1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 84 }else{ 85 pTerm->truthProb = 1; 86 } 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); 88 pTerm->wtFlags = wtFlags; 89 pTerm->pWC = pWC; 90 pTerm->iParent = -1; 91 memset(&pTerm->eOperator, 0, 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 93 return idx; 94 } 95 96 /* 97 ** Return TRUE if the given operator is one of the operators that is 98 ** allowed for an indexable WHERE clause term. The allowed operators are 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 100 */ 101 static int allowedOp(int op){ 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 105 assert( TK_GE==TK_EQ+4 ); 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 107 } 108 109 /* 110 ** Commute a comparison operator. Expressions of the form "X op Y" 111 ** are converted into "Y op X". 112 ** 113 ** If left/right precedence rules come into play when determining the 114 ** collating sequence, then COLLATE operators are adjusted to ensure 115 ** that the collating sequence does not change. For example: 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 117 ** the left hand side of a comparison overrides any collation sequence 118 ** attached to the right. For the same reason the EP_Collate flag 119 ** is not commuted. 120 */ 121 static void exprCommute(Parse *pParse, Expr *pExpr){ 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 125 if( expRight==expLeft ){ 126 /* Either X and Y both have COLLATE operator or neither do */ 127 if( expRight ){ 128 /* Both X and Y have COLLATE operators. Make sure X is always 129 ** used by clearing the EP_Collate flag from Y. */ 130 pExpr->pRight->flags &= ~EP_Collate; 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 132 /* Neither X nor Y have COLLATE operators, but X has a non-default 133 ** collating sequence. So add the EP_Collate marker on X to cause 134 ** it to be searched first. */ 135 pExpr->pLeft->flags |= EP_Collate; 136 } 137 } 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 139 if( pExpr->op>=TK_GT ){ 140 assert( TK_LT==TK_GT+2 ); 141 assert( TK_GE==TK_LE+2 ); 142 assert( TK_GT>TK_EQ ); 143 assert( TK_GT<TK_LE ); 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 146 } 147 } 148 149 /* 150 ** Translate from TK_xx operator to WO_xx bitmask. 151 */ 152 static u16 operatorMask(int op){ 153 u16 c; 154 assert( allowedOp(op) ); 155 if( op==TK_IN ){ 156 c = WO_IN; 157 }else if( op==TK_ISNULL ){ 158 c = WO_ISNULL; 159 }else if( op==TK_IS ){ 160 c = WO_IS; 161 }else{ 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 163 c = (u16)(WO_EQ<<(op-TK_EQ)); 164 } 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 166 assert( op!=TK_IN || c==WO_IN ); 167 assert( op!=TK_EQ || c==WO_EQ ); 168 assert( op!=TK_LT || c==WO_LT ); 169 assert( op!=TK_LE || c==WO_LE ); 170 assert( op!=TK_GT || c==WO_GT ); 171 assert( op!=TK_GE || c==WO_GE ); 172 assert( op!=TK_IS || c==WO_IS ); 173 return c; 174 } 175 176 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 178 /* 179 ** Check to see if the given expression is a LIKE or GLOB operator that 180 ** can be optimized using inequality constraints. Return TRUE if it is 181 ** so and false if not. 182 ** 183 ** In order for the operator to be optimizible, the RHS must be a string 184 ** literal that does not begin with a wildcard. The LHS must be a column 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 186 ** that virtual tables cannot participate in the LIKE optimization.) The 187 ** collating sequence for the column on the LHS must be appropriate for 188 ** the operator. 189 */ 190 static int isLikeOrGlob( 191 Parse *pParse, /* Parsing and code generating context */ 192 Expr *pExpr, /* Test this expression */ 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 194 int *pisComplete, /* True if the only wildcard is % in the last character */ 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 196 ){ 197 const u8 *z = 0; /* String on RHS of LIKE operator */ 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 199 ExprList *pList; /* List of operands to the LIKE operator */ 200 int c; /* One character in z[] */ 201 int cnt; /* Number of non-wildcard prefix characters */ 202 char wc[4]; /* Wildcard characters */ 203 sqlite3 *db = pParse->db; /* Database connection */ 204 sqlite3_value *pVal = 0; 205 int op; /* Opcode of pRight */ 206 int rc; /* Result code to return */ 207 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 209 return 0; 210 } 211 #ifdef SQLITE_EBCDIC 212 if( *pnoCase ) return 0; 213 #endif 214 pList = pExpr->x.pList; 215 pLeft = pList->a[1].pExpr; 216 217 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 218 op = pRight->op; 219 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 220 Vdbe *pReprepare = pParse->pReprepare; 221 int iCol = pRight->iColumn; 222 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 223 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 224 z = sqlite3_value_text(pVal); 225 } 226 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 227 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 228 }else if( op==TK_STRING ){ 229 z = (u8*)pRight->u.zToken; 230 } 231 if( z ){ 232 233 /* If the RHS begins with a digit or a minus sign, then the LHS must 234 ** be an ordinary column (not a virtual table column) with TEXT affinity. 235 ** Otherwise the LHS might be numeric and "lhs >= rhs" would be false 236 ** even though "lhs LIKE rhs" is true. But if the RHS does not start 237 ** with a digit or '-', then "lhs LIKE rhs" will always be false if 238 ** the LHS is numeric and so the optimization still works. 239 */ 240 if( sqlite3Isdigit(z[0]) || z[0]=='-' ){ 241 if( pLeft->op!=TK_COLUMN 242 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 243 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 244 ){ 245 sqlite3ValueFree(pVal); 246 return 0; 247 } 248 } 249 250 /* Count the number of prefix characters prior to the first wildcard */ 251 cnt = 0; 252 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 253 cnt++; 254 if( c==wc[3] && z[cnt]!=0 ){ 255 if( z[cnt++]>0xc0 ) while( (z[cnt]&0xc0)==0x80 ){ cnt++; } 256 } 257 } 258 259 /* The optimization is possible only if (1) the pattern does not begin 260 ** with a wildcard and if (2) the non-wildcard prefix does not end with 261 ** an (illegal 0xff) character. The second condition is necessary so 262 ** that we can increment the prefix key to find an upper bound for the 263 ** range search. 264 */ 265 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 266 Expr *pPrefix; 267 268 /* A "complete" match if the pattern ends with "*" or "%" */ 269 *pisComplete = c==wc[0] && z[cnt+1]==0; 270 271 /* Get the pattern prefix. Remove all escapes from the prefix. */ 272 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z); 273 if( pPrefix ){ 274 int iFrom, iTo; 275 char *zNew = pPrefix->u.zToken; 276 zNew[cnt] = 0; 277 for(iFrom=iTo=0; iFrom<cnt; iFrom++){ 278 if( zNew[iFrom]==wc[3] ) iFrom++; 279 zNew[iTo++] = zNew[iFrom]; 280 } 281 zNew[iTo] = 0; 282 } 283 *ppPrefix = pPrefix; 284 285 /* If the RHS pattern is a bound parameter, make arrangements to 286 ** reprepare the statement when that parameter is rebound */ 287 if( op==TK_VARIABLE ){ 288 Vdbe *v = pParse->pVdbe; 289 sqlite3VdbeSetVarmask(v, pRight->iColumn); 290 if( *pisComplete && pRight->u.zToken[1] ){ 291 /* If the rhs of the LIKE expression is a variable, and the current 292 ** value of the variable means there is no need to invoke the LIKE 293 ** function, then no OP_Variable will be added to the program. 294 ** This causes problems for the sqlite3_bind_parameter_name() 295 ** API. To work around them, add a dummy OP_Variable here. 296 */ 297 int r1 = sqlite3GetTempReg(pParse); 298 sqlite3ExprCodeTarget(pParse, pRight, r1); 299 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 300 sqlite3ReleaseTempReg(pParse, r1); 301 } 302 } 303 }else{ 304 z = 0; 305 } 306 } 307 308 rc = (z!=0); 309 sqlite3ValueFree(pVal); 310 return rc; 311 } 312 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 313 314 315 #ifndef SQLITE_OMIT_VIRTUALTABLE 316 /* 317 ** Check to see if the given expression is of the form 318 ** 319 ** column OP expr 320 ** 321 ** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a 322 ** column of a virtual table. 323 ** 324 ** If it is then return TRUE. If not, return FALSE. 325 */ 326 static int isMatchOfColumn( 327 Expr *pExpr, /* Test this expression */ 328 unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ 329 ){ 330 static const struct Op2 { 331 const char *zOp; 332 unsigned char eOp2; 333 } aOp[] = { 334 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 335 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 336 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 337 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 338 }; 339 ExprList *pList; 340 Expr *pCol; /* Column reference */ 341 int i; 342 343 if( pExpr->op!=TK_FUNCTION ){ 344 return 0; 345 } 346 pList = pExpr->x.pList; 347 if( pList==0 || pList->nExpr!=2 ){ 348 return 0; 349 } 350 pCol = pList->a[1].pExpr; 351 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 352 return 0; 353 } 354 for(i=0; i<ArraySize(aOp); i++){ 355 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 356 *peOp2 = aOp[i].eOp2; 357 return 1; 358 } 359 } 360 return 0; 361 } 362 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 363 364 /* 365 ** If the pBase expression originated in the ON or USING clause of 366 ** a join, then transfer the appropriate markings over to derived. 367 */ 368 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 369 if( pDerived ){ 370 pDerived->flags |= pBase->flags & EP_FromJoin; 371 pDerived->iRightJoinTable = pBase->iRightJoinTable; 372 } 373 } 374 375 /* 376 ** Mark term iChild as being a child of term iParent 377 */ 378 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 379 pWC->a[iChild].iParent = iParent; 380 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 381 pWC->a[iParent].nChild++; 382 } 383 384 /* 385 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 386 ** a conjunction, then return just pTerm when N==0. If N is exceeds 387 ** the number of available subterms, return NULL. 388 */ 389 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 390 if( pTerm->eOperator!=WO_AND ){ 391 return N==0 ? pTerm : 0; 392 } 393 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 394 return &pTerm->u.pAndInfo->wc.a[N]; 395 } 396 return 0; 397 } 398 399 /* 400 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 401 ** two subterms are in disjunction - they are OR-ed together. 402 ** 403 ** If these two terms are both of the form: "A op B" with the same 404 ** A and B values but different operators and if the operators are 405 ** compatible (if one is = and the other is <, for example) then 406 ** add a new virtual AND term to pWC that is the combination of the 407 ** two. 408 ** 409 ** Some examples: 410 ** 411 ** x<y OR x=y --> x<=y 412 ** x=y OR x=y --> x=y 413 ** x<=y OR x<y --> x<=y 414 ** 415 ** The following is NOT generated: 416 ** 417 ** x<y OR x>y --> x!=y 418 */ 419 static void whereCombineDisjuncts( 420 SrcList *pSrc, /* the FROM clause */ 421 WhereClause *pWC, /* The complete WHERE clause */ 422 WhereTerm *pOne, /* First disjunct */ 423 WhereTerm *pTwo /* Second disjunct */ 424 ){ 425 u16 eOp = pOne->eOperator | pTwo->eOperator; 426 sqlite3 *db; /* Database connection (for malloc) */ 427 Expr *pNew; /* New virtual expression */ 428 int op; /* Operator for the combined expression */ 429 int idxNew; /* Index in pWC of the next virtual term */ 430 431 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 432 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 433 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 434 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 435 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 436 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 437 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 438 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return; 439 /* If we reach this point, it means the two subterms can be combined */ 440 if( (eOp & (eOp-1))!=0 ){ 441 if( eOp & (WO_LT|WO_LE) ){ 442 eOp = WO_LE; 443 }else{ 444 assert( eOp & (WO_GT|WO_GE) ); 445 eOp = WO_GE; 446 } 447 } 448 db = pWC->pWInfo->pParse->db; 449 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 450 if( pNew==0 ) return; 451 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 452 pNew->op = op; 453 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 454 exprAnalyze(pSrc, pWC, idxNew); 455 } 456 457 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 458 /* 459 ** Analyze a term that consists of two or more OR-connected 460 ** subterms. So in: 461 ** 462 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 463 ** ^^^^^^^^^^^^^^^^^^^^ 464 ** 465 ** This routine analyzes terms such as the middle term in the above example. 466 ** A WhereOrTerm object is computed and attached to the term under 467 ** analysis, regardless of the outcome of the analysis. Hence: 468 ** 469 ** WhereTerm.wtFlags |= TERM_ORINFO 470 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 471 ** 472 ** The term being analyzed must have two or more of OR-connected subterms. 473 ** A single subterm might be a set of AND-connected sub-subterms. 474 ** Examples of terms under analysis: 475 ** 476 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 477 ** (B) x=expr1 OR expr2=x OR x=expr3 478 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 479 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 480 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 481 ** (F) x>A OR (x=A AND y>=B) 482 ** 483 ** CASE 1: 484 ** 485 ** If all subterms are of the form T.C=expr for some single column of C and 486 ** a single table T (as shown in example B above) then create a new virtual 487 ** term that is an equivalent IN expression. In other words, if the term 488 ** being analyzed is: 489 ** 490 ** x = expr1 OR expr2 = x OR x = expr3 491 ** 492 ** then create a new virtual term like this: 493 ** 494 ** x IN (expr1,expr2,expr3) 495 ** 496 ** CASE 2: 497 ** 498 ** If there are exactly two disjuncts and one side has x>A and the other side 499 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 500 ** WHERE clause of the form "x>=A". Example: 501 ** 502 ** x>A OR (x=A AND y>B) adds: x>=A 503 ** 504 ** The added conjunct can sometimes be helpful in query planning. 505 ** 506 ** CASE 3: 507 ** 508 ** If all subterms are indexable by a single table T, then set 509 ** 510 ** WhereTerm.eOperator = WO_OR 511 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 512 ** 513 ** A subterm is "indexable" if it is of the form 514 ** "T.C <op> <expr>" where C is any column of table T and 515 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 516 ** A subterm is also indexable if it is an AND of two or more 517 ** subsubterms at least one of which is indexable. Indexable AND 518 ** subterms have their eOperator set to WO_AND and they have 519 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 520 ** 521 ** From another point of view, "indexable" means that the subterm could 522 ** potentially be used with an index if an appropriate index exists. 523 ** This analysis does not consider whether or not the index exists; that 524 ** is decided elsewhere. This analysis only looks at whether subterms 525 ** appropriate for indexing exist. 526 ** 527 ** All examples A through E above satisfy case 3. But if a term 528 ** also satisfies case 1 (such as B) we know that the optimizer will 529 ** always prefer case 1, so in that case we pretend that case 3 is not 530 ** satisfied. 531 ** 532 ** It might be the case that multiple tables are indexable. For example, 533 ** (E) above is indexable on tables P, Q, and R. 534 ** 535 ** Terms that satisfy case 3 are candidates for lookup by using 536 ** separate indices to find rowids for each subterm and composing 537 ** the union of all rowids using a RowSet object. This is similar 538 ** to "bitmap indices" in other database engines. 539 ** 540 ** OTHERWISE: 541 ** 542 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 543 ** zero. This term is not useful for search. 544 */ 545 static void exprAnalyzeOrTerm( 546 SrcList *pSrc, /* the FROM clause */ 547 WhereClause *pWC, /* the complete WHERE clause */ 548 int idxTerm /* Index of the OR-term to be analyzed */ 549 ){ 550 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 551 Parse *pParse = pWInfo->pParse; /* Parser context */ 552 sqlite3 *db = pParse->db; /* Database connection */ 553 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 554 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 555 int i; /* Loop counters */ 556 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 557 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 558 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 559 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 560 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 561 562 /* 563 ** Break the OR clause into its separate subterms. The subterms are 564 ** stored in a WhereClause structure containing within the WhereOrInfo 565 ** object that is attached to the original OR clause term. 566 */ 567 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 568 assert( pExpr->op==TK_OR ); 569 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 570 if( pOrInfo==0 ) return; 571 pTerm->wtFlags |= TERM_ORINFO; 572 pOrWc = &pOrInfo->wc; 573 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 574 sqlite3WhereClauseInit(pOrWc, pWInfo); 575 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 576 sqlite3WhereExprAnalyze(pSrc, pOrWc); 577 if( db->mallocFailed ) return; 578 assert( pOrWc->nTerm>=2 ); 579 580 /* 581 ** Compute the set of tables that might satisfy cases 1 or 3. 582 */ 583 indexable = ~(Bitmask)0; 584 chngToIN = ~(Bitmask)0; 585 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 586 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 587 WhereAndInfo *pAndInfo; 588 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 589 chngToIN = 0; 590 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 591 if( pAndInfo ){ 592 WhereClause *pAndWC; 593 WhereTerm *pAndTerm; 594 int j; 595 Bitmask b = 0; 596 pOrTerm->u.pAndInfo = pAndInfo; 597 pOrTerm->wtFlags |= TERM_ANDINFO; 598 pOrTerm->eOperator = WO_AND; 599 pAndWC = &pAndInfo->wc; 600 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 601 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 602 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 603 sqlite3WhereExprAnalyze(pSrc, pAndWC); 604 pAndWC->pOuter = pWC; 605 if( !db->mallocFailed ){ 606 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 607 assert( pAndTerm->pExpr ); 608 if( allowedOp(pAndTerm->pExpr->op) 609 || pAndTerm->eOperator==WO_MATCH 610 ){ 611 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 612 } 613 } 614 } 615 indexable &= b; 616 } 617 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 618 /* Skip this term for now. We revisit it when we process the 619 ** corresponding TERM_VIRTUAL term */ 620 }else{ 621 Bitmask b; 622 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 623 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 624 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 625 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 626 } 627 indexable &= b; 628 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 629 chngToIN = 0; 630 }else{ 631 chngToIN &= b; 632 } 633 } 634 } 635 636 /* 637 ** Record the set of tables that satisfy case 3. The set might be 638 ** empty. 639 */ 640 pOrInfo->indexable = indexable; 641 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 642 643 /* For a two-way OR, attempt to implementation case 2. 644 */ 645 if( indexable && pOrWc->nTerm==2 ){ 646 int iOne = 0; 647 WhereTerm *pOne; 648 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 649 int iTwo = 0; 650 WhereTerm *pTwo; 651 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 652 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 653 } 654 } 655 } 656 657 /* 658 ** chngToIN holds a set of tables that *might* satisfy case 1. But 659 ** we have to do some additional checking to see if case 1 really 660 ** is satisfied. 661 ** 662 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 663 ** that there is no possibility of transforming the OR clause into an 664 ** IN operator because one or more terms in the OR clause contain 665 ** something other than == on a column in the single table. The 1-bit 666 ** case means that every term of the OR clause is of the form 667 ** "table.column=expr" for some single table. The one bit that is set 668 ** will correspond to the common table. We still need to check to make 669 ** sure the same column is used on all terms. The 2-bit case is when 670 ** the all terms are of the form "table1.column=table2.column". It 671 ** might be possible to form an IN operator with either table1.column 672 ** or table2.column as the LHS if either is common to every term of 673 ** the OR clause. 674 ** 675 ** Note that terms of the form "table.column1=table.column2" (the 676 ** same table on both sizes of the ==) cannot be optimized. 677 */ 678 if( chngToIN ){ 679 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 680 int iColumn = -1; /* Column index on lhs of IN operator */ 681 int iCursor = -1; /* Table cursor common to all terms */ 682 int j = 0; /* Loop counter */ 683 684 /* Search for a table and column that appears on one side or the 685 ** other of the == operator in every subterm. That table and column 686 ** will be recorded in iCursor and iColumn. There might not be any 687 ** such table and column. Set okToChngToIN if an appropriate table 688 ** and column is found but leave okToChngToIN false if not found. 689 */ 690 for(j=0; j<2 && !okToChngToIN; j++){ 691 pOrTerm = pOrWc->a; 692 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 693 assert( pOrTerm->eOperator & WO_EQ ); 694 pOrTerm->wtFlags &= ~TERM_OR_OK; 695 if( pOrTerm->leftCursor==iCursor ){ 696 /* This is the 2-bit case and we are on the second iteration and 697 ** current term is from the first iteration. So skip this term. */ 698 assert( j==1 ); 699 continue; 700 } 701 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 702 pOrTerm->leftCursor))==0 ){ 703 /* This term must be of the form t1.a==t2.b where t2 is in the 704 ** chngToIN set but t1 is not. This term will be either preceded 705 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 706 ** and use its inversion. */ 707 testcase( pOrTerm->wtFlags & TERM_COPIED ); 708 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 709 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 710 continue; 711 } 712 iColumn = pOrTerm->u.leftColumn; 713 iCursor = pOrTerm->leftCursor; 714 break; 715 } 716 if( i<0 ){ 717 /* No candidate table+column was found. This can only occur 718 ** on the second iteration */ 719 assert( j==1 ); 720 assert( IsPowerOfTwo(chngToIN) ); 721 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 722 break; 723 } 724 testcase( j==1 ); 725 726 /* We have found a candidate table and column. Check to see if that 727 ** table and column is common to every term in the OR clause */ 728 okToChngToIN = 1; 729 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 730 assert( pOrTerm->eOperator & WO_EQ ); 731 if( pOrTerm->leftCursor!=iCursor ){ 732 pOrTerm->wtFlags &= ~TERM_OR_OK; 733 }else if( pOrTerm->u.leftColumn!=iColumn ){ 734 okToChngToIN = 0; 735 }else{ 736 int affLeft, affRight; 737 /* If the right-hand side is also a column, then the affinities 738 ** of both right and left sides must be such that no type 739 ** conversions are required on the right. (Ticket #2249) 740 */ 741 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 742 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 743 if( affRight!=0 && affRight!=affLeft ){ 744 okToChngToIN = 0; 745 }else{ 746 pOrTerm->wtFlags |= TERM_OR_OK; 747 } 748 } 749 } 750 } 751 752 /* At this point, okToChngToIN is true if original pTerm satisfies 753 ** case 1. In that case, construct a new virtual term that is 754 ** pTerm converted into an IN operator. 755 */ 756 if( okToChngToIN ){ 757 Expr *pDup; /* A transient duplicate expression */ 758 ExprList *pList = 0; /* The RHS of the IN operator */ 759 Expr *pLeft = 0; /* The LHS of the IN operator */ 760 Expr *pNew; /* The complete IN operator */ 761 762 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 763 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 764 assert( pOrTerm->eOperator & WO_EQ ); 765 assert( pOrTerm->leftCursor==iCursor ); 766 assert( pOrTerm->u.leftColumn==iColumn ); 767 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 768 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 769 pLeft = pOrTerm->pExpr->pLeft; 770 } 771 assert( pLeft!=0 ); 772 pDup = sqlite3ExprDup(db, pLeft, 0); 773 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 774 if( pNew ){ 775 int idxNew; 776 transferJoinMarkings(pNew, pExpr); 777 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 778 pNew->x.pList = pList; 779 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 780 testcase( idxNew==0 ); 781 exprAnalyze(pSrc, pWC, idxNew); 782 pTerm = &pWC->a[idxTerm]; 783 markTermAsChild(pWC, idxNew, idxTerm); 784 }else{ 785 sqlite3ExprListDelete(db, pList); 786 } 787 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 788 } 789 } 790 } 791 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 792 793 /* 794 ** We already know that pExpr is a binary operator where both operands are 795 ** column references. This routine checks to see if pExpr is an equivalence 796 ** relation: 797 ** 1. The SQLITE_Transitive optimization must be enabled 798 ** 2. Must be either an == or an IS operator 799 ** 3. Not originating in the ON clause of an OUTER JOIN 800 ** 4. The affinities of A and B must be compatible 801 ** 5a. Both operands use the same collating sequence OR 802 ** 5b. The overall collating sequence is BINARY 803 ** If this routine returns TRUE, that means that the RHS can be substituted 804 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 805 ** This is an optimization. No harm comes from returning 0. But if 1 is 806 ** returned when it should not be, then incorrect answers might result. 807 */ 808 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 809 char aff1, aff2; 810 CollSeq *pColl; 811 const char *zColl1, *zColl2; 812 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 813 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 814 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 815 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 816 aff2 = sqlite3ExprAffinity(pExpr->pRight); 817 if( aff1!=aff2 818 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 819 ){ 820 return 0; 821 } 822 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 823 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 824 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 825 zColl1 = pColl ? pColl->zName : 0; 826 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 827 zColl2 = pColl ? pColl->zName : 0; 828 return sqlite3_stricmp(zColl1, zColl2)==0; 829 } 830 831 /* 832 ** Recursively walk the expressions of a SELECT statement and generate 833 ** a bitmask indicating which tables are used in that expression 834 ** tree. 835 */ 836 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 837 Bitmask mask = 0; 838 while( pS ){ 839 SrcList *pSrc = pS->pSrc; 840 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 841 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 842 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 843 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 844 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 845 if( ALWAYS(pSrc!=0) ){ 846 int i; 847 for(i=0; i<pSrc->nSrc; i++){ 848 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 849 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 850 } 851 } 852 pS = pS->pPrior; 853 } 854 return mask; 855 } 856 857 /* 858 ** Expression pExpr is one operand of a comparison operator that might 859 ** be useful for indexing. This routine checks to see if pExpr appears 860 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 861 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor 862 ** number of the table that is indexed and aiCurCol[1] to the column number 863 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 864 ** indexed. 865 ** 866 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 867 ** true even if that particular column is not indexed, because the column 868 ** might be added to an automatic index later. 869 */ 870 static SQLITE_NOINLINE int exprMightBeIndexed2( 871 SrcList *pFrom, /* The FROM clause */ 872 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 873 int *aiCurCol, /* Write the referenced table cursor and column here */ 874 Expr *pExpr /* An operand of a comparison operator */ 875 ){ 876 Index *pIdx; 877 int i; 878 int iCur; 879 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 880 iCur = pFrom->a[i].iCursor; 881 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 882 if( pIdx->aColExpr==0 ) continue; 883 for(i=0; i<pIdx->nKeyCol; i++){ 884 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 885 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 886 aiCurCol[0] = iCur; 887 aiCurCol[1] = XN_EXPR; 888 return 1; 889 } 890 } 891 } 892 return 0; 893 } 894 static int exprMightBeIndexed( 895 SrcList *pFrom, /* The FROM clause */ 896 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 897 int *aiCurCol, /* Write the referenced table cursor & column here */ 898 Expr *pExpr, /* An operand of a comparison operator */ 899 int op /* The specific comparison operator */ 900 ){ 901 /* If this expression is a vector to the left or right of a 902 ** inequality constraint (>, <, >= or <=), perform the processing 903 ** on the first element of the vector. */ 904 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 905 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 906 assert( op<=TK_GE ); 907 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 908 pExpr = pExpr->x.pList->a[0].pExpr; 909 } 910 911 if( pExpr->op==TK_COLUMN ){ 912 aiCurCol[0] = pExpr->iTable; 913 aiCurCol[1] = pExpr->iColumn; 914 return 1; 915 } 916 if( mPrereq==0 ) return 0; /* No table references */ 917 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 918 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr); 919 } 920 921 /* 922 ** The input to this routine is an WhereTerm structure with only the 923 ** "pExpr" field filled in. The job of this routine is to analyze the 924 ** subexpression and populate all the other fields of the WhereTerm 925 ** structure. 926 ** 927 ** If the expression is of the form "<expr> <op> X" it gets commuted 928 ** to the standard form of "X <op> <expr>". 929 ** 930 ** If the expression is of the form "X <op> Y" where both X and Y are 931 ** columns, then the original expression is unchanged and a new virtual 932 ** term of the form "Y <op> X" is added to the WHERE clause and 933 ** analyzed separately. The original term is marked with TERM_COPIED 934 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 935 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 936 ** is a commuted copy of a prior term.) The original term has nChild=1 937 ** and the copy has idxParent set to the index of the original term. 938 */ 939 static void exprAnalyze( 940 SrcList *pSrc, /* the FROM clause */ 941 WhereClause *pWC, /* the WHERE clause */ 942 int idxTerm /* Index of the term to be analyzed */ 943 ){ 944 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 945 WhereTerm *pTerm; /* The term to be analyzed */ 946 WhereMaskSet *pMaskSet; /* Set of table index masks */ 947 Expr *pExpr; /* The expression to be analyzed */ 948 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 949 Bitmask prereqAll; /* Prerequesites of pExpr */ 950 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 951 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 952 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 953 int noCase = 0; /* uppercase equivalent to lowercase */ 954 int op; /* Top-level operator. pExpr->op */ 955 Parse *pParse = pWInfo->pParse; /* Parsing context */ 956 sqlite3 *db = pParse->db; /* Database connection */ 957 unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ 958 int nLeft; /* Number of elements on left side vector */ 959 960 if( db->mallocFailed ){ 961 return; 962 } 963 pTerm = &pWC->a[idxTerm]; 964 pMaskSet = &pWInfo->sMaskSet; 965 pExpr = pTerm->pExpr; 966 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 967 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 968 op = pExpr->op; 969 if( op==TK_IN ){ 970 assert( pExpr->pRight==0 ); 971 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 972 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 973 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 974 }else{ 975 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 976 } 977 }else if( op==TK_ISNULL ){ 978 pTerm->prereqRight = 0; 979 }else{ 980 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 981 } 982 pMaskSet->bVarSelect = 0; 983 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 984 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT; 985 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 986 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 987 prereqAll |= x; 988 extraRight = x-1; /* ON clause terms may not be used with an index 989 ** on left table of a LEFT JOIN. Ticket #3015 */ 990 if( (prereqAll>>1)>=x ){ 991 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); 992 return; 993 } 994 } 995 pTerm->prereqAll = prereqAll; 996 pTerm->leftCursor = -1; 997 pTerm->iParent = -1; 998 pTerm->eOperator = 0; 999 if( allowedOp(op) ){ 1000 int aiCurCol[2]; 1001 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 1002 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 1003 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 1004 1005 if( pTerm->iField>0 ){ 1006 assert( op==TK_IN ); 1007 assert( pLeft->op==TK_VECTOR ); 1008 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 1009 } 1010 1011 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){ 1012 pTerm->leftCursor = aiCurCol[0]; 1013 pTerm->u.leftColumn = aiCurCol[1]; 1014 pTerm->eOperator = operatorMask(op) & opMask; 1015 } 1016 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 1017 if( pRight 1018 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op) 1019 ){ 1020 WhereTerm *pNew; 1021 Expr *pDup; 1022 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 1023 assert( pTerm->iField==0 ); 1024 if( pTerm->leftCursor>=0 ){ 1025 int idxNew; 1026 pDup = sqlite3ExprDup(db, pExpr, 0); 1027 if( db->mallocFailed ){ 1028 sqlite3ExprDelete(db, pDup); 1029 return; 1030 } 1031 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1032 if( idxNew==0 ) return; 1033 pNew = &pWC->a[idxNew]; 1034 markTermAsChild(pWC, idxNew, idxTerm); 1035 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 1036 pTerm = &pWC->a[idxTerm]; 1037 pTerm->wtFlags |= TERM_COPIED; 1038 1039 if( termIsEquivalence(pParse, pDup) ){ 1040 pTerm->eOperator |= WO_EQUIV; 1041 eExtraOp = WO_EQUIV; 1042 } 1043 }else{ 1044 pDup = pExpr; 1045 pNew = pTerm; 1046 } 1047 exprCommute(pParse, pDup); 1048 pNew->leftCursor = aiCurCol[0]; 1049 pNew->u.leftColumn = aiCurCol[1]; 1050 testcase( (prereqLeft | extraRight) != prereqLeft ); 1051 pNew->prereqRight = prereqLeft | extraRight; 1052 pNew->prereqAll = prereqAll; 1053 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1054 } 1055 } 1056 1057 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1058 /* If a term is the BETWEEN operator, create two new virtual terms 1059 ** that define the range that the BETWEEN implements. For example: 1060 ** 1061 ** a BETWEEN b AND c 1062 ** 1063 ** is converted into: 1064 ** 1065 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1066 ** 1067 ** The two new terms are added onto the end of the WhereClause object. 1068 ** The new terms are "dynamic" and are children of the original BETWEEN 1069 ** term. That means that if the BETWEEN term is coded, the children are 1070 ** skipped. Or, if the children are satisfied by an index, the original 1071 ** BETWEEN term is skipped. 1072 */ 1073 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1074 ExprList *pList = pExpr->x.pList; 1075 int i; 1076 static const u8 ops[] = {TK_GE, TK_LE}; 1077 assert( pList!=0 ); 1078 assert( pList->nExpr==2 ); 1079 for(i=0; i<2; i++){ 1080 Expr *pNewExpr; 1081 int idxNew; 1082 pNewExpr = sqlite3PExpr(pParse, ops[i], 1083 sqlite3ExprDup(db, pExpr->pLeft, 0), 1084 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 1085 transferJoinMarkings(pNewExpr, pExpr); 1086 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1087 testcase( idxNew==0 ); 1088 exprAnalyze(pSrc, pWC, idxNew); 1089 pTerm = &pWC->a[idxTerm]; 1090 markTermAsChild(pWC, idxNew, idxTerm); 1091 } 1092 } 1093 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1094 1095 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1096 /* Analyze a term that is composed of two or more subterms connected by 1097 ** an OR operator. 1098 */ 1099 else if( pExpr->op==TK_OR ){ 1100 assert( pWC->op==TK_AND ); 1101 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1102 pTerm = &pWC->a[idxTerm]; 1103 } 1104 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1105 1106 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1107 /* Add constraints to reduce the search space on a LIKE or GLOB 1108 ** operator. 1109 ** 1110 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1111 ** 1112 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1113 ** 1114 ** The last character of the prefix "abc" is incremented to form the 1115 ** termination condition "abd". If case is not significant (the default 1116 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1117 ** bound is made all lowercase so that the bounds also work when comparing 1118 ** BLOBs. 1119 */ 1120 if( pWC->op==TK_AND 1121 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1122 ){ 1123 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1124 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1125 Expr *pNewExpr1; 1126 Expr *pNewExpr2; 1127 int idxNew1; 1128 int idxNew2; 1129 const char *zCollSeqName; /* Name of collating sequence */ 1130 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1131 1132 pLeft = pExpr->x.pList->a[1].pExpr; 1133 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1134 1135 /* Convert the lower bound to upper-case and the upper bound to 1136 ** lower-case (upper-case is less than lower-case in ASCII) so that 1137 ** the range constraints also work for BLOBs 1138 */ 1139 if( noCase && !pParse->db->mallocFailed ){ 1140 int i; 1141 char c; 1142 pTerm->wtFlags |= TERM_LIKE; 1143 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1144 pStr1->u.zToken[i] = sqlite3Toupper(c); 1145 pStr2->u.zToken[i] = sqlite3Tolower(c); 1146 } 1147 } 1148 1149 if( !db->mallocFailed ){ 1150 u8 c, *pC; /* Last character before the first wildcard */ 1151 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1152 c = *pC; 1153 if( noCase ){ 1154 /* The point is to increment the last character before the first 1155 ** wildcard. But if we increment '@', that will push it into the 1156 ** alphabetic range where case conversions will mess up the 1157 ** inequality. To avoid this, make sure to also run the full 1158 ** LIKE on all candidate expressions by clearing the isComplete flag 1159 */ 1160 if( c=='A'-1 ) isComplete = 0; 1161 c = sqlite3UpperToLower[c]; 1162 } 1163 *pC = c + 1; 1164 } 1165 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1166 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1167 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1168 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1169 pStr1); 1170 transferJoinMarkings(pNewExpr1, pExpr); 1171 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1172 testcase( idxNew1==0 ); 1173 exprAnalyze(pSrc, pWC, idxNew1); 1174 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1175 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1176 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1177 pStr2); 1178 transferJoinMarkings(pNewExpr2, pExpr); 1179 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1180 testcase( idxNew2==0 ); 1181 exprAnalyze(pSrc, pWC, idxNew2); 1182 pTerm = &pWC->a[idxTerm]; 1183 if( isComplete ){ 1184 markTermAsChild(pWC, idxNew1, idxTerm); 1185 markTermAsChild(pWC, idxNew2, idxTerm); 1186 } 1187 } 1188 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1189 1190 #ifndef SQLITE_OMIT_VIRTUALTABLE 1191 /* Add a WO_MATCH auxiliary term to the constraint set if the 1192 ** current expression is of the form: column MATCH expr. 1193 ** This information is used by the xBestIndex methods of 1194 ** virtual tables. The native query optimizer does not attempt 1195 ** to do anything with MATCH functions. 1196 */ 1197 if( pWC->op==TK_AND && isMatchOfColumn(pExpr, &eOp2) ){ 1198 int idxNew; 1199 Expr *pRight, *pLeft; 1200 WhereTerm *pNewTerm; 1201 Bitmask prereqColumn, prereqExpr; 1202 1203 pRight = pExpr->x.pList->a[0].pExpr; 1204 pLeft = pExpr->x.pList->a[1].pExpr; 1205 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1206 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1207 if( (prereqExpr & prereqColumn)==0 ){ 1208 Expr *pNewExpr; 1209 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1210 0, sqlite3ExprDup(db, pRight, 0)); 1211 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){ 1212 ExprSetProperty(pNewExpr, EP_FromJoin); 1213 } 1214 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1215 testcase( idxNew==0 ); 1216 pNewTerm = &pWC->a[idxNew]; 1217 pNewTerm->prereqRight = prereqExpr; 1218 pNewTerm->leftCursor = pLeft->iTable; 1219 pNewTerm->u.leftColumn = pLeft->iColumn; 1220 pNewTerm->eOperator = WO_MATCH; 1221 pNewTerm->eMatchOp = eOp2; 1222 markTermAsChild(pWC, idxNew, idxTerm); 1223 pTerm = &pWC->a[idxTerm]; 1224 pTerm->wtFlags |= TERM_COPIED; 1225 pNewTerm->prereqAll = pTerm->prereqAll; 1226 } 1227 } 1228 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1229 1230 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1231 ** new terms for each component comparison - "a = ?" and "b = ?". The 1232 ** new terms completely replace the original vector comparison, which is 1233 ** no longer used. 1234 ** 1235 ** This is only required if at least one side of the comparison operation 1236 ** is not a sub-select. */ 1237 if( pWC->op==TK_AND 1238 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1239 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 1240 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft 1241 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1242 || (pExpr->pRight->flags & EP_xIsSelect)==0) 1243 ){ 1244 int i; 1245 for(i=0; i<nLeft; i++){ 1246 int idxNew; 1247 Expr *pNew; 1248 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 1249 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 1250 1251 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 1252 transferJoinMarkings(pNew, pExpr); 1253 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1254 exprAnalyze(pSrc, pWC, idxNew); 1255 } 1256 pTerm = &pWC->a[idxTerm]; 1257 pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1258 pTerm->eOperator = 0; 1259 } 1260 1261 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1262 ** a virtual term for each vector component. The expression object 1263 ** used by each such virtual term is pExpr (the full vector IN(...) 1264 ** expression). The WhereTerm.iField variable identifies the index within 1265 ** the vector on the LHS that the virtual term represents. 1266 ** 1267 ** This only works if the RHS is a simple SELECT, not a compound 1268 */ 1269 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 1270 && pExpr->pLeft->op==TK_VECTOR 1271 && pExpr->x.pSelect->pPrior==0 1272 ){ 1273 int i; 1274 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1275 int idxNew; 1276 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1277 pWC->a[idxNew].iField = i+1; 1278 exprAnalyze(pSrc, pWC, idxNew); 1279 markTermAsChild(pWC, idxNew, idxTerm); 1280 } 1281 } 1282 1283 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1284 /* When sqlite_stat3 histogram data is available an operator of the 1285 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1286 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1287 ** virtual term of that form. 1288 ** 1289 ** Note that the virtual term must be tagged with TERM_VNULL. 1290 */ 1291 if( pExpr->op==TK_NOTNULL 1292 && pExpr->pLeft->op==TK_COLUMN 1293 && pExpr->pLeft->iColumn>=0 1294 && OptimizationEnabled(db, SQLITE_Stat34) 1295 ){ 1296 Expr *pNewExpr; 1297 Expr *pLeft = pExpr->pLeft; 1298 int idxNew; 1299 WhereTerm *pNewTerm; 1300 1301 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1302 sqlite3ExprDup(db, pLeft, 0), 1303 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 1304 1305 idxNew = whereClauseInsert(pWC, pNewExpr, 1306 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1307 if( idxNew ){ 1308 pNewTerm = &pWC->a[idxNew]; 1309 pNewTerm->prereqRight = 0; 1310 pNewTerm->leftCursor = pLeft->iTable; 1311 pNewTerm->u.leftColumn = pLeft->iColumn; 1312 pNewTerm->eOperator = WO_GT; 1313 markTermAsChild(pWC, idxNew, idxTerm); 1314 pTerm = &pWC->a[idxTerm]; 1315 pTerm->wtFlags |= TERM_COPIED; 1316 pNewTerm->prereqAll = pTerm->prereqAll; 1317 } 1318 } 1319 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1320 1321 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1322 ** an index for tables to the left of the join. 1323 */ 1324 testcase( pTerm!=&pWC->a[idxTerm] ); 1325 pTerm = &pWC->a[idxTerm]; 1326 pTerm->prereqRight |= extraRight; 1327 } 1328 1329 /*************************************************************************** 1330 ** Routines with file scope above. Interface to the rest of the where.c 1331 ** subsystem follows. 1332 ***************************************************************************/ 1333 1334 /* 1335 ** This routine identifies subexpressions in the WHERE clause where 1336 ** each subexpression is separated by the AND operator or some other 1337 ** operator specified in the op parameter. The WhereClause structure 1338 ** is filled with pointers to subexpressions. For example: 1339 ** 1340 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1341 ** \________/ \_______________/ \________________/ 1342 ** slot[0] slot[1] slot[2] 1343 ** 1344 ** The original WHERE clause in pExpr is unaltered. All this routine 1345 ** does is make slot[] entries point to substructure within pExpr. 1346 ** 1347 ** In the previous sentence and in the diagram, "slot[]" refers to 1348 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1349 ** all terms of the WHERE clause. 1350 */ 1351 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1352 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1353 pWC->op = op; 1354 if( pE2==0 ) return; 1355 if( pE2->op!=op ){ 1356 whereClauseInsert(pWC, pExpr, 0); 1357 }else{ 1358 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1359 sqlite3WhereSplit(pWC, pE2->pRight, op); 1360 } 1361 } 1362 1363 /* 1364 ** Initialize a preallocated WhereClause structure. 1365 */ 1366 void sqlite3WhereClauseInit( 1367 WhereClause *pWC, /* The WhereClause to be initialized */ 1368 WhereInfo *pWInfo /* The WHERE processing context */ 1369 ){ 1370 pWC->pWInfo = pWInfo; 1371 pWC->pOuter = 0; 1372 pWC->nTerm = 0; 1373 pWC->nSlot = ArraySize(pWC->aStatic); 1374 pWC->a = pWC->aStatic; 1375 } 1376 1377 /* 1378 ** Deallocate a WhereClause structure. The WhereClause structure 1379 ** itself is not freed. This routine is the inverse of 1380 ** sqlite3WhereClauseInit(). 1381 */ 1382 void sqlite3WhereClauseClear(WhereClause *pWC){ 1383 int i; 1384 WhereTerm *a; 1385 sqlite3 *db = pWC->pWInfo->pParse->db; 1386 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1387 if( a->wtFlags & TERM_DYNAMIC ){ 1388 sqlite3ExprDelete(db, a->pExpr); 1389 } 1390 if( a->wtFlags & TERM_ORINFO ){ 1391 whereOrInfoDelete(db, a->u.pOrInfo); 1392 }else if( a->wtFlags & TERM_ANDINFO ){ 1393 whereAndInfoDelete(db, a->u.pAndInfo); 1394 } 1395 } 1396 if( pWC->a!=pWC->aStatic ){ 1397 sqlite3DbFree(db, pWC->a); 1398 } 1399 } 1400 1401 1402 /* 1403 ** These routines walk (recursively) an expression tree and generate 1404 ** a bitmask indicating which tables are used in that expression 1405 ** tree. 1406 */ 1407 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1408 Bitmask mask; 1409 if( p==0 ) return 0; 1410 if( p->op==TK_COLUMN ){ 1411 return sqlite3WhereGetMask(pMaskSet, p->iTable); 1412 } 1413 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0; 1414 assert( !ExprHasProperty(p, EP_TokenOnly) ); 1415 if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 1416 if( p->pRight ){ 1417 mask |= sqlite3WhereExprUsage(pMaskSet, p->pRight); 1418 assert( p->x.pList==0 ); 1419 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1420 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1; 1421 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1422 }else if( p->x.pList ){ 1423 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1424 } 1425 return mask; 1426 } 1427 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1428 int i; 1429 Bitmask mask = 0; 1430 if( pList ){ 1431 for(i=0; i<pList->nExpr; i++){ 1432 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1433 } 1434 } 1435 return mask; 1436 } 1437 1438 1439 /* 1440 ** Call exprAnalyze on all terms in a WHERE clause. 1441 ** 1442 ** Note that exprAnalyze() might add new virtual terms onto the 1443 ** end of the WHERE clause. We do not want to analyze these new 1444 ** virtual terms, so start analyzing at the end and work forward 1445 ** so that the added virtual terms are never processed. 1446 */ 1447 void sqlite3WhereExprAnalyze( 1448 SrcList *pTabList, /* the FROM clause */ 1449 WhereClause *pWC /* the WHERE clause to be analyzed */ 1450 ){ 1451 int i; 1452 for(i=pWC->nTerm-1; i>=0; i--){ 1453 exprAnalyze(pTabList, pWC, i); 1454 } 1455 } 1456 1457 /* 1458 ** For table-valued-functions, transform the function arguments into 1459 ** new WHERE clause terms. 1460 ** 1461 ** Each function argument translates into an equality constraint against 1462 ** a HIDDEN column in the table. 1463 */ 1464 void sqlite3WhereTabFuncArgs( 1465 Parse *pParse, /* Parsing context */ 1466 struct SrcList_item *pItem, /* The FROM clause term to process */ 1467 WhereClause *pWC /* Xfer function arguments to here */ 1468 ){ 1469 Table *pTab; 1470 int j, k; 1471 ExprList *pArgs; 1472 Expr *pColRef; 1473 Expr *pTerm; 1474 if( pItem->fg.isTabFunc==0 ) return; 1475 pTab = pItem->pTab; 1476 assert( pTab!=0 ); 1477 pArgs = pItem->u1.pFuncArg; 1478 if( pArgs==0 ) return; 1479 for(j=k=0; j<pArgs->nExpr; j++){ 1480 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1481 if( k>=pTab->nCol ){ 1482 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1483 pTab->zName, j); 1484 return; 1485 } 1486 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1487 if( pColRef==0 ) return; 1488 pColRef->iTable = pItem->iCursor; 1489 pColRef->iColumn = k++; 1490 pColRef->pTab = pTab; 1491 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1492 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); 1493 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1494 } 1495 } 1496