->pTab = pTab; 1355 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1356 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); 1357 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1358 } 1359 } 1360