1 /* 2 ** 2015-06-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was originally part of where.c but was split out to improve 16 ** readability and editabiliity. This file contains utility routines for 17 ** analyzing Expr objects in the WHERE clause. 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declarations */ 23 static void exprAnalyze(SrcList*, WhereClause*, int); 24 25 /* 26 ** Deallocate all memory associated with a WhereOrInfo object. 27 */ 28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 29 sqlite3WhereClauseClear(&p->wc); 30 sqlite3DbFree(db, p); 31 } 32 33 /* 34 ** Deallocate all memory associated with a WhereAndInfo object. 35 */ 36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 37 sqlite3WhereClauseClear(&p->wc); 38 sqlite3DbFree(db, p); 39 } 40 41 /* 42 ** Add a single new WhereTerm entry to the WhereClause object pWC. 43 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 44 ** The index in pWC->a[] of the new WhereTerm is returned on success. 45 ** 0 is returned if the new WhereTerm could not be added due to a memory 46 ** allocation error. The memory allocation failure will be recorded in 47 ** the db->mallocFailed flag so that higher-level functions can detect it. 48 ** 49 ** This routine will increase the size of the pWC->a[] array as necessary. 50 ** 51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 52 ** for freeing the expression p is assumed by the WhereClause object pWC. 53 ** This is true even if this routine fails to allocate a new WhereTerm. 54 ** 55 ** WARNING: This routine might reallocate the space used to store 56 ** WhereTerms. All pointers to WhereTerms should be invalidated after 57 ** calling this routine. Such pointers may be reinitialized by referencing 58 ** the pWC->a[] array. 59 */ 60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 61 WhereTerm *pTerm; 62 int idx; 63 testcase( wtFlags & TERM_VIRTUAL ); 64 if( pWC->nTerm>=pWC->nSlot ){ 65 WhereTerm *pOld = pWC->a; 66 sqlite3 *db = pWC->pWInfo->pParse->db; 67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 68 if( pWC->a==0 ){ 69 if( wtFlags & TERM_DYNAMIC ){ 70 sqlite3ExprDelete(db, p); 71 } 72 pWC->a = pOld; 73 return 0; 74 } 75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 76 if( pOld!=pWC->aStatic ){ 77 sqlite3DbFree(db, pOld); 78 } 79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 80 } 81 pTerm = &pWC->a[idx = pWC->nTerm++]; 82 if( p && ExprHasProperty(p, EP_Unlikely) ){ 83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 84 }else{ 85 pTerm->truthProb = 1; 86 } 87 pTerm->pExpr = sqlite3ExprSkipCollate(p); 88 pTerm->wtFlags = wtFlags; 89 pTerm->pWC = pWC; 90 pTerm->iParent = -1; 91 memset(&pTerm->eOperator, 0, 92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator)); 93 return idx; 94 } 95 96 /* 97 ** Return TRUE if the given operator is one of the operators that is 98 ** allowed for an indexable WHERE clause term. The allowed operators are 99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL" 100 */ 101 static int allowedOp(int op){ 102 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 103 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 104 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 105 assert( TK_GE==TK_EQ+4 ); 106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; 107 } 108 109 /* 110 ** Commute a comparison operator. Expressions of the form "X op Y" 111 ** are converted into "Y op X". 112 ** 113 ** If left/right precedence rules come into play when determining the 114 ** collating sequence, then COLLATE operators are adjusted to ensure 115 ** that the collating sequence does not change. For example: 116 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 117 ** the left hand side of a comparison overrides any collation sequence 118 ** attached to the right. For the same reason the EP_Collate flag 119 ** is not commuted. 120 */ 121 static void exprCommute(Parse *pParse, Expr *pExpr){ 122 u16 expRight = (pExpr->pRight->flags & EP_Collate); 123 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 124 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 125 if( expRight==expLeft ){ 126 /* Either X and Y both have COLLATE operator or neither do */ 127 if( expRight ){ 128 /* Both X and Y have COLLATE operators. Make sure X is always 129 ** used by clearing the EP_Collate flag from Y. */ 130 pExpr->pRight->flags &= ~EP_Collate; 131 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 132 /* Neither X nor Y have COLLATE operators, but X has a non-default 133 ** collating sequence. So add the EP_Collate marker on X to cause 134 ** it to be searched first. */ 135 pExpr->pLeft->flags |= EP_Collate; 136 } 137 } 138 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 139 if( pExpr->op>=TK_GT ){ 140 assert( TK_LT==TK_GT+2 ); 141 assert( TK_GE==TK_LE+2 ); 142 assert( TK_GT>TK_EQ ); 143 assert( TK_GT<TK_LE ); 144 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 145 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 146 } 147 } 148 149 /* 150 ** Translate from TK_xx operator to WO_xx bitmask. 151 */ 152 static u16 operatorMask(int op){ 153 u16 c; 154 assert( allowedOp(op) ); 155 if( op==TK_IN ){ 156 c = WO_IN; 157 }else if( op==TK_ISNULL ){ 158 c = WO_ISNULL; 159 }else if( op==TK_IS ){ 160 c = WO_IS; 161 }else{ 162 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 163 c = (u16)(WO_EQ<<(op-TK_EQ)); 164 } 165 assert( op!=TK_ISNULL || c==WO_ISNULL ); 166 assert( op!=TK_IN || c==WO_IN ); 167 assert( op!=TK_EQ || c==WO_EQ ); 168 assert( op!=TK_LT || c==WO_LT ); 169 assert( op!=TK_LE || c==WO_LE ); 170 assert( op!=TK_GT || c==WO_GT ); 171 assert( op!=TK_GE || c==WO_GE ); 172 assert( op!=TK_IS || c==WO_IS ); 173 return c; 174 } 175 176 177 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 178 /* 179 ** Check to see if the given expression is a LIKE or GLOB operator that 180 ** can be optimized using inequality constraints. Return TRUE if it is 181 ** so and false if not. 182 ** 183 ** In order for the operator to be optimizible, the RHS must be a string 184 ** literal that does not begin with a wildcard. The LHS must be a column 185 ** that may only be NULL, a string, or a BLOB, never a number. (This means 186 ** that virtual tables cannot participate in the LIKE optimization.) The 187 ** collating sequence for the column on the LHS must be appropriate for 188 ** the operator. 189 */ 190 static int isLikeOrGlob( 191 Parse *pParse, /* Parsing and code generating context */ 192 Expr *pExpr, /* Test this expression */ 193 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 194 int *pisComplete, /* True if the only wildcard is % in the last character */ 195 int *pnoCase /* True if uppercase is equivalent to lowercase */ 196 ){ 197 const char *z = 0; /* String on RHS of LIKE operator */ 198 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 199 ExprList *pList; /* List of operands to the LIKE operator */ 200 int c; /* One character in z[] */ 201 int cnt; /* Number of non-wildcard prefix characters */ 202 char wc[3]; /* Wildcard characters */ 203 sqlite3 *db = pParse->db; /* Database connection */ 204 sqlite3_value *pVal = 0; 205 int op; /* Opcode of pRight */ 206 int rc; /* Result code to return */ 207 208 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 209 return 0; 210 } 211 #ifdef SQLITE_EBCDIC 212 if( *pnoCase ) return 0; 213 #endif 214 pList = pExpr->x.pList; 215 pLeft = pList->a[1].pExpr; 216 217 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 218 op = pRight->op; 219 if( op==TK_VARIABLE ){ 220 Vdbe *pReprepare = pParse->pReprepare; 221 int iCol = pRight->iColumn; 222 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); 223 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 224 z = (char *)sqlite3_value_text(pVal); 225 } 226 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 227 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 228 }else if( op==TK_STRING ){ 229 z = pRight->u.zToken; 230 } 231 if( z ){ 232 233 /* If the RHS begins with a digit or a minus sign, then the LHS must 234 ** be an ordinary column (not a virtual table column) with TEXT affinity. 235 ** Otherwise the LHS might be numeric and "lhs >= rhs" would be false 236 ** even though "lhs LIKE rhs" is true. But if the RHS does not start 237 ** with a digit or '-', then "lhs LIKE rhs" will always be false if 238 ** the LHS is numeric and so the optimization still works. 239 */ 240 if( sqlite3Isdigit(z[0]) || z[0]=='-' ){ 241 if( pLeft->op!=TK_COLUMN 242 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 243 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 244 ){ 245 sqlite3ValueFree(pVal); 246 return 0; 247 } 248 } 249 cnt = 0; 250 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 251 cnt++; 252 } 253 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 254 Expr *pPrefix; 255 *pisComplete = c==wc[0] && z[cnt+1]==0; 256 pPrefix = sqlite3Expr(db, TK_STRING, z); 257 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 258 *ppPrefix = pPrefix; 259 if( op==TK_VARIABLE ){ 260 Vdbe *v = pParse->pVdbe; 261 sqlite3VdbeSetVarmask(v, pRight->iColumn); 262 if( *pisComplete && pRight->u.zToken[1] ){ 263 /* If the rhs of the LIKE expression is a variable, and the current 264 ** value of the variable means there is no need to invoke the LIKE 265 ** function, then no OP_Variable will be added to the program. 266 ** This causes problems for the sqlite3_bind_parameter_name() 267 ** API. To work around them, add a dummy OP_Variable here. 268 */ 269 int r1 = sqlite3GetTempReg(pParse); 270 sqlite3ExprCodeTarget(pParse, pRight, r1); 271 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 272 sqlite3ReleaseTempReg(pParse, r1); 273 } 274 } 275 }else{ 276 z = 0; 277 } 278 } 279 280 rc = (z!=0); 281 sqlite3ValueFree(pVal); 282 return rc; 283 } 284 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 285 286 287 #ifndef SQLITE_OMIT_VIRTUALTABLE 288 /* 289 ** Check to see if the given expression is of the form 290 ** 291 ** column OP expr 292 ** 293 ** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a 294 ** column of a virtual table. 295 ** 296 ** If it is then return TRUE. If not, return FALSE. 297 */ 298 static int isMatchOfColumn( 299 Expr *pExpr, /* Test this expression */ 300 unsigned char *peOp2 /* OUT: 0 for MATCH, or else an op2 value */ 301 ){ 302 static const struct Op2 { 303 const char *zOp; 304 unsigned char eOp2; 305 } aOp[] = { 306 { "match", SQLITE_INDEX_CONSTRAINT_MATCH }, 307 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB }, 308 { "like", SQLITE_INDEX_CONSTRAINT_LIKE }, 309 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP } 310 }; 311 ExprList *pList; 312 Expr *pCol; /* Column reference */ 313 int i; 314 315 if( pExpr->op!=TK_FUNCTION ){ 316 return 0; 317 } 318 pList = pExpr->x.pList; 319 if( pList==0 || pList->nExpr!=2 ){ 320 return 0; 321 } 322 pCol = pList->a[1].pExpr; 323 if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){ 324 return 0; 325 } 326 for(i=0; i<ArraySize(aOp); i++){ 327 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ 328 *peOp2 = aOp[i].eOp2; 329 return 1; 330 } 331 } 332 return 0; 333 } 334 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 335 336 /* 337 ** If the pBase expression originated in the ON or USING clause of 338 ** a join, then transfer the appropriate markings over to derived. 339 */ 340 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 341 if( pDerived ){ 342 pDerived->flags |= pBase->flags & EP_FromJoin; 343 pDerived->iRightJoinTable = pBase->iRightJoinTable; 344 } 345 } 346 347 /* 348 ** Mark term iChild as being a child of term iParent 349 */ 350 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 351 pWC->a[iChild].iParent = iParent; 352 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 353 pWC->a[iParent].nChild++; 354 } 355 356 /* 357 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not 358 ** a conjunction, then return just pTerm when N==0. If N is exceeds 359 ** the number of available subterms, return NULL. 360 */ 361 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ 362 if( pTerm->eOperator!=WO_AND ){ 363 return N==0 ? pTerm : 0; 364 } 365 if( N<pTerm->u.pAndInfo->wc.nTerm ){ 366 return &pTerm->u.pAndInfo->wc.a[N]; 367 } 368 return 0; 369 } 370 371 /* 372 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The 373 ** two subterms are in disjunction - they are OR-ed together. 374 ** 375 ** If these two terms are both of the form: "A op B" with the same 376 ** A and B values but different operators and if the operators are 377 ** compatible (if one is = and the other is <, for example) then 378 ** add a new virtual AND term to pWC that is the combination of the 379 ** two. 380 ** 381 ** Some examples: 382 ** 383 ** x<y OR x=y --> x<=y 384 ** x=y OR x=y --> x=y 385 ** x<=y OR x<y --> x<=y 386 ** 387 ** The following is NOT generated: 388 ** 389 ** x<y OR x>y --> x!=y 390 */ 391 static void whereCombineDisjuncts( 392 SrcList *pSrc, /* the FROM clause */ 393 WhereClause *pWC, /* The complete WHERE clause */ 394 WhereTerm *pOne, /* First disjunct */ 395 WhereTerm *pTwo /* Second disjunct */ 396 ){ 397 u16 eOp = pOne->eOperator | pTwo->eOperator; 398 sqlite3 *db; /* Database connection (for malloc) */ 399 Expr *pNew; /* New virtual expression */ 400 int op; /* Operator for the combined expression */ 401 int idxNew; /* Index in pWC of the next virtual term */ 402 403 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 404 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; 405 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp 406 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; 407 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); 408 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); 409 if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; 410 if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; 411 /* If we reach this point, it means the two subterms can be combined */ 412 if( (eOp & (eOp-1))!=0 ){ 413 if( eOp & (WO_LT|WO_LE) ){ 414 eOp = WO_LE; 415 }else{ 416 assert( eOp & (WO_GT|WO_GE) ); 417 eOp = WO_GE; 418 } 419 } 420 db = pWC->pWInfo->pParse->db; 421 pNew = sqlite3ExprDup(db, pOne->pExpr, 0); 422 if( pNew==0 ) return; 423 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } 424 pNew->op = op; 425 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 426 exprAnalyze(pSrc, pWC, idxNew); 427 } 428 429 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 430 /* 431 ** Analyze a term that consists of two or more OR-connected 432 ** subterms. So in: 433 ** 434 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 435 ** ^^^^^^^^^^^^^^^^^^^^ 436 ** 437 ** This routine analyzes terms such as the middle term in the above example. 438 ** A WhereOrTerm object is computed and attached to the term under 439 ** analysis, regardless of the outcome of the analysis. Hence: 440 ** 441 ** WhereTerm.wtFlags |= TERM_ORINFO 442 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 443 ** 444 ** The term being analyzed must have two or more of OR-connected subterms. 445 ** A single subterm might be a set of AND-connected sub-subterms. 446 ** Examples of terms under analysis: 447 ** 448 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 449 ** (B) x=expr1 OR expr2=x OR x=expr3 450 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 451 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 452 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 453 ** (F) x>A OR (x=A AND y>=B) 454 ** 455 ** CASE 1: 456 ** 457 ** If all subterms are of the form T.C=expr for some single column of C and 458 ** a single table T (as shown in example B above) then create a new virtual 459 ** term that is an equivalent IN expression. In other words, if the term 460 ** being analyzed is: 461 ** 462 ** x = expr1 OR expr2 = x OR x = expr3 463 ** 464 ** then create a new virtual term like this: 465 ** 466 ** x IN (expr1,expr2,expr3) 467 ** 468 ** CASE 2: 469 ** 470 ** If there are exactly two disjuncts and one side has x>A and the other side 471 ** has x=A (for the same x and A) then add a new virtual conjunct term to the 472 ** WHERE clause of the form "x>=A". Example: 473 ** 474 ** x>A OR (x=A AND y>B) adds: x>=A 475 ** 476 ** The added conjunct can sometimes be helpful in query planning. 477 ** 478 ** CASE 3: 479 ** 480 ** If all subterms are indexable by a single table T, then set 481 ** 482 ** WhereTerm.eOperator = WO_OR 483 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 484 ** 485 ** A subterm is "indexable" if it is of the form 486 ** "T.C <op> <expr>" where C is any column of table T and 487 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 488 ** A subterm is also indexable if it is an AND of two or more 489 ** subsubterms at least one of which is indexable. Indexable AND 490 ** subterms have their eOperator set to WO_AND and they have 491 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 492 ** 493 ** From another point of view, "indexable" means that the subterm could 494 ** potentially be used with an index if an appropriate index exists. 495 ** This analysis does not consider whether or not the index exists; that 496 ** is decided elsewhere. This analysis only looks at whether subterms 497 ** appropriate for indexing exist. 498 ** 499 ** All examples A through E above satisfy case 3. But if a term 500 ** also satisfies case 1 (such as B) we know that the optimizer will 501 ** always prefer case 1, so in that case we pretend that case 3 is not 502 ** satisfied. 503 ** 504 ** It might be the case that multiple tables are indexable. For example, 505 ** (E) above is indexable on tables P, Q, and R. 506 ** 507 ** Terms that satisfy case 3 are candidates for lookup by using 508 ** separate indices to find rowids for each subterm and composing 509 ** the union of all rowids using a RowSet object. This is similar 510 ** to "bitmap indices" in other database engines. 511 ** 512 ** OTHERWISE: 513 ** 514 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to 515 ** zero. This term is not useful for search. 516 */ 517 static void exprAnalyzeOrTerm( 518 SrcList *pSrc, /* the FROM clause */ 519 WhereClause *pWC, /* the complete WHERE clause */ 520 int idxTerm /* Index of the OR-term to be analyzed */ 521 ){ 522 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 523 Parse *pParse = pWInfo->pParse; /* Parser context */ 524 sqlite3 *db = pParse->db; /* Database connection */ 525 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 526 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 527 int i; /* Loop counters */ 528 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 529 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 530 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 531 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 532 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 533 534 /* 535 ** Break the OR clause into its separate subterms. The subterms are 536 ** stored in a WhereClause structure containing within the WhereOrInfo 537 ** object that is attached to the original OR clause term. 538 */ 539 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 540 assert( pExpr->op==TK_OR ); 541 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 542 if( pOrInfo==0 ) return; 543 pTerm->wtFlags |= TERM_ORINFO; 544 pOrWc = &pOrInfo->wc; 545 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic)); 546 sqlite3WhereClauseInit(pOrWc, pWInfo); 547 sqlite3WhereSplit(pOrWc, pExpr, TK_OR); 548 sqlite3WhereExprAnalyze(pSrc, pOrWc); 549 if( db->mallocFailed ) return; 550 assert( pOrWc->nTerm>=2 ); 551 552 /* 553 ** Compute the set of tables that might satisfy cases 1 or 3. 554 */ 555 indexable = ~(Bitmask)0; 556 chngToIN = ~(Bitmask)0; 557 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 558 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 559 WhereAndInfo *pAndInfo; 560 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 561 chngToIN = 0; 562 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo)); 563 if( pAndInfo ){ 564 WhereClause *pAndWC; 565 WhereTerm *pAndTerm; 566 int j; 567 Bitmask b = 0; 568 pOrTerm->u.pAndInfo = pAndInfo; 569 pOrTerm->wtFlags |= TERM_ANDINFO; 570 pOrTerm->eOperator = WO_AND; 571 pAndWC = &pAndInfo->wc; 572 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic)); 573 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); 574 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 575 sqlite3WhereExprAnalyze(pSrc, pAndWC); 576 pAndWC->pOuter = pWC; 577 if( !db->mallocFailed ){ 578 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 579 assert( pAndTerm->pExpr ); 580 if( allowedOp(pAndTerm->pExpr->op) 581 || pAndTerm->eOperator==WO_MATCH 582 ){ 583 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 584 } 585 } 586 } 587 indexable &= b; 588 } 589 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 590 /* Skip this term for now. We revisit it when we process the 591 ** corresponding TERM_VIRTUAL term */ 592 }else{ 593 Bitmask b; 594 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 595 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 596 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 597 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); 598 } 599 indexable &= b; 600 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 601 chngToIN = 0; 602 }else{ 603 chngToIN &= b; 604 } 605 } 606 } 607 608 /* 609 ** Record the set of tables that satisfy case 3. The set might be 610 ** empty. 611 */ 612 pOrInfo->indexable = indexable; 613 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 614 615 /* For a two-way OR, attempt to implementation case 2. 616 */ 617 if( indexable && pOrWc->nTerm==2 ){ 618 int iOne = 0; 619 WhereTerm *pOne; 620 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ 621 int iTwo = 0; 622 WhereTerm *pTwo; 623 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ 624 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); 625 } 626 } 627 } 628 629 /* 630 ** chngToIN holds a set of tables that *might* satisfy case 1. But 631 ** we have to do some additional checking to see if case 1 really 632 ** is satisfied. 633 ** 634 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 635 ** that there is no possibility of transforming the OR clause into an 636 ** IN operator because one or more terms in the OR clause contain 637 ** something other than == on a column in the single table. The 1-bit 638 ** case means that every term of the OR clause is of the form 639 ** "table.column=expr" for some single table. The one bit that is set 640 ** will correspond to the common table. We still need to check to make 641 ** sure the same column is used on all terms. The 2-bit case is when 642 ** the all terms are of the form "table1.column=table2.column". It 643 ** might be possible to form an IN operator with either table1.column 644 ** or table2.column as the LHS if either is common to every term of 645 ** the OR clause. 646 ** 647 ** Note that terms of the form "table.column1=table.column2" (the 648 ** same table on both sizes of the ==) cannot be optimized. 649 */ 650 if( chngToIN ){ 651 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 652 int iColumn = -1; /* Column index on lhs of IN operator */ 653 int iCursor = -1; /* Table cursor common to all terms */ 654 int j = 0; /* Loop counter */ 655 656 /* Search for a table and column that appears on one side or the 657 ** other of the == operator in every subterm. That table and column 658 ** will be recorded in iCursor and iColumn. There might not be any 659 ** such table and column. Set okToChngToIN if an appropriate table 660 ** and column is found but leave okToChngToIN false if not found. 661 */ 662 for(j=0; j<2 && !okToChngToIN; j++){ 663 pOrTerm = pOrWc->a; 664 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 665 assert( pOrTerm->eOperator & WO_EQ ); 666 pOrTerm->wtFlags &= ~TERM_OR_OK; 667 if( pOrTerm->leftCursor==iCursor ){ 668 /* This is the 2-bit case and we are on the second iteration and 669 ** current term is from the first iteration. So skip this term. */ 670 assert( j==1 ); 671 continue; 672 } 673 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, 674 pOrTerm->leftCursor))==0 ){ 675 /* This term must be of the form t1.a==t2.b where t2 is in the 676 ** chngToIN set but t1 is not. This term will be either preceded 677 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 678 ** and use its inversion. */ 679 testcase( pOrTerm->wtFlags & TERM_COPIED ); 680 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 681 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 682 continue; 683 } 684 iColumn = pOrTerm->u.leftColumn; 685 iCursor = pOrTerm->leftCursor; 686 break; 687 } 688 if( i<0 ){ 689 /* No candidate table+column was found. This can only occur 690 ** on the second iteration */ 691 assert( j==1 ); 692 assert( IsPowerOfTwo(chngToIN) ); 693 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); 694 break; 695 } 696 testcase( j==1 ); 697 698 /* We have found a candidate table and column. Check to see if that 699 ** table and column is common to every term in the OR clause */ 700 okToChngToIN = 1; 701 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 702 assert( pOrTerm->eOperator & WO_EQ ); 703 if( pOrTerm->leftCursor!=iCursor ){ 704 pOrTerm->wtFlags &= ~TERM_OR_OK; 705 }else if( pOrTerm->u.leftColumn!=iColumn ){ 706 okToChngToIN = 0; 707 }else{ 708 int affLeft, affRight; 709 /* If the right-hand side is also a column, then the affinities 710 ** of both right and left sides must be such that no type 711 ** conversions are required on the right. (Ticket #2249) 712 */ 713 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 714 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 715 if( affRight!=0 && affRight!=affLeft ){ 716 okToChngToIN = 0; 717 }else{ 718 pOrTerm->wtFlags |= TERM_OR_OK; 719 } 720 } 721 } 722 } 723 724 /* At this point, okToChngToIN is true if original pTerm satisfies 725 ** case 1. In that case, construct a new virtual term that is 726 ** pTerm converted into an IN operator. 727 */ 728 if( okToChngToIN ){ 729 Expr *pDup; /* A transient duplicate expression */ 730 ExprList *pList = 0; /* The RHS of the IN operator */ 731 Expr *pLeft = 0; /* The LHS of the IN operator */ 732 Expr *pNew; /* The complete IN operator */ 733 734 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 735 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 736 assert( pOrTerm->eOperator & WO_EQ ); 737 assert( pOrTerm->leftCursor==iCursor ); 738 assert( pOrTerm->u.leftColumn==iColumn ); 739 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 740 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 741 pLeft = pOrTerm->pExpr->pLeft; 742 } 743 assert( pLeft!=0 ); 744 pDup = sqlite3ExprDup(db, pLeft, 0); 745 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0); 746 if( pNew ){ 747 int idxNew; 748 transferJoinMarkings(pNew, pExpr); 749 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 750 pNew->x.pList = pList; 751 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 752 testcase( idxNew==0 ); 753 exprAnalyze(pSrc, pWC, idxNew); 754 pTerm = &pWC->a[idxTerm]; 755 markTermAsChild(pWC, idxNew, idxTerm); 756 }else{ 757 sqlite3ExprListDelete(db, pList); 758 } 759 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ 760 } 761 } 762 } 763 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 764 765 /* 766 ** We already know that pExpr is a binary operator where both operands are 767 ** column references. This routine checks to see if pExpr is an equivalence 768 ** relation: 769 ** 1. The SQLITE_Transitive optimization must be enabled 770 ** 2. Must be either an == or an IS operator 771 ** 3. Not originating in the ON clause of an OUTER JOIN 772 ** 4. The affinities of A and B must be compatible 773 ** 5a. Both operands use the same collating sequence OR 774 ** 5b. The overall collating sequence is BINARY 775 ** If this routine returns TRUE, that means that the RHS can be substituted 776 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. 777 ** This is an optimization. No harm comes from returning 0. But if 1 is 778 ** returned when it should not be, then incorrect answers might result. 779 */ 780 static int termIsEquivalence(Parse *pParse, Expr *pExpr){ 781 char aff1, aff2; 782 CollSeq *pColl; 783 const char *zColl1, *zColl2; 784 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; 785 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; 786 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; 787 aff1 = sqlite3ExprAffinity(pExpr->pLeft); 788 aff2 = sqlite3ExprAffinity(pExpr->pRight); 789 if( aff1!=aff2 790 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) 791 ){ 792 return 0; 793 } 794 pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); 795 if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; 796 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 797 zColl1 = pColl ? pColl->zName : 0; 798 pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 799 zColl2 = pColl ? pColl->zName : 0; 800 return sqlite3_stricmp(zColl1, zColl2)==0; 801 } 802 803 /* 804 ** Recursively walk the expressions of a SELECT statement and generate 805 ** a bitmask indicating which tables are used in that expression 806 ** tree. 807 */ 808 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ 809 Bitmask mask = 0; 810 while( pS ){ 811 SrcList *pSrc = pS->pSrc; 812 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); 813 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); 814 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); 815 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); 816 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); 817 if( ALWAYS(pSrc!=0) ){ 818 int i; 819 for(i=0; i<pSrc->nSrc; i++){ 820 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); 821 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); 822 } 823 } 824 pS = pS->pPrior; 825 } 826 return mask; 827 } 828 829 /* 830 ** Expression pExpr is one operand of a comparison operator that might 831 ** be useful for indexing. This routine checks to see if pExpr appears 832 ** in any index. Return TRUE (1) if pExpr is an indexed term and return 833 ** FALSE (0) if not. If TRUE is returned, also set *piCur to the cursor 834 ** number of the table that is indexed and *piColumn to the column number 835 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being 836 ** indexed. 837 ** 838 ** If pExpr is a TK_COLUMN column reference, then this routine always returns 839 ** true even if that particular column is not indexed, because the column 840 ** might be added to an automatic index later. 841 */ 842 static int exprMightBeIndexed( 843 SrcList *pFrom, /* The FROM clause */ 844 int op, /* The specific comparison operator */ 845 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */ 846 Expr *pExpr, /* An operand of a comparison operator */ 847 int *piCur, /* Write the referenced table cursor number here */ 848 int *piColumn /* Write the referenced table column number here */ 849 ){ 850 Index *pIdx; 851 int i; 852 int iCur; 853 854 /* If this expression is a vector to the left or right of a 855 ** inequality constraint (>, <, >= or <=), perform the processing 856 ** on the first element of the vector. */ 857 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE ); 858 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE ); 859 assert( op<=TK_GE ); 860 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){ 861 pExpr = pExpr->x.pList->a[0].pExpr; 862 } 863 864 if( pExpr->op==TK_COLUMN ){ 865 *piCur = pExpr->iTable; 866 *piColumn = pExpr->iColumn; 867 return 1; 868 } 869 if( mPrereq==0 ) return 0; /* No table references */ 870 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */ 871 for(i=0; mPrereq>1; i++, mPrereq>>=1){} 872 iCur = pFrom->a[i].iCursor; 873 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 874 if( pIdx->aColExpr==0 ) continue; 875 for(i=0; i<pIdx->nKeyCol; i++){ 876 if( pIdx->aiColumn[i]!=XN_EXPR ) continue; 877 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){ 878 *piCur = iCur; 879 *piColumn = XN_EXPR; 880 return 1; 881 } 882 } 883 } 884 return 0; 885 } 886 887 /* 888 ** The input to this routine is an WhereTerm structure with only the 889 ** "pExpr" field filled in. The job of this routine is to analyze the 890 ** subexpression and populate all the other fields of the WhereTerm 891 ** structure. 892 ** 893 ** If the expression is of the form "<expr> <op> X" it gets commuted 894 ** to the standard form of "X <op> <expr>". 895 ** 896 ** If the expression is of the form "X <op> Y" where both X and Y are 897 ** columns, then the original expression is unchanged and a new virtual 898 ** term of the form "Y <op> X" is added to the WHERE clause and 899 ** analyzed separately. The original term is marked with TERM_COPIED 900 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 901 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 902 ** is a commuted copy of a prior term.) The original term has nChild=1 903 ** and the copy has idxParent set to the index of the original term. 904 */ 905 static void exprAnalyze( 906 SrcList *pSrc, /* the FROM clause */ 907 WhereClause *pWC, /* the WHERE clause */ 908 int idxTerm /* Index of the term to be analyzed */ 909 ){ 910 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 911 WhereTerm *pTerm; /* The term to be analyzed */ 912 WhereMaskSet *pMaskSet; /* Set of table index masks */ 913 Expr *pExpr; /* The expression to be analyzed */ 914 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 915 Bitmask prereqAll; /* Prerequesites of pExpr */ 916 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 917 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 918 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 919 int noCase = 0; /* uppercase equivalent to lowercase */ 920 int op; /* Top-level operator. pExpr->op */ 921 Parse *pParse = pWInfo->pParse; /* Parsing context */ 922 sqlite3 *db = pParse->db; /* Database connection */ 923 unsigned char eOp2; /* op2 value for LIKE/REGEXP/GLOB */ 924 int nLeft; /* Number of elements on left side vector */ 925 926 if( db->mallocFailed ){ 927 return; 928 } 929 pTerm = &pWC->a[idxTerm]; 930 pMaskSet = &pWInfo->sMaskSet; 931 pExpr = pTerm->pExpr; 932 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 933 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); 934 op = pExpr->op; 935 if( op==TK_IN ){ 936 assert( pExpr->pRight==0 ); 937 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 938 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 939 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); 940 }else{ 941 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); 942 } 943 }else if( op==TK_ISNULL ){ 944 pTerm->prereqRight = 0; 945 }else{ 946 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); 947 } 948 prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); 949 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 950 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); 951 prereqAll |= x; 952 extraRight = x-1; /* ON clause terms may not be used with an index 953 ** on left table of a LEFT JOIN. Ticket #3015 */ 954 if( (prereqAll>>1)>=x ){ 955 sqlite3ErrorMsg(pParse, "ON clause references tables to its right"); 956 return; 957 } 958 } 959 pTerm->prereqAll = prereqAll; 960 pTerm->leftCursor = -1; 961 pTerm->iParent = -1; 962 pTerm->eOperator = 0; 963 if( allowedOp(op) ){ 964 int iCur, iColumn; 965 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 966 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 967 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 968 969 if( pTerm->iField>0 ){ 970 assert( op==TK_IN ); 971 assert( pLeft->op==TK_VECTOR ); 972 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr; 973 } 974 975 if( exprMightBeIndexed(pSrc, op, prereqLeft, pLeft, &iCur, &iColumn) ){ 976 pTerm->leftCursor = iCur; 977 pTerm->u.leftColumn = iColumn; 978 pTerm->eOperator = operatorMask(op) & opMask; 979 } 980 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; 981 if( pRight 982 && exprMightBeIndexed(pSrc, op, pTerm->prereqRight, pRight, &iCur,&iColumn) 983 ){ 984 WhereTerm *pNew; 985 Expr *pDup; 986 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 987 assert( pTerm->iField==0 ); 988 if( pTerm->leftCursor>=0 ){ 989 int idxNew; 990 pDup = sqlite3ExprDup(db, pExpr, 0); 991 if( db->mallocFailed ){ 992 sqlite3ExprDelete(db, pDup); 993 return; 994 } 995 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 996 if( idxNew==0 ) return; 997 pNew = &pWC->a[idxNew]; 998 markTermAsChild(pWC, idxNew, idxTerm); 999 if( op==TK_IS ) pNew->wtFlags |= TERM_IS; 1000 pTerm = &pWC->a[idxTerm]; 1001 pTerm->wtFlags |= TERM_COPIED; 1002 1003 if( termIsEquivalence(pParse, pDup) ){ 1004 pTerm->eOperator |= WO_EQUIV; 1005 eExtraOp = WO_EQUIV; 1006 } 1007 }else{ 1008 pDup = pExpr; 1009 pNew = pTerm; 1010 } 1011 exprCommute(pParse, pDup); 1012 pNew->leftCursor = iCur; 1013 pNew->u.leftColumn = iColumn; 1014 testcase( (prereqLeft | extraRight) != prereqLeft ); 1015 pNew->prereqRight = prereqLeft | extraRight; 1016 pNew->prereqAll = prereqAll; 1017 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1018 } 1019 } 1020 1021 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1022 /* If a term is the BETWEEN operator, create two new virtual terms 1023 ** that define the range that the BETWEEN implements. For example: 1024 ** 1025 ** a BETWEEN b AND c 1026 ** 1027 ** is converted into: 1028 ** 1029 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1030 ** 1031 ** The two new terms are added onto the end of the WhereClause object. 1032 ** The new terms are "dynamic" and are children of the original BETWEEN 1033 ** term. That means that if the BETWEEN term is coded, the children are 1034 ** skipped. Or, if the children are satisfied by an index, the original 1035 ** BETWEEN term is skipped. 1036 */ 1037 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1038 ExprList *pList = pExpr->x.pList; 1039 int i; 1040 static const u8 ops[] = {TK_GE, TK_LE}; 1041 assert( pList!=0 ); 1042 assert( pList->nExpr==2 ); 1043 for(i=0; i<2; i++){ 1044 Expr *pNewExpr; 1045 int idxNew; 1046 pNewExpr = sqlite3PExpr(pParse, ops[i], 1047 sqlite3ExprDup(db, pExpr->pLeft, 0), 1048 sqlite3ExprDup(db, pList->a[i].pExpr, 0)); 1049 transferJoinMarkings(pNewExpr, pExpr); 1050 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1051 testcase( idxNew==0 ); 1052 exprAnalyze(pSrc, pWC, idxNew); 1053 pTerm = &pWC->a[idxTerm]; 1054 markTermAsChild(pWC, idxNew, idxTerm); 1055 } 1056 } 1057 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1058 1059 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1060 /* Analyze a term that is composed of two or more subterms connected by 1061 ** an OR operator. 1062 */ 1063 else if( pExpr->op==TK_OR ){ 1064 assert( pWC->op==TK_AND ); 1065 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1066 pTerm = &pWC->a[idxTerm]; 1067 } 1068 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1069 1070 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1071 /* Add constraints to reduce the search space on a LIKE or GLOB 1072 ** operator. 1073 ** 1074 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1075 ** 1076 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1077 ** 1078 ** The last character of the prefix "abc" is incremented to form the 1079 ** termination condition "abd". If case is not significant (the default 1080 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1081 ** bound is made all lowercase so that the bounds also work when comparing 1082 ** BLOBs. 1083 */ 1084 if( pWC->op==TK_AND 1085 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1086 ){ 1087 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1088 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1089 Expr *pNewExpr1; 1090 Expr *pNewExpr2; 1091 int idxNew1; 1092 int idxNew2; 1093 const char *zCollSeqName; /* Name of collating sequence */ 1094 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1095 1096 pLeft = pExpr->x.pList->a[1].pExpr; 1097 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1098 1099 /* Convert the lower bound to upper-case and the upper bound to 1100 ** lower-case (upper-case is less than lower-case in ASCII) so that 1101 ** the range constraints also work for BLOBs 1102 */ 1103 if( noCase && !pParse->db->mallocFailed ){ 1104 int i; 1105 char c; 1106 pTerm->wtFlags |= TERM_LIKE; 1107 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1108 pStr1->u.zToken[i] = sqlite3Toupper(c); 1109 pStr2->u.zToken[i] = sqlite3Tolower(c); 1110 } 1111 } 1112 1113 if( !db->mallocFailed ){ 1114 u8 c, *pC; /* Last character before the first wildcard */ 1115 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1116 c = *pC; 1117 if( noCase ){ 1118 /* The point is to increment the last character before the first 1119 ** wildcard. But if we increment '@', that will push it into the 1120 ** alphabetic range where case conversions will mess up the 1121 ** inequality. To avoid this, make sure to also run the full 1122 ** LIKE on all candidate expressions by clearing the isComplete flag 1123 */ 1124 if( c=='A'-1 ) isComplete = 0; 1125 c = sqlite3UpperToLower[c]; 1126 } 1127 *pC = c + 1; 1128 } 1129 zCollSeqName = noCase ? "NOCASE" : "BINARY"; 1130 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1131 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1132 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), 1133 pStr1); 1134 transferJoinMarkings(pNewExpr1, pExpr); 1135 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1136 testcase( idxNew1==0 ); 1137 exprAnalyze(pSrc, pWC, idxNew1); 1138 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1139 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1140 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), 1141 pStr2); 1142 transferJoinMarkings(pNewExpr2, pExpr); 1143 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1144 testcase( idxNew2==0 ); 1145 exprAnalyze(pSrc, pWC, idxNew2); 1146 pTerm = &pWC->a[idxTerm]; 1147 if( isComplete ){ 1148 markTermAsChild(pWC, idxNew1, idxTerm); 1149 markTermAsChild(pWC, idxNew2, idxTerm); 1150 } 1151 } 1152 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1153 1154 #ifndef SQLITE_OMIT_VIRTUALTABLE 1155 /* Add a WO_MATCH auxiliary term to the constraint set if the 1156 ** current expression is of the form: column MATCH expr. 1157 ** This information is used by the xBestIndex methods of 1158 ** virtual tables. The native query optimizer does not attempt 1159 ** to do anything with MATCH functions. 1160 */ 1161 if( pWC->op==TK_AND && isMatchOfColumn(pExpr, &eOp2) ){ 1162 int idxNew; 1163 Expr *pRight, *pLeft; 1164 WhereTerm *pNewTerm; 1165 Bitmask prereqColumn, prereqExpr; 1166 1167 pRight = pExpr->x.pList->a[0].pExpr; 1168 pLeft = pExpr->x.pList->a[1].pExpr; 1169 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); 1170 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); 1171 if( (prereqExpr & prereqColumn)==0 ){ 1172 Expr *pNewExpr; 1173 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1174 0, sqlite3ExprDup(db, pRight, 0)); 1175 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1176 testcase( idxNew==0 ); 1177 pNewTerm = &pWC->a[idxNew]; 1178 pNewTerm->prereqRight = prereqExpr; 1179 pNewTerm->leftCursor = pLeft->iTable; 1180 pNewTerm->u.leftColumn = pLeft->iColumn; 1181 pNewTerm->eOperator = WO_MATCH; 1182 pNewTerm->eMatchOp = eOp2; 1183 markTermAsChild(pWC, idxNew, idxTerm); 1184 pTerm = &pWC->a[idxTerm]; 1185 pTerm->wtFlags |= TERM_COPIED; 1186 pNewTerm->prereqAll = pTerm->prereqAll; 1187 } 1188 } 1189 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1190 1191 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create 1192 ** new terms for each component comparison - "a = ?" and "b = ?". The 1193 ** new terms completely replace the original vector comparison, which is 1194 ** no longer used. 1195 ** 1196 ** This is only required if at least one side of the comparison operation 1197 ** is not a sub-select. */ 1198 if( pWC->op==TK_AND 1199 && (pExpr->op==TK_EQ || pExpr->op==TK_IS) 1200 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1 1201 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft 1202 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0 1203 || (pExpr->pRight->flags & EP_xIsSelect)==0) 1204 ){ 1205 int i; 1206 for(i=0; i<nLeft; i++){ 1207 int idxNew; 1208 Expr *pNew; 1209 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i); 1210 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i); 1211 1212 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight); 1213 transferJoinMarkings(pNew, pExpr); 1214 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC); 1215 exprAnalyze(pSrc, pWC, idxNew); 1216 } 1217 pTerm = &pWC->a[idxTerm]; 1218 pTerm->wtFlags = TERM_CODED|TERM_VIRTUAL; /* Disable the original */ 1219 pTerm->eOperator = 0; 1220 } 1221 1222 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create 1223 ** a virtual term for each vector component. The expression object 1224 ** used by each such virtual term is pExpr (the full vector IN(...) 1225 ** expression). The WhereTerm.iField variable identifies the index within 1226 ** the vector on the LHS that the virtual term represents. 1227 ** 1228 ** This only works if the RHS is a simple SELECT, not a compound 1229 */ 1230 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0 1231 && pExpr->pLeft->op==TK_VECTOR 1232 && pExpr->x.pSelect->pPrior==0 1233 ){ 1234 int i; 1235 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){ 1236 int idxNew; 1237 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL); 1238 pWC->a[idxNew].iField = i+1; 1239 exprAnalyze(pSrc, pWC, idxNew); 1240 markTermAsChild(pWC, idxNew, idxTerm); 1241 } 1242 } 1243 1244 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1245 /* When sqlite_stat3 histogram data is available an operator of the 1246 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1247 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1248 ** virtual term of that form. 1249 ** 1250 ** Note that the virtual term must be tagged with TERM_VNULL. 1251 */ 1252 if( pExpr->op==TK_NOTNULL 1253 && pExpr->pLeft->op==TK_COLUMN 1254 && pExpr->pLeft->iColumn>=0 1255 && OptimizationEnabled(db, SQLITE_Stat34) 1256 ){ 1257 Expr *pNewExpr; 1258 Expr *pLeft = pExpr->pLeft; 1259 int idxNew; 1260 WhereTerm *pNewTerm; 1261 1262 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1263 sqlite3ExprDup(db, pLeft, 0), 1264 sqlite3ExprAlloc(db, TK_NULL, 0, 0)); 1265 1266 idxNew = whereClauseInsert(pWC, pNewExpr, 1267 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1268 if( idxNew ){ 1269 pNewTerm = &pWC->a[idxNew]; 1270 pNewTerm->prereqRight = 0; 1271 pNewTerm->leftCursor = pLeft->iTable; 1272 pNewTerm->u.leftColumn = pLeft->iColumn; 1273 pNewTerm->eOperator = WO_GT; 1274 markTermAsChild(pWC, idxNew, idxTerm); 1275 pTerm = &pWC->a[idxTerm]; 1276 pTerm->wtFlags |= TERM_COPIED; 1277 pNewTerm->prereqAll = pTerm->prereqAll; 1278 } 1279 } 1280 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1281 1282 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1283 ** an index for tables to the left of the join. 1284 */ 1285 testcase( pTerm!=&pWC->a[idxTerm] ); 1286 pTerm = &pWC->a[idxTerm]; 1287 pTerm->prereqRight |= extraRight; 1288 } 1289 1290 /*************************************************************************** 1291 ** Routines with file scope above. Interface to the rest of the where.c 1292 ** subsystem follows. 1293 ***************************************************************************/ 1294 1295 /* 1296 ** This routine identifies subexpressions in the WHERE clause where 1297 ** each subexpression is separated by the AND operator or some other 1298 ** operator specified in the op parameter. The WhereClause structure 1299 ** is filled with pointers to subexpressions. For example: 1300 ** 1301 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 1302 ** \________/ \_______________/ \________________/ 1303 ** slot[0] slot[1] slot[2] 1304 ** 1305 ** The original WHERE clause in pExpr is unaltered. All this routine 1306 ** does is make slot[] entries point to substructure within pExpr. 1307 ** 1308 ** In the previous sentence and in the diagram, "slot[]" refers to 1309 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 1310 ** all terms of the WHERE clause. 1311 */ 1312 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 1313 Expr *pE2 = sqlite3ExprSkipCollate(pExpr); 1314 pWC->op = op; 1315 if( pE2==0 ) return; 1316 if( pE2->op!=op ){ 1317 whereClauseInsert(pWC, pExpr, 0); 1318 }else{ 1319 sqlite3WhereSplit(pWC, pE2->pLeft, op); 1320 sqlite3WhereSplit(pWC, pE2->pRight, op); 1321 } 1322 } 1323 1324 /* 1325 ** Initialize a preallocated WhereClause structure. 1326 */ 1327 void sqlite3WhereClauseInit( 1328 WhereClause *pWC, /* The WhereClause to be initialized */ 1329 WhereInfo *pWInfo /* The WHERE processing context */ 1330 ){ 1331 pWC->pWInfo = pWInfo; 1332 pWC->pOuter = 0; 1333 pWC->nTerm = 0; 1334 pWC->nSlot = ArraySize(pWC->aStatic); 1335 pWC->a = pWC->aStatic; 1336 } 1337 1338 /* 1339 ** Deallocate a WhereClause structure. The WhereClause structure 1340 ** itself is not freed. This routine is the inverse of 1341 ** sqlite3WhereClauseInit(). 1342 */ 1343 void sqlite3WhereClauseClear(WhereClause *pWC){ 1344 int i; 1345 WhereTerm *a; 1346 sqlite3 *db = pWC->pWInfo->pParse->db; 1347 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 1348 if( a->wtFlags & TERM_DYNAMIC ){ 1349 sqlite3ExprDelete(db, a->pExpr); 1350 } 1351 if( a->wtFlags & TERM_ORINFO ){ 1352 whereOrInfoDelete(db, a->u.pOrInfo); 1353 }else if( a->wtFlags & TERM_ANDINFO ){ 1354 whereAndInfoDelete(db, a->u.pAndInfo); 1355 } 1356 } 1357 if( pWC->a!=pWC->aStatic ){ 1358 sqlite3DbFree(db, pWC->a); 1359 } 1360 } 1361 1362 1363 /* 1364 ** These routines walk (recursively) an expression tree and generate 1365 ** a bitmask indicating which tables are used in that expression 1366 ** tree. 1367 */ 1368 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ 1369 Bitmask mask; 1370 if( p==0 ) return 0; 1371 if( p->op==TK_COLUMN ){ 1372 mask = sqlite3WhereGetMask(pMaskSet, p->iTable); 1373 return mask; 1374 } 1375 assert( !ExprHasProperty(p, EP_TokenOnly) ); 1376 mask = p->pRight ? sqlite3WhereExprUsage(pMaskSet, p->pRight) : 0; 1377 if( p->pLeft ) mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); 1378 if( ExprHasProperty(p, EP_xIsSelect) ){ 1379 mask |= exprSelectUsage(pMaskSet, p->x.pSelect); 1380 }else if( p->x.pList ){ 1381 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); 1382 } 1383 return mask; 1384 } 1385 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 1386 int i; 1387 Bitmask mask = 0; 1388 if( pList ){ 1389 for(i=0; i<pList->nExpr; i++){ 1390 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); 1391 } 1392 } 1393 return mask; 1394 } 1395 1396 1397 /* 1398 ** Call exprAnalyze on all terms in a WHERE clause. 1399 ** 1400 ** Note that exprAnalyze() might add new virtual terms onto the 1401 ** end of the WHERE clause. We do not want to analyze these new 1402 ** virtual terms, so start analyzing at the end and work forward 1403 ** so that the added virtual terms are never processed. 1404 */ 1405 void sqlite3WhereExprAnalyze( 1406 SrcList *pTabList, /* the FROM clause */ 1407 WhereClause *pWC /* the WHERE clause to be analyzed */ 1408 ){ 1409 int i; 1410 for(i=pWC->nTerm-1; i>=0; i--){ 1411 exprAnalyze(pTabList, pWC, i); 1412 } 1413 } 1414 1415 /* 1416 ** For table-valued-functions, transform the function arguments into 1417 ** new WHERE clause terms. 1418 ** 1419 ** Each function argument translates into an equality constraint against 1420 ** a HIDDEN column in the table. 1421 */ 1422 void sqlite3WhereTabFuncArgs( 1423 Parse *pParse, /* Parsing context */ 1424 struct SrcList_item *pItem, /* The FROM clause term to process */ 1425 WhereClause *pWC /* Xfer function arguments to here */ 1426 ){ 1427 Table *pTab; 1428 int j, k; 1429 ExprList *pArgs; 1430 Expr *pColRef; 1431 Expr *pTerm; 1432 if( pItem->fg.isTabFunc==0 ) return; 1433 pTab = pItem->pTab; 1434 assert( pTab!=0 ); 1435 pArgs = pItem->u1.pFuncArg; 1436 if( pArgs==0 ) return; 1437 for(j=k=0; j<pArgs->nExpr; j++){ 1438 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} 1439 if( k>=pTab->nCol ){ 1440 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", 1441 pTab->zName, j); 1442 return; 1443 } 1444 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); 1445 if( pColRef==0 ) return; 1446 pColRef->iTable = pItem->iCursor; 1447 pColRef->iColumn = k++; 1448 pColRef->pTab = pTab; 1449 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, 1450 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0)); 1451 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); 1452 } 1453 } 1454