xref: /sqlite-3.40.0/src/wherecode.c (revision fb32c44e)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit.  This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code.  The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22 
23 #ifndef SQLITE_OMIT_EXPLAIN
24 
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29   i = pIdx->aiColumn[i];
30   if( i==XN_EXPR ) return "<expr>";
31   if( i==XN_ROWID ) return "rowid";
32   return pIdx->pTable->aCol[i].zName;
33 }
34 
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time.  This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44   StrAccum *pStr,             /* The text expression being built */
45   Index *pIdx,                /* Index to read column names from */
46   int nTerm,                  /* Number of terms */
47   int iTerm,                  /* Zero-based index of first term. */
48   int bAnd,                   /* Non-zero to append " AND " */
49   const char *zOp             /* Name of the operator */
50 ){
51   int i;
52 
53   assert( nTerm>=1 );
54   if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
55 
56   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57   for(i=0; i<nTerm; i++){
58     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59     sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
60   }
61   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
62 
63   sqlite3StrAccumAppend(pStr, zOp, 1);
64 
65   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66   for(i=0; i<nTerm; i++){
67     if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68     sqlite3StrAccumAppend(pStr, "?", 1);
69   }
70   if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
71 }
72 
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 **   SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 **   "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88   Index *pIndex = pLoop->u.btree.pIndex;
89   u16 nEq = pLoop->u.btree.nEq;
90   u16 nSkip = pLoop->nSkip;
91   int i, j;
92 
93   if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94   sqlite3StrAccumAppend(pStr, " (", 2);
95   for(i=0; i<nEq; i++){
96     const char *z = explainIndexColumnName(pIndex, i);
97     if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
98     sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99   }
100 
101   j = i;
102   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104     i = 1;
105   }
106   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107     explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108   }
109   sqlite3StrAccumAppend(pStr, ")", 1);
110 }
111 
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122   Parse *pParse,                  /* Parse context */
123   SrcList *pTabList,              /* Table list this loop refers to */
124   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
125   int iLevel,                     /* Value for "level" column of output */
126   int iFrom,                      /* Value for "from" column of output */
127   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
128 ){
129   int ret = 0;
130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131   if( sqlite3ParseToplevel(pParse)->explain==2 )
132 #endif
133   {
134     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
136     sqlite3 *db = pParse->db;     /* Database handle */
137     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
138     int isSearch;                 /* True for a SEARCH. False for SCAN. */
139     WhereLoop *pLoop;             /* The controlling WhereLoop object */
140     u32 flags;                    /* Flags that describe this loop */
141     char *zMsg;                   /* Text to add to EQP output */
142     StrAccum str;                 /* EQP output string */
143     char zBuf[100];               /* Initial space for EQP output string */
144 
145     pLoop = pLevel->pWLoop;
146     flags = pLoop->wsFlags;
147     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
148 
149     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
152 
153     sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154     sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155     if( pItem->pSelect ){
156       sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
157     }else{
158       sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
159     }
160 
161     if( pItem->zAlias ){
162       sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
163     }
164     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165       const char *zFmt = 0;
166       Index *pIdx;
167 
168       assert( pLoop->u.btree.pIndex!=0 );
169       pIdx = pLoop->u.btree.pIndex;
170       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172         if( isSearch ){
173           zFmt = "PRIMARY KEY";
174         }
175       }else if( flags & WHERE_PARTIALIDX ){
176         zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177       }else if( flags & WHERE_AUTO_INDEX ){
178         zFmt = "AUTOMATIC COVERING INDEX";
179       }else if( flags & WHERE_IDX_ONLY ){
180         zFmt = "COVERING INDEX %s";
181       }else{
182         zFmt = "INDEX %s";
183       }
184       if( zFmt ){
185         sqlite3StrAccumAppend(&str, " USING ", 7);
186         sqlite3XPrintf(&str, zFmt, pIdx->zName);
187         explainIndexRange(&str, pLoop);
188       }
189     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
190       const char *zRangeOp;
191       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
192         zRangeOp = "=";
193       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
194         zRangeOp = ">? AND rowid<";
195       }else if( flags&WHERE_BTM_LIMIT ){
196         zRangeOp = ">";
197       }else{
198         assert( flags&WHERE_TOP_LIMIT);
199         zRangeOp = "<";
200       }
201       sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
202     }
203 #ifndef SQLITE_OMIT_VIRTUALTABLE
204     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
205       sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
206                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
207     }
208 #endif
209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210     if( pLoop->nOut>=10 ){
211       sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
212     }else{
213       sqlite3StrAccumAppend(&str, " (~1 row)", 9);
214     }
215 #endif
216     zMsg = sqlite3StrAccumFinish(&str);
217     ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
218   }
219   return ret;
220 }
221 #endif /* SQLITE_OMIT_EXPLAIN */
222 
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
224 /*
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
229 **
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
232 */
233 void sqlite3WhereAddScanStatus(
234   Vdbe *v,                        /* Vdbe to add scanstatus entry to */
235   SrcList *pSrclist,              /* FROM clause pLvl reads data from */
236   WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
237   int addrExplain                 /* Address of OP_Explain (or 0) */
238 ){
239   const char *zObj = 0;
240   WhereLoop *pLoop = pLvl->pWLoop;
241   if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
242     zObj = pLoop->u.btree.pIndex->zName;
243   }else{
244     zObj = pSrclist->a[pLvl->iFrom].zName;
245   }
246   sqlite3VdbeScanStatus(
247       v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
248   );
249 }
250 #endif
251 
252 
253 /*
254 ** Disable a term in the WHERE clause.  Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
257 **
258 ** Consider the term t2.z='ok' in the following queries:
259 **
260 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
263 **
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause.  The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
267 **
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join.  Disabling is an optimization.  When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop.  We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower.  The trick is to disable as much
273 ** as we can without disabling too much.  If we disabled in (1), we'd get
274 ** the wrong answer.  See ticket #813.
275 **
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled.  In this way, terms get disabled if derived
278 ** virtual terms are tested first.  For example:
279 **
280 **      x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 **      \___________/     \______/     \_____/
282 **         parent          child1       child2
283 **
284 ** Only the parent term was in the original WHERE clause.  The child1
285 ** and child2 terms were added by the LIKE optimization.  If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
288 **
289 ** Usually the parent term is marked as TERM_CODED.  But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
294 */
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296   int nLoop = 0;
297   assert( pTerm!=0 );
298   while( (pTerm->wtFlags & TERM_CODED)==0
299       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300       && (pLevel->notReady & pTerm->prereqAll)==0
301   ){
302     if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303       pTerm->wtFlags |= TERM_LIKECOND;
304     }else{
305       pTerm->wtFlags |= TERM_CODED;
306     }
307     if( pTerm->iParent<0 ) break;
308     pTerm = &pTerm->pWC->a[pTerm->iParent];
309     assert( pTerm!=0 );
310     pTerm->nChild--;
311     if( pTerm->nChild!=0 ) break;
312     nLoop++;
313   }
314 }
315 
316 /*
317 ** Code an OP_Affinity opcode to apply the column affinity string zAff
318 ** to the n registers starting at base.
319 **
320 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
321 ** beginning and end of zAff are ignored.  If all entries in zAff are
322 ** SQLITE_AFF_BLOB, then no code gets generated.
323 **
324 ** This routine makes its own copy of zAff so that the caller is free
325 ** to modify zAff after this routine returns.
326 */
327 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
328   Vdbe *v = pParse->pVdbe;
329   if( zAff==0 ){
330     assert( pParse->db->mallocFailed );
331     return;
332   }
333   assert( v!=0 );
334 
335   /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
336   ** and end of the affinity string.
337   */
338   while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
339     n--;
340     base++;
341     zAff++;
342   }
343   while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
344     n--;
345   }
346 
347   /* Code the OP_Affinity opcode if there is anything left to do. */
348   if( n>0 ){
349     sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
350     sqlite3ExprCacheAffinityChange(pParse, base, n);
351   }
352 }
353 
354 /*
355 ** Expression pRight, which is the RHS of a comparison operation, is
356 ** either a vector of n elements or, if n==1, a scalar expression.
357 ** Before the comparison operation, affinity zAff is to be applied
358 ** to the pRight values. This function modifies characters within the
359 ** affinity string to SQLITE_AFF_BLOB if either:
360 **
361 **   * the comparison will be performed with no affinity, or
362 **   * the affinity change in zAff is guaranteed not to change the value.
363 */
364 static void updateRangeAffinityStr(
365   Expr *pRight,                   /* RHS of comparison */
366   int n,                          /* Number of vector elements in comparison */
367   char *zAff                      /* Affinity string to modify */
368 ){
369   int i;
370   for(i=0; i<n; i++){
371     Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
372     if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
373      || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
374     ){
375       zAff[i] = SQLITE_AFF_BLOB;
376     }
377   }
378 }
379 
380 
381 /*
382 ** pX is an expression of the form:  (vector) IN (SELECT ...)
383 ** In other words, it is a vector IN operator with a SELECT clause on the
384 ** LHS.  But not all terms in the vector are indexable and the terms might
385 ** not be in the correct order for indexing.
386 **
387 ** This routine makes a copy of the input pX expression and then adjusts
388 ** the vector on the LHS with corresponding changes to the SELECT so that
389 ** the vector contains only index terms and those terms are in the correct
390 ** order.  The modified IN expression is returned.  The caller is responsible
391 ** for deleting the returned expression.
392 **
393 ** Example:
394 **
395 **    CREATE TABLE t1(a,b,c,d,e,f);
396 **    CREATE INDEX t1x1 ON t1(e,c);
397 **    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
398 **                           \_______________________________________/
399 **                                     The pX expression
400 **
401 ** Since only columns e and c can be used with the index, in that order,
402 ** the modified IN expression that is returned will be:
403 **
404 **        (e,c) IN (SELECT z,x FROM t2)
405 **
406 ** The reduced pX is different from the original (obviously) and thus is
407 ** only used for indexing, to improve performance.  The original unaltered
408 ** IN expression must also be run on each output row for correctness.
409 */
410 static Expr *removeUnindexableInClauseTerms(
411   Parse *pParse,        /* The parsing context */
412   int iEq,              /* Look at loop terms starting here */
413   WhereLoop *pLoop,     /* The current loop */
414   Expr *pX              /* The IN expression to be reduced */
415 ){
416   sqlite3 *db = pParse->db;
417   Expr *pNew = sqlite3ExprDup(db, pX, 0);
418   if( db->mallocFailed==0 ){
419     ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
420     ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
421     ExprList *pRhs = 0;         /* New RHS after modifications */
422     ExprList *pLhs = 0;         /* New LHS after mods */
423     int i;                      /* Loop counter */
424     Select *pSelect;            /* Pointer to the SELECT on the RHS */
425 
426     for(i=iEq; i<pLoop->nLTerm; i++){
427       if( pLoop->aLTerm[i]->pExpr==pX ){
428         int iField = pLoop->aLTerm[i]->iField - 1;
429         assert( pOrigRhs->a[iField].pExpr!=0 );
430         pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
431         pOrigRhs->a[iField].pExpr = 0;
432         assert( pOrigLhs->a[iField].pExpr!=0 );
433         pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
434         pOrigLhs->a[iField].pExpr = 0;
435       }
436     }
437     sqlite3ExprListDelete(db, pOrigRhs);
438     sqlite3ExprListDelete(db, pOrigLhs);
439     pNew->pLeft->x.pList = pLhs;
440     pNew->x.pSelect->pEList = pRhs;
441     if( pLhs && pLhs->nExpr==1 ){
442       /* Take care here not to generate a TK_VECTOR containing only a
443       ** single value. Since the parser never creates such a vector, some
444       ** of the subroutines do not handle this case.  */
445       Expr *p = pLhs->a[0].pExpr;
446       pLhs->a[0].pExpr = 0;
447       sqlite3ExprDelete(db, pNew->pLeft);
448       pNew->pLeft = p;
449     }
450     pSelect = pNew->x.pSelect;
451     if( pSelect->pOrderBy ){
452       /* If the SELECT statement has an ORDER BY clause, zero the
453       ** iOrderByCol variables. These are set to non-zero when an
454       ** ORDER BY term exactly matches one of the terms of the
455       ** result-set. Since the result-set of the SELECT statement may
456       ** have been modified or reordered, these variables are no longer
457       ** set correctly.  Since setting them is just an optimization,
458       ** it's easiest just to zero them here.  */
459       ExprList *pOrderBy = pSelect->pOrderBy;
460       for(i=0; i<pOrderBy->nExpr; i++){
461         pOrderBy->a[i].u.x.iOrderByCol = 0;
462       }
463     }
464 
465 #if 0
466     printf("For indexing, change the IN expr:\n");
467     sqlite3TreeViewExpr(0, pX, 0);
468     printf("Into:\n");
469     sqlite3TreeViewExpr(0, pNew, 0);
470 #endif
471   }
472   return pNew;
473 }
474 
475 
476 /*
477 ** Generate code for a single equality term of the WHERE clause.  An equality
478 ** term can be either X=expr or X IN (...).   pTerm is the term to be
479 ** coded.
480 **
481 ** The current value for the constraint is left in a register, the index
482 ** of which is returned.  An attempt is made store the result in iTarget but
483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints.  If the
484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
485 ** some other register and it is the caller's responsibility to compensate.
486 **
487 ** For a constraint of the form X=expr, the expression is evaluated in
488 ** straight-line code.  For constraints of the form X IN (...)
489 ** this routine sets up a loop that will iterate over all values of X.
490 */
491 static int codeEqualityTerm(
492   Parse *pParse,      /* The parsing context */
493   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
494   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
495   int iEq,            /* Index of the equality term within this level */
496   int bRev,           /* True for reverse-order IN operations */
497   int iTarget         /* Attempt to leave results in this register */
498 ){
499   Expr *pX = pTerm->pExpr;
500   Vdbe *v = pParse->pVdbe;
501   int iReg;                  /* Register holding results */
502 
503   assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
504   assert( iTarget>0 );
505   if( pX->op==TK_EQ || pX->op==TK_IS ){
506     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
507   }else if( pX->op==TK_ISNULL ){
508     iReg = iTarget;
509     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
510 #ifndef SQLITE_OMIT_SUBQUERY
511   }else{
512     int eType = IN_INDEX_NOOP;
513     int iTab;
514     struct InLoop *pIn;
515     WhereLoop *pLoop = pLevel->pWLoop;
516     int i;
517     int nEq = 0;
518     int *aiMap = 0;
519 
520     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
521       && pLoop->u.btree.pIndex!=0
522       && pLoop->u.btree.pIndex->aSortOrder[iEq]
523     ){
524       testcase( iEq==0 );
525       testcase( bRev );
526       bRev = !bRev;
527     }
528     assert( pX->op==TK_IN );
529     iReg = iTarget;
530 
531     for(i=0; i<iEq; i++){
532       if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
533         disableTerm(pLevel, pTerm);
534         return iTarget;
535       }
536     }
537     for(i=iEq;i<pLoop->nLTerm; i++){
538       assert( pLoop->aLTerm[i]!=0 );
539       if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
540     }
541 
542     if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
543       eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
544     }else{
545       sqlite3 *db = pParse->db;
546       pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
547 
548       if( !db->mallocFailed ){
549         aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
550         eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
551         pTerm->pExpr->iTable = pX->iTable;
552       }
553       sqlite3ExprDelete(db, pX);
554       pX = pTerm->pExpr;
555     }
556 
557     if( eType==IN_INDEX_INDEX_DESC ){
558       testcase( bRev );
559       bRev = !bRev;
560     }
561     iTab = pX->iTable;
562     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
563     VdbeCoverageIf(v, bRev);
564     VdbeCoverageIf(v, !bRev);
565     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
566 
567     pLoop->wsFlags |= WHERE_IN_ABLE;
568     if( pLevel->u.in.nIn==0 ){
569       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
570     }
571 
572     i = pLevel->u.in.nIn;
573     pLevel->u.in.nIn += nEq;
574     pLevel->u.in.aInLoop =
575        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
576                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
577     pIn = pLevel->u.in.aInLoop;
578     if( pIn ){
579       int iMap = 0;               /* Index in aiMap[] */
580       pIn += i;
581       for(i=iEq;i<pLoop->nLTerm; i++){
582         if( pLoop->aLTerm[i]->pExpr==pX ){
583           int iOut = iReg + i - iEq;
584           if( eType==IN_INDEX_ROWID ){
585             testcase( nEq>1 );  /* Happens with a UNIQUE index on ROWID */
586             pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
587           }else{
588             int iCol = aiMap ? aiMap[iMap++] : 0;
589             pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
590           }
591           sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
592           if( i==iEq ){
593             pIn->iCur = iTab;
594             pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
595           }else{
596             pIn->eEndLoopOp = OP_Noop;
597           }
598           pIn++;
599         }
600       }
601     }else{
602       pLevel->u.in.nIn = 0;
603     }
604     sqlite3DbFree(pParse->db, aiMap);
605 #endif
606   }
607   disableTerm(pLevel, pTerm);
608   return iReg;
609 }
610 
611 /*
612 ** Generate code that will evaluate all == and IN constraints for an
613 ** index scan.
614 **
615 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
616 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
617 ** The index has as many as three equality constraints, but in this
618 ** example, the third "c" value is an inequality.  So only two
619 ** constraints are coded.  This routine will generate code to evaluate
620 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
621 ** in consecutive registers and the index of the first register is returned.
622 **
623 ** In the example above nEq==2.  But this subroutine works for any value
624 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
625 ** The only thing it does is allocate the pLevel->iMem memory cell and
626 ** compute the affinity string.
627 **
628 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
629 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
630 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
631 ** occurs after the nEq quality constraints.
632 **
633 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
634 ** the index of the first memory cell in that range. The code that
635 ** calls this routine will use that memory range to store keys for
636 ** start and termination conditions of the loop.
637 ** key value of the loop.  If one or more IN operators appear, then
638 ** this routine allocates an additional nEq memory cells for internal
639 ** use.
640 **
641 ** Before returning, *pzAff is set to point to a buffer containing a
642 ** copy of the column affinity string of the index allocated using
643 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
644 ** with equality constraints that use BLOB or NONE affinity are set to
645 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
646 **
647 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
648 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
649 **
650 ** In the example above, the index on t1(a) has TEXT affinity. But since
651 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
652 ** no conversion should be attempted before using a t2.b value as part of
653 ** a key to search the index. Hence the first byte in the returned affinity
654 ** string in this example would be set to SQLITE_AFF_BLOB.
655 */
656 static int codeAllEqualityTerms(
657   Parse *pParse,        /* Parsing context */
658   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
659   int bRev,             /* Reverse the order of IN operators */
660   int nExtraReg,        /* Number of extra registers to allocate */
661   char **pzAff          /* OUT: Set to point to affinity string */
662 ){
663   u16 nEq;                      /* The number of == or IN constraints to code */
664   u16 nSkip;                    /* Number of left-most columns to skip */
665   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
666   Index *pIdx;                  /* The index being used for this loop */
667   WhereTerm *pTerm;             /* A single constraint term */
668   WhereLoop *pLoop;             /* The WhereLoop object */
669   int j;                        /* Loop counter */
670   int regBase;                  /* Base register */
671   int nReg;                     /* Number of registers to allocate */
672   char *zAff;                   /* Affinity string to return */
673 
674   /* This module is only called on query plans that use an index. */
675   pLoop = pLevel->pWLoop;
676   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
677   nEq = pLoop->u.btree.nEq;
678   nSkip = pLoop->nSkip;
679   pIdx = pLoop->u.btree.pIndex;
680   assert( pIdx!=0 );
681 
682   /* Figure out how many memory cells we will need then allocate them.
683   */
684   regBase = pParse->nMem + 1;
685   nReg = pLoop->u.btree.nEq + nExtraReg;
686   pParse->nMem += nReg;
687 
688   zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
689   assert( zAff!=0 || pParse->db->mallocFailed );
690 
691   if( nSkip ){
692     int iIdxCur = pLevel->iIdxCur;
693     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
694     VdbeCoverageIf(v, bRev==0);
695     VdbeCoverageIf(v, bRev!=0);
696     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
697     j = sqlite3VdbeAddOp0(v, OP_Goto);
698     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
699                             iIdxCur, 0, regBase, nSkip);
700     VdbeCoverageIf(v, bRev==0);
701     VdbeCoverageIf(v, bRev!=0);
702     sqlite3VdbeJumpHere(v, j);
703     for(j=0; j<nSkip; j++){
704       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
705       testcase( pIdx->aiColumn[j]==XN_EXPR );
706       VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
707     }
708   }
709 
710   /* Evaluate the equality constraints
711   */
712   assert( zAff==0 || (int)strlen(zAff)>=nEq );
713   for(j=nSkip; j<nEq; j++){
714     int r1;
715     pTerm = pLoop->aLTerm[j];
716     assert( pTerm!=0 );
717     /* The following testcase is true for indices with redundant columns.
718     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
719     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
720     testcase( pTerm->wtFlags & TERM_VIRTUAL );
721     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
722     if( r1!=regBase+j ){
723       if( nReg==1 ){
724         sqlite3ReleaseTempReg(pParse, regBase);
725         regBase = r1;
726       }else{
727         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
728       }
729     }
730     if( pTerm->eOperator & WO_IN ){
731       if( pTerm->pExpr->flags & EP_xIsSelect ){
732         /* No affinity ever needs to be (or should be) applied to a value
733         ** from the RHS of an "? IN (SELECT ...)" expression. The
734         ** sqlite3FindInIndex() routine has already ensured that the
735         ** affinity of the comparison has been applied to the value.  */
736         if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
737       }
738     }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
739       Expr *pRight = pTerm->pExpr->pRight;
740       if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
741         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
742         VdbeCoverage(v);
743       }
744       if( zAff ){
745         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
746           zAff[j] = SQLITE_AFF_BLOB;
747         }
748         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
749           zAff[j] = SQLITE_AFF_BLOB;
750         }
751       }
752     }
753   }
754   *pzAff = zAff;
755   return regBase;
756 }
757 
758 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
759 /*
760 ** If the most recently coded instruction is a constant range constraint
761 ** (a string literal) that originated from the LIKE optimization, then
762 ** set P3 and P5 on the OP_String opcode so that the string will be cast
763 ** to a BLOB at appropriate times.
764 **
765 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
766 ** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
767 ** scan loop run twice, once for strings and a second time for BLOBs.
768 ** The OP_String opcodes on the second pass convert the upper and lower
769 ** bound string constants to blobs.  This routine makes the necessary changes
770 ** to the OP_String opcodes for that to happen.
771 **
772 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
773 ** only the one pass through the string space is required, so this routine
774 ** becomes a no-op.
775 */
776 static void whereLikeOptimizationStringFixup(
777   Vdbe *v,                /* prepared statement under construction */
778   WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
779   WhereTerm *pTerm        /* The upper or lower bound just coded */
780 ){
781   if( pTerm->wtFlags & TERM_LIKEOPT ){
782     VdbeOp *pOp;
783     assert( pLevel->iLikeRepCntr>0 );
784     pOp = sqlite3VdbeGetOp(v, -1);
785     assert( pOp!=0 );
786     assert( pOp->opcode==OP_String8
787             || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
788     pOp->p3 = (int)(pLevel->iLikeRepCntr>>1);  /* Register holding counter */
789     pOp->p5 = (u8)(pLevel->iLikeRepCntr&1);    /* ASC or DESC */
790   }
791 }
792 #else
793 # define whereLikeOptimizationStringFixup(A,B,C)
794 #endif
795 
796 #ifdef SQLITE_ENABLE_CURSOR_HINTS
797 /*
798 ** Information is passed from codeCursorHint() down to individual nodes of
799 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
800 ** structure.
801 */
802 struct CCurHint {
803   int iTabCur;    /* Cursor for the main table */
804   int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
805   Index *pIdx;    /* The index used to access the table */
806 };
807 
808 /*
809 ** This function is called for every node of an expression that is a candidate
810 ** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
811 ** the table CCurHint.iTabCur, verify that the same column can be
812 ** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
813 */
814 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
815   struct CCurHint *pHint = pWalker->u.pCCurHint;
816   assert( pHint->pIdx!=0 );
817   if( pExpr->op==TK_COLUMN
818    && pExpr->iTable==pHint->iTabCur
819    && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
820   ){
821     pWalker->eCode = 1;
822   }
823   return WRC_Continue;
824 }
825 
826 /*
827 ** Test whether or not expression pExpr, which was part of a WHERE clause,
828 ** should be included in the cursor-hint for a table that is on the rhs
829 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
830 ** expression is not suitable.
831 **
832 ** An expression is unsuitable if it might evaluate to non NULL even if
833 ** a TK_COLUMN node that does affect the value of the expression is set
834 ** to NULL. For example:
835 **
836 **   col IS NULL
837 **   col IS NOT NULL
838 **   coalesce(col, 1)
839 **   CASE WHEN col THEN 0 ELSE 1 END
840 */
841 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
842   if( pExpr->op==TK_IS
843    || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
844    || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
845   ){
846     pWalker->eCode = 1;
847   }else if( pExpr->op==TK_FUNCTION ){
848     int d1;
849     char d2[4];
850     if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
851       pWalker->eCode = 1;
852     }
853   }
854 
855   return WRC_Continue;
856 }
857 
858 
859 /*
860 ** This function is called on every node of an expression tree used as an
861 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
862 ** that accesses any table other than the one identified by
863 ** CCurHint.iTabCur, then do the following:
864 **
865 **   1) allocate a register and code an OP_Column instruction to read
866 **      the specified column into the new register, and
867 **
868 **   2) transform the expression node to a TK_REGISTER node that reads
869 **      from the newly populated register.
870 **
871 ** Also, if the node is a TK_COLUMN that does access the table idenified
872 ** by pCCurHint.iTabCur, and an index is being used (which we will
873 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
874 ** an access of the index rather than the original table.
875 */
876 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
877   int rc = WRC_Continue;
878   struct CCurHint *pHint = pWalker->u.pCCurHint;
879   if( pExpr->op==TK_COLUMN ){
880     if( pExpr->iTable!=pHint->iTabCur ){
881       Vdbe *v = pWalker->pParse->pVdbe;
882       int reg = ++pWalker->pParse->nMem;   /* Register for column value */
883       sqlite3ExprCodeGetColumnOfTable(
884           v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
885       );
886       pExpr->op = TK_REGISTER;
887       pExpr->iTable = reg;
888     }else if( pHint->pIdx!=0 ){
889       pExpr->iTable = pHint->iIdxCur;
890       pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
891       assert( pExpr->iColumn>=0 );
892     }
893   }else if( pExpr->op==TK_AGG_FUNCTION ){
894     /* An aggregate function in the WHERE clause of a query means this must
895     ** be a correlated sub-query, and expression pExpr is an aggregate from
896     ** the parent context. Do not walk the function arguments in this case.
897     **
898     ** todo: It should be possible to replace this node with a TK_REGISTER
899     ** expression, as the result of the expression must be stored in a
900     ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
901     rc = WRC_Prune;
902   }
903   return rc;
904 }
905 
906 /*
907 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
908 */
909 static void codeCursorHint(
910   struct SrcList_item *pTabItem,  /* FROM clause item */
911   WhereInfo *pWInfo,    /* The where clause */
912   WhereLevel *pLevel,   /* Which loop to provide hints for */
913   WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
914 ){
915   Parse *pParse = pWInfo->pParse;
916   sqlite3 *db = pParse->db;
917   Vdbe *v = pParse->pVdbe;
918   Expr *pExpr = 0;
919   WhereLoop *pLoop = pLevel->pWLoop;
920   int iCur;
921   WhereClause *pWC;
922   WhereTerm *pTerm;
923   int i, j;
924   struct CCurHint sHint;
925   Walker sWalker;
926 
927   if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
928   iCur = pLevel->iTabCur;
929   assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
930   sHint.iTabCur = iCur;
931   sHint.iIdxCur = pLevel->iIdxCur;
932   sHint.pIdx = pLoop->u.btree.pIndex;
933   memset(&sWalker, 0, sizeof(sWalker));
934   sWalker.pParse = pParse;
935   sWalker.u.pCCurHint = &sHint;
936   pWC = &pWInfo->sWC;
937   for(i=0; i<pWC->nTerm; i++){
938     pTerm = &pWC->a[i];
939     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
940     if( pTerm->prereqAll & pLevel->notReady ) continue;
941 
942     /* Any terms specified as part of the ON(...) clause for any LEFT
943     ** JOIN for which the current table is not the rhs are omitted
944     ** from the cursor-hint.
945     **
946     ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
947     ** that were specified as part of the WHERE clause must be excluded.
948     ** This is to address the following:
949     **
950     **   SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
951     **
952     ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
953     ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
954     ** pushed down to the cursor, this row is filtered out, causing
955     ** SQLite to synthesize a row of NULL values. Which does match the
956     ** WHERE clause, and so the query returns a row. Which is incorrect.
957     **
958     ** For the same reason, WHERE terms such as:
959     **
960     **   WHERE 1 = (t2.c IS NULL)
961     **
962     ** are also excluded. See codeCursorHintIsOrFunction() for details.
963     */
964     if( pTabItem->fg.jointype & JT_LEFT ){
965       Expr *pExpr = pTerm->pExpr;
966       if( !ExprHasProperty(pExpr, EP_FromJoin)
967        || pExpr->iRightJoinTable!=pTabItem->iCursor
968       ){
969         sWalker.eCode = 0;
970         sWalker.xExprCallback = codeCursorHintIsOrFunction;
971         sqlite3WalkExpr(&sWalker, pTerm->pExpr);
972         if( sWalker.eCode ) continue;
973       }
974     }else{
975       if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
976     }
977 
978     /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
979     ** the cursor.  These terms are not needed as hints for a pure range
980     ** scan (that has no == terms) so omit them. */
981     if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
982       for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
983       if( j<pLoop->nLTerm ) continue;
984     }
985 
986     /* No subqueries or non-deterministic functions allowed */
987     if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
988 
989     /* For an index scan, make sure referenced columns are actually in
990     ** the index. */
991     if( sHint.pIdx!=0 ){
992       sWalker.eCode = 0;
993       sWalker.xExprCallback = codeCursorHintCheckExpr;
994       sqlite3WalkExpr(&sWalker, pTerm->pExpr);
995       if( sWalker.eCode ) continue;
996     }
997 
998     /* If we survive all prior tests, that means this term is worth hinting */
999     pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1000   }
1001   if( pExpr!=0 ){
1002     sWalker.xExprCallback = codeCursorHintFixExpr;
1003     sqlite3WalkExpr(&sWalker, pExpr);
1004     sqlite3VdbeAddOp4(v, OP_CursorHint,
1005                       (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1006                       (const char*)pExpr, P4_EXPR);
1007   }
1008 }
1009 #else
1010 # define codeCursorHint(A,B,C,D)  /* No-op */
1011 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1012 
1013 /*
1014 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1015 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1016 ** function generates code to do a deferred seek of cursor iCur to the
1017 ** rowid stored in register iRowid.
1018 **
1019 ** Normally, this is just:
1020 **
1021 **   OP_DeferredSeek $iCur $iRowid
1022 **
1023 ** However, if the scan currently being coded is a branch of an OR-loop and
1024 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1025 ** is set to iIdxCur and P4 is set to point to an array of integers
1026 ** containing one entry for each column of the table cursor iCur is open
1027 ** on. For each table column, if the column is the i'th column of the
1028 ** index, then the corresponding array entry is set to (i+1). If the column
1029 ** does not appear in the index at all, the array entry is set to 0.
1030 */
1031 static void codeDeferredSeek(
1032   WhereInfo *pWInfo,              /* Where clause context */
1033   Index *pIdx,                    /* Index scan is using */
1034   int iCur,                       /* Cursor for IPK b-tree */
1035   int iIdxCur                     /* Index cursor */
1036 ){
1037   Parse *pParse = pWInfo->pParse; /* Parse context */
1038   Vdbe *v = pParse->pVdbe;        /* Vdbe to generate code within */
1039 
1040   assert( iIdxCur>0 );
1041   assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1042 
1043   sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1044   if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1045    && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1046   ){
1047     int i;
1048     Table *pTab = pIdx->pTable;
1049     int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1050     if( ai ){
1051       ai[0] = pTab->nCol;
1052       for(i=0; i<pIdx->nColumn-1; i++){
1053         assert( pIdx->aiColumn[i]<pTab->nCol );
1054         if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1055       }
1056       sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1057     }
1058   }
1059 }
1060 
1061 /*
1062 ** If the expression passed as the second argument is a vector, generate
1063 ** code to write the first nReg elements of the vector into an array
1064 ** of registers starting with iReg.
1065 **
1066 ** If the expression is not a vector, then nReg must be passed 1. In
1067 ** this case, generate code to evaluate the expression and leave the
1068 ** result in register iReg.
1069 */
1070 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1071   assert( nReg>0 );
1072   if( p && sqlite3ExprIsVector(p) ){
1073 #ifndef SQLITE_OMIT_SUBQUERY
1074     if( (p->flags & EP_xIsSelect) ){
1075       Vdbe *v = pParse->pVdbe;
1076       int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1077       sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1078     }else
1079 #endif
1080     {
1081       int i;
1082       ExprList *pList = p->x.pList;
1083       assert( nReg<=pList->nExpr );
1084       for(i=0; i<nReg; i++){
1085         sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1086       }
1087     }
1088   }else{
1089     assert( nReg==1 );
1090     sqlite3ExprCode(pParse, p, iReg);
1091   }
1092 }
1093 
1094 /* An instance of the IdxExprTrans object carries information about a
1095 ** mapping from an expression on table columns into a column in an index
1096 ** down through the Walker.
1097 */
1098 typedef struct IdxExprTrans {
1099   Expr *pIdxExpr;    /* The index expression */
1100   int iTabCur;       /* The cursor of the corresponding table */
1101   int iIdxCur;       /* The cursor for the index */
1102   int iIdxCol;       /* The column for the index */
1103 } IdxExprTrans;
1104 
1105 /* The walker node callback used to transform matching expressions into
1106 ** a reference to an index column for an index on an expression.
1107 **
1108 ** If pExpr matches, then transform it into a reference to the index column
1109 ** that contains the value of pExpr.
1110 */
1111 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1112   IdxExprTrans *pX = p->u.pIdxTrans;
1113   if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1114     pExpr->op = TK_COLUMN;
1115     pExpr->iTable = pX->iIdxCur;
1116     pExpr->iColumn = pX->iIdxCol;
1117     pExpr->pTab = 0;
1118     return WRC_Prune;
1119   }else{
1120     return WRC_Continue;
1121   }
1122 }
1123 
1124 /*
1125 ** For an indexes on expression X, locate every instance of expression X
1126 ** in pExpr and change that subexpression into a reference to the appropriate
1127 ** column of the index.
1128 */
1129 static void whereIndexExprTrans(
1130   Index *pIdx,      /* The Index */
1131   int iTabCur,      /* Cursor of the table that is being indexed */
1132   int iIdxCur,      /* Cursor of the index itself */
1133   WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1134 ){
1135   int iIdxCol;               /* Column number of the index */
1136   ExprList *aColExpr;        /* Expressions that are indexed */
1137   Walker w;
1138   IdxExprTrans x;
1139   aColExpr = pIdx->aColExpr;
1140   if( aColExpr==0 ) return;  /* Not an index on expressions */
1141   memset(&w, 0, sizeof(w));
1142   w.xExprCallback = whereIndexExprTransNode;
1143   w.u.pIdxTrans = &x;
1144   x.iTabCur = iTabCur;
1145   x.iIdxCur = iIdxCur;
1146   for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1147     if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1148     assert( aColExpr->a[iIdxCol].pExpr!=0 );
1149     x.iIdxCol = iIdxCol;
1150     x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1151     sqlite3WalkExpr(&w, pWInfo->pWhere);
1152     sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1153     sqlite3WalkExprList(&w, pWInfo->pResultSet);
1154   }
1155 }
1156 
1157 /*
1158 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1159 ** implementation described by pWInfo.
1160 */
1161 Bitmask sqlite3WhereCodeOneLoopStart(
1162   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
1163   int iLevel,          /* Which level of pWInfo->a[] should be coded */
1164   Bitmask notReady     /* Which tables are currently available */
1165 ){
1166   int j, k;            /* Loop counters */
1167   int iCur;            /* The VDBE cursor for the table */
1168   int addrNxt;         /* Where to jump to continue with the next IN case */
1169   int omitTable;       /* True if we use the index only */
1170   int bRev;            /* True if we need to scan in reverse order */
1171   WhereLevel *pLevel;  /* The where level to be coded */
1172   WhereLoop *pLoop;    /* The WhereLoop object being coded */
1173   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
1174   WhereTerm *pTerm;               /* A WHERE clause term */
1175   Parse *pParse;                  /* Parsing context */
1176   sqlite3 *db;                    /* Database connection */
1177   Vdbe *v;                        /* The prepared stmt under constructions */
1178   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
1179   int addrBrk;                    /* Jump here to break out of the loop */
1180   int addrHalt;                   /* addrBrk for the outermost loop */
1181   int addrCont;                   /* Jump here to continue with next cycle */
1182   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
1183   int iReleaseReg = 0;      /* Temp register to free before returning */
1184   Index *pIdx = 0;          /* Index used by loop (if any) */
1185   int iLoop;                /* Iteration of constraint generator loop */
1186 
1187   pParse = pWInfo->pParse;
1188   v = pParse->pVdbe;
1189   pWC = &pWInfo->sWC;
1190   db = pParse->db;
1191   pLevel = &pWInfo->a[iLevel];
1192   pLoop = pLevel->pWLoop;
1193   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1194   iCur = pTabItem->iCursor;
1195   pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1196   bRev = (pWInfo->revMask>>iLevel)&1;
1197   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1198            && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1199   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1200 
1201   /* Create labels for the "break" and "continue" instructions
1202   ** for the current loop.  Jump to addrBrk to break out of a loop.
1203   ** Jump to cont to go immediately to the next iteration of the
1204   ** loop.
1205   **
1206   ** When there is an IN operator, we also have a "addrNxt" label that
1207   ** means to continue with the next IN value combination.  When
1208   ** there are no IN operators in the constraints, the "addrNxt" label
1209   ** is the same as "addrBrk".
1210   */
1211   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1212   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1213 
1214   /* If this is the right table of a LEFT OUTER JOIN, allocate and
1215   ** initialize a memory cell that records if this table matches any
1216   ** row of the left table of the join.
1217   */
1218   if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1219     pLevel->iLeftJoin = ++pParse->nMem;
1220     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1221     VdbeComment((v, "init LEFT JOIN no-match flag"));
1222   }
1223 
1224   /* Compute a safe address to jump to if we discover that the table for
1225   ** this loop is empty and can never contribute content. */
1226   for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1227   addrHalt = pWInfo->a[j].addrBrk;
1228 
1229   /* Special case of a FROM clause subquery implemented as a co-routine */
1230   if( pTabItem->fg.viaCoroutine ){
1231     int regYield = pTabItem->regReturn;
1232     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1233     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1234     VdbeCoverage(v);
1235     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1236     pLevel->op = OP_Goto;
1237   }else
1238 
1239 #ifndef SQLITE_OMIT_VIRTUALTABLE
1240   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1241     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
1242     **          to access the data.
1243     */
1244     int iReg;   /* P3 Value for OP_VFilter */
1245     int addrNotFound;
1246     int nConstraint = pLoop->nLTerm;
1247     int iIn;    /* Counter for IN constraints */
1248 
1249     sqlite3ExprCachePush(pParse);
1250     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1251     addrNotFound = pLevel->addrBrk;
1252     for(j=0; j<nConstraint; j++){
1253       int iTarget = iReg+j+2;
1254       pTerm = pLoop->aLTerm[j];
1255       if( NEVER(pTerm==0) ) continue;
1256       if( pTerm->eOperator & WO_IN ){
1257         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1258         addrNotFound = pLevel->addrNxt;
1259       }else{
1260         Expr *pRight = pTerm->pExpr->pRight;
1261         codeExprOrVector(pParse, pRight, iTarget, 1);
1262       }
1263     }
1264     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1265     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1266     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1267                       pLoop->u.vtab.idxStr,
1268                       pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1269     VdbeCoverage(v);
1270     pLoop->u.vtab.needFree = 0;
1271     pLevel->p1 = iCur;
1272     pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1273     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1274     iIn = pLevel->u.in.nIn;
1275     for(j=nConstraint-1; j>=0; j--){
1276       pTerm = pLoop->aLTerm[j];
1277       if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1278         disableTerm(pLevel, pTerm);
1279       }else if( (pTerm->eOperator & WO_IN)!=0 ){
1280         Expr *pCompare;  /* The comparison operator */
1281         Expr *pRight;    /* RHS of the comparison */
1282         VdbeOp *pOp;     /* Opcode to access the value of the IN constraint */
1283 
1284         /* Reload the constraint value into reg[iReg+j+2].  The same value
1285         ** was loaded into the same register prior to the OP_VFilter, but
1286         ** the xFilter implementation might have changed the datatype or
1287         ** encoding of the value in the register, so it *must* be reloaded. */
1288         assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1289         if( !db->mallocFailed ){
1290           assert( iIn>0 );
1291           pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1292           assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1293           assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1294           assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1295           testcase( pOp->opcode==OP_Rowid );
1296           sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1297         }
1298 
1299         /* Generate code that will continue to the next row if
1300         ** the IN constraint is not satisfied */
1301         pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1302         assert( pCompare!=0 || db->mallocFailed );
1303         if( pCompare ){
1304           pCompare->pLeft = pTerm->pExpr->pLeft;
1305           pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1306           if( pRight ){
1307             pRight->iTable = iReg+j+2;
1308             sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1309           }
1310           pCompare->pLeft = 0;
1311           sqlite3ExprDelete(db, pCompare);
1312         }
1313       }
1314     }
1315     /* These registers need to be preserved in case there is an IN operator
1316     ** loop.  So we could deallocate the registers here (and potentially
1317     ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0.  But it seems
1318     ** simpler and safer to simply not reuse the registers.
1319     **
1320     **    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1321     */
1322     sqlite3ExprCachePop(pParse);
1323   }else
1324 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1325 
1326   if( (pLoop->wsFlags & WHERE_IPK)!=0
1327    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1328   ){
1329     /* Case 2:  We can directly reference a single row using an
1330     **          equality comparison against the ROWID field.  Or
1331     **          we reference multiple rows using a "rowid IN (...)"
1332     **          construct.
1333     */
1334     assert( pLoop->u.btree.nEq==1 );
1335     pTerm = pLoop->aLTerm[0];
1336     assert( pTerm!=0 );
1337     assert( pTerm->pExpr!=0 );
1338     assert( omitTable==0 );
1339     testcase( pTerm->wtFlags & TERM_VIRTUAL );
1340     iReleaseReg = ++pParse->nMem;
1341     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1342     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1343     addrNxt = pLevel->addrNxt;
1344     sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1345     VdbeCoverage(v);
1346     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1347     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1348     VdbeComment((v, "pk"));
1349     pLevel->op = OP_Noop;
1350   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1351          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1352   ){
1353     /* Case 3:  We have an inequality comparison against the ROWID field.
1354     */
1355     int testOp = OP_Noop;
1356     int start;
1357     int memEndValue = 0;
1358     WhereTerm *pStart, *pEnd;
1359 
1360     assert( omitTable==0 );
1361     j = 0;
1362     pStart = pEnd = 0;
1363     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1364     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1365     assert( pStart!=0 || pEnd!=0 );
1366     if( bRev ){
1367       pTerm = pStart;
1368       pStart = pEnd;
1369       pEnd = pTerm;
1370     }
1371     codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1372     if( pStart ){
1373       Expr *pX;             /* The expression that defines the start bound */
1374       int r1, rTemp;        /* Registers for holding the start boundary */
1375       int op;               /* Cursor seek operation */
1376 
1377       /* The following constant maps TK_xx codes into corresponding
1378       ** seek opcodes.  It depends on a particular ordering of TK_xx
1379       */
1380       const u8 aMoveOp[] = {
1381            /* TK_GT */  OP_SeekGT,
1382            /* TK_LE */  OP_SeekLE,
1383            /* TK_LT */  OP_SeekLT,
1384            /* TK_GE */  OP_SeekGE
1385       };
1386       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
1387       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
1388       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
1389 
1390       assert( (pStart->wtFlags & TERM_VNULL)==0 );
1391       testcase( pStart->wtFlags & TERM_VIRTUAL );
1392       pX = pStart->pExpr;
1393       assert( pX!=0 );
1394       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1395       if( sqlite3ExprIsVector(pX->pRight) ){
1396         r1 = rTemp = sqlite3GetTempReg(pParse);
1397         codeExprOrVector(pParse, pX->pRight, r1, 1);
1398         testcase( pX->op==TK_GT );
1399         testcase( pX->op==TK_GE );
1400         testcase( pX->op==TK_LT );
1401         testcase( pX->op==TK_LE );
1402         op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1403         assert( pX->op!=TK_GT || op==OP_SeekGE );
1404         assert( pX->op!=TK_GE || op==OP_SeekGE );
1405         assert( pX->op!=TK_LT || op==OP_SeekLE );
1406         assert( pX->op!=TK_LE || op==OP_SeekLE );
1407       }else{
1408         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1409         disableTerm(pLevel, pStart);
1410         op = aMoveOp[(pX->op - TK_GT)];
1411       }
1412       sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1413       VdbeComment((v, "pk"));
1414       VdbeCoverageIf(v, pX->op==TK_GT);
1415       VdbeCoverageIf(v, pX->op==TK_LE);
1416       VdbeCoverageIf(v, pX->op==TK_LT);
1417       VdbeCoverageIf(v, pX->op==TK_GE);
1418       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1419       sqlite3ReleaseTempReg(pParse, rTemp);
1420     }else{
1421       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1422       VdbeCoverageIf(v, bRev==0);
1423       VdbeCoverageIf(v, bRev!=0);
1424     }
1425     if( pEnd ){
1426       Expr *pX;
1427       pX = pEnd->pExpr;
1428       assert( pX!=0 );
1429       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1430       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1431       testcase( pEnd->wtFlags & TERM_VIRTUAL );
1432       memEndValue = ++pParse->nMem;
1433       codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1434       if( 0==sqlite3ExprIsVector(pX->pRight)
1435        && (pX->op==TK_LT || pX->op==TK_GT)
1436       ){
1437         testOp = bRev ? OP_Le : OP_Ge;
1438       }else{
1439         testOp = bRev ? OP_Lt : OP_Gt;
1440       }
1441       if( 0==sqlite3ExprIsVector(pX->pRight) ){
1442         disableTerm(pLevel, pEnd);
1443       }
1444     }
1445     start = sqlite3VdbeCurrentAddr(v);
1446     pLevel->op = bRev ? OP_Prev : OP_Next;
1447     pLevel->p1 = iCur;
1448     pLevel->p2 = start;
1449     assert( pLevel->p5==0 );
1450     if( testOp!=OP_Noop ){
1451       iRowidReg = ++pParse->nMem;
1452       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1453       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1454       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1455       VdbeCoverageIf(v, testOp==OP_Le);
1456       VdbeCoverageIf(v, testOp==OP_Lt);
1457       VdbeCoverageIf(v, testOp==OP_Ge);
1458       VdbeCoverageIf(v, testOp==OP_Gt);
1459       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1460     }
1461   }else if( pLoop->wsFlags & WHERE_INDEXED ){
1462     /* Case 4: A scan using an index.
1463     **
1464     **         The WHERE clause may contain zero or more equality
1465     **         terms ("==" or "IN" operators) that refer to the N
1466     **         left-most columns of the index. It may also contain
1467     **         inequality constraints (>, <, >= or <=) on the indexed
1468     **         column that immediately follows the N equalities. Only
1469     **         the right-most column can be an inequality - the rest must
1470     **         use the "==" and "IN" operators. For example, if the
1471     **         index is on (x,y,z), then the following clauses are all
1472     **         optimized:
1473     **
1474     **            x=5
1475     **            x=5 AND y=10
1476     **            x=5 AND y<10
1477     **            x=5 AND y>5 AND y<10
1478     **            x=5 AND y=5 AND z<=10
1479     **
1480     **         The z<10 term of the following cannot be used, only
1481     **         the x=5 term:
1482     **
1483     **            x=5 AND z<10
1484     **
1485     **         N may be zero if there are inequality constraints.
1486     **         If there are no inequality constraints, then N is at
1487     **         least one.
1488     **
1489     **         This case is also used when there are no WHERE clause
1490     **         constraints but an index is selected anyway, in order
1491     **         to force the output order to conform to an ORDER BY.
1492     */
1493     static const u8 aStartOp[] = {
1494       0,
1495       0,
1496       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
1497       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
1498       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
1499       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
1500       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
1501       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
1502     };
1503     static const u8 aEndOp[] = {
1504       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
1505       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
1506       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
1507       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
1508     };
1509     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
1510     u16 nBtm = pLoop->u.btree.nBtm;   /* Length of BTM vector */
1511     u16 nTop = pLoop->u.btree.nTop;   /* Length of TOP vector */
1512     int regBase;                 /* Base register holding constraint values */
1513     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
1514     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
1515     int startEq;                 /* True if range start uses ==, >= or <= */
1516     int endEq;                   /* True if range end uses ==, >= or <= */
1517     int start_constraints;       /* Start of range is constrained */
1518     int nConstraint;             /* Number of constraint terms */
1519     int iIdxCur;                 /* The VDBE cursor for the index */
1520     int nExtraReg = 0;           /* Number of extra registers needed */
1521     int op;                      /* Instruction opcode */
1522     char *zStartAff;             /* Affinity for start of range constraint */
1523     char *zEndAff = 0;           /* Affinity for end of range constraint */
1524     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
1525     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
1526 
1527     pIdx = pLoop->u.btree.pIndex;
1528     iIdxCur = pLevel->iIdxCur;
1529     assert( nEq>=pLoop->nSkip );
1530 
1531     /* If this loop satisfies a sort order (pOrderBy) request that
1532     ** was passed to this function to implement a "SELECT min(x) ..."
1533     ** query, then the caller will only allow the loop to run for
1534     ** a single iteration. This means that the first row returned
1535     ** should not have a NULL value stored in 'x'. If column 'x' is
1536     ** the first one after the nEq equality constraints in the index,
1537     ** this requires some special handling.
1538     */
1539     assert( pWInfo->pOrderBy==0
1540          || pWInfo->pOrderBy->nExpr==1
1541          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1542     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1543      && pWInfo->nOBSat>0
1544      && (pIdx->nKeyCol>nEq)
1545     ){
1546       assert( pLoop->nSkip==0 );
1547       bSeekPastNull = 1;
1548       nExtraReg = 1;
1549     }
1550 
1551     /* Find any inequality constraint terms for the start and end
1552     ** of the range.
1553     */
1554     j = nEq;
1555     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1556       pRangeStart = pLoop->aLTerm[j++];
1557       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1558       /* Like optimization range constraints always occur in pairs */
1559       assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1560               (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1561     }
1562     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1563       pRangeEnd = pLoop->aLTerm[j++];
1564       nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1565 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1566       if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1567         assert( pRangeStart!=0 );                     /* LIKE opt constraints */
1568         assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
1569         pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1570         sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1571         VdbeComment((v, "LIKE loop counter"));
1572         pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1573         /* iLikeRepCntr actually stores 2x the counter register number.  The
1574         ** bottom bit indicates whether the search order is ASC or DESC. */
1575         testcase( bRev );
1576         testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1577         assert( (bRev & ~1)==0 );
1578         pLevel->iLikeRepCntr <<=1;
1579         pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1580       }
1581 #endif
1582       if( pRangeStart==0 ){
1583         j = pIdx->aiColumn[nEq];
1584         if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1585           bSeekPastNull = 1;
1586         }
1587       }
1588     }
1589     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1590 
1591     /* If we are doing a reverse order scan on an ascending index, or
1592     ** a forward order scan on a descending index, interchange the
1593     ** start and end terms (pRangeStart and pRangeEnd).
1594     */
1595     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1596      || (bRev && pIdx->nKeyCol==nEq)
1597     ){
1598       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1599       SWAP(u8, bSeekPastNull, bStopAtNull);
1600       SWAP(u8, nBtm, nTop);
1601     }
1602 
1603     /* Generate code to evaluate all constraint terms using == or IN
1604     ** and store the values of those terms in an array of registers
1605     ** starting at regBase.
1606     */
1607     codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1608     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1609     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1610     if( zStartAff && nTop ){
1611       zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1612     }
1613     addrNxt = pLevel->addrNxt;
1614 
1615     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1616     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1617     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1618     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1619     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1620     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1621     start_constraints = pRangeStart || nEq>0;
1622 
1623     /* Seek the index cursor to the start of the range. */
1624     nConstraint = nEq;
1625     if( pRangeStart ){
1626       Expr *pRight = pRangeStart->pExpr->pRight;
1627       codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1628       whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1629       if( (pRangeStart->wtFlags & TERM_VNULL)==0
1630        && sqlite3ExprCanBeNull(pRight)
1631       ){
1632         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1633         VdbeCoverage(v);
1634       }
1635       if( zStartAff ){
1636         updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1637       }
1638       nConstraint += nBtm;
1639       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1640       if( sqlite3ExprIsVector(pRight)==0 ){
1641         disableTerm(pLevel, pRangeStart);
1642       }else{
1643         startEq = 1;
1644       }
1645       bSeekPastNull = 0;
1646     }else if( bSeekPastNull ){
1647       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1648       nConstraint++;
1649       startEq = 0;
1650       start_constraints = 1;
1651     }
1652     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1653     if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1654       /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1655       ** above has already left the cursor sitting on the correct row,
1656       ** so no further seeking is needed */
1657     }else{
1658       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1659       assert( op!=0 );
1660       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1661       VdbeCoverage(v);
1662       VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
1663       VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
1664       VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
1665       VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
1666       VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
1667       VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
1668     }
1669 
1670     /* Load the value for the inequality constraint at the end of the
1671     ** range (if any).
1672     */
1673     nConstraint = nEq;
1674     if( pRangeEnd ){
1675       Expr *pRight = pRangeEnd->pExpr->pRight;
1676       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1677       codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1678       whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1679       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1680        && sqlite3ExprCanBeNull(pRight)
1681       ){
1682         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1683         VdbeCoverage(v);
1684       }
1685       if( zEndAff ){
1686         updateRangeAffinityStr(pRight, nTop, zEndAff);
1687         codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1688       }else{
1689         assert( pParse->db->mallocFailed );
1690       }
1691       nConstraint += nTop;
1692       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1693 
1694       if( sqlite3ExprIsVector(pRight)==0 ){
1695         disableTerm(pLevel, pRangeEnd);
1696       }else{
1697         endEq = 1;
1698       }
1699     }else if( bStopAtNull ){
1700       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1701       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1702       endEq = 0;
1703       nConstraint++;
1704     }
1705     sqlite3DbFree(db, zStartAff);
1706     sqlite3DbFree(db, zEndAff);
1707 
1708     /* Top of the loop body */
1709     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1710 
1711     /* Check if the index cursor is past the end of the range. */
1712     if( nConstraint ){
1713       op = aEndOp[bRev*2 + endEq];
1714       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1715       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
1716       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
1717       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
1718       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
1719     }
1720 
1721     /* Seek the table cursor, if required */
1722     if( omitTable ){
1723       /* pIdx is a covering index.  No need to access the main table. */
1724     }else if( HasRowid(pIdx->pTable) ){
1725       if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1726           (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1727        && (pWInfo->eOnePass==ONEPASS_SINGLE)
1728       )){
1729         iRowidReg = ++pParse->nMem;
1730         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1731         sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1732         sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1733         VdbeCoverage(v);
1734       }else{
1735         codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1736       }
1737     }else if( iCur!=iIdxCur ){
1738       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1739       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1740       for(j=0; j<pPk->nKeyCol; j++){
1741         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1742         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1743       }
1744       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1745                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1746     }
1747 
1748     /* If pIdx is an index on one or more expressions, then look through
1749     ** all the expressions in pWInfo and try to transform matching expressions
1750     ** into reference to index columns.
1751     */
1752     whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1753 
1754 
1755     /* Record the instruction used to terminate the loop. */
1756     if( pLoop->wsFlags & WHERE_ONEROW ){
1757       pLevel->op = OP_Noop;
1758     }else if( bRev ){
1759       pLevel->op = OP_Prev;
1760     }else{
1761       pLevel->op = OP_Next;
1762     }
1763     pLevel->p1 = iIdxCur;
1764     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1765     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1766       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1767     }else{
1768       assert( pLevel->p5==0 );
1769     }
1770     if( omitTable ) pIdx = 0;
1771   }else
1772 
1773 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1774   if( pLoop->wsFlags & WHERE_MULTI_OR ){
1775     /* Case 5:  Two or more separately indexed terms connected by OR
1776     **
1777     ** Example:
1778     **
1779     **   CREATE TABLE t1(a,b,c,d);
1780     **   CREATE INDEX i1 ON t1(a);
1781     **   CREATE INDEX i2 ON t1(b);
1782     **   CREATE INDEX i3 ON t1(c);
1783     **
1784     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1785     **
1786     ** In the example, there are three indexed terms connected by OR.
1787     ** The top of the loop looks like this:
1788     **
1789     **          Null       1                # Zero the rowset in reg 1
1790     **
1791     ** Then, for each indexed term, the following. The arguments to
1792     ** RowSetTest are such that the rowid of the current row is inserted
1793     ** into the RowSet. If it is already present, control skips the
1794     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1795     **
1796     **        sqlite3WhereBegin(<term>)
1797     **          RowSetTest                  # Insert rowid into rowset
1798     **          Gosub      2 A
1799     **        sqlite3WhereEnd()
1800     **
1801     ** Following the above, code to terminate the loop. Label A, the target
1802     ** of the Gosub above, jumps to the instruction right after the Goto.
1803     **
1804     **          Null       1                # Zero the rowset in reg 1
1805     **          Goto       B                # The loop is finished.
1806     **
1807     **       A: <loop body>                 # Return data, whatever.
1808     **
1809     **          Return     2                # Jump back to the Gosub
1810     **
1811     **       B: <after the loop>
1812     **
1813     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1814     ** use an ephemeral index instead of a RowSet to record the primary
1815     ** keys of the rows we have already seen.
1816     **
1817     */
1818     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
1819     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
1820     Index *pCov = 0;             /* Potential covering index (or NULL) */
1821     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
1822 
1823     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
1824     int regRowset = 0;                        /* Register for RowSet object */
1825     int regRowid = 0;                         /* Register holding rowid */
1826     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
1827     int iRetInit;                             /* Address of regReturn init */
1828     int untestedTerms = 0;             /* Some terms not completely tested */
1829     int ii;                            /* Loop counter */
1830     u16 wctrlFlags;                    /* Flags for sub-WHERE clause */
1831     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
1832     Table *pTab = pTabItem->pTab;
1833 
1834     pTerm = pLoop->aLTerm[0];
1835     assert( pTerm!=0 );
1836     assert( pTerm->eOperator & WO_OR );
1837     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1838     pOrWc = &pTerm->u.pOrInfo->wc;
1839     pLevel->op = OP_Return;
1840     pLevel->p1 = regReturn;
1841 
1842     /* Set up a new SrcList in pOrTab containing the table being scanned
1843     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1844     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1845     */
1846     if( pWInfo->nLevel>1 ){
1847       int nNotReady;                 /* The number of notReady tables */
1848       struct SrcList_item *origSrc;     /* Original list of tables */
1849       nNotReady = pWInfo->nLevel - iLevel - 1;
1850       pOrTab = sqlite3StackAllocRaw(db,
1851                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1852       if( pOrTab==0 ) return notReady;
1853       pOrTab->nAlloc = (u8)(nNotReady + 1);
1854       pOrTab->nSrc = pOrTab->nAlloc;
1855       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1856       origSrc = pWInfo->pTabList->a;
1857       for(k=1; k<=nNotReady; k++){
1858         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1859       }
1860     }else{
1861       pOrTab = pWInfo->pTabList;
1862     }
1863 
1864     /* Initialize the rowset register to contain NULL. An SQL NULL is
1865     ** equivalent to an empty rowset.  Or, create an ephemeral index
1866     ** capable of holding primary keys in the case of a WITHOUT ROWID.
1867     **
1868     ** Also initialize regReturn to contain the address of the instruction
1869     ** immediately following the OP_Return at the bottom of the loop. This
1870     ** is required in a few obscure LEFT JOIN cases where control jumps
1871     ** over the top of the loop into the body of it. In this case the
1872     ** correct response for the end-of-loop code (the OP_Return) is to
1873     ** fall through to the next instruction, just as an OP_Next does if
1874     ** called on an uninitialized cursor.
1875     */
1876     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1877       if( HasRowid(pTab) ){
1878         regRowset = ++pParse->nMem;
1879         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1880       }else{
1881         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1882         regRowset = pParse->nTab++;
1883         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1884         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1885       }
1886       regRowid = ++pParse->nMem;
1887     }
1888     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1889 
1890     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
1891     ** Then for every term xN, evaluate as the subexpression: xN AND z
1892     ** That way, terms in y that are factored into the disjunction will
1893     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1894     **
1895     ** Actually, each subexpression is converted to "xN AND w" where w is
1896     ** the "interesting" terms of z - terms that did not originate in the
1897     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1898     ** indices.
1899     **
1900     ** This optimization also only applies if the (x1 OR x2 OR ...) term
1901     ** is not contained in the ON clause of a LEFT JOIN.
1902     ** See ticket http://www.sqlite.org/src/info/f2369304e4
1903     */
1904     if( pWC->nTerm>1 ){
1905       int iTerm;
1906       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1907         Expr *pExpr = pWC->a[iTerm].pExpr;
1908         if( &pWC->a[iTerm] == pTerm ) continue;
1909         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1910         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1911         testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1912         if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1913         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1914         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1915         pExpr = sqlite3ExprDup(db, pExpr, 0);
1916         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1917       }
1918       if( pAndExpr ){
1919         pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1920       }
1921     }
1922 
1923     /* Run a separate WHERE clause for each term of the OR clause.  After
1924     ** eliminating duplicates from other WHERE clauses, the action for each
1925     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1926     */
1927     wctrlFlags =  WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1928     for(ii=0; ii<pOrWc->nTerm; ii++){
1929       WhereTerm *pOrTerm = &pOrWc->a[ii];
1930       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1931         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
1932         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1933         int jmp1 = 0;                   /* Address of jump operation */
1934         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1935           pAndExpr->pLeft = pOrExpr;
1936           pOrExpr = pAndExpr;
1937         }
1938         /* Loop through table entries that match term pOrTerm. */
1939         WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1940         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1941                                       wctrlFlags, iCovCur);
1942         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1943         if( pSubWInfo ){
1944           WhereLoop *pSubLoop;
1945           int addrExplain = sqlite3WhereExplainOneScan(
1946               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1947           );
1948           sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1949 
1950           /* This is the sub-WHERE clause body.  First skip over
1951           ** duplicate rows from prior sub-WHERE clauses, and record the
1952           ** rowid (or PRIMARY KEY) for the current row so that the same
1953           ** row will be skipped in subsequent sub-WHERE clauses.
1954           */
1955           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1956             int r;
1957             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1958             if( HasRowid(pTab) ){
1959               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1960               jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1961                                            r,iSet);
1962               VdbeCoverage(v);
1963             }else{
1964               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1965               int nPk = pPk->nKeyCol;
1966               int iPk;
1967 
1968               /* Read the PK into an array of temp registers. */
1969               r = sqlite3GetTempRange(pParse, nPk);
1970               for(iPk=0; iPk<nPk; iPk++){
1971                 int iCol = pPk->aiColumn[iPk];
1972                 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1973               }
1974 
1975               /* Check if the temp table already contains this key. If so,
1976               ** the row has already been included in the result set and
1977               ** can be ignored (by jumping past the Gosub below). Otherwise,
1978               ** insert the key into the temp table and proceed with processing
1979               ** the row.
1980               **
1981               ** Use some of the same optimizations as OP_RowSetTest: If iSet
1982               ** is zero, assume that the key cannot already be present in
1983               ** the temp table. And if iSet is -1, assume that there is no
1984               ** need to insert the key into the temp table, as it will never
1985               ** be tested for.  */
1986               if( iSet ){
1987                 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1988                 VdbeCoverage(v);
1989               }
1990               if( iSet>=0 ){
1991                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1992                 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
1993                                      r, nPk);
1994                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1995               }
1996 
1997               /* Release the array of temp registers */
1998               sqlite3ReleaseTempRange(pParse, r, nPk);
1999             }
2000           }
2001 
2002           /* Invoke the main loop body as a subroutine */
2003           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2004 
2005           /* Jump here (skipping the main loop body subroutine) if the
2006           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2007           if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2008 
2009           /* The pSubWInfo->untestedTerms flag means that this OR term
2010           ** contained one or more AND term from a notReady table.  The
2011           ** terms from the notReady table could not be tested and will
2012           ** need to be tested later.
2013           */
2014           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2015 
2016           /* If all of the OR-connected terms are optimized using the same
2017           ** index, and the index is opened using the same cursor number
2018           ** by each call to sqlite3WhereBegin() made by this loop, it may
2019           ** be possible to use that index as a covering index.
2020           **
2021           ** If the call to sqlite3WhereBegin() above resulted in a scan that
2022           ** uses an index, and this is either the first OR-connected term
2023           ** processed or the index is the same as that used by all previous
2024           ** terms, set pCov to the candidate covering index. Otherwise, set
2025           ** pCov to NULL to indicate that no candidate covering index will
2026           ** be available.
2027           */
2028           pSubLoop = pSubWInfo->a[0].pWLoop;
2029           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2030           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2031            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2032            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2033           ){
2034             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2035             pCov = pSubLoop->u.btree.pIndex;
2036           }else{
2037             pCov = 0;
2038           }
2039 
2040           /* Finish the loop through table entries that match term pOrTerm. */
2041           sqlite3WhereEnd(pSubWInfo);
2042         }
2043       }
2044     }
2045     pLevel->u.pCovidx = pCov;
2046     if( pCov ) pLevel->iIdxCur = iCovCur;
2047     if( pAndExpr ){
2048       pAndExpr->pLeft = 0;
2049       sqlite3ExprDelete(db, pAndExpr);
2050     }
2051     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2052     sqlite3VdbeGoto(v, pLevel->addrBrk);
2053     sqlite3VdbeResolveLabel(v, iLoopBody);
2054 
2055     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
2056     if( !untestedTerms ) disableTerm(pLevel, pTerm);
2057   }else
2058 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2059 
2060   {
2061     /* Case 6:  There is no usable index.  We must do a complete
2062     **          scan of the entire table.
2063     */
2064     static const u8 aStep[] = { OP_Next, OP_Prev };
2065     static const u8 aStart[] = { OP_Rewind, OP_Last };
2066     assert( bRev==0 || bRev==1 );
2067     if( pTabItem->fg.isRecursive ){
2068       /* Tables marked isRecursive have only a single row that is stored in
2069       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
2070       pLevel->op = OP_Noop;
2071     }else{
2072       codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2073       pLevel->op = aStep[bRev];
2074       pLevel->p1 = iCur;
2075       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2076       VdbeCoverageIf(v, bRev==0);
2077       VdbeCoverageIf(v, bRev!=0);
2078       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2079     }
2080   }
2081 
2082 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2083   pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2084 #endif
2085 
2086   /* Insert code to test every subexpression that can be completely
2087   ** computed using the current set of tables.
2088   **
2089   ** This loop may run between one and three times, depending on the
2090   ** constraints to be generated. The value of stack variable iLoop
2091   ** determines the constraints coded by each iteration, as follows:
2092   **
2093   ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2094   ** iLoop==2: Code remaining expressions that do not contain correlated
2095   **           sub-queries.
2096   ** iLoop==3: Code all remaining expressions.
2097   **
2098   ** An effort is made to skip unnecessary iterations of the loop.
2099   */
2100   iLoop = (pIdx ? 1 : 2);
2101   do{
2102     int iNext = 0;                /* Next value for iLoop */
2103     for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2104       Expr *pE;
2105       int skipLikeAddr = 0;
2106       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2107       testcase( pTerm->wtFlags & TERM_CODED );
2108       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2109       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2110         testcase( pWInfo->untestedTerms==0
2111             && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2112         pWInfo->untestedTerms = 1;
2113         continue;
2114       }
2115       pE = pTerm->pExpr;
2116       assert( pE!=0 );
2117       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2118         continue;
2119       }
2120 
2121       if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2122         iNext = 2;
2123         continue;
2124       }
2125       if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2126         if( iNext==0 ) iNext = 3;
2127         continue;
2128       }
2129 
2130       if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2131         /* If the TERM_LIKECOND flag is set, that means that the range search
2132         ** is sufficient to guarantee that the LIKE operator is true, so we
2133         ** can skip the call to the like(A,B) function.  But this only works
2134         ** for strings.  So do not skip the call to the function on the pass
2135         ** that compares BLOBs. */
2136 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2137         continue;
2138 #else
2139         u32 x = pLevel->iLikeRepCntr;
2140         if( x>0 ){
2141           skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2142         }
2143         VdbeCoverage(v);
2144 #endif
2145       }
2146 #ifdef WHERETRACE_ENABLED /* 0xffff */
2147       if( sqlite3WhereTrace ){
2148         VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2149                          pWC->nTerm-j, pTerm, iLoop));
2150       }
2151 #endif
2152       sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2153       if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2154       pTerm->wtFlags |= TERM_CODED;
2155     }
2156     iLoop = iNext;
2157   }while( iLoop>0 );
2158 
2159   /* Insert code to test for implied constraints based on transitivity
2160   ** of the "==" operator.
2161   **
2162   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2163   ** and we are coding the t1 loop and the t2 loop has not yet coded,
2164   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2165   ** the implied "t1.a=123" constraint.
2166   */
2167   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2168     Expr *pE, sEAlt;
2169     WhereTerm *pAlt;
2170     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2171     if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2172     if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2173     if( pTerm->leftCursor!=iCur ) continue;
2174     if( pLevel->iLeftJoin ) continue;
2175     pE = pTerm->pExpr;
2176     assert( !ExprHasProperty(pE, EP_FromJoin) );
2177     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2178     pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2179                     WO_EQ|WO_IN|WO_IS, 0);
2180     if( pAlt==0 ) continue;
2181     if( pAlt->wtFlags & (TERM_CODED) ) continue;
2182     if( (pAlt->eOperator & WO_IN)
2183      && (pAlt->pExpr->flags & EP_xIsSelect)
2184      && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2185     ){
2186       continue;
2187     }
2188     testcase( pAlt->eOperator & WO_EQ );
2189     testcase( pAlt->eOperator & WO_IS );
2190     testcase( pAlt->eOperator & WO_IN );
2191     VdbeModuleComment((v, "begin transitive constraint"));
2192     sEAlt = *pAlt->pExpr;
2193     sEAlt.pLeft = pE->pLeft;
2194     sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2195   }
2196 
2197   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2198   ** at least one row of the right table has matched the left table.
2199   */
2200   if( pLevel->iLeftJoin ){
2201     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2202     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2203     VdbeComment((v, "record LEFT JOIN hit"));
2204     sqlite3ExprCacheClear(pParse);
2205     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2206       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2207       testcase( pTerm->wtFlags & TERM_CODED );
2208       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2209       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2210         assert( pWInfo->untestedTerms );
2211         continue;
2212       }
2213       assert( pTerm->pExpr );
2214       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2215       pTerm->wtFlags |= TERM_CODED;
2216     }
2217   }
2218 
2219   return pLevel->notReady;
2220 }
2221